陕西中考数学十年压轴题汇总

合集下载

陕西中考数学十年压轴题汇总

陕西中考数学十年压轴题汇总

25.(本题满分12分)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。

(1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM =QN 。

之间的两条线段相等。

(2条“曲线段相等” (3)化地,=n ,且m <种花草种植在S 1、S 2、S 3、S 425.(本题满分12分)板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。

他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。

(1)求FC 的长;到BC 边的距离)(cm x 为多少时,矩形的面 如图,O 的半径均为)请在图①中画出弦①为轴对称图形而不是..中心对称图形;请在图O 中,(02)AB m m R <<,且AB 与CD 交于点E ,夹角为锐角α.求面积(用含;O 的两条弦,且AB CD ==,你认为在以点A B C D ,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由. 由供水站直接铺设管道到另外两处。

a b第25题图M N 第25题图) (第25题图③) (第25题图④)如图,甲、乙两村坐落在夹角为30°的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学。

点B 在点M 的北偏西30°的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60°的处。

为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段图①中,画出铺设到点A 和点M 方案三:供水站建在甲村(线段处和点M25.(本题满分12分) 问题探究(1)请在图①的正方形ABCD (2)请在图②的正方形ABCD 由. 问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).25.(本题满分12分)问题探究..分成面积相等的两部分; (2)如图②点M 是矩形ABCD 内一点,请你在图②中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分。

2023陕西省十年中考数学考点

2023陕西省十年中考数学考点

2023陕西省十年中考数学考点陕西省十年中考数学考点一、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a 0时,开口方向向上,a 0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI 越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二、二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线] 注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a三、二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

四、抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a 0时,抛物线向上开口;当a 0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab 0),对称轴在y轴左;当a与b异号时(即ab 0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b^2-4ac 0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac 0时,抛物线与x轴没有交点。

04-2010陕西中考函数压轴题含答案

04-2010陕西中考函数压轴题含答案

04-09陕西中考函数压轴题24. (04陕西)如图,在Rt △ABC 中,∠ACB =90°,BC>AC ,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2=17,且线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根.(1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过A 、B 、E三点的抛物线的解析式,并画出此抛物线的草图;(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由.解:(1)∵线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根, ∴,(1)2(3).(2)OA OB m OA OB m +=⎧⎨=-⎩又∵OA 2+OB 2=17,∴(OA+O B )2-2·OA ·OB =17.(3) ∴把(1)(2)代入(3),得m 2-4(m-3)=17. ∴m 2-4m -5=0.解之,得m =-1或m =5. 又知OA+OB =m >0, ∴m =-1应舍去.∴当m =5时,得方程x 2-5x +4=0. 解之,得x =1或x =4. ∵BC>AC, ∴OB>OA . ∴OA =1,OB =4.在Rt △ABC 中,∠ACB =90°,CO ⊥AB , ∴OC 2=OA ·OB =1×4=4. ∴OC =2.∴C (0,2).(2)∵OA =1,OB =4,C 、E 两点关于x 轴对称, ∴A (-1,0),B (4,0),E (0,-2).设经过A 、B 、E 三点的抛物线的解析式为y=ax 2+bx+c ,则1,20,31640,,,22. 2.a b c a b c b c c ⎧⎪-+=⎧⎪⎪⎪++==-⎨⎨⎪⎪=-⎩=-⎪⎪⎩a=解之得 ∴所求抛物线解析式为2132.22y x x =--(第24题图)(3)存在.∵点E是抛物线与圆的交点,∴Rt△ACB≌△AEB.∴E(0,-2)符合条件.∵圆心的坐标(32,0)在抛物线的对称轴上,∴这个圆和这条抛物线均关于抛物线的对称轴对称.∴点E关于抛物线对称轴的对称点E′也符合题意.∴可求得E′(3,-2).∴抛物线上存在点P符合题意,它们的坐标是(0,-2)和(3,-2). 24.(05陕西)如图,在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,。

陕西省榆林市中考数学压轴题总复习(附答案解析)

陕西省榆林市中考数学压轴题总复习(附答案解析)

2021年陕西省榆林市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图1,直线y=−3
4x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,△
AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.
(1)求OB的长;
(2)如图2,F,G是直线AB上的两点,若△DFG是以FG为斜边的等腰直角三角形,求点F的坐标;
(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.
2.如图,平面直角坐标系中,一次函数y=−1
2x+4的图象l1分别与x,y轴交于A,B两点,
正比例函数的图象l2与l1交于点C(m,3).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.。

2010中考数学专题复习——压轴题

2010中考数学专题复习——压轴题

1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)2. 已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. 如图,在R t ABC △中,90A ∠=,6A B =,8A C =,D E ,分别是边A B A C ,的中点,点P 从点D 出发沿D E 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交A C 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到B C 的距离D H 的长;y x OB CA Tyx O BC AT(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.ABCMN P图 3OABC MND 图 2 OABCMNP图 1O A BCD ER P H QxyBA O 图1B AOPQ图26. 如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.7.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结D G 、B E ,且a =3,b =2,k =12,求22BE DG +的值.8. 如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.11.2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸...的短边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边A D 对齐折叠,点B 落在A D 上的点B '处,铺平后得折痕AE ; 第二步 将长边A D 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF .则:A D A B 的值是 ,A D A B ,的长分别是 , .(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边A B B C C D D A ,,,上,求D G 的长.(4)已知梯形M NPQ 中,M N P Q ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.13.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .ABCD BCA D EGHF FE B '4开2开8开16开 图1图2 图3a①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸……都是矩形. ②本题中所求边长或面积都用含a 的代数式表示.(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.14.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形, 试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为 .15.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线. 如图12,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.C D A BE F NMxO yAB 友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.xOy1 2 31 Q P2 P 1Q 1AOBMDCyx16.将一矩形纸片O A B C 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿O C 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿A O 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将O P Q △沿PQ 翻折,点O 恰好落在C B 边上的点D 处,求点D 的坐标;(4) 连结A C ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与A C 能否平行?P E 与A C能否垂直?若能,求出相应的t 值;若不能,说明理由.17.如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点.(1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使A B P △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线A C 上是否存在一点M ,使得M B F △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.如图所示,在平面直角坐标系中,矩形A B O C 的边B O 在x 轴的负半轴上,边O C 在y 轴的正半轴上,且1AB =,3O B =,矩形A B O C 绕点O 按顺时针方向旋转60 后得到图1OP A xBDC Q y图2OPA x BC QyE A O xyBFC图16矩形E F O D .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形A B O C 面积的2倍,且点P在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由. 19.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线B C 的解析式.(2)求A B C △的面积.(3)若点M 在线段A B 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线B C 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出M N B △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,M N B △的面积最大,最大面积是多少?20.如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB =35,sin ∠OAB=55.(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△y xODECFABQNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.21.(2008年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11C MC N+的值是否为定值,若是,求出定值,若不是,请说明理由22.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22) ACO BNDML`23.已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.24.如图①,四边形A E F G 和A B C D 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在A D 上(以下问题的结果均可用a b ,的代数式表示). (1)求D BF S △;(2)把正方形A E F G 绕点A 按逆时针方向旋转45°得图②,求图②中的D BF S △; (3)把正方形A E F G 绕点A 旋转一周,在旋转的过程中,D BF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由. .25. 已知24A B A D ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线B C 上的动点(点E 与点B 不重合),M 是线段D E 的中点.(1)设BE x =,A B M △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段A B 为直径的圆与以线段D E 为直径的圆外切,求线段B E 的长;(3)联结B D ,交线段A M 于点N ,如果以A N D ,,为顶点的三角形与B M E △相似,求线段B E 的长.DCBAE F GGF EABCD ①②BADMECBADC26. 某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处. 如图,甲,乙两村坐落在夹角为30 的两条公路的A B 段和C D 段(村子和公路的宽均不计),点M 表示这所中学.点B 在点M 的北偏西30 的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60 的23km 处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段C D 某处),甲村要求管道建设到A 处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段A B 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?27. 已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.MAEC D BF30乙村 甲村 东北图①MAEC D BF30乙村 甲村图②OO28. 已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A点左侧)是双曲线k y x=上的动点.过点B 作BD ∥y 轴于点D.过N(0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.29. 一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求? 答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)P '图②A Q CPB图①AQCPB图1 图2 图 3 图4D BCE NO A Myx。

陕西省西安市中考数学压轴题总复习(附答案解析)

陕西省西安市中考数学压轴题总复习(附答案解析)

2021年陕西省西安市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.定义:点P(a,b)关于原点的对称点为P',以PP'为边作等边△PP'C,则称点C为P 的“等边对称点”;
(1)若P(1,√3),求点P的“等边对称点”的坐标.
(2)若P点是双曲线y=2
x(x>0)上一动点,当点P的“等边对称点”点C在第四象
限时,
①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.
②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.
2.如图,抛物线y=ax2+9
4x+c交x轴于A,B两点,交y轴于点C.直线y=−
3
4x+3经过
点B,C.
(1)求抛物线的解析式;
(2)点P从点O出发以每秒2个单位的速度沿OB向点B匀速运动,同时点E从点B 出发以每秒1个单位的速度沿BO向终点O匀速运动,当点E到达终点O时,点P停止运动,设点P运动的时间为t秒,过点P作x轴的垂线交直线BC于点H,交抛物线于点Q,过点E作EF⊥BC于点F.
①当PQ=5EF时,求出t值;
②连接CQ,当S△CBQ:S△BHQ=5:2时,请直接写出点Q的坐标.。

陕西中考压轴题

陕西中考压轴题

陕西中考压轴题(2002—2012)1.(2002•陕西)阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?2.(2003•陕西)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下﹣丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.3.(2004•陕西)李大爷有一个边长为a的正方形鱼塘如图10-1所示,鱼塘四个角的顶点A、B、C、D上各有一棵大树,现在李大爷想把原来的鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大),又不想把树挖掉(四棵大树要在新建鱼塘的边沿上)。

陕西中考压轴题汇总

陕西中考压轴题汇总

陕西中考压轴题汇总陕西2012年中考陕西2011年中考陕西2010年中考陕西2009年中考陕西2008年中考陕西2007年中考陕西2006年中考25.(本题满分12分)李大爷有一个边长为a的正方形鱼塘(图-1),鱼塘四个角的顶点A、B、C、D上各有一棵大树.现在李大爷想把原来的鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大),又不想把树挖掉(四棵大树要在新建鱼塘的边沿上).(1)若按圆形设计,利用(图-1)画出你所设计的圆形鱼塘示意图,并求出网形鱼塘的面积;(2)若按正方形设计,利用(图-2)画出你所设计的正方形鱼塘示意图;(3)你在(2)所设计的正方形鱼塘中,有无最大面积?为什么?(4)李大爷想使新建鱼塘面积最大,你认为新建鱼25.(本题满分12分)已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点。

(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN。

请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等。

(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。

把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。

请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等。

(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n。

现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻。

为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由。

25.(10分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.⑴请根据下列图形,填写表中空格:⑵如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?⑶从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.27.(本题满分10分)阅读下面短文:如图①, △ABC是直角三角形, ∠C=90°,现将△ABC补成矩形, 使△ABC的两个顶点为矩形一边的两个端点, 第三个顶点落在矩形这一边的对边上, 那么符合要求的矩形可以画出两个:矩形ACBD和矩形AEFB(如图②).解答问题:(1)设图②中矩形ABCD和矩形AEFB的面积分别为S1,S2, 则S1_____S2(填“>”,“=”或“<”)(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形, 那么符合要求的矩形可以画出_____个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC >AB, 按短文中的要求把它补成矩形,那符合要求的矩形可以画出____个,利用图④把它画出来. (4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?(第27题图③)(第27题图④)(第27题图①)(第27题图②)。

陕西中考数学压轴题归类

陕西中考数学压轴题归类

《第25题几何压轴题归类》考点:类型一:线段最值问题(从定点入手,利用轴对称思想解决)考点二:利用隐形圆探究满足特殊角的点问题(常见的题目有:求一个固定的角,求最大角,求二倍角等)类型三:等分面积问题(难点是不规则图形的面积等分,有时会牵涉到既等分周长又等分面积)类型四:面积最值问题(利用二次函数思想解决较常见,也有利用极值思想解决的,还有利用圆的知识求解,面积最大周长最小也会考)类型一:线段最值问题1.如图,在△ABC 中,AB=AC=5,BC=6,若点P 在AC 上移动,则PB 的最小值是_____.2.如图,点C 在以AB 为直径的半圆上,AB=10,cos ∠CBA=54,点D 为线段AB 上一点,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F ,则线段EF 的最小值为____.3.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边中点,E 是AB 上一动点,则EC+ED 的最小值为_____.4.如图,在矩形ABCD中, AB=6,BC=8,连接AC,点M是AC上一动点,点N是BC上的一动点,则BN+MN 的最小值为________.5.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC-PA|的最大值是______.6.如图①,已知:△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA´B´,连接BB´,则BB´=_______.问题探究:4的等边三角形,以BC为边向外作等边△BCD.P为△ABC 如图②,已知△ABC为边长为3内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q,连接DQ、BP.(1)求证△DCQ≌△BCP;(2)求PA+PB+PC的最小值.实际应用如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?7.小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A关于直线l的对称点A′.②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出△PDE周长的最小值______.(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值______.类型二:利用隐形圆探究满足特殊角的点问题例1.问题探究(1)如图①,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;(2)如图②,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;问题解决如图③,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最大的所有点P,并求出△BPC的面积的最大值及此时AP的长,保留作图痕迹.练习1.问题探究(1)如图①,在矩形ABCD中,AB=2,BC=4,如果BC边上存在一点P,使△APD为直角三角形,那么请画出满足条件的一个直角三角形,并求出此时AP的长;(2)如图②,在四边形ABCD中,AB∥CD,∠B=90°,AD=10,AB=7,CD=1,点P在边BC 上,且∠APD=90°,求BP的长.问题解决(3)如图③,在平面直角坐标系中,点A、B、C分别是某单位的门房及两个仓库,其中OA=100m,AB=200m,OC=300m,单位负责人想选一点P安装监控装置,用来监控AB,使△APB的面积最大,且∠APB=2∠ACB,是否存在满足条件的点P?若存在,请求出点P的坐标;若不存在,请说明理由.例3. 问题探究(1)如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,填空:①∠AEB的度数为_____;②线段AD、BE之间的数量关系是______.(2)问题解决如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2.若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离.例4.问题探究:(1)如图①,AB为⊙O的弦,点C是⊙O上的一点,在直线AB上方找一个点D,使得∠ADB=∠ACB,画出∠ADB,并说明理由(2)如图②,AB 是⊙O的弦,点C是⊙O上的一个点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB,并说明理由问题解决(3)如图③,已知足球门宽AB约为52米,一球员从距B点52米的C点(点A、B、C 均在球场的底线上),沿与AC成45°的CD方向带球.试问,该球员能否在射线CD上找一点P,使得点P最佳射门点(即∠APB最大)?若能找到,求出这时点P与点C的距离;若找不到,请说明理由.练习问题探究(1)请在图①的正方形ABCD 内,画出使∠APB=90°的一个点P ,并说明理由;(2)请在图②的正方形ABCD 内(含边),画出使∠APB=60°的所有的点P ,并说明理由; 问题解决(3)如图③,现有一块矩形钢板ABCD ,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ′D 钢板,且∠APB=∠CP ′D=60°,请你在图③中画出符合要求的点P 和P ′,并求出△APB 的面积。

陕西中考数学十年压轴题总结

陕西中考数学十年压轴题总结

陕西中考数学十年压轴题总结————————————————————————————————作者:————————————————————————————————日期:25.(本题满分12分)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。

(1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM =QN 。

请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a 和b 之间的两条线段相等。

(2)我们继续探究,发现用两条平行直线a 、b 去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。

把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。

请你在图③中画出一种图形,使夹在平行直线a 和b 之间的两条曲线段相等。

(3)如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ =m ,下底MN =n ,且m <n 。

现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻。

为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由。

25.(本题满分12分)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。

他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。

(1)求FC 的长;(2)利用图②求出矩形顶点B 所对的顶点.....到BC 边的距离)(cm x 为多少时,矩形的面积最大?最大面积时多少? (3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。

P Q M N ab第25题a b 第25题 ab第25题P Q M N a b 第25题S SS S n m25.(本题满分12分)如图,O 的半径均为R .(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形; (2)如图③,在O 中,(02)AB CD m m R ==<<,且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 面积(用含m α,的式子表示); (3)若线段AB CD ,是O 的两条弦,且2AB CD R ==,你认为在以点A B C D ,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.25、(本题满分12分)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。

中考数学压轴题100题精选及答案(全)

中考数学压轴题100题精选及答案(全)
【024】如图,已知 为直角三角形, , ,点 、 在 轴上,点 坐标为( , )( ),线段 与 轴相交于点 ,以 (1,0)为顶点的抛物线过点 、 .
(1)求点 的坐标(用 表示);
(2)求抛物线的解析式;
(3)设点 为抛物线上点 至点 之间的一动点,连结 并延长交 于点 ,连结 并延长交 于点 ,试证明: 为定值.
【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。
(1) 求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由。
【009】一次函数 的图象分别与 轴、 轴交于点 ,与反比例函数 的图象相交于点 .过点 分别作 轴, 轴,垂足分别为 ;过点 分别作 轴, 轴,垂足分别为 与 交于点 ,连接 .
(1)求证:梯形 是等腰梯形;
(2)动点 、 分别在线段 和 上运动,且 保持不变.设 求 与 的函数关系式;
(3)在(2)中:①当动点 、 运动到何处时,以点 、 和点 、 、 、 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当 取最小值时,判断 的形状,并说明理由.
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。

2010年中考数学压轴题100题精选(71-80题)含答案

2010年中考数学压轴题100题精选(71-80题)含答案

合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网2010年中考数学压轴题100题精选(71-80题)【071】已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(第24题图)合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【072】如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PD E ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.【073】)如图,半径为O 内有互相垂直的两条弦AB 、CD 相交于P 点.合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网(1)求证:PA ·PB =PC ·PD ;(2)设BC 的中点为F ,连结FP 并延长交AD 于E ,求证:EF ⊥AD : (3)若AB =8,CD =6,求OP 的长.【074】如图,在平面直角坐标系中,点1O 的坐标为(40) ,,以点1O 为圆心,8为半径的圆与x 轴交于A B ,两点,过A 作直线l 与x 轴负方向相交成60°的角,且交y 轴于C 点,以点2(135)O ,为第23题图合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网圆心的圆与x 轴相切于点D . (1)求直线l 的解析式;(2)将2O ⊙以每秒1个单位的速度沿x 轴向左平移,当2O ⊙第一次与1O ⊙外切时,求2O ⊙平移的时间.【075】如图11,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C . ①求抛物线的解析式;合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网②点E 在抛物线的对称轴上,点F 在抛物线上,且以E F A B ,,,四点为顶点的四边形为平行四边形,求点F 的坐标.【076】如图,抛物线n mx x y ++=221与x 轴交于A 、B 两点,与y 轴交于C 点,四边形OBHC 为矩形,CH 的延长线交抛物线于点D (5,2),连结BC 、AD . (1)求C 点的坐标及抛物线的解析式;(2)将△BCH 绕点B 按顺时针旋转90°后 再沿x 轴对折得到△BEF (点C 与点E 对应),判断点E 是否落在抛物线上,并说明理由;(3)设过点E 的直线交AB 边于点P ,交CD 边于点Q . 问是否存在点P ,使直线PQ 分梯形ABCD的面积为1∶3两部分?若存在,求出P 点坐标;若不存在,请说明理由.图11合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【077】已知直线m x y +-=43与x 轴y 轴分别交于点A 和点B ,点B 的坐标为(0,6) (1)求的m 值和点A 的坐标;(2)在矩形OACB 中,点P 是线段BC 上的一动点,直线PD ⊥AB 于点D ,与x 轴交于点E ,设BP=a ,梯形PEAC 的面积为s 。

陕西省聚焦中考数学--压轴题

陕西省聚焦中考数学--压轴题

(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax2+bx+
c,∴
a-b+c=2, 16a+4b+c=2, c=0,
解得
a=12, b=-32, c=0,
∴所求抛物线的表达式为y=
1 2
x2-32x
(3)由题意,知AB∥x轴,设抛物线上符合条件的点P到AB的距
离为d,则S△ABP=
5,∵m>0,∴m=1+2
5,∴F(3+2

5,1+2
5),∵点E,F关于
直线x=1对称,∴E的坐标为(1-2
5,1+2
5 )
【点评】本题是二次函数的综合题,题中涉及等腰直角三角形的 证明和性质等知识点,解题时要注意数形结合数学思想的运用, 是各地中考的热点和难点.
[对应训练] 1.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的 坐标是(-1,2). (1)求点B的坐标; (2)求过点A,O,B的抛物线的表达式; (3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.
=-45t+4,则G(t,-45t+4),此时:NG=-45t+4-(45t2-254t+4)=-45t2
+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=
1 2
OF×NG+
1 2
NG×
CF=
1 2
NG·OC=
1 2
×(-
4 5
t2+4t)×5=-2t2+10t=-2(t-
5 2
,∴P(3,
8 5
)
(3)在直线AC的下方的抛物线上存在点N,使
△NAC面积最大.设N点的横坐标为t,此时点N(t,45t2-254t+4)(0<t< 5),如图2,

西安市中考数学-整式乘法与因式分解易错压轴解答题精选全文完整版

西安市中考数学-整式乘法与因式分解易错压轴解答题精选全文完整版

可编辑修改精选全文完整版西安市中考数学整式乘法与因式分解易错压轴解答题一、整式乘法与因式分解易错压轴解答题1.某同学利用若干张正方形纸片进行以下操作:(1)从边长为a的正方形纸片中减去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开,最后把剪成的两张纸片拼成如图2的等腰梯形,这一过程所揭示的公式是________.(2)先剪出一个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出两张边长分别为a和b的长方形纸片,如图3,最后把剪成的四张纸片拼成如图4的正方形.这一过程你能发现什么代数公式?(3)先剪出两个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出三张边长分别为a和占的长方形纸片,如图5,你能否把图5中所有纸片拼成一个长方形?如果可以,请画出草图,并写出相应的等式.如果不能,请说明理由.2.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.3.[数学实验探索活动]实验材料现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.问题探索:(1)小明想用拼图的方法解释多项式乘法(2a+b)(a+b)=2a2+3ab+b2,那么需要两种正方形纸片________张,长方形纸片________张;(2)选取正方形、长方形硬纸片共8块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在虚线方框3内.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如, ···,因此都是奇巧数.(1)是奇巧数吗?为什么?(2)奇巧数是的倍数吗?为什么?5.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次_一项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1, a2, c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1, c1位于图的上一行,a2, c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).(1)请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=________.(2)【理解与应用】请你仔细体会上述方法,并尝试对下面两个二次三项式进行分解因式:Ⅰ.2x2+5x-7=________;Ⅱ.6x2-7xy+2y2=________ .(3)【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:Ⅰ.分解因式3x2+5xy-2y2+x+9y-4=________ .Ⅱ.若关于x,y的二元二次式x2+7xy-18y2-5x+my-24 可以分解成两个一次因式的积,求m的值.________Ⅲ.己知x,y为整数,且满足x2+3xy+2y2+2x+3y=-1,请写出一组符合题意的x,y的值.________6.数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a、b的长方形拼摆成一个如图4的正方形,请你写出这三个代数式(a+b)2、(a﹣b)2、ab之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当a+b=5,ab=﹣6时,则a﹣b的值为________.②设,B=x﹣2y﹣3,计算:(A+B)2﹣(A﹣B)2的结果________.7.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(请选择正确的一个)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)若x2-y2=16,x+y=8,求x-y的值;(3)计算:.8.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02, 12=42﹣22, 20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?9.一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:________.(2)图④中阴影部分的面积为________.观察图④请你写出(a+b)2、(a﹣b)2、ab 之间的等量关系是________.(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;①若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b的代数式表示)②若AB为任意值,且①中的S的值为定值,求a与b的关系.10.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一大重要研究成果.如图所示的三角形数表,称“杨辉三角”.具体法则:两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律:(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:(﹣3)4+4×(﹣3)3×2+6×(﹣3)2×22+4×(﹣3)×23+24.11.现有若干张如图1所示的正方形纸片A,B和长方形纸片C.(1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:________;(2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是________,并请你在图3位置画出拼成的长方形________;(3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.12.乘法公式的探究及应用.(1)如图,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式:________(用式子表达)(4)运用你所得到的公式,计算下列各题:① ,②【参考答案】***试卷处理标记,请不要删除一、整式乘法与因式分解易错压轴解答题1.(1)(2)a2+b2+2ab=(a+b)2(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: 2a2+3ab+b2=(a+b)(2a+b) .(等式左右两边交换不扣分)解析:(1)(2)(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: .(等式左右两边交换不扣分)【解析】【分析】(1)图1阴影部分面积为S1=a2-b2,图1阴影部分面积为S2=,根据展开前后图形的面积相等得到S1=S2,所以;(2)图3四个图形面积和为S3=a2+b2+2ab,图4的面积S4=(a+b)2,因为图4为图3的四个图形拼成,所以S3=S4,即;(3)图5六个图形面积和为S5=2a2+b2+3ab,画出的长方形的面积S=(a+b)(2a+b),因为画出的长方形为图5的六个图形拼成,所以S5=S,即. 2.(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.解析:(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.(4)2021.【解析】【解答】解:(1)由题意可得(x+2)(3x+1)(5x-3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-11.(2)由题意可得( x+6)(2x+3)(5x-4) 二次项系数是:.(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.所以(x+1)2021一次项系数是:a2020=2021×1=2021.【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.(2)求二次项系数,还有未知数的项有x、2x、5x,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a的值.(4)根据前三问的规律即可计算出第四问的值.3.(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2解析:(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2+4ab+3b2=(a+3b)(a+b)(3)解:∵由2b2+5ab+2a2可知大长方形由两个小正方形和两个大正方形以及五个长方形组成,如图∴2b2+5ab+2a2=(2b+a)(b+2a).【解析】【解答】(1)∵(2a+b)(a+b)=2a2+3ab+b2;∴拼图需要两个小正方形,一个大正方形和三个小长方形∴需要3个正方形纸片,3个长方形纸片.【分析】(1)根据多项式(2a+b)(a+b)=2a2+3ab+b2可发现矩形有两个小正方形,一个大正方形和三个小长方形.(2)正方形、长方形硬纸片一共八块,面积等于长为a+3b,宽为a+b的矩形面积.所以a2+4ab+3b2=(a+3b)(a+b)(3)正方形、长方形硬纸片共9块,画出图形,面积等于长为a+2b,宽为2a+b的矩形面积,则2a2+5ab+2b2=(2a+b)(a+2b)4.(1)解:36是奇巧数,理由:;50不是奇巧数,理由:找不到连续的两个偶数平方差为50(2)解:设两个连续的偶数为n+2、n,则,奇巧数是 4 的倍数.【解析】【分析】解析:(1)解:36是奇巧数,理由:;50不是奇巧数,理由:找不到连续的两个偶数平方差为50(2)解:设两个连续的偶数为n+2、n,则,奇巧数是的倍数.【解析】【分析】(1)根据定义是两个现需偶数的平方差判断即可.(2)将进行运算、化简,便可发现是4的倍数.5.(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-解析:(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(-2)=-18,(-8)×3=--24;而7=1×(-2)+1×9,-5=1×(-8)+1×3,∴m=9×3+(-2)×(-8)=43或m=9×(-8)+(-2)×3=-78.故m的值为43或者-78.;x=-1,y=0(答案不唯一)【解析】【解答】(1)将式子x 2 -x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=3×(-2);然后把1,1,3,-2按下图所示的摆放,按对角线交叉相乘再相加的方法,得到1×(+3)+1×(-2)=-1,恰好等于一次项的系数1,于是x 2+ x-6就可以分解为(x+3)(x-2).(2)根据基本原理,同样得出十字交叉图:Ⅰ. II.∴ 2x2+5x-7= (x-1)(2x+7), 6x2-7xy+2y2=(2x-y)(3x-2y);(3)Ⅰ. 根据 ax2+bxy+cy2+dx+ey+f 分解因式的基本原理得如图所示的双十字交叉图:所以 3x2+5xy-2y2+x+9y-4= (x+2y-1)(3x-y+4) ;Ⅱ如图:x2+7xy-18y2-5x+my-24可以分解成(x-2y+3)(x+9y-8),或分解成:(x-2y-8)(x+9y+3),所以m=43或-78.III.x2+3xy+2y2+2x+3y=-1, 得 x2+3xy+2y2+2x+3y+1=0,如图所示:得(x+2y+1)(x+y+1)=0,∴ x+2y+1=0,或x+y+1=0,或 x+2y+1=0且x+y+1=0∴如当x=-1时,y=0,或x=3,y=-4等均可使上式成立。

2023陕西数学中考压轴题考点

2023陕西数学中考压轴题考点

2023陕西数学中考压轴题考点陕西数学中考压轴题考点单项式与多项式仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。

当一个单项式的系数是1或-1时,“1”通常省略不写。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

1、多项式有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

3、多项式的恒等对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。

性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。

性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。

4、一元多项式的根一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。

多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

3、多项式的乘法多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.(本题满分12分)
已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。

(1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM =QN 。

请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a 和b 之间的两条线段相等。

(2)我们继续探究,发现用两条平行直线a 、b 去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。

把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。

请你在图③中画出一种图形,使夹在平行直线a 和b 之间的两条曲线段相等。

(3)如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ =m ,下底MN =n ,且m <n 。

现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻。

为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由。

25.(本题满分12分)
王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。

他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。

(1)求FC 的长;
(2)利用图②求出矩形顶点B 所对的顶点.....到BC 边的距离)(cm x 为多少时,矩形的面积最大?最大面积时多少? (3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。

P Q M N
a b 第25题图① a b 第25题图② a
b
第25题图③
P Q M N
a b 第25题图④ S 1
S 2
S 3 S 4 n m
25.(本题满分12分)
如图,O 的半径均为R .
(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形; (2)如图③,在
O 中,(02)AB CD m m R ==<<,
且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 面积(用含m α,的式子表示); (3)若线段AB CD ,是
O
的两条弦,且AB CD ==,你认为在以点A B C D ,,,为顶点的四边形中,
是否存在面积最大的四边形?请利用图④说明理由.
25、(本题满分12分)
某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。

如图,甲、乙两村坐落在夹角为30
°的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学。

点B 在点M 的北偏西30°的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60
°的处。

为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段CD 某处),甲村要求管道铺设到A 处,请你在图①中,画出铺设到点A 和
点M 处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段
AB 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值。

综上,你认为把供水站建在何处,所需铺设的管道最短?
(第25题图①) (第25题图②) (第25题图③) (第25题图④)
图①
图②
25.(本题满分12分) 问题探究
(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..
点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..
的点P ,并说明理由. 问题解决
(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).
25.(本题满分12分)
问题探究(1)请你在图①中做一条..
直线,使它将矩形ABCD 分成面积相等的两部分; (2)如图②点M 是矩形ABCD 内一点,请你在图②中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分。

问题解决
(1) 如图③,在平面直角坐标系中,直角梯形OBCD 是某市将要筹建的高新技术开发区用地示意图,其中
DC ∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P (4,2)处。

为了方便驻区单位准备过点P 修一条笔直的道路(路宽不计),并且是这条路所在的直线l 将直角梯形OBCD 分成面积相等的了部分,你认为直线l 是否存在?若存在求出直线l 的表达式;若不存在,请说明理由
D C B A ① D C B
A ③ D C
B A ② (第25题图)
25.(本题满分12分)
如图①、在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个_________三角形
(2)如图②、甲在矩形ABCD,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)、如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?
若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?25.(本题满分12分)
问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.
问题解决
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点.如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.
M
D
B C
A
P
D
B C
A
(第25题图)

②③
25.(本题满分12分)
问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4.如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个
..等腰△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点.当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安监控装置,用来监视边AB.现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳.已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m.问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长;若不存在,请说明理由.
图①图②图③25.(本题满分12分)
如图,正三角形ABC的边长为3+3.
(1)如图①,正方形EFPN的顶点E F
、在边AB上,顶点N在边AC上.在正三角形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形''''
EFPN,且使正方形''''
EFPN的面积最大(不要求写作法);(2)求(1)中作出的正方形''''
EFPN的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE EF
、在边AB上,点P N
、分别在边CB CA
、上,求这两个正方形面积和的最大值及最小值,并说明理由.。

相关文档
最新文档