八年级数学上册期末试卷培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册期末试卷培优测试卷

一、八年级数学全等三角形解答题压轴题(难)

1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .

(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;

(2)如图2,请写出AF 与DG 之间的关系并证明.

【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.

【解析】

【分析】

(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.

(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.

【详解】

解:(1)证明:设BE 与AD 交于点H..如图,

∵AD,BE 分别为BC,AC 边上的高,

∴∠BEA=∠ADB=90°.

∵∠ABC=45°,

∴△ABD 是等腰直角三角形.

∴AD=BD.

∵∠AHE=∠BHD,

∴∠DAC=∠DBH.

∵∠ADB=∠FDE=90°,

∴∠ADE=∠BDF.

∴△DAE ≌△DBF.

∴BF=AE,DF=DE.

∴△FDE是等腰直角三角形.

∴∠DFE=45°.

∵G为BE中点,

∴BF=EF.

∴AE=EF.

∴△AEF是等腰直角三角形.

∴∠AFE=45°.

∴∠AFD=90°,即AF⊥DF.

(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,

∵点G为BE的中点,BG=GE.

∵∠BGM∠EGD,

∴△BGM≌△EGD.

∴∠MBE=∠FED=45°,BM=DE.

∴∠MBE=∠EFD,BM=DF.

∵∠DAC=∠DBE,

∴∠MBD=∠MBE+∠DBE=45°+∠DBE.

∵∠EFD=45°=∠DBE+∠BDF,

∴∠BDF=45°-∠DBE.

∵∠ADE=∠BDF,

∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.

∵BD=AD,

∴△BDM≌△DAF.

∴DM=AF=2DG,∠FAD=∠BDM.

∵∠BDM+∠MDA=90°,

∴∠MDA+∠FAD=90°.

∴∠AHD=90°.

∴AF⊥DG.

∴AF=2DG,且AF⊥DG

【点睛】

本题考查三角形全等的判定和性质,关键在于灵活运用性质.

2.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.

(1)如图1,求证:OA是第一象限的角平分线;

(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;

(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求

2HK+EF的值.

【答案】(1)证明见解析(2)答案见解析(3)8

【解析】

【分析】

(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,

根据非负数的性质求出a、b的值即可得结论;

(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得

OE+OF=2OP=8,等量代换即可得2HK+EF的值.

【详解】

解:(1)∵|a﹣b|+b2﹣8b+16=0

∴|a﹣b|+(b﹣4)2=0

∵|a﹣b|≥0,(b﹣4)2≥0

∴|a﹣b|=0,(b﹣4)2=0

∴a=b=4

过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM

∴OA平分∠MON

即OA是第一象限的角平分线

(2)过A作AH平分∠OAB,交BM于点H

∴∠OAH=∠HAB=45°

∵BM⊥AE

∴∠ABH=∠OAE

在△AOE 与△BAH 中

OAE ABH OA AB

AOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩

, ∴△AOE ≌△BAH (ASA )

∴AH =OE

在△ONE 和△AMH 中

OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩

=, ∴△ONE ≌△AMH (SAS )

∴∠AMH =∠ONE

设BM 与NE 交于K

∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA

∴2∠ONE ﹣∠NEA =90°

(3)过H 作HM ⊥OF ,HN ⊥EF 于

M 、N

可证:△FMH ≌△FNH (SAS )

∴FM =FN

同理:NE =EK

∴OE+OF ﹣EF =2HK

过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q

可证:△APF ≌△AQE (SAS )

∴PF =EQ

∴OE+OF =2OP =8

∴2HK+EF =OE+OF =8

【点睛】

本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.

3.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥

相关文档
最新文档