操作系统实验线程同步
操作系统实验二
实验二并发与调度一、实验目的在本实验中,通过对事件和互斥体对象的了解,来加深对Windows 2000线程同步的理解。
通过分析实验程序,了解管理事件对象的API。
了解在进程中如何使用事件对象,在进程中如何使用互斥体对象,线程如何通过文件映射对象发送数据。
在Linux Redhat 9.0操作系统平台上,用pipe()创建一个管道文件,然后用fork()创建两个生产进程和两个消费进程,它们之间通过pipe()传递消息。
二、实验环境硬件环境:计算机一台,局域网环境;软件环境:Windows 2000 Professional,Linux Redhat 9.0操作系统平台,Visual C++ 6.0企业版。
三、实验内容和步骤第一部分:互斥体对象本程序中显示的类CCountUpDown使用了一个互斥体来保证对两个线程间单一数值的访问。
每个线程都企图获得控制权来改变该数值,然后将该数值写入输出流中。
创建者实际上创建的是互斥体对象,计数方法执行等待并释放,为的是共同使用互斥体所需的资源(因而也就是共享资源) 。
利用互斥体保护共享资源// mutex项目# include <windows.h># include <iostream>class CCountUpDown{public:CCountUpDown(int nAccesses) :m_hThreadInc(INV ALID_HANDLE_V ALUE) ,m_hThreadDec(INV ALID_HANDLE_V ALUE) ,m_hMutexV alue(IN V ALID_HANDLE_V ALUE) ,m_nV alue(0) ,m_nAccess(nAccesses){m_hMutexV alue = :: CreateMutex(NULL,TRUE,NULL) ;m_hThreadInc = :: CreateThread(NULL,0,IncThreadProc,reinterpret_cast <LPVOID> (this) ,0,NULL) ;m_hThreadDec = :: CreateThread(NULL,0,DecThreadProc,reinterpret_cast <LPVOID> (this) ,0,NULL) ;:: ReleaseMutex(m_hMutexV alue) ;}virtual ~CCountUpDown(){:: CloseHandle(m_hThreadInc) ;:: CloseHandle(m_hThreadDec) ;:: CloseHandle(m_hMutexV alue) ;}virtual void WaitForCompletion(){if (m_hThreadInc != INV ALID_HANDLE_V ALUE &&m_hThreadDec != INV ALID_HANDLE_V ALUE){:: WaitForSingleObject(m_hThreadInc, INFINITE) ;:: WaitForSingleObject(m_hThreadDec, INFINITE) ;}}protected:virtual void DoCount(int nStep){while (m_nAccess > 0){:: WaitForSingleObject(m_hMutexV alue, INFINITE) ;m_nV alue += nStep;std :: cout << “thread: ” << :: GetCurrentThreadId()<< “value: ” << m_n V alue<< “access: ” << m_nAccess << std :: endl;--m_nAccess;:: Sleep(1000) ; // 使显示速度放慢:: ReleaseMutex(m_hMutexV alue) ;}}static DWORD WINAPI IncThreadProc(LPVOID lpParam){CCountUpDown* pThis =reinterpret_cast < CCountUpDown* > (lpParam) ;pThis -> DoCount(+1) ;return(0) ;}static DWORD WINAPI DecThreadProc(LPVOID lpParam){CCountUpDown* pThis =reinterpret_cast <CCountUpDown* > (lpParam) ;pThis -> DoCount(-1) ;return(0) ;}protected:HANDLE m_hThreadInc;HANDLE m_hThreadDec;HANDLE m_hMutexV alue;int m_nV alue;int m_nAccess ;} ;void main(){ CCountUpDown ud(50) ;ud.WaitForCompletion() ; }分析程序的运行结果,可以看到线程(加和减线程) 的交替执行(因为Sleep() API允许Windows切换线程) 。
操作系统第8章 操作系统实验
8.5.3 实验准备
1. Linux模块概述 2. 设备驱动程序的设计 3. 参考程序的分析
8.6 文件系统实验
8.6.1 实验内容
以root身份登录系统后,练习常用Linux文件操作命令以及 学习文件系统的装卸。
第8章 操作系统实验
内容提要
本教材以Linux操作系统为平台,通过它提供的键盘控制命令 了解操作系统的功能;通过它提供的系统调用命令实现进程 (线程)的同步与互斥、进程的通信、设备的管理等操作,从 而理解操作系统的工作原理。
本实验平台使用Red Hat Linux 9.0,并且使用文本操作界面。 实验内容包括Linux系统基本操作、进程通信、进程同步与互斥、 生产者与消费者、存储管理、设备管理、文件系统等实验。本 教材提供的实验同样适用于其他版本的Linux。
8.3 进程的同步与互斥实验
8.3.1 实验内容
1. 利用POSIX标准的pthread线程库创建五个线程,实现这 五个线程之间的互斥地访问数组N。这五个线程分别标识为0、 1、2、3、4,线程i的工作可描述如下: (1) 线程i休息一段时间,i可以是五个线程之一。 (2) 使N[i]加1,N[i]记录线程i进入临界区的次数。 (3) 使N[5]加1,记录这五个线程的进入临界区的总次数。 (4) 转(1)。 2. 利用POSIX标准的pthread线程库创建两个线程,实现这 两个线程之间的同步共享变量buffer(相当于一个缓冲区)。其 中一个线程产生一个随机数保存的变量buffer中,另一个线程将 该随机数打印出来。
第8章 操作系统实验
教学目标
通过本实验使学生理解操作系统的功能,掌握进程 (线程)的同步与互斥、进程的通信、设备的管理、文 件系统的实现原理,从而掌握操作系统的概念和原理。
进程的同步与互斥实验报告
进程的同步与互斥实验报告1.实验目的进程(线程)的同步与互斥是操作系统中非常重要的概念,本实验旨在通过实际操作,加深对这些概念的理解和掌握。
通过编写多个进程(线程),并在其间进行同步与互斥操作,验证同步与互斥的实际效果。
2.实验环境本实验在Linux系统下进行,使用C/C++语言编程。
3.实验内容3.1同步在实验中,我们编写了两个进程A和B,这两个进程需要按照特定的顺序执行。
为了实现同步,我们使用信号量机制来确保进程A和B按照正确的顺序执行。
3.2互斥在实验中,我们编写了多个进程C和D,这些进程需要同时对一个共享资源进行访问。
为了实现互斥,我们使用互斥锁机制来确保同一时刻只有一个进程访问共享资源。
4.实验过程4.1同步实验编写进程A和进程B的代码,使用信号量机制实现同步。
进程A先运行,然后通过信号量唤醒进程B,进程B再开始执行。
通过观察进程的运行顺序,验证同步机制是否起作用。
4.2互斥实验编写进程C和进程D的代码,使用互斥锁机制实现互斥。
进程C和进程D同时对一个共享资源进行访问,通过互斥锁来确保同一时刻只有一个进程访问共享资源。
观察进程的输出结果,验证互斥机制是否起作用。
5.实验结果5.1同步实验结果进程A开始执行进程A执行完毕进程B开始执行进程B执行完毕5.2互斥实验结果进程C开始执行进程C访问共享资源进程C执行完毕进程D开始执行进程D访问共享资源进程D执行完毕6.实验分析通过上述结果可以看出,同步实验中进程A和进程B按照正确的顺序执行,证明了同步机制的有效性。
互斥实验中进程C和进程D能够正确地交替访问共享资源,证明了互斥机制的有效性。
7.实验总结通过本次实验,我深刻理解了进程(线程)的同步与互斥,并通过实际操作加深了对这些概念的理解。
同步和互斥是操作系统中非常重要的概念,对于应对资源竞争和提高程序性能具有重要意义。
在实际开发中,我们应该合理使用同步和互斥机制,以确保程序的正确性和并发执行的效率。
多线程程序实验报告(3篇)
第1篇一、实验目的1. 理解多线程的概念和作用。
2. 掌握多线程的创建、同步和通信方法。
3. 熟悉Java中多线程的实现方式。
4. 提高程序设计能力和实际应用能力。
二、实验环境1. 操作系统:Windows 102. 开发工具:IntelliJ IDEA3. 编程语言:Java三、实验内容本次实验主要完成以下任务:1. 创建多线程程序,实现两个线程分别执行不同的任务。
2. 使用同步方法实现线程间的同步。
3. 使用线程通信机制实现线程间的协作。
四、实验步骤1. 创建两个线程类,分别为Thread1和Thread2。
```javapublic class Thread1 extends Thread {@Overridepublic void run() {// 执行Thread1的任务for (int i = 0; i < 10; i++) {System.out.println("Thread1: " + i);}}}public class Thread2 extends Thread {@Overridepublic void run() {// 执行Thread2的任务for (int i = 0; i < 10; i++) {System.out.println("Thread2: " + i);}}}```2. 创建一个主类,在主类中创建两个线程对象,并启动它们。
```javapublic class Main {public static void main(String[] args) {Thread thread1 = new Thread1();Thread thread2 = new Thread2();thread1.start();thread2.start();}```3. 使用同步方法实现线程间的同步。
```javapublic class SynchronizedThread extends Thread {private static int count = 0;@Overridepublic void run() {for (int i = 0; i < 10; i++) {synchronized (SynchronizedThread.class) {count++;System.out.println(Thread.currentThread().getName() + ": " + count);}}}}public class Main {public static void main(String[] args) {Thread thread1 = new SynchronizedThread();Thread thread2 = new SynchronizedThread();thread1.start();thread2.start();}```4. 使用线程通信机制实现线程间的协作。
计算机操作系统实验二
计算机操作系统实验二一、实验目的本实验旨在通过实际操作,深入理解和掌握计算机操作系统中的进程与线程管理。
通过实验,我们将了解进程的创建、执行、阻塞、唤醒等状态以及线程的创建、同步、通信等操作。
同时,通过实验,我们将学习如何利用进程和线程提高程序的并发性和效率。
二、实验内容1、进程管理a.进程的创建与执行:通过编程语言(如C/C++)编写一个程序,创建一个新的进程并执行。
观察和记录进程的创建、执行过程。
b.进程的阻塞与唤醒:编写一个程序,使一个进程在执行过程中发生阻塞,并观察和记录阻塞状态。
然后,通过其他进程唤醒该进程,并观察和记录唤醒过程。
c.进程的状态转换:根据实际操作,理解和分析进程的状态转换(就绪状态、阻塞状态、执行状态)以及转换的条件和过程。
2、线程管理a.线程的创建与同步:编写一个多线程程序,创建多个线程并观察和记录线程的创建过程。
同时,使用同步机制(如互斥锁或信号量)实现线程间的同步操作。
b.线程的通信:通过消息队列或其他通信机制,实现多个线程间的通信。
观察和记录线程间的通信过程以及通信对程序执行的影响。
c.线程的状态转换:根据实际操作,理解和分析线程的状态转换(新建状态、就绪状态、阻塞状态、终止状态)以及转换的条件和过程。
三、实验步骤1、按照实验内容的要求,编写相应的程序代码。
2、编译并运行程序,观察程序的执行过程。
3、根据程序的输出和实际操作情况,分析和理解进程与线程的状态转换以及进程与线程管理的相关原理。
4、修改程序代码,尝试不同的操作方式,观察程序执行结果的变化,进一步深入理解和掌握进程与线程管理。
5、完成实验报告,总结实验过程和结果,提出问题和建议。
四、实验总结通过本次实验,我们深入了解了计算机操作系统中的进程与线程管理原理和实践操作。
在实验过程中,我们不仅学习了如何利用编程语言实现进程和线程的操作,还通过实际操作观察和分析了进程与线程的状态转换以及进程与线程管理的基本原理。
线程实例实验报告总结
一、实验目的本次实验旨在通过实例操作,深入了解线程的概念、创建、同步与通信机制,以及线程在实际编程中的应用。
通过实验,提高对线程的理解和运用能力,为以后开发多线程程序打下坚实基础。
二、实验环境1. 操作系统:Windows 102. 开发工具:Visual Studio 20193. 编程语言:C#三、实验内容1. 线程的基本概念线程是程序执行的最小单位,是操作系统进行资源分配和调度的基本单位。
线程具有以下特点:(1)线程是轻量级的,创建、销毁线程的开销较小。
(2)线程共享进程的资源,如内存、文件等。
(3)线程之间可以并发执行。
2. 线程的创建在C#中,可以使用以下方式创建线程:(1)使用Thread类```csharpThread thread = new Thread(new ThreadStart(MethodName));thread.Start();```(2)使用lambda表达式```csharpThread thread = new Thread(() => MethodName());thread.Start();```(3)使用匿名方法```csharpThread thread = new Thread(delegate () { MethodName(); });thread.Start();```3. 线程的同步线程同步是指多个线程在执行过程中,为了防止资源冲突而采取的协调机制。
C#提供了以下同步机制:(1)互斥锁(Mutex)```csharpMutex mutex = new Mutex();mutex.WaitOne();// 线程同步代码mutex.ReleaseMutex();```(2)信号量(Semaphore)```csharpSemaphore semaphore = new Semaphore(1, 1);semaphore.WaitOne();// 线程同步代码semaphore.Release();```(3)读写锁(ReaderWriterLock)```csharpReaderWriterLock rwlock = new ReaderWriterLock();rwlock.AcquireReaderLock();// 读取操作rwlock.ReleaseReaderLock();```4. 线程的通信线程通信是指线程之间传递消息、共享数据的过程。
操作系统实验3进程同步报告
实验三进程同步一、实验目的:1.了解进程和线程的同步方法,学会运用进程和线程同步方法来解决实际问题;2.了解windows系统下Win32 API或Pthread信号量机制的使用方法;二、实验预备内容:1.对书上所说基于信号量的有限缓冲的生产者-消费者问题;2.对于信号量的概念有大概的了解,知道如何用信号量的wiat()和signal()函数如何取消应用程序进入临界区的忙等;三、实验环境说明:此实验在Win7(32位) CodeBlocks环境下实现,采用WinAPI的信号量机制。
四、实验内容:设计一个程序解决有限缓冲问题,其中的生产者与消费者进程如下图所示。
在Bounded-Buffer Problem(6.6.1节)中使用了三个信号量:empty (记录有多少空位)、full(记录有多少满位)以及mutex(二进制信号量或互斥信号量,以保护对缓冲区插入与删除的操作)。
对于本项目,empty和full将采用标准计数信号量,而mutex将采用二进制信号量。
生产者与消费者作为独立线程,在empty、full、mutex的同步前提下,对缓冲区进行插入与删除。
本项目可采用Pthread或Win32 API。
(本实验采用Win32 API)五、程序设计说明:1.全局变量:定义缓冲区数组及其环形队列表达方式,定义mutex、empty、full 三个信号量。
empty记录缓冲区有多少个空位;full记录缓冲区有多少个满位;mutex作为互斥信号量,保护对缓冲区插入或删除的操作。
具体定义如下:定义生产者、消费者线程结构和包含的信息:(由于题目中没有要求,因此只定义了编号一个变量)2.缓冲区:缓冲区是一个元数据类型为buffer_item(可通过typedef定义)的固定大小的数组,按环形队列处理。
buffer_item的定义及缓冲区大小可保存在头文件中:A.insert_item():先判断缓冲区是否已满,不满则向缓冲区中插入元素;B.remove_item()先判断缓冲区是否为空,不空则从缓冲区中删除元素;3.生产者线程:生产者线程交替执行如下两个阶段:睡眠一段随机事件,向缓冲中插入一个随机数。
创建线程的实验报告
一、实验目的1. 理解线程的概念和作用。
2. 掌握在Java中创建线程的方法。
3. 学习线程的生命周期和线程同步。
4. 熟悉线程的调度和同步机制。
二、实验环境1. 操作系统:Windows 102. 开发工具:IntelliJ IDEA3. 编程语言:Java三、实验内容1. 创建线程2. 线程生命周期3. 线程同步4. 线程调度四、实验步骤1. 创建线程(1)继承Thread类创建线程```javapublic class MyThread extends Thread { @Overridepublic void run() {// 线程要执行的任务System.out.println("子线程:" + Thread.currentThread().getName());}}```(2)实现Runnable接口创建线程```javapublic class MyRunnable implements Runnable {@Overridepublic void run() {// 线程要执行的任务System.out.println("子线程:" +Thread.currentThread().getName());}}```2. 线程生命周期线程生命周期包括以下五个状态:(1)新建(New):线程对象被创建后,处于此状态。
(2)就绪(Runnable):线程对象被创建后,调用start()方法,线程进入就绪状态。
(3)运行(Running):线程被调度到CPU上执行,处于运行状态。
(4)阻塞(Blocked):线程因为某些原因无法执行,进入阻塞状态。
(5)终止(Terminated):线程执行完毕或被强制终止,处于终止状态。
以下代码演示了线程的生命周期:```javapublic class LifeCycleDemo {public static void main(String[] args) {Thread thread = new Thread(new MyRunnable());System.out.println("线程状态:" + thread.getState());thread.start();System.out.println("线程状态:" + thread.getState());try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("线程状态:" + thread.getState());}}```3. 线程同步线程同步是为了避免多个线程同时访问共享资源时出现冲突。
建立线程的实验报告(3篇)
第1篇一、实验目的1. 理解线程的概念和作用;2. 掌握在C++中创建和使用线程的方法;3. 了解线程同步机制,如互斥锁、条件变量等;4. 分析线程间的通信和协作。
二、实验环境1. 操作系统:Windows 102. 编译器:Visual Studio 20193. 编程语言:C++三、实验内容本次实验主要分为以下几个部分:1. 线程的基本概念和作用;2. 创建和使用线程;3. 线程同步机制;4. 线程间的通信和协作。
四、实验步骤1. 线程的基本概念和作用线程是程序执行过程中的一个独立单位,它包含程序执行所需的基本信息,如程序计数器、寄存器等。
线程的主要作用是提高程序的执行效率,实现并发执行。
2. 创建和使用线程在C++中,可以使用`std::thread`类来创建线程。
以下是一个简单的例子:```cppinclude <iostream>void printNumber(int n) {for (int i = 0; i < n; ++i) {std::cout << i << std::endl;}}int main() {std::thread t1(printNumber, 10); // 创建线程,传入函数和参数std::thread t2(printNumber, 20);t1.join(); // 等待线程t1执行完毕t2.join(); // 等待线程t2执行完毕return 0;}```在上面的代码中,我们创建了两个线程`t1`和`t2`,分别执行`printNumber`函数。
使用`join`函数可以等待线程执行完毕。
3. 线程同步机制线程同步机制用于解决多线程在执行过程中可能出现的数据竞争、死锁等问题。
以下是一些常用的线程同步机制:(1)互斥锁(Mutex)互斥锁用于保护共享资源,确保同一时刻只有一个线程可以访问该资源。
以下是一个使用互斥锁的例子:```cppinclude <iostream>include <mutex>std::mutex mtx;void printNumber(int n) {mtx.lock(); // 获取互斥锁for (int i = 0; i < n; ++i) {std::cout << i << std::endl;}mtx.unlock(); // 释放互斥锁}int main() {std::thread t1(printNumber, 10);std::thread t2(printNumber, 20);t1.join();t2.join();return 0;}```(2)条件变量(Condition Variable)条件变量用于在线程间实现等待和通知机制。
操作系统进程调度和进程同步实验要求
0711操作系统进程调度和进程同步实验要求实验内容:用线程模拟进程,实现进程调度和进程同步。
在任意操作系统中,用c、c++或者java 编写程序。
并且完成相应的实验报告。
实验要求:实验一:进程调度⑴ 主线程,创建子线程,保存子线程的虚拟PCB(参见恐龙书P74)、要求运行多少时间(可随机产生)、已经等待多少时间(初始化为0),优先级(可随机产生)等信息,并负责子线程的调度。
调度的基本时间单位为1 S。
⑵ 创建20个线程(可以只用一个线程函数,传递不同的参数即上述数据结构)分别实现FCFS调度、SJF调度、RR调度、优先级调度和多级队列调度,并且计算每个调度的平均等待时间。
其中,多级队列调度要求设计4个调度队列,每个队列5个线程,队列内部分别采用FCFS、SJF、RR和优先级调度。
时间片的长度可以随机生成为n S。
⑶ 对于每个子线程,在其运行期间,输出其占用的时间标号(例如,第3个线程占用了第10秒的CPU时间,输出为:“Thread 3: 10”,格式可自行设计)。
实验二:进程同步⑴ 模拟哲学家就餐问题:设置5个子线程模拟5个哲学家,设置5个互斥区为筷子。
⑵ 输出问题解决方法:在每个哲学家线程中输出其获得的筷子标号与时间(可以读取系统时间,或者自行设置时间标准),例如:哲学家2在第n秒获得筷子1,在第m秒获得筷子2。
实验报告要求:写明实验目的、实验设计步骤、实验结果、总结。
附录:windows线程基本操作以windows线程函数为例介绍线程基本操作,以下函数都必须包含windows.h头文。
如果想更深入地了解线程,请参见《c++编程艺术》等相关书籍。
线程创建函数:HANDLE CreateThread (LPSECURITY_ATTRIBUTES secAttr,SIZE_T stackSize,LPTHREAD_START_ROUTINE threadFunc,LPVOID param,DWORD flags,LPDWORD threadID);在此,secAttr是一个用来描述线程的安全属性的指针。
操作系统实验报告_7
操作系统实验报告学院:计算机与通信工程学院专业:计算机班级:学号:姓名:指导教师:成绩:2014年12月25日实验一线程的状态和转换(5分)1 实验目的和要求目的:熟悉线程的状态及其转换,理解线程状态转换与线程调度的关系。
要求:(1)跟踪调试EOS线程在各种状态间的转换过程,分析EOS中线程状态及其转换的相关源代码;(2)修改EOS的源代码,为线程增加挂起状态。
2 完成的实验内容2.1 EOS线程状态转换过程的跟踪与源代码分析(分析EOS中线程状态及其转换的核心源代码,说明EOS定义的线程状态以及状态转换的实现方法;给出在本部分实验过程中完成的主要工作,包括调试、跟踪与思考等)EOS定义的线程状态在ps/psp.h的THREAD_STATE枚举中,包含Zero(线程状态转换过程中的中间状态)、Ready(就绪)、Running(运行)、Waiting(等待)、Terminated (结束)。
线程在不同的状态间相互转换时,通过调用ps/sched.c文件中的下面几个函数完成:PspReadyThread(将指定线程插入其优先级对应的就绪队列的队尾,并修改其状态码为Ready)、PspUnreadyThread(将指定线程从就绪队列中移除,并修改其状态码为Zero)、PspWait(将当前运行线程插入指定等待队列的队尾,并修改状态码为Waiting,然后执行线程调度)、PspUnwaitThread(将阻塞线程从其所在的等待队列中移除,并修改其状态码为Zero)、PspWakeThread(调用PspUnwaitThread 函数使线程脱离阻塞状态,然后调用PspReadyThread函数使线程进入就绪状态,从而唤醒被阻塞的线程)、PspSelectNextThread(使被抢先的线程从运行状态进入就绪状态,并决定哪个就绪线程应该进入运行状态)。
实验中通过对上述函数添加断点,通过EOS的loop命令观察线程状态的变化、使用pt命令查看各线程状态。
线程控制实验报告(3篇)
第1篇一、实验背景线程是操作系统中实现并发执行的基本单位,它允许程序在同一时间内执行多个任务。
线程控制实验旨在通过实际操作,加深对线程概念、线程同步与互斥机制的理解,并掌握线程的创建、同步与互斥方法。
二、实验目的1. 理解线程的概念及其在操作系统中的作用。
2. 掌握线程的创建、同步与互斥方法。
3. 熟悉线程调度与同步在实际编程中的应用。
4. 通过实验,提高对多线程编程的理解和实际操作能力。
三、实验环境操作系统:Windows 10编程语言:Java开发工具:Eclipse四、实验内容1. 线程的创建与启动实验步骤:(1)创建一个名为ThreadDemo的Java类,继承自Thread类。
(2)在ThreadDemo类中重写run()方法,实现线程要执行的任务。
(3)在main方法中创建ThreadDemo类的实例,并调用start()方法启动线程。
实验代码:```javapublic class ThreadDemo extends Thread {@Overridepublic void run() {// 线程要执行的任务System.out.println("线程运行:" +Thread.currentThread().getName());}public static void main(String[] args) {ThreadDemo threadDemo = new ThreadDemo();threadDemo.start(); // 启动线程}}```2. 线程同步与互斥实验步骤:(1)创建一个名为SyncDemo的Java类,包含一个共享资源和一个同步方法。
(2)在SyncDemo类中,使用synchronized关键字声明同步方法,实现线程间的同步。
(3)在main方法中创建多个ThreadDemo类的实例,并启动线程,观察线程同步与互斥的效果。
实验代码:```javapublic class SyncDemo {private int count = 0;public synchronized void increment() {count++;System.out.println(Thread.currentThread().getName() + ":count=" + count);}public static void main(String[] args) {SyncDemo syncDemo = new SyncDemo();Thread thread1 = new Thread(() -> {for (int i = 0; i < 5; i++) {syncDemo.increment();}});Thread thread2 = new Thread(() -> {for (int i = 0; i < 5; i++) {syncDemo.increment();}});thread1.start();thread2.start();}}```3. 线程通信实验步骤:(1)创建一个名为ThreadCommunication的Java类,包含一个共享资源和一个同步方法。
多线程基础实验报告
一、实验目的1. 理解多线程的概念及其在程序设计中的应用。
2. 掌握在Java中创建和使用线程的基本方法。
3. 学习线程的同步和互斥机制,理解死锁、线程安全等概念。
4. 了解线程的生命周期及其状态转换。
二、实验环境- 操作系统:Windows 10- 开发工具:Eclipse IDE- 编程语言:Java三、实验内容本次实验主要围绕以下内容展开:1. 线程的基本操作:创建线程、启动线程、线程的执行、线程的终止。
2. 线程的同步与互斥:使用synchronized关键字实现线程同步,防止数据竞态。
3. 线程的通信:使用wait()、notify()、notifyAll()方法实现线程间的通信。
4. 线程池:使用ExecutorService创建线程池,提高线程复用率。
5. 线程的生命周期:观察线程的状态转换,理解线程的创建、运行、阻塞、终止等过程。
四、实验步骤1. 创建线程:- 通过继承Thread类创建线程,并重写run()方法。
- 通过实现Runnable接口创建线程,将任务封装在Runnable对象中。
- 使用匿名内部类创建线程。
2. 线程的同步与互斥:- 使用synchronized关键字对共享资源进行加锁,保证同一时间只有一个线程可以访问。
- 使用ReentrantLock类实现线程同步,提供更丰富的锁操作。
3. 线程的通信:- 使用wait()、notify()、notifyAll()方法实现线程间的通信,解决生产者-消费者问题。
4. 线程池:- 使用ExecutorService创建线程池,提高线程复用率。
- 使用Future接口获取线程执行结果。
5. 线程的生命周期:- 使用Thread类的方法观察线程的状态,如isAlive()、getState()等。
五、实验结果与分析1. 创建线程:- 通过继承Thread类、实现Runnable接口和匿名内部类成功创建了线程,并观察到线程的执行。
操作系统实验报告
操作系统实验报告操作系统是计算机科学中十分重要的一门课程,本次实验是关于操作系统的,通过实验,我们可以更深入地了解操作系统的相关知识和操作。
本篇文章将着重介绍本次操作系统实验的内容和实验过程中的收获。
一、实验内容本次实验内容主要涉及操作系统的进程、线程和进程同步三部分。
具体内容包括:1. 进程的创建和管理2. 线程的创建和管理3. 进程同步的实现在实验过程中,我们将分别使用C语言和Linux操作系统实现上述功能。
二、实验过程1. 进程的创建和管理在这一部分实验中,我们要创建多个进程,实现进程的调度和管理功能。
我们采用了Linux系统下的fork()函数,用于创建子进程。
在程序运行时,首先创建一个父进程,然后使用fork()函数创建四个子进程,每个子进程都有自己的进程号(pid),并在屏幕上输出该进程号以示区分。
为了实现进程的调度功能,我们在代码中加入了sleep()函数,用于将进程挂起一段时间,然后再轮流执行其他进程。
2. 线程的创建和管理在这一部分实验中,我们使用了C语言的POSIX线程库pthread.h,实现多线程的功能。
同样地,我们采用了Linux系统下的fork()函数来创建线程。
在代码运行时,我们创建了两个线程,并在屏幕上输出线程号(tid)以示区分。
为了实现线程的调度和管理功能,我们在代码中加入了pthread_join()函数,用于等待线程的执行完成。
3. 进程同步的实现在这一部分实验中,我们使用了Linux系统下的进程同步工具——信号量(semaphore)。
在代码中,我们使用sem_init()函数创建信号量,使用sem_wait()函数阻塞进程或线程,使用sem_post()函数释放进程或线程。
为了更好地理解信号量的工作原理,我们将代码分为生产者和消费者两部分,其中生产者用于向缓冲区添加数据,消费者则用于删除数据。
在这个过程中,我们需要使用信号量控制生产者和消费者的数量,避免出现生产过多或消费过多的情况。
操作系统多线程并发实验心得
操作系统多线程并发实验心得一、实验背景和目的操作系统是计算机系统中最基础的软件之一,它负责管理计算机硬件资源,为应用程序提供必要的服务。
多线程并发是操作系统中一个重要的概念,它能够提高计算机系统的效率和性能。
本次实验旨在通过编写多线程并发程序,加深对操作系统多线程并发原理的理解,并掌握相关技术。
二、实验环境和工具本次实验使用的操作系统是 Windows 10,开发工具是 Visual Studio 2019。
三、实验内容和步骤1. 实验一:创建多线程并发程序首先,我们需要创建一个多线程并发程序。
具体步骤如下:(1)打开 Visual Studio 2019,选择“新建项目”,选择“Windows 控制台应用程序”。
(2)在“解决方案资源管理器”中右键单击“源文件”,选择“添加” -> “新建项”,创建一个名为“MultiThread.cpp”的源文件。
(3)在 MultiThread.cpp 中编写代码。
代码如下:#include <iostream>#include <thread>#include <chrono>using namespace std;void threadFunc(int id){for (int i = 0; i < 5; i++){cout << "Thread " << id << " is running..." << endl;this_thread::sleep_for(chrono::seconds(1));}}int main(){thread t1(threadFunc, 1);thread t2(threadFunc, 2);t1.join();t2.join();return 0;}(4)编译并运行程序。
可以看到两个线程交替执行,每个线程输出五次。
操作系统进程同步与互斥实验报告0204192337
学生实验报告姓名:年级专业班级学号成绩#define N 1 //N定义为临界资源!printf("请输入三个进程:\n"); //初始状态为:临界资源处于空闲状态!loop:scanf("%d %d %d",&a,&b,&c); //输入的进程名为:a,b,c!进程名输入的先后代表进程的访问顺序!if(a==N) //判断进程a是否占据临界资源!若a==N,表明a访问临界资源!{printf("a=%d\n",a); //a正在访问临界资源!printf("b=0,c=0\n"); //b,c不能进入自己的临界区,需等待a释放临界资源!printf(“临界资源正在被进程a访问,进程b,c必须等待.\n”);}else if(b==N){printf("b=%d\n",b); //b正在访问临界资源!printf("a=0,c=0\n"); //a,c不能进入自己的临界区,需等待b释放临界资源!printf(“临界资源正在被进程b访问,进程a,c必须等待.\n”);}5.编译链接所编写的程序,在编译正确的情况下执行程序.6.记录程序执行的结果(如下图所示).注意:初始状态为:临界资源处于空闲状20 10年12 月16 日【实验结果或总结】(对实验结果进行相应分析,或总结实验的心得体会,并提出实验的改进意见)1.进程a,b,c分别访问临界资源时程序执行的结果如下.(a) (b) (c)2.该程序初始化N为临界资源,根据输入a,b,c,的值是否等于N来判断进程分别是否进入自己的临界区。
当a=N 表明进程a正在访问临界资源。
此时程序执行的输出为:a=1,b=c=0表示进程b,c不能进入自己的临界区。
3.该程序能较好地体现程序并发执行时的一种制约关系-互斥,但不能较好的反映进程的同步关系,所以该算法有待改进,用以同时实现进程的同步和互斥。
操作系统实验报告实验3_1
操作系统实验报告实验3_1一、实验目的本次实验的主要目的是深入理解操作系统中进程管理的相关概念和原理,通过实际操作和观察,掌握进程的创建、调度、同步与互斥等关键机制,提高对操作系统内核工作原理的认知和实践能力。
二、实验环境本次实验在装有 Windows 10 操作系统的计算机上进行,使用了Visual Studio 2019 作为开发工具,编程语言为 C++。
三、实验内容与步骤(一)进程创建1、编写一个简单的 C++程序,使用系统调用创建一个新的进程。
2、在父进程和子进程中分别输出不同的信息,以区分它们的执行逻辑。
```cppinclude <iostream>include <windowsh>int main(){DWORD pid;HANDLE hProcess = CreateProcess(NULL, "childexe", NULL, NULL, FALSE, 0, NULL, NULL, NULL, &pid);if (hProcess!= NULL) {std::cout <<"Parent process: Created child process with PID "<< pid << std::endl;WaitForSingleObject(hProcess, INFINITE);CloseHandle(hProcess);} else {std::cerr <<"Failed to create child process" << std::endl;return 1;}return 0;}```(二)进程调度1、设计一个多进程并发执行的程序,通过设置不同的优先级,观察操作系统对进程的调度情况。
2、记录每个进程的执行时间和等待时间,分析调度算法的效果。
```cppinclude <iostream>include <windowsh>DWORD WINAPI ProcessFunction(LPVOID lpParam) {int priority =(int)lpParam;DWORD start = GetTickCount();std::cout <<"Process with priority "<< priority <<"started" << std::endl;for (int i = 0; i < 100000000; i++){//执行一些计算操作}DWORD end = GetTickCount();DWORD executionTime = end start;std::cout <<"Process with priority "<< priority <<" ended Execution time: "<< executionTime <<" ms" << std::endl;return 0;}int main(){HANDLE hThread1, hThread2;int priority1 = 1, priority2 = 2;hThread1 = CreateThread(NULL, 0, ProcessFunction, &priority1, 0, NULL);hThread2 = CreateThread(NULL, 0, ProcessFunction, &priority2, 0, NULL);if (hThread1!= NULL && hThread2!= NULL) {SetThreadPriority(hThread1, THREAD_PRIORITY_LOWEST);SetThreadPriority(hThread2, THREAD_PRIORITY_NORMAL);WaitForSingleObject(hThread1, INFINITE);WaitForSingleObject(hThread2, INFINITE);CloseHandle(hThread1);CloseHandle(hThread2);} else {std::cerr <<"Failed to create threads" << std::endl;return 1;}return 0;}```(三)进程同步与互斥1、实现一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。
操作系统进程同步实验报告
操作系统进程同步实验报告本实验旨在通过模拟操作系统中进程的同步问题,加深学生对操作系统中进程同步机制的了解和实践能力。
本次实验分为两个部分,第一个部分是使用信号量实现进程同步,第二个部分是使用管程实现进程同步。
第一部分实验:使用信号量实现进程同步本部分实验的目标是使用信号量来实现进程同步,确保资源的互斥访问。
在Linux系统中,信号量是一种用来控制进程同步的机制,可以用于保证共享资源的互斥访问、避免死锁等问题。
具体实验流程如下:1. 定义一个信号量,用于互斥访问共享资源在Linux系统中,使用semget函数可以创建一个信号量集,使用semctl函数可以对信号量进行控制。
```#include <sys/types.h>#include <sys/ipc.h>#include <sys/sem.h>#define KEY 1234 // 定义信号量的键值int semid; // 定义信号量标识符union semun{int val; // 信号量的初始值struct semid_ds *buf; // IPC_STAT, IPC_SET操作时用ushort *array; // GETALL, SETALL操作时用};void init_sem(){int ret;union semun semunion;// 创建信号量semid = semget(KEY, 1, IPC_CREAT | 0666);if(semid == -1){perror("semget error");exit(1);}2. 定义生产者和消费者进程,并使用信号量来实现同步在生产者和消费者进程中,需要先对信号量进行P操作,即申请资源,然后进行对共享资源的操作,最后再对信号量进行V操作,即释放资源。
本实验中,共享资源是一个循环缓冲区,生产者进程向其中写入数据,消费者进程从中读取数据。
RT Thread RTOS应用之三——线程同步
RT Thread RTOS应用之三——线程同步实验描述:本实验学习如何使用信号量和邮箱来实现线程的同步。
实验在实验二的基础上,新建两个线程:“sem_thread_entry”和“mb_thread_entry”。
这两个线程分别依靠信号量(semaphore)和邮箱(mail box)来实现线程同步。
实验中通过usart2接受到的数据来分别发送对应的信号量或者邮件,已完成两个线程的切换。
线程的运行情况会通过finsh系统传送到电脑上,共用户观察。
信号量和邮箱相关知识的介绍:信号量:信号量是用来解决线程同步和互斥的通用工具,和互斥量类似,信号量也可用作资源互斥访问,但信号量没有所有者的概念,在应用上比互斥量更广泛。
信号量比较简单,不能解决优先级翻转问题,但信号量是一种轻量级的对象,比互斥量小巧、灵活。
因此在很多对互斥要求不严格的系统中(或者不会造成优先级翻转的情况下),经常使用信号量来管理互斥资源。
简而言之,信号量就是一个信号,类似于我们平常自己设定的标志。
通过这个信号的状态(0或者非0)来表征当前线程的状态(是否可以运行)。
每次线程申请一次信号量,信号量变量的数值会减一,反之,释放一个信号量,信号量变量的数值会加一。
邮箱:邮箱服务是实时操作系统中一种典型的任务间通信方法,通常开销比较低,效率较高,每一封邮件只能容纳固定的4字节内容(针对32位处理系统,刚好能够容纳一个指针)。
这里需要注意的是,邮箱中每一封邮件的容量是有限的,因此,如果信息量小于4个字节,那么可以直接利用邮件传送信息,否则,需要利用邮件传送保存信息的变量指针。
下面开始通过实际的程序来逐步讲解信号量和邮箱的使用方法。
首先在application.c文件中定义信号量,邮箱,以及邮箱池变量/**********************信号量、邮箱初始化**************************/ struct rt_semaphore sem;//利用静态信号量,定义信号量struct rt_mailbox mb;//利用静态邮箱,定义邮箱static char mailpool[128];//定义邮箱池,其决定了,邮箱可以接受多少封邮件/******************************************************************/ 其中邮箱池变量是这个邮箱的容量,因为每封邮件占用4个字节的控件,因此,本程序中的邮箱可以最多保存128/4=32封邮件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验2:线程同步一、实验目的(1)掌握Windows2000环境下,线程同步。
(2)熟悉Windows2000提供的线程同步与互斥API。
(3)用Windows2000提供的线程同步与互斥API解决实际问题(producer-consumer)。
二、实验内容生产者与消费者问题的实现。
在Windows 2000环境下,创建一组“生产者”线程和一组“消费者”线程,并建立一个长度为N的全局数组作为共享缓冲区。
“生产者”向缓冲区输入数据,“消费者”从缓冲区读出数据。
当缓冲区满时,“生产者”必须阻塞,等待“消费者”取走缓冲区数据后将其唤醒。
当缓冲区空时,“消费者”阻塞,等待“生产者”生产了产品后将其唤醒。
试用信号量实现“生产者”与“消费者”线程之间的同步。
三、实验环境(1)使用的操作系统及版本。
Windows xp professional(2)使用的编译系统及版本。
Visual c++ 6.0四、实验步骤1.等待一个对象(相当于p操作)WaitForSingleObject用于等待一个对象。
它等待的对象可以为:Change notification:变化通知。
Console input:控制台输入。
Event:事件。
Job:作业。
Mutex:互斥信号量。
Process:进程。
Semaphore:计数信号量。
Thread:线程。
Waitable timer:定时器。
返回值:如果成功返回,其返回值说明是何种事件导致函数返回。
访问描述WAIT_ABANDONED 等待的对象是一个互斥(mutex)对象,该互斥对象没有被拥有它的线程释放,它被设置为不能被唤醒。
WAIT_OBJECT_0 指定对象被唤醒。
WAIT_TIMEOUT 超时。
2.创建信号量CreateSemaphore用于创建一个信号量。
返回值:信号量创建成功,将返回该信号量的句柄。
如果给出的信号量名是系统已经存在的信号量,将返回这个已存在信号量的句柄。
如果失败,系统返回NULL,可以调用函数GetLastError查询失败的原因。
3.打开信号量OpenSemaphore用于打开一个信号量。
返回值:信号量打开成功,将返回该信号量的句柄。
如果失败,系统返回NULL,可以调用函数GetLastError查询失败的原因。
4.增加信号量的值ReleaseSemaphore用于增加信号量的值。
返回值:如果成功,将返回一个非0值。
如果失败,系统返回0,可以调用函数GetLastError 查询失败的原因。
方法一:程序代码:#include<windows.h>#include<iostream.h>static HANDLE S1,S2;static HANDLE hMutex;void producer(int n){for(int i=1;i<=3;i++){WaitForSingleObject(S1,INFINITE);WaitForSingleObject(hMutex,INFINITE);cout<<"生产者"<<n<<" 第"<<i<<"次生产产品"<<endl;ReleaseMutex(hMutex);ReleaseSemaphore(S2,1,NULL);}}void consumer(int n){for(int i=1;i<=3;i++){WaitForSingleObject(S2,INFINITE);WaitForSingleObject(hMutex,INFINITE);cout<<"消费者"<<n<<" 第"<<i<<"次消费产品"<<endl;ReleaseMutex(hMutex);ReleaseSemaphore(S1,1,NULL);}}void main(void){static HANDLE hHandle1,hHandle2,hHandle3,hHandle4;DWORD dwID1,dwID2,dwID3,dwID4;S1=CreateSemaphore(NULL,1,1,"Semphore1");S2=CreateSemaphore(NULL,0,1,"Semphore2");hMutex=CreateMutex(NULL,FALSE,NULL);hHandle1=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STA RT_ROUTINE)producer,(LPVOID)1,0,&dwID1);hHandle3=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STA RT_ROUTINE)consumer,(LPVOID)1,0,&dwID3);hHandle2=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STA RT_ROUTINE)producer,(LPVOID)2,0,&dwID2);hHandle4=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STA RT_ROUTINE)consumer,(LPVOID)2,0,&dwID4);Sleep(1000);}5.初始化临界区InitializeCriticalSection用于初始化临界区对象。
返回值:以下两个api相当于pv源语操作6.进入临界区EnterCriticalSection等待进入临界区的权限,当获得该权限后进入临界区。
返回值:该函数没有返回值。
7.退出临界区LeaveCriticalSection释放临界区的使用权限。
返回值:该函数没有返回值。
方法二:程序源代码:#include<windows.h>#include<iostream.h>static HANDLE S1,S2;//定义两个信号量 S1空间CRITICAL_SECTION CS; //定义一个临界区void producer(int n){for(int i=1;i<=3;i++){WaitForSingleObject(S1,INFINITE);EnterCriticalSection(&CS);cout<<"生产者"<<n<<" 第"<<i<<"次生产产品"<<endl;LeaveCriticalSection(&CS);ReleaseSemaphore(S2,1,NULL);}}void consumer(int n){for(int i=1;i<=3;i++){WaitForSingleObject(S2,INFINITE);EnterCriticalSection(&CS);cout<<"消费者"<<n<<" 第"<<i<<"次消费产品"<<endl;LeaveCriticalSection(&CS);ReleaseSemaphore(S1,1,NULL);}}void main(void){static HANDLE hHandle1,hHandle2,hHandle3,hHandle4;DWORD dwID1,dwID2,dwID3,dwID4;S1=CreateSemaphore(NULL,1,1,"Semphore1");S2=CreateSemaphore(NULL,0,1,"Semphore2");InitializeCriticalSection(&CS);hHandle1=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STA RT_ROUTINE)producer,(LPVOID)1,0,&dwID1);hHandle2=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STA RT_ROUTINE)producer,(LPVOID)2,0,&dwID2);hHandle3=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STA RT_ROUTINE)consumer,(LPVOID)1,0,&dwID3);hHandle4=CreateThread((LPSECURITY_ATTRIBUTES)NULL,0,(LPTHREAD_STAR T_ROUTINE)consumer,(LPVOID)2,0,&dwID4);Sleep(1000);}程序流程图:Main函数:挂起线程唤起线程Consumer 函数:不成立不成立 挂起线程 唤起线程《Windows。