人教版八年级数学上册培优资料
初二数学上册培优辅导讲义(人教版)

第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、同旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角一共构成哪几对邻补角 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图:⑴经过点A 画直线l 2的垂线.⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF ABC D EF PQ RABCEF O E A BCD O (第1题图)1 4 32 (第2题图)l 202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D BA EO CDA BA E DC F E BA D 1 4 2 3 6 5【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知) ∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B E FCABE AB CE1 204.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF .【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a 1,a 2,…,a 2010,如果a 1⊥a 2,a 2∥a 3,a 3⊥a 4,a 4∥a 5……那么a 1与a 2010的位置关系是 . 03.已知n (n >2)个点P 1,P 2,P 3…Pn .在同一平面内没有任何三点在同一直线上,设S n 表示过这几个点中的任意两个点所作的所有直线的条数,显然:S 2=1,S 3=3,S 4=6,∴S 5=10…则Sn = . 演练巩固·反馈提高01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( )A .∠AMFB .∠BMFC .∠ENCD .∠END03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( )①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BDA .0B . 2C .4D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,ABC D E F l 1l 2 l 3 l 4 l 5 l 6图⑴ l 1 l 2 l 3l 4 l 5 l 6 图⑵ A EB C F D A BC DFEMN α第1题图 第2题图A D C第4题图PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC =.07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG=. 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是.10.在同一平面内两条直线的位置关系有.11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.培优升级·奥赛检测ABCDOAB CDEFGHabc第6题图第7题图第9题图123456781AC DEBA BC DEF12AB CDEF第14题图01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到 09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件 ⑴任意两条直线都有交点;⑵总共有29个交点.第13讲 平行线的性质及其应用 考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38° 【变式题组】 01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的a b AB C度数为()A.155°B.50°C.45°D.25°02.(安徽)如图,直线l1 ∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°03.如图,已知FC∥AB∥DE,∠α:∠D:∠B=2: 3: 4, 试求∠α、∠D、∠B的度数.【例2】如图,已知AB∥CD∥EF,GC⊥CF,∠B=60°,∠EFC=45°,求∠BCG的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB∥CD∥EF∴∠B=∠BCD∠F=∠FCD(两条直线平行,内错角相等)又∵∠B=60°∠EFC=45°∴∠BCD=60°∠FCD=45°又∵GC⊥CF∴∠GCF=90°(垂直定理)∴∠GCD=90°-45°=45°∴∠BCG=60°-45°=15°【变式题组】01.如图,已知AF∥BC, 且AF平分∠EAB,∠B=48°,则∠C的的度数=_______________02.如图,已知∠ABC+∠ACB=120°,BO、CO分别∠ABC、∠ACB,DE过点O与BC平行,则∠BOC=___________03.如图,已知AB∥MP∥CD, MN平分∠AMD,∠A=40°,∠D=50°,求∠NMP的度数.【例3】如图,已知∠1=∠2,∠C=∠D.求证:∠A=∠F.【解法指导】因果转化,综合运用.逆向思维:要证明∠A=∠F,即要证明DF∥AC.要证明DF∥AC, 即要证明∠D+∠DBC=180°,即:∠C+∠DBC=180°;要证明∠C+∠DBC=180°即要证明DB∥EC.要证明DB∥EC即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB∥EC(同位角相等•两直线平行)∴∠DBC+∠C=180°(两直线平行,同旁内角互补)∵∠C=∠D ∴∠DBC+∠D=180°∴DF∥AC(同旁内角,互补两直线平行)∴∠A=∠F(两直线平行,内错角相等)【变式题组】01.如图,已知AC∥FG,∠1=∠2,求证:DE∥FGAB CD O EFAEB C(第1题图)(第2题图)EAFGDCBBAMCDNP(第3题图)CDABE F1323CA1D2D A 21 B F E A CD 02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF.AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360°【解法指导】从考虑360°这个特殊角入手展开联想,分析类比,A D M CN E B A2 CF 3 E D 1B(第2题图)3 1 A B G DC E A Bα β P B C D A∠P =α+βF γ Dα β E B C AFD E BC A B C AA ′ lB ′C ′联想周角.构造两个“平角”或构造两组“互补”的角.过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________⑶____________________________ ⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD ∴∠ψ+∠4=180°+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点.⑷连: 按原图形顺次连接对应点. AA /的平行线l ③在用同样的方法作C /A /就得到平移后的三角形A /B /C /. 21cm ,作出平移后的图形.BAP C AC CD AAP C BD PBPD B D ⑴ ⑵ ⑶ ⑷西 B 30°A 北东 南02.如图,已知三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC 与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高 01.如图,由A 测B 得方向是( ) A .南偏东30° B .南偏东60° C .北偏西30° D .北偏西60° 02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个 03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°07.下列几种运动中属于平移的有( ) ①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A .1种B .2种C .3种D .4种 08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正B B /AA /C C /150°120°DBCE 湖21AB好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗DEAB CE DB CE D AB CED AB CEDA B C4 P 231A BEFC D15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A 2B 2B 1[即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( )A .720°B .108°或144°C .144°D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,⑶ ⑷ CAAC 1D 1BD . . . AF E BA C G D直线b 上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线为什么 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数; ⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化若变化,找出变化规律;若不变,求出这个比值. ⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA 若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积第06讲 实 数 考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a的平方根为x =,其中a 的平方根为x 叫做a 的算术平方根. F EB AC GD 100° FE B C A B CD若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2n a ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( )A .-1B . 0C .1D .2 有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -+++=∴24242a b a -+++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l 3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-2 04.已知x 1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b 都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴ 123a b b -=⎧⎪⎨=⎪⎩即112a b b -=⎧⎪⎨=⎪⎩,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b 的平方根为:255a b ±+=±=±. 【变式题组】01.(西安市竞赛题)已知m 、n 是有理数,且(5+2)m +(3-25)n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a 为17−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】一个实数由小数部分与整数部分组成,17−2=整数部分+小数部分.整数部分估算可得2,则小数部分=17−2 −2=17−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3+5的小数部分是a ,3−5的小数部分是b ,则a +b 的值为____.02.5的整数部分为a ,小数部分为b ,则(5+a )·b =____. 演练巩固 反馈提高0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设3a =-,b = -2,52c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与364- C .4与364 D .3与904.在实数,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b >a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±n =n C .m =-n D .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,2,3…,19,20.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=32+=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn+4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )A.2 B.-1 C.1 D.002.( ) A.0 B.1C.1 D.203−2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+=a+b=____.05.若a b-=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.06.已知实数a满足2009a a-=,则a− 20092=_______.m满足关系式=试确定m的值.08.(全国联赛)若a、b满足5b=7,S=3b,求S的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦g g g 2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲 平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系. 2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积. 经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A (2,1),B (1,2),C (-1,2),D (-2,-1),E (0,3),F (-3,0) 【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性. 【变式题组】01.第三象限的点P (x ,y ),满足|x |=5,2x +|y |=1,则点P 得坐标是-_____________.02.在平面直角坐标系中,如果>0,那么(m, |n|)一定在____________象限. 03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-,-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标。
初二数学上册培优辅导讲义(人教版)

第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( )A BC D E F AB C DEF PQ RA BCEF E A ACD O (第1题图)1 4 32 (第2题图)l 2A .4cmB . 5cmC .不大于4cmD .不小于6cm02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置.⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在的路上距离村庄N 越来越近,而距离村庄M越来越远.【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数.【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .⑴求∠AOC 的度数;⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6:∠2和∠4:∠3和∠5:∠3和∠4: 【解法指导】正确辩认同位角、内错角、同旁内角的思路是:F B AOCD EC DBA EOB ACD O A BA E DC F EBAD 1 4 2 3 6 5首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行.⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行. 【变式题组】01.如图,推理填空. ⑴∵∠A =∠ (已知)∴AC ∥ED ( ) ⑵∵∠C =∠ (已知) ∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 23 4 56 1 23 4 甲 1 A B C 2 3 4 5 6 7 A B C DOA BE F CA B CE 1 203.如图,已知AE平分∠CAB,CE平分∠ACD.∠CAE+∠ACE=90°,求证:AB∥CD.04.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A BC DEABCD El1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC = .07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG= . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是 . 10.在同一平面内两条直线的位置关系有 .11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD?12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.ABCDOAB CDEFGHabc第6题图第7题图第9题图123 4567 81AC DEBAC DE12AB CDEF第14题图培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性.06.平面上三条直线相互间的交点的个数是( )A .3B .1或3C .1或2或3D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法?08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( )A .60°B . 75°C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点. 第13讲 平行线的性质及其应用考点·方法·破译 1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理;3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.a b AB C经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥C 的度数.【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )50° B . 55° C . 60° D .65° 03FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B . 例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.AB CDOE FAEBC (第1题图) (第2题图) E A FG D C B BA MCD N P (第3题图)D A 2 E1 B C F E A 【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】 因果转化,综合运用. 逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC =180°即要证明DB ∥EC . 要证明DB ∥EC 即要 证明∠1=∠3. 证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】 01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG 02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB 03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等)∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .C DA B E F1 32 GB 3C A 1D 2EF (第1题图) A2 C F3 E D1 B(第2题图)3 1 A B G DCEα β P B C D A∠P =α+β3 21 γ4 ψ D α βE B C AFH 3.已知如图,AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠BCM 的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180° 【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( ) A . ∠β=∠α+∠γ B .∠β+∠α+∠γ=180° C . ∠α+∠β-∠γ=90° D .∠β+∠γ-∠α=90°B A PC A C CD A A P C B D P BPD B D ⑴ ⑵ ⑶ ⑷ A D M CN E B F E D 2 1 AB CF γ D α β E B C AF D E BC A 西30°A B CAA′ l B′ C′ 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点.【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /. 【变式题组】 01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形. 02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC 与△A /B /C /的重叠部分的面积. 03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( )A .1个B .2个C .3个D .4个 03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( )A .第一次向左拐30°,第二次向右拐30°B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°B B / AA / C C /04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°07.下列几种运动中属于平移的有( )①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动. A .1种 B .2种 C .3种 D .4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的( )10.如图,AD ∥BC ,AB ∥CD ,AE ⊥BC ,现将△ABE 进行平移. 平移方向为射线AD 的方向. 平移距离为线段BC 的长,则平移得到的三角形是图中( )图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.P .P .P .P .⑴⑵ ⑶⑷DAB C ED B CEDAB CEDAB CEABC150°120°DBCE湖21AB4P231A BEFC D12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.培优升级·奥赛检测01.如图,等边△ABC各边都被分成五等分,这样在△ABC内能与△DEF完成重合的小三角形共有25个,那么在△ABC内由△DEF平移得到的三角形共有()个02.如图,一足球运动员在球场上点A处看到足球从B点沿着BO方向匀速滚来,运动员立即从A处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移)03.如图,长方体的长AB=4cm,宽BC=3cm,高AA1=2cm. 将AC平移到A1C1的位置上时,平移的距离是___________,平移的方向是___________.CAC1DBD.B.O. AFE B A C G D 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A 2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.⑶⑷FEBACGD 100°F E B C10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD的边长为5,把它的对角线AC分成n段,以每一小段为对角线作小正方形,这n个小正方形的周长之和为多少?12.如图将面积为a2的小正方形和面积为b2的大正方形放在一起,用添补法如何求出阴影部分面积?第06讲实数考点·方法·破译1.平方根与立方根:若2x=a(a≥0)则x叫做a的平方根,记为:a的平方根为x=,其中a的平方根为x a的算术平方根.若x3=a,则x叫做a的立方根.记为:a的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p、q是两个互质的整数,且q≠0)的形式.3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a>0,2na≥0(n为正整数)0(a≥0) .经典·考题·赏析【例1】若2m-4与3m-1是同一个数的平方根,求m的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m−4与3m−l是同一个数的平方根,∴2m−4 +3m−l=0,5m=5,m=l.【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____.02.已知m m的平方根是____.03____.y是____.【例2】(全国竞赛)已知非零实数a、b满足24242a b a-+++=,则a+b等于( )A.-1 B.0 C.1 D.2A BC D有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -++=∴24242a b a -++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab 的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-2 04.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±.【变式题组】01.(西安市竞赛题)已知m 、n 2)m+(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a −2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −24.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3+5的小数部分是a ,3−5的小数部分是b ,则a +b 的值为____. 02.5的整数部分为a ,小数部分为b ,则(5+a )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设3a =-,b = -2,5c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与364- C .4与364 D .3与904.在实数1.414,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( )A .2个B .3个C .4个D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b >a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,2,3…,19,20.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a b+,如3※2=32+=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a、b,定义运算“*”,如下a*b=()()22a b a bab a b⎧⎪⎨⎪⎩≥<,已知3*m=36,则实数m=____.14.设a是大于1的实数.若a,23a+,213a+在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a-+153a-+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn+4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2与533x y--互为相反数,求22x y+的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a 值为( )A . 2B .-1C . 1D . 002.( )A .0B . 1C .1D . 2 03−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a满足2009a a -=,则a − 20092=_______.m 满足关系式199y x --试确定m的值.08.(全国联赛)若a、b 满足5b =7,S =3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y +21a =-,231x y b -=--,求22x y a b +++的值.考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)第14讲平面直角坐标系(一)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.。
(完整版)人教版八年级上数学培优精编讲义教师版

第十一章全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。
人教版八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

人教版八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).【答案】(1)过程见解析;(2)MN= NC﹣BM.【解析】【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵BD CDMBD ECD BM CE,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,在△DMN与△DEN中,∵MD DEMDN EDN DN DN,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵BM CEMBD ECD BD CD,∴△BMD≌△CED(SAS),∴DM= DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN =∠NDE=60°,在△MDN和△EDN中∵ND NDEDN MDN ND ND,∴△MDN≌△EDN(SAS),∴MN =NE=NC﹣CE=NC﹣BM.【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析【解析】【分析】(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出EM=PN=12AD,EC=MF=12AB,我们只要再证得两对应边的夹角相等即可得出全等的结论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.【详解】(1)如图1,连接CF,线段CE与FE之间的数量关系是CE=2FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=2EF.解法2:易证∠BED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=2EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,又∵∠EFD=∠GFB,DF=BF,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=2FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又点F是BD的中点,∴FA=FB=FD,而AC=BC,CF=CF,∴△ACF≌△BCF,∴∠ACF=∠BCF=12∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=2EF.(3)(1)中的结论仍然成立.解法1:如图3﹣1,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF,∵DF=BF,∴FM∥AB,且FM=12 AB,∵AE=DE,∠AED=90°,∴AM =EM ,∠AME =90°,∵CA =CB ,∠ACB =90°∴CN=AN=12AB ,∠ANC =90°, ∴MF ∥AN ,FM =AN =CN ,∴四边形MFNA 为平行四边形, ∴FN =AM =EM ,∠AMF =∠FNA ,∴∠EMF =∠FNC ,∴△EMF ≌△FNC ,∴FE =CF ,∠EFM =∠FCN ,由MF ∥AN ,∠ANC =90°,可得∠CPF =90°,∴∠FCN+∠PFC =90°,∴∠EFM+∠PFC =90°,∴∠EFC =90°,∴△CEF 为等腰直角三角形,∴∠CEF =45°,∴CE =2FE .【点睛】本题解题的关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.3.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__________;②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)【解析】【分析】(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.【详解】(1)①正方形ADEF 中,AD AF =∵90BAC DAF ==︒∠∠∴BAD CAF ∠=∠在△DAB 与△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴()DAB FAC SAS △≌△∴B ACF ∠=∠∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;②∵DAB FAC △≌△∴=CF BD∵BC BD CD =+∴BC CF CD =+(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC证明:∵△ABC 和△ADF 都是等腰直角三角形∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∴∠BAD =∠CAF在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△FAC (SAS )∴∠ABD =∠ACF ,DB =CF∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°∴∠ABD =180°-45°=135°∴∠ACF =∠ABD =135°∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC∵CD =DB +BC ,DB =CF∴DC =CF +BC(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,∵90BAC ∠=︒,AB AV ==∴1422BC AH BH CH BC ======, ∴114CD BC == ∴3DH CH CD =+=∵四边形ADEF 是正方形∴90AD DE ADE ==︒,∠∵BC CF EM BD EN CF ⊥⊥⊥,,∴四边形CMEN 是矩形∴NE CM EM CN ==,∵90AHD ADC EMD ===︒∠∠∠∴90ADH EDM EDM DEM +=+=︒∠∠∠∠∴ADH DEM =∠∠在△ADH 和△DEM 中ADH DEM AHD DME AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADH DEM △≌△∴32EM DH DM AH ====,∴3CM EM ==∴CE ==【点睛】本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.4.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
初二数学上册培优辅导讲义(人教版)

第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、同旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角. 【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图:⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段. 【变式题组】01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( )A BC D E F AB C DEF PQ R A BCE F E A BCD O (第1题图)1 4 32 (第2题图)l 2A .4cmB . 5cmC .不大于4cmD .不小于6cm02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB . 【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数;⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4:∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所F B A OC D E C D B A EO CDA BA E DC F E BA D 1 4 2 3 6 5在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角 【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行.⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行. 【变式题组】01.如图,推理填空. ⑴∵∠A =∠ (已知)∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) ABDCHG E F7 1 5 6 8 4 1 2 乙丙 3 23 4 56 1 2 3 4 甲 1 A BC 2 3 45 6 7 A B C DOA BD E F CA B CE 1 203.如图,已知AE平分∠CAB,CE平分∠ACD.∠CAE+∠ACE=90°,求证:AB ∥CD.04.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条A BC DEABCD El1l2l3l4l5l6图⑴1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD>BDA.0 B.2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC = .07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG= . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD?12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.ABCDOAB CDEFGHabc第6题图第7题图第9题图123 4567 81AEBAE1AB CDEF第14题图培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法?08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( )A .60°B . 75°C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点. 第13讲 平行线的性质及其应用考点·方法·破译 1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理;3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用. 经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数.【解法指导】a b AB C两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为( )A .155°B .50°C .45°D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60°D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B 的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】AB CDOE FAEBC (第1题图) (第2题图)E A FG D C B BA MCD N P (第3题图)D A 2 E1 B C B F E A C D 因果转化,综合运用. 逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC =180°即要证明DB ∥EC . 要证明DB ∥EC 即要 证明∠1=∠3. 证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】 01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG 02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行于β入射到α上,经两次反射后的出射光线O ′B 平行 于α,则角θ等于_________.【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的:∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等)∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF. AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠BCM. C DA B E F1 32 GB 3C A 1D 2EF (第1题图) A2 CF 3 E D1 B(第2题图)3 1 A B G DCEα β P B C D A∠P =α+β3 21 γ 4ψ D α β E B C AFHα B CA EBA【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键.【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180°(两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180° 【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.FED 2 1A B CB CAA ′lB ′C ′ 西30° A【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离.⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /. 【变式题组】 01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形. 02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC 与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米) 演练巩固 反馈提高 01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( )A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]BB /AA / C C /从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°07.下列几种运动中属于平移的有( )①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动. A .1种 B .2种 C .3种 D .4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的( )10.如图,AD ∥BC ,AB ∥CD ,AE ⊥BC ,现将△ABE 进行平移. 平移方向为射线AD的方向. 平移距离为线段BC 的长,则平移得到的三角形是图中( )图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角; ⑵两个锐角的和是锐角; ⑶直角都相等.150°120°DBCE湖4321ABEFC D4P231A BEFC D13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D 成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.培优升级·奥赛检测01.如图,等边△ABC各边都被分成五等分,这样在△ABC内能与△DEF完成重合的小三角形共有25个,那么在△ABC内由△DEF平移得到的三角形共有()个02.如图,一足球运动员在球场上点A处看到足球从B点沿着BO方向匀速滚来,运动员立即从A处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移)03.如图,长方体的长AB=4cm,宽BC=3cm,高AA1=2cm. 将AC平移到A1C1的位置上时,平移的距离是___________,平移的方向是___________.04.如图是图形的操作过程(五个矩形水平方向的边长均为a,竖直方向的边长为b);将线段A1A2向右平移1个单位得到B1B2,得到封闭图形A1A2B2B1 [即阴影部分如图⑴];将折现A1A2 A3向右平移1个单位得到B1B2B3,得到封闭图形A1A2 A3B3B2B1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个CB1AA1C1D1BD.B.O. AFE B A C G D 单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( )A .720°B .108°或144°C .144°D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF与EG 中有没有与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB=∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.FEBACGD 100°⑶⑷F E B AC O10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD的边长为5,把它的对角线AC分成n段,以每一小段为对角线作小正方形,这n个小正方形的周长之和为多少?12.如图将面积为a2的小正方形和面积为b2的大正方形放在一起,用添补法如何求出阴影部分面积?第06讲实数考点·方法·破译1.平方根与立方根:若2x=a(a≥0)则x叫做a的平方根,记为:a的平方根为x=a的平方根为x a的算术平方根.若x3=a,则x叫做a的立方根.记为:a的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p、q是两个互质的整数,且q≠0)的形式.3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a>0,2na≥0(n为正整数)≥0(a≥0) .经典·考题·赏析【例1】若2m-4与3m-1是同一个数的平方根,求m的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m−4与3m−l是同一个数的平方根,∴2m−4 +3m−l=0,5m=5,m=l.【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____.02.已知m m的平方根是____.03____.04.如图,有一个数值转化器,当输入的x为64时,输出的y是____.【例2】(全国竞赛)已知非零实数a、b满足24242a b a-+++=,则a+b等于( )A.-1 B. 0 C.1 D.2有意义,∵a、b为非零实数,∴b2>0∴a-3≥0A BC Da ≥3∵24242a b a -++=∴24242a b a -++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____.02()230b -=,则ab的平方根是____. 03.(天津)若x 、y为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a、b都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a+b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n 2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a −2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2−2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3+a,3b,则a+b的值为____.02a,小数部分为ba)·b=____.演练巩固反馈提高0l.下列说法正确的是( )A.-2是(-2)2的算术平方根B.3是-9的算术平方根C. 16的平方根是±4 D.27的立方根是±302.设a=b=-2,c=,则a、b、c的大小关系是( ) A.a<b<c B.a<c<b C.b<a<c D.c<a<b03.下列各组数中,互为相反数的是( )A.-9与81的平方根B.4与C.4D.304.在实数1.414,,0.1•5•,5π,3.1•4•( )A.2个B.3个C.4个D. 5个05.实数a、b在数轴上表示的位置如图所示,则( ) A.b>a B.a b>C.-a<b D.-b>a06+1+1之间的有( )A. 1个B.2个C. 3个D.4个07.设mn=2.则m,n的关系是( )A. m=±nB.m=n C .m=-n D.m n≠08.(烟台)如图,数轴上A、B两点表示的数分别为-1,点B关于点A的对称点C,则点C所表示的数为( )A.-2B.-1C.-2D.l09.点AB在数轴上和原点相距3个单位,且点B在点A左边,则A、B之间的距离为____.10.用计算器探索:已知按一定规律排列的一组数:1.如果从中选出若干个数,使它的和大于3,那么至少要选____个数.11.对于任意不相等的两个数a、b,定义一种运算※如下:a※b,如3※212.※4=____.12.(长沙中考题)已知a、b为两个连续整数,且a<b,则a+b=____.13.对实数a、b,定义运算“*”,如下a*b=()()22a b a bab a b⎧⎪⎨⎪⎩≥<,已知3*m=36,则实数m=____.14.设a是大于1的实数.若a,23a+,213a+在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、yx、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn+4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,.则a 值为( )A . 2B .-1C . 1D . 002.( )A .0B . 1C .1D . 203.代数式−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +=21−则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a满足2009a a -=,则a − 20092=_______.m 满足关系式199yx =--,试确定m的值.08.(全国联赛)若a 、b 满足5b =7,S =3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y +21a =-,231x y b -=--,求22x y a b +++的值..第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是-_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π) 【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标..【解法指导】关于x 轴对称的点的坐标的特点:横坐标(x )相等,纵坐标(y )互为相反数,关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y )相等.【变式题组】01.P (-1,3)关于x 轴对称的点的坐标为____________. 02.P (3,-2)关于y 轴对称的点的坐标为____________. 03.P (a ,b )关于原点对称的点的坐标为____________.04.点A (-3,2m -1) 关于原点对称的点在第四象限,则m 的取值范围是____________.05.如果点M(a +b ,ab )在第二象限内,那么点N (a ,b ) 关于y 轴对称的点在第______象限.【例4】P (3,-4),则点P 到x 轴的距离是____________.【解法指导】P (x ,y )到x 轴的距离是| y |,到y 轴的距离是|x |.则P 到轴的距离是|-4|=4【变式题组】01.已知点P (3,5),Q (6,-5),则点P 、Q 到x 轴的距离分别是_________,__________.P 到y 轴的距离是点Q 到y 轴的距离的________倍. 02.若x 轴上的点P到y 轴的距离是3,则P 点的坐标是__________.03.如果点B (m +1,3m -5) 到x 轴的距离与它到y 轴的距离相等,求m 的值.04.若点(5-a ,a -3)在一、三象限的角平分线上,求a 的值.05.已知两点A (-3,m ),B (n ,4),AB ∥x 轴,求m 的值,并确定n 的取值范围.【例5】如图,平面直角坐标系中有A 、B 两点. (1)它们的坐标分别是___________,___________;(2)以A 、B 为相邻两个顶点的正方形的边长为_________; (3)求正方形的其他两个顶点C 、D 的坐标.【解法指导】平行x 轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y 轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A (x 1,y 1),B (x 2,y 2),若AB ∥x 轴,则|AB |=|x 1-x 2|;若AB ∥y ,则|AB |=|y 1-y 2|,则(1)A (2,2),B (2,-1);(2)3;(3)C (5,2),D (5,-1)或C (-1,2),D (-1,-1).【变式题组】01.如图,四边形ACBD 是平行四边形,且AD ∥x 轴,说明,A 、D 两点的___________坐标相等,请你依据图形写出A 、B 、C 、D 四点的坐标分别是_________、_________、____________、____________.02.已知:A (0,4),B (-3,0),C (3,0)要画出平行四边形ABCD ,请根据A 、B 、C 三点的坐标,写出第四个顶点D 的坐标,你的答案是唯一的吗?03.已知:A (0,4),B (0,-1),在坐标平面内求作一点,使△ABC 的面积为5,请写出点C 的坐标规律.【例6】平面直角坐标系,已知点A (-3,-2),B (0,3),C (-3,2),求△ABC 的面积.。
八年级上册数学培优资料

第1课时:《三角形》【基础知识回顾】1、三角形三边的关系定理:任意两边之和______第三边,任意两边之差______第三边;2、三角形中的主要线段有:________;_________;___________。
3、三角形内角和定理:三角形三个内角的和等于_______.4、三角形外角的性质:(1)三角形的一个外角等于_________________的两个内角的和; (2)三角形的一个外角_______与它不想领的任何一个内角。
5、(结合【例题3】讲解)(1)如图1,在△ABC 中,当点P 为∠ABC 、∠ACB 的角平分线的交点,则∠BPC 与∠A 的关系是: ∠BPC =___________(2)如图2,在△ABC 中,当点P 为∠ABC 内角平分线与∠ACB 的外角平分线的交点时,则∠BPC 与∠A 的关系是:∠BPC =___________(3)如图3,在△ABC 中,当点P 为∠ABC 、∠ACB 的两外角平分线的交点,则∠BPC 与∠A 的关系是: ∠BPC =___________6、n 边形的内角和等于_________;n 边形的内角中最多有_______个锐角。
7、n 边形的外角和等于_________;n 边形的外角中最多有_______个钝角。
8、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或________)的问题。
9、能进行平面镶嵌的正多边形有______________________;能进行平面镶嵌的多边形有___________。
【重点考点例析】 类型一:三角形的三边关系【例题1】1、若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( ) A. 1 B. 5 C. 7 D. 92、已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( ) A. 2 B. 3 C. 5 D. 133、现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,从中任取三根木棒,能组成三角形的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个图1图2图3【例题2】1、如图,已知∠BOC =105°,∠B =20°,∠C =35°,求∠A 的度数.(你可以用几种方法求解?)2、一次数字活动课上,小聪将一副三角板按图中方式叠放,则∠α等于( ) A. 30° B. 45° C. 60° D. 75°3、将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为( ) A. 75° B. 95° C. 105° D. 120°4、一副三角板,如图所示叠放在一起,则图中∠α的度数是( )A. 75°B. 60°C. 65°D. 55°5、如图,一根直尺EF 压在三角板30°角∠BAC 上,与两边AC ,AB 交于点M ,N ,那么∠CME +∠BNF 是( )A. 150°B. 180°C. 135°D. 不确定 ABCO第2题图第3题图第4题图第5题图【例题3】1、(1)如图①,在△ABC 中,∠A =50°,BP 平分∠ABC ,CP 平分∠ACB ,求∠BPC 的度数; (2)如图②,若CP 平分∠ACE ,BP 是∠ABC 的平分线,∠A =50°,求∠P.(3)如图③,若BP ,CP 分别为△ABC 的外角∠DBC 、∠ECB 的平分线,且∠A =50°,求∠BPC 的度数;2、(1)如图,∠A =40°,∠C =76°,BP 是∠ABG 的平分线,DP 是∠CDG 的平分线,则∠P 的度数是_________;(2)如果∠A =α,∠P =β,其他条件不变,则∠C =________.类型三:多边形的对角线【例题4】1、凸n 边形的对角线的条数记作n a (n ≥4),如:4a =2,那么:①=6a _________; ②=-56a a _________;③=-99100a a _________;④n a (n ≥4)=___________。
初二数学上册培优辅导讲义(人教版)

第12讲与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、同旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB、CD、EF相交于点O,一共构成哪几对对顶角一共构成哪几对邻补角【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线.有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB、CD、EF相交于P、Q、R,则:⑴∠ARC的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角02.当两条直线相交于一点时,共有2对对顶角;当三条直线相交于一点时,共有6对对顶角;当四条直线相交于一点时,共有12对对顶角.问:当有100条直线相交于一点时共有对顶角.【例2】如图所示,点O是直线AB上一点,OE、OF分别平分∠BOC、∠AOC.⑴求∠EOF的度数;⑵写出∠BOE的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE、OF平分∠BOC、∠AOC∴∠EOC=21∠BOC,∠FOC=21∠AOC∴∠EOF=∠EOC+∠FOC=21∠BOC+21∠AOC=()AOCBOC∠+∠21又∵∠BOC+∠AOC=180°∴∠EOF=21×180°=90°⑵∠BOE的余角是:∠COF、∠AOF;∠BOE 的补角是:∠AOE.【变式题组】01.如图,已知直线AB、CD相交于点O,OA平分∠EOC,且∠EOC=100°,则∠BOD的度数是()A.20°B.40°C.50°D.80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l1、l2相交于点O,A、B分别是l1、l2上的点,试用三角尺完成下列作图:⑴经过点A画直线l2的垂线.⑵画出表示点B到直线l1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】01.P为直线l外一点,A、B、C是直线l上三点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离为()A.4cm B. 5cm C.不大于4cm D.不小于6cm 02 如图,一辆汽车在直线形的公路AB上由A向B行驶,M、N为位于公路两侧的村庄;⑴设汽车行驶到路AB上点P的位置时距离村庄M最近.行驶到AB上点Q的位置时,距离村庄N最近,请在图中的公路上分别画出点P、Q的位置.⑵当汽车从A出发向B行驶的过程中,在的路上距离M村越来越近..在的路上距离村庄N越来越近,而距离村庄M越来越远.【例4】如图,直线AB、CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°,求∠BOE和∠AOC的度数.【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF=90°,OF⊥AB.【变式题组】01.如图,若EO⊥AB于O,直线CD过点O,∠EOD ︰∠EOB=1︰3,求∠AOC、∠AOE的度数.02.如图,O为直线AB上一点,∠BOC=3∠AOC,OC平分∠AOD.⑴求∠AOC的度数;⑵试说明OD与AB的位置关系.03.如图,已知AB⊥BC于B,DB⊥EB于B,并且∠CBE︰∠ABD=1︰2,请作出∠CBE的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6:∠2和∠4:∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】01.如图,平行直线AB、CD与相交直线EF,GH相交,图中的同旁内角共有()A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行并说明理由•⑴∠CBD =∠ADB ;⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD=∠ADB,可推得AD∥BC;根据内错角相等,两直线平行.⑵由∠BCD+∠ADC=180°,可推得AD∥BC;根据同旁内角互补,两直线平行.⑶由∠ACD=∠BAC可推得AB∥DC;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A=∠(已知)∴AC∥ED()⑵∵∠C=∠(已知)∴AC∥ED()⑶∵∠A=∠(已知)∴AB∥DF()02.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.解:∵AD是∠BAC的平分线(已知)∴∠BAC=2∠1(角平分线定义)又∵EF平分∠DEC(已知)∴()又∵∠1=∠2(已知)∴()∴AB∥DE()03.如图,已知AE平分∠CAB,CE平分∠ACD.∠CAE+∠ACE=90°,求证:AB∥CD.04.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END 03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA 是点B到AC的距离⑥AD>BDA.0 B.2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC= .07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG = .08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是 . 10.在同一平面内两条直线的位置关系有 .11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD 12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件 使AD ∥BC .培优升级·奥赛检测01.平面图上互不重合的三条直线的交点的个数是( )A .1,3B .0,1,3C .0,2,3 D .0,1,2,302.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分.A .60B . 55C .50D .4503.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点.A.35 B. 40 C.45 D.55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点.05.如图是某施工队一张破损的图纸,已知a、b是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性.06.平面上三条直线相互间的交点的个数是()A.3 B.1或3 C.1或2或3 D.不一定是1,2,307.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到09.如图,在一个正方体的2个面上画了两条对角线AB、AC,那么两条对角线的夹角等于()A .60°B . 75°C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件⑴任意两条直线都有交点; ⑵总共有29个交点. 第13讲 平行线的性质及其应用考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系;2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD =38°,求∠C 的度数.【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为( )A .155°B .50°C .45°D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60°D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B 的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.条直线平行,内错角相等)又∵∠B=60° ∠EFC=45° ∴∠BCD=60° ∠FCD=45° 又∵GC⊥CF∴∠GCF=90°(垂直定理)∴∠GCD=90°-45°=45° ∴∠BCG=60°-45°=15°【变式题组】01.如图,已知AF∥BC, 且AF平分∠EAB,∠B=48°,则∠C的的度数=_______________02.如图,已知∠ABC+∠ACB=120°,BO、CO分别∠ABC、∠ACB,DE过点O与BC平行,则∠BOC=___________ 03.如图,已知AB∥ MP∥CD, MN平分∠AMD,∠A=40°,∠D=50°,求∠NMP的度数.【例3】如图,已知∠1=∠2,∠C=∠D.求证:∠A =∠F.【解法指导】因果转化,综合运用.逆向思维:要证明∠A=∠F,即要证明DF∥AC.要证明DF∥AC, 即要证明∠D+∠DBC=180°,即:∠C+∠DBC=180°;要证明∠C+∠DBC=180°即要证明DB∥EC.要证明DB∥EC即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB∥EC(同位角相等•两直线平行)∴∠DBC+∠C=180°(两直线平行,同旁内角互补)∵∠C=∠D ∴∠DBC +∠D=180°∴DF∥AC(同旁内角,互补两直线平行)∴∠A=∠F(两直线平行,内错角相等)【变式题组】01.如图,已知AC∥FG,∠1=∠2,求证:DE∥FG02.如图,已知∠1+∠2=180°,∠3=∠B.求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO平行于β入射到α于α,则角θ等于_________.【例4】如图,已知EG⊥BC,AD⊥BC,∠1=∠3.求证:AD平分∠BAC.【解法指导】抓住题中给出的条件的目的,仔细分析条件给我们带来的结论,对于不能直接直接得出结论的条件,要准确把握住这些条件的意图.(题目中的:∠1=∠3)证明:∵EG⊥BC,AD⊥BC ∴∠EGC=∠ADC=90°(垂直定义)∴EG∥AD(同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD(两条直线平行,内错角相等)∴AD平分∠BAC(角平分线定义)【变式题组】01.如图,若AE⊥BC于E,∠1=∠2,求证:DC⊥BC.02.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F, AC∥ED,CE平分∠ACB.求证:∠EDF=∠BDF.3.已知如图,AB∥CD,∠B=40°,CN是∠BCE的平分线. CM ⊥CN,求:∠BCM的度数.【例5】已知,如图,AB∥EF,求证:∠ABC+∠BCF+∠CFE=360°【解法指导】从考虑360°这个特殊角入手展开联想,分析类比,联想周角.构造两个“平角”或构造两组“互补”的角.过点C作CD∥AB即把已知条件AB∥EF联系起来,这是关键.【证明】:过点C作CD∥AB∵CD∥AB∴∠1+∠ABC =180°(两直线平行,同旁内角互补) 又∵AB∥EF,∴CD∥EF (平行于同一条直线的两直线平行)∴∠2+∠CFE=180°(两直线平行,同旁内角互补) ∴∠ABC+∠1+∠2+∠CFE=180°+180°=360°BA即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:⑴____________________________ ⑵____________________________⑶____________________________ ⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是∠α+∠γ+∠ψ-∠β=180°【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路.【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+Cψ=180°【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连.⑴定:确定平移的方向和距离.⑵找:找出图形的关键点.⑶移:过关键点作平行且相等的线段,得到关键点的对应点.⑷连: 按原图形顺次连接对应点.【解】①连接AA / ②过点B 作AA /的平行线l ③在l【变式题组】01.如图,把四边形ABCD按箭头所指的方向平移21cm,作出平移后的图形.02.如图,已知三角形ABC中,∠C=90°, BC=4,AC=4,现将△ABC沿CB方向平移到△A/B/C/的位置,若平移距离为3, 求△ABC与△A/B/C/的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC方向平移BE的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固反馈提高01.如图,由A测B得方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有()A.1个B.2个C.3个D.4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A.对顶角相等B.同位角相等C.内错角相等D.同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52°B.南偏东52°C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移.平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中( )图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假..13.如图,在湖边修一条公路.如果第一个拐弯处∠A =120°,第二个拐弯处∠B =150°,第三个拐弯处∠C ,这时道路CE 恰好和道路AD 平行,问∠C 是多少度并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F 点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.培优升级·奥赛检测01.如图,等边△ABC各边都被分成五等分,这样在△ABC内能与△DEF完成重合的小三角形共有25个,那么在△ABC内由△DEF平移得到的三角形共有()个02.如图,一足球运动员在球场上点A处看到足球从B点沿着BO方向匀速滚来,运动员立即从A处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度. A相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移)03.如图,长方体的长AB=4cm,宽BC=3cm,高AA1=2cm. 将AC平移到A1C1的位置上时,平移的距离是___________,平移的方向是___________.04.如图是图形的操作过程(五个矩形水平方向的边长均为a,竖直方向的边长为b);将线段A1A2向右平移1个单位得到B1B2,得到封闭图形A1A2B2B1[即阴影部分如图⑴];将折现A1A2 A3向右平移1个单位得到B1B2B3,得到封闭图形A1A2 A3B3B2B1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S1=________,S2=________, S3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b 上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( )A .90B .1620C .6480D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线为什么09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF .⑴求∠EOB的度数;⑵若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB的过程中,是否存在某种情况,使∠OEC =∠OBA若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD的边长为5,把它的对角线AC分成n 段,以每一小段为对角线作小正方形,这n个小正方形的周长之和为多少12.如图将面积为a2的小正方形和面积为b2的大正方形放在一起,用添补法如何求出阴影部分面积第06讲实数考点·方法·破译1.平方根与立方根:若2x=a(a≥0)则x叫做a的平方根,记为:a的平方根为x=其中a的平方根为x叫做a的算术平方根.若x3=a,则x叫做a的立方根.记为:a的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p、q是两个互质的整数,且q≠0)的形式.3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a>0,2n a≥0(n为正整数)≥0(a≥0) .经典·考题·赏析【例1】若2m-4与3m-1是同一个数的平方根,求m 的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m−4与3m−l是同一个数的平方根,∴2m−4 +3m−l=0,5m=5,m=l.【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____.02.已知m的最大整数,则m的平方根是____.03____.04.如图,有一个数值转化器,当输入的x为64时,输出的y是____.【例2】(全国竞赛)已知非零实数a、b满足24242a b a-++=,则a+b等于( )A.-1 B. 0 C.1 D.2有意义,∵a、b为非零实数,∴b2>0∴a-3≥0 a≥3∵24242a b a-++=∴24242a b a-++=,∴20b++=.∴()22030ba b+=⎧⎪⎨-=⎪⎩,∴32ab=⎧⎨=-⎩,故选C.【变式题组】0l3b+=0成立,则a b=____.02()230b-=,则ab的平方根是____.03.(天津)若x、y为实数,且20x+=,则2009xy⎛⎫⎪⎝⎭的值为()A.1 B.-1 C.2 D.-204.已知x1xπ-的值是( )A.11π-B.11π+C.11π-D.无法确定【例3】若a 、b 都为有理效,且满足1a b -+=+求a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】一个实数由小数部分与整数部分组成,−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b=-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6.【变式题组】01.若3+5的小数部分是a,3−5的小数部分是b,则a +b的值为____.02.5的整数部分为a,小数部分为b,则(5+a)·b=____.演练巩固反馈提高0l.下列说法正确的是( )A.-2是(-2)2的算术平方根B.3是-9的算术平方根C. 16的平方根是±4 D.27的立方根是±302.设3a=-,b=-2,52c=-,则a、b、c的大小关系是( )A.a<b<c B.a<c<b C.b<a<c D.c<a<b 03.下列各组数中,互为相反数的是( )A.-9与81的平方根B.4与364-C.4与364 D.3与904.在实数,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( )A.2个B.3个C.4个D. 5个05.实数a、b在数轴上表示的位置如图所示,则( ) A.b>a B.a b>C.-a<b D.-b>a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A. 1个B.2个C. 3个D.4个07.设m是9的平方根,n=()23.则m,n的关系是( )A. m=±n=n C .m=-n D.m n≠08.(烟台)如图,数轴上A、B两点表示的数分别为-1和3,点B关于点A的对称点C,则点C所表示的数为( )A.-23-B.-13-C.-2 +3D.l+3 09.点A在数轴上和原点相距5个单位,点B在数轴上和原点相距3个单位,且点B在点A左边,则A、B之间的距离为____.10.用计算器探索:已知按一定规律排列的一组数:1,2,3…,19,20.如果从中选出若干个数,使它的和大于3,那么至少要选____个数.11.对于任意不相等的两个数a、b,定义一种运算※如下:a※b=a b+,如3※2=32+=5.那么12.※4=____.12.(长沙中考题)已知a、b为两个连续整数,且a<7 <b,则a+b=____.13.对实数a、b,定义运算“*”,如下a*b=()()22a b a bab a b⎧⎪⎨⎪⎩≥<,已知3*m=36,则实数m=____.14.设a是大于1的实数.若a,23a+,213a+在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a-+153a-+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn+4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2数,求培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )A. 2 B.-1 C. 1 D. 002.( )A.0 B. 1C.1 D. 203−2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+21−,则a+b=____.05.若a b-=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.06.已知实数a满足2009a a-=,则a− 20092=_______.m满足关系式199x=--,试确定m的值.08.(全国联赛)若a 、b满足5b =7,S=3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-,-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0, b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m 的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q 到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D 的坐标,你的答案是唯一的吗03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【解法指导】(1)三角形的面积=12×底×高.(2)通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积.则S△ABC=S△ABD=S△BCD=12·3·5-12·3·1=6.【变式题组】01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),△ABC的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC的面积.03.已知:A(-3,0),B(3,0),C(-2,2),若D点在y 轴上,且点A、B、C、D四点所组成的四边形的面积为。
八年级数学(上)全册教案(新人教版)(初中数学培优)

最权威初中复习资料 - 1 -第十一章 全等三角形 11.1全等三角形教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质;3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉;4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。
重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角 教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形 引导学生完成课本P 3思考: 归纳:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用“≌”表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如⊿ABC 和⊿DEF 全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作⊿ABC ≌⊿DEF 。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如课本P 3思考图11.1-1中,⊿ABC ≌⊿DEF ,对应边有什么关系?对应角呢? 归纳:全等三角形性质:全等三角形的对应边相等; 全等三角形的对应角相等。
思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角最权威初中复习资料- 2 -DDD(2)将⊿ABC 沿直线BC 平移,得到⊿DEF,说出你得到的结论,说明理由?B E(3)如图,⊿ABE ≌⊿ACD, AB 与AC ,AD 与AE 是对应边,已知:∠A=43°,∠B=30°,求∠ADC 的大小。
BC作业:P4习题11.1第1,2,3题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学培优资料
58 18 =20,则三边为 2
20,20,18.此两种情况都符合两边之和大于第三边. 解:18cm,18cm,22cm 或 18cm, 20,20cm. 【变式题组】 01.已知等腰三角形两边长分别为 6cm,12cm,则这个三角形的周长是( ) A.24cm B.30cm C.24cm 或 30cm D.18cm 02.已知三角形的两边长分别是 4cm 和 9cm,则下列长度的四条线段中能作为第三条边的是( )
A E
B C (例 4例 例 )
D
1 ∠A+90°.证法如下: 2 1 1 1 ∠BOC=180°-∠OBC-∠OCB=180°- ∠ABC- ∠ACB=180°- (180°-∠A)= 2 2 2 1 + ∠A.所以∠BOC=125°. 2
【解法指导】这是本章另一个基本图形,其结论为∠BOC= 【变式题组】 01.如图,∠A=70°,∠B=40°,∠C=20°,则∠BOC=______________.
03.如图,则∠A+∠B+∠C+∠D+∠E +∠F =______________. A A
D B (例 1例 例 ) E C
D B (例 2例 例 ) E F C
D C
A
B E F (例 3例 例 )
【解法指导】中线将原三角形面积一分为二,由 FG 为△EFC 的中线,知 S△EFC=2S△GFC=2.又 由 EF 为△DEC 中线,S△DEC=2S△EFC=4.同理 S△ADC=8,S△ABC=16. 【变式题组】 01.如图,已知点 D、E、F 分别是 BC、AD、BE 的中点,S△ABC=4,则 S△EFC=______________.
A E G B D F ∠A+∠B=∠C+∠D.故连结 BC 有
∠A+∠D=∠DBC+∠ACB,∴∠A+∠B+∠C+∠D+∠E =180° 【变式题组】 01.如图,则∠A+∠B+∠C+∠D+∠E =______________. 02.如图,则∠A+∠B+∠C+∠D+∠E +∠F=______________.
A.13cm B.6cm C.5cm D.4cm 03.等腰三角形一腰上的中线把这个等腰三角形的周长分成 12 和 10 两部分,则此等腰三角形的 腰长为______________. 字形角的关系即 【例3】如图 AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的 中线,若 S△GFC=1cm2,则 S△ABC=______________.
90°
【解法指导】这是本章的一个基本图形,其基本方法为构造三角形或四边形内角和,结合八
A O B (例 1例 例 ) C
P O B
A
P O C B
A
AB′C′,使 CC′∥AB,若∠BAC=70°,则旋转角 α=______________. 【解法指导】利用平移、旋转不改变图形的形状这条性质来解题. ∵CC′∥AB,∴∠C′CA=∠CAB =70°,又 AC=AC′,∴∠C′AC=180°-2×70°=40° 【变式题组】 01 如图,用等腰直角三角形板画∠AOB=45°,并将三角板沿 OB 方向平移到如图所示的虚线后绕 点 M 逆时针方向旋转 22°,则三角板的斜边与射线 OA 的直角 α=______________.
E F B D (例 1例 例 ) C
B
A
A E
A
D
F D (例 2例 例 ) C
F B (例 3例 例 ) E C
【例5】如图,已知∠A=70°,BO、CO 分别平分∠ABC、∠ACB.则∠BOC ______________. A
O B C
=
02.如图,点 D 是等腰△ABC 底边 BC 上任意一点,DE⊥AB 于 E,DF⊥AC 于 F,若一腰上的高为 4cm,则 DE+DF=______________. 03.如图,已知四边形 ABCD 是矩形(AD>AB) ,点 E 在 BC 上,且 AE=AD,DF⊥AE 于 F,则 DF 与 AB 的数量关系是______________. 【例4】已知,如图,则∠A+∠B+∠C+∠D+∠E =______________.
第 16 讲
考点·方法·破译
认识三角形
1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角 平分线. 2.知道三角形两边的和大于第三边,两边之差小于第三边. 3.了解与三角形有关的角(内角、外角) . 4.掌握三角形三内角和等于 180°,三角形的一个外角等于与它不相邻的两个内角的和. 5.会用方程的思想解与三角形基本要素相关的问题. 6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.
经典·考题·赏析
【例1】若的三边分别为 4,x,9,则 x 的取值范围是______________,周长 l 的取值范围 是______________ ;当周长为奇数时,x=______________. 【解法指导】运用三角形三边关系,即第三边小于两边之和而大于两边之差故 5<x<13,18<l<26;周长为 19 时,x =6,周长为 21 时,x =8,周长为 23 时,x =10,周 长为 25 时,x =12, 【变式题组】 01.若△ABC 的三边分别为 4,x,9,且 9 为最长边,则 x 的取值范围是______________,周长 l 的取值范围是______________. 02.设△ABC 三边为 a,b,c 的长度均为正整数,且 a<b<c,a+b+c=13,则以 a,b,c 为边的 三角形,共有______________个. 03.用 9 根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的 三角形个数是( ). A.1 B.2 C.3 D.4 【例2】已知等腰三角形的一边长为 18cm,周长为 58cm,试求三角形三边的长. 【解法指导】对等腰三角形,题目没有交代底边和腰,要给予讨论.当 18cm 为腰时,底边为 58-18×2=22,则三边为 18,18,22. 当 18cm 为底边时,腰为