八年级上数学培优及答案

合集下载

人教版 八年级数学上册 14.2 乘法公式 培优训练(含答案)

人教版 八年级数学上册  14.2 乘法公式 培优训练(含答案)

人教版八年级数学14.2乘法公式培优训练一、选择题(本大题共10道小题)1. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)2. 下列各式中,能用完全平方公式计算的是()A.(x-y)(x+y) B.(x-y)(x-y)C.(x-y)(-x-y) D.-(x+y)(x-y)3. 若M·(2x-y2)=y4-4x2,则M应为()A.-(2x+y2)B.-y2+2xC.2x+y2D.-2x +y24. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+95. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]26. 计算(x+1)(x2+1)·(x-1)的结果是()A.x4+1 B.(x+1)4C.x4-1 D.(x-1)47. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C .(a +2b )(a -b )D .(a +b )(a -2b )8. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除9. 若(x +a )2=x 2+bx +25,则()A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =1010. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是________(任写一个符合条件的即可).12. 填空:()()22552516a a a b +-=-13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.a bb a16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题(本大题共4道小题)17. 运用完全平方公式计算:(1)(2a +3b )2; (2)(12m +4)2;(3)(-x -14)2; (4)(-13+3b )2.18. 王红同学计算(2+1)(22+1)(24+1)的过程如下:解:原式=(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =28-1.请根据王红的方法求(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字.19. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a +b )1=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,…. 下面我们依次对(a +b )n 展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a +b )n 展开式中共有多少项? (2)请写出多项式(a +b )5的展开式.20. 计算:2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭答案一、选择题(本大题共10道小题)1. 【答案】C [解析] 因为结果是9m 2-16n 2,9m 2应是相同的项的平方,所以相同项应为3m 或-3m ,16n 2应是相反项的平方,相反项应为-4n 和4n.2. 【答案】B3. 【答案】A[解析] M 与2x -y 2的相同项应为-y 2,相反项应为-2x 与2x ,所以M 为-2x -y 2,即-(2x +y 2).4. 【答案】A[解析] 原式=(-2x -3)(-2x +3)=(-2x)2-32=4x 2-9.5. 【答案】B6. 【答案】C[解析] (x +1)(x 2+1)(x -1)=(x +1)(x -1)(x 2+1) =(x 2-1)(x 2+1) =x 4-1.7. 【答案】A[解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.8. 【答案】B[解析] 原式=(4n 2+4n +1)-(4n 2-4n +1)=8n ,则原式的值一定能被8整除.9. 【答案】D[解析] 因为(x +a)2=x 2+bx +25,所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.10. 【答案】A【解析】已知关系式可化为2220a b c ab bc ac ++---=,即2221(222222)02a b c ab bc ac ++---=, 所以2221[()()()]02a b b c a c -+-+-=,故a b =,b c =,c a =.即a b c ==.选A .二、填空题(本大题共6道小题)11. 【答案】2x (或-2x 或14x 4) 【解析】x 2+2x +1=(x +1)2;x 2-2x +1=(x -1)2;14x 4+x 2+1=(12x 2+1)2.12. 【答案】()()2254542516a b a b a b +-=- 【解析】()()2254542516a b a b a b +-=-13. 【答案】±3[解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m=±3.14. 【答案】22()()a b a b a b +-=-【解析】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为1(22)()()()2b a a b a b a b +-=+-,故验证了公式22()()a b a b a b +-=-(反过来写也可)15. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题(本大题共4道小题)17. 【答案】解:(1)原式=4a 2+12ab +9b 2. (2)原式=14m 2+4m +16. (3)原式=x 2+12x +116. (4)原式=19-2b +9b 2.18. 【答案】解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1 =(22-1)(22+1)(24+1)(28+1)…(232+1)+1 =(24-1)(24+1)(28+1)…(232+1)+1 =… =264-1+1 =264.因为264的个位数字是6,所以(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字是6.19. 【答案】解:(1)由已知可得:(a +b)1展开式中共有2项, (a +b)2展开式中共有3项, (a +b)3展开式中共有4项, ……则(a +b)n 展开式中共有(n +1)项. (2)(a +b)1=a +b , (a +b)2=a 2+2ab +b 2,(a +b)3=a 3+3a 2b +3ab 2+b 3,…则(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5.20. 【答案】41122n --【解析】原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.。

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优一、选择题1.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA2.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定4.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。

A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定5.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25° B.30° C.35° D.40°6.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4个7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.48.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或7二、填空题9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .13.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC 的面积= .15.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题16.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.17.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.18.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB 和∠CAP的度数.20.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.21.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.22.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.参考答案1.D2.C3.C4.C5.C6.C.7.D.8.D9.答案为:①②③.10.答案为:相等或互补.11.答案为:128°.12.答案为:(-2,0),(-2,4),(2,4);13.答案为:1<AD <9.14.答案为:50.15.答案为:①②④.16.证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS).∴∠BAD=∠1,∠ABD=∠2.∵∠3=∠BAD +∠ABD ,∴∠3=∠1+∠2.17.证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC ,即∠EAC=∠BAF ,在△ABF 和△AEC 中,∵,∴△ABF ≌△AEC (SAS ),∴EC=BF ;(2)如图,根据(1),△ABF ≌△AEC ,∴∠AEC=∠ABF ,∵AE ⊥AB ,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM (对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.18.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE19.答案为:80°,50°;20.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B21.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.22.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.。

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是()A.在中国西南地区B.在云贵高原的中部C.距离北京2 600千米D.东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是() A.(20,30)B.(15,-28)C.(-40,-10)D.(-35,19)3.【母题:教材P54例题】某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,则如图所示的表示法正确的是()4.【2023·济宁任城区校级月考】已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为()A.0 B.1 C.-1 D.3 5.【2023·天津中学月考】已知点A(-1,-4),B(-1,3),则() A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为() A.2 B.-4 C.-1 D.37.若点P(1,a)与点Q(b,2)关于x轴对称,则代数式(a+b)2 023的值为() A.-1 B.1 C.-2 D.28.【2023·常州实验中学月考】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E 的坐标是()A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 024的坐标是()A.(1 011,0) B.(1 011,1) C.(1 012,0) D.(1 012,1) 二、填空题(每题3分,共24分)11.点(0,-2)在________轴上.12.点(4,5)关于x轴对称的点的坐标为__________.13.一个英文单词的字母顺序分别对应如图中的有序数对:(5,3),(6,3),(7,3),(4,1),(4,4),则这个英文单词翻译成中文为__________.14.已知点A,B,C的坐标分别为(2,4),(6,0),(8,0),则△ABC的面积是________.15.【母题:教材P71复习题T1(3)】若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________________.16.已知点N的坐标为(a,a-1),则点N一定不在第________象限.17.【2023·苏州一中月考】如图,一束光线从点A(3,3)出发,经过y轴上的点C 反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.18.【规律探索题】【2022·毕节】如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位长度,再向右平移1个单位长度,得到点A1(1,1);把点A1向上平移2个单位长度,再向左平移2个单位长度,得到点A2(-1,3);把点A2向下平移3个单位长度,再向左平移3个单位长度,得到点A3(-4,0);把点A3向下平移4个单位长度,再向右平移4个单位长度,得到点A4(0,-4),…;按此做法进行下去,则点A10的坐标为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【母题:教材P60随堂练习】2023年亚运会将在杭州举行,如图是杭州李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,依次写出他路上经过的地方.(3)连接(2)中各点,所形成的路线构成了什么图形?20.已知点P (2m -6,m +2).(1)若点P 在y 轴上,则点P 的坐标为__________; (2)若点P 的纵坐标比横坐标大6,则点P 在第几象限?21.若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.如图,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论分别求出线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.22.【2023·吉林一中月考】已知点P (2x ,3x -1)是平面直角坐标系内的点. (1)若点P 在第三象限,且到两坐标轴的距离和为11,求x 的值;(2)已知点A (3,-1),点B (-5,-1),点P 在直线AB 的上方,且到直线AB 的距离为5,求x 的值.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒一个单位长度.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.【存在性问题】已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.D【点拨】表示昆明市地理位置最合理的是东经102°、北纬24°.2.D【点拨】图中阴影区域在第二象限,故选D.3.A【点拨】A.镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,故本选项符合题意;B.镇初级中学在镇政府的南偏西30°方向上,且距离镇政府1 500 m,故本选项不符合题意;C.镇政府在镇初级中学的南偏西60°方向上,且距离镇初级中学1 500 m,故本选项不符合题意;D.镇政府在镇初级中学的南偏西30°方向上,且距离镇初级中学1 500 m,故本选项不符合题意.故选A.4.B【点拨】因为点A(m-1,3)与点B(2,n-1)关于x轴对称,所以m-1=2,n-1=-3,解得m=3,n=-2,所以m+n=1.5.C【点拨】把A(-1,-4),B(-1,3)在平面直角坐标系中画出,并连接AB,可知AB平行于y轴.6.C【点拨】因为直线AB∥x轴,所以A、B两点的纵坐标相等,所以-2=m-1,解得m=-1.7.A【点拨】因为P(1,a)与Q(b,2)关于x轴对称,所以b=1,a=-2,所以(a+b)2 023=(-2+1)2 023=-1.8.C【点拨】因为点A的坐标为(0,a),所以点A在该平面直角坐标系的y轴上.因为点C,D的坐标分别为(b,m),(c,m),所以点C,D关于y轴对称.因为正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,所以点B,E也关于y轴对称.因为点B的坐标为(-3,2),所以点E的坐标为(3,2).9.D【点拨】因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点P的坐标为(3,3)或(6,-6).10.C【点拨】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,2 024÷4=506,所以A2 024的坐标为(506×2,0),则A2 024的坐标是(1 012,0).二、11.y【点拨】横坐标为0,所以点(0,-2)在y轴上.12.(4,-5)【点拨】因为关于x轴对称的点横坐标变,纵坐标互为相反数,所以点(4,5)关于x轴对称的点的坐标为(4,-5).13.学习【点拨】根据有序数对对应的字母即可求解.14.4【点拨】把点A,B,C在平面直角坐标系中标出来,可知BC=2,△ABC的边BC上的高为4,所以△ABC的面积为12×4×2=4.15.(-5,4)或(-5,-4)【点拨】由点P到两坐标轴的距离可知,点P有4个.因为点P在y轴的左侧,所以点P的坐标为(-5,4)或(-5,-4).16.二【点拨】当a>1时,a-1是正数,所以点P在第一象限,当a<1时,a -1为负数,所以点P在第三象限或第四象限.故点N一定不在第二象限.17.5【点拨】作点A关于y轴的对称点A′(-3,3),过A′作垂直于x轴于点D,连接A′,D,B构成△A′DB,所以A′D=3,DB=4,所以A′B=A′D2+BD2=5,即光线从点A到点B经过的路径长为5.18.(-1,11)【点拨】由题图可知A5(5,1);将点A5向上平移6个单位长度,再向左平移6个单位长度,可得A6(-1,7);将点A6向下平移7个单位长度,再向左平移7个单位长度,可得A7(-8,0);将点A7向下平移8个单位长度,再向右平移8个单位长度,可得A8(0,-8);将点A8向上平移9个单位长度,再向右平移9个单位长度,可得A9(9,1);将点A9向上平移10个单位长度,再向左平移10个单位长度,可得A10(-1,11).三、19.【解】(1)学校的坐标为(1,3),邮局的坐标为(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略,所形成的路线构成了一条帆船图形.20.【解】(1)(0,5)(2)根据题意,得2m -6+6=m +2,解得m =2. 所以点P 的坐标为(-2,4). 所以点P 在第二象限.21.【解】由题中所给结论及点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),得点D (-2,2),E (2,2).因为点D ,E 的纵坐标相等,且不为0, 所以DE ∥x 轴. 又因为AB 在x 轴上, 所以DE ∥AB .22.【解】(1)因为点P 在第三象限,所以点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .因为点P 到两坐标轴的距离和为11, 所以1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 23.【解】(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3), Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9.24.【解】(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4, 所以|x -(-3)|=4, 解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9. 设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10;当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9,解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2). (3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形. 如图,点Q 的坐标为(0,9)或(0,-4)或⎝ ⎛⎭⎪⎫0,78或(0,-1).。

人教版 八年级数学上册 第13章 轴对称 综合培优训练(含答案)

人教版 八年级数学上册 第13章 轴对称 综合培优训练(含答案)

人教版八年级数学上册第13章轴对称综合培优训练一、选择题(本大题共12道小题)1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()3. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°4. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°5. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C.-5,7 D.-13,-736. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.307. 一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C. 30海里D.60海里8. 如图,直线l是一条河,P,Q是两个村庄.欲在直线l上的某处修建一个水泵站M,向P,Q两村供水,现有如下四种铺设方案,图中PM,MQ表示铺设的管道,则所需管道最短的是()9. 对于△ABC,嘉淇用尺规进行如下操作:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点D;(2)作直线AD交BC边于点E.根据嘉淇的操作方法,可知线段AE是()A.△ABC的高线B.△ABC的中线C.边BC的垂直平分线D.△ABC的角平分线10. 如图,以C为圆心,大于点C到AB的距离为半径作弧,交AB于点D,E,再以D,E为圆心,大于12DE的长为半径作弧,两弧交于点F,作射线CF,则()A .CF 平分∠ACB B .CF ⊥ABC .CF 平分ABD .CF 垂直平分AB11. (2019•广西)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为A .40︒B .45︒C .50︒D .60︒12. 如图,在△ABC 中,∠BAC =72°,∠C =36°,∠BAC 的平分线AD 交BC 于点D ,则图中有等腰三角形( )A .0个B .1个C .2个D .3个二、填空题(本大题共12道小题)13. 如图所示的五角星是轴对称图形,它的对称轴共有________条.14. 如图,∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ =________.15. 如图,在△ABC 中,AD 为角平分线,若∠B =∠C =60°,AB =8,则CD 的长为________.16. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.17. 如图,点P在∠AOB内,M,N分别是点P关于OA,OB的对称点,连接MN交OA于点E,交OB于点F.若△PEF的周长是20 cm,则MN的长是________cm.18. 如图所示,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC =4,则PD=________.19. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.20. 如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F.若△AEF的周长为10 cm,则BC的长为cm.21. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.22. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).23. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.24. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.三、作图题(本大题共2道小题)25. 如图,在公路l附近有两个小区A,B,某商家计划在公路l旁修建一个大型超市M,要求超市M到A,B两个小区的距离相等,请你借助尺规在图上找出超市M的位置.(不写作法,保留作图痕迹)26. 分析与操作如图,有公路l1同侧、l2异侧的两个城镇A,B,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC长为半径作弧,交AC于点D,连接BD,求∠ABD的度数.28. (2020·广东)如题20图,在△ABC中,点D、E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.29. 如图①,在△ABC中,∠ABC,∠ACB的平分线交于点O,过点O作EF∥BC分别交AB,AC于点E,F.探究一:猜想图①中线段EF与BE,CF间的数量关系,并证明.探究二:设AB=8,AC=6,求△AEF的周长.探究三:如图②,在△ABC中,∠ABC的平分线BO与△ABC的外角平分线CO交于点O,过点O作EF∥BC交AB于点E,交AC于点F.猜想这时EF与BE,CF间又是什么数量关系,并证明.30. 已知:如图,∠BAC的平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AF=6,BC=7,求△ABC的周长.31. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.32. 如图,在直角坐标系中,△ABO的各顶点的坐标分别为O(0,0),A(2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(其中2a>m>a>0),直线l∥y轴交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的式子表示);(2)△ABO与△MFE能通过平移互相重合吗?若能通过平移互相重合,请你说出一种平移方案(平移的距离用含m,a的式子表示).人教版八年级数学下册第13章轴对称综合培优训练-答案一、选择题(本大题共12道小题)1. 【答案】C2. 【答案】A3. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.4. 【答案】D[解析] 由题意得,∠A=70°,当∠B=∠A=70°时,△ABC为等腰三角形;当∠B=55°时,可得∠C=55°,∠B=∠C,△ABC为等腰三角形;当∠B=40°时,可得∠C=70°=∠A,△ABC为等腰三角形.5. 【答案】C[解析] ∵点A(2m,2-m)和点B(3+n,n)关于y轴对称,∴2m+3+n=0,2-m=n,解得m=-5,n=7.6. 【答案】B[解析] ∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°.∴△ADE为等边三角形.∵AB =10,BD=6,∴AD=AB-BD=10-6=4.∴△ADE的周长为4×3=12.7. 【答案】C【解析】根据题意画图,如图,∠A=42°,∠DBC=84°,AB=15×2=30(海里),∴∠C=∠DBC-∠A=42°,∴BC=BA=30(海里).8. 【答案】D9. 【答案】A10. 【答案】B11. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C .12. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D , ∴∠DAB =∠CAD =36°. ∴∠CAD =∠C.∴CD =AD , ∴△ACD 是等腰三角形.∵∠ADB =∠CAD +∠C =72°,∴∠ADB =∠B.∴AD =AB. ∴△ADB 是等腰三角形.二、填空题(本大题共12道小题)13. 【答案】5[解析] 如图,五角星的对称轴共有5条.14. 【答案】2[解析] 如图,连接OQ.∵点P关于直线OB的对称点是Q,∴OB垂直平分PQ.∴∠POB=∠QOB=30°,OP=OQ.∴∠POQ=60°.∴△POQ为等边三角形.∴PQ=OP=2.15. 【答案】4[解析] ∵∠B=∠C=60°,∴∠BAC=60°.∴△ABC为等边三角形.∵AB=8,∴BC=AB=8.∵AD为角平分线,∴BD=CD.∴CD=4.16. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.17. 【答案】2018. 【答案】2[解析] 过点P作PE⊥OB于点E.∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PE=PD.∵∠BOP=∠AOP=15°,∴∠AOB=30°.∵PC∥OA,∴∠BCP=∠AOB=30°.∴在Rt△PCE中,PE=12PC=12×4=2.∴PD=PE=2.故答案是2.19. 【答案】3[解析] ∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE =1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.20. 【答案】10[解析] ∵AB,AC的垂直平分线分别交BC于点E,F,∴AE=BE,AF=CF.∴BC=BE+EF+CF=AE+EF+AF=10 cm.21. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】③23. 【答案】924. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.三、作图题(本大题共2道小题)25. 【答案】解:如图,点M为所作.26. 【答案】如图所示,①作两条公路夹角的平分线OD,OE;②作线段AB的垂直平分线FG,则射线OD,OE与直线FG的交点C1,C2即为所求的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BC=BD,∴∠BDC=∠BCD=72°.∴∠DBC=36°.∴∠ABD=∠ABC-∠DBC=36°.28. 【答案】证明:在△BFD和△CFE中,∠ABE=∠ACD,∠DFB=∠CFE,BD=CE,∴△BFD≌△CFE(AAS).∴∠DBF=∠ECF.∵∠ABE=∠ACD∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.【解析】先利用三角形边边角的判定方法证明∠DBF=∠ECF,再根据等式的性质,加上相等角得到∠ABC=∠ACB,等角对等边,得到AB=AC.根据等腰三角形定义得到△ABC是等腰三角形.29. 【答案】解:探究一:猜想:EF=BE+CF.证明如下:∵BO平分∠ABC,∴∠ABO=∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO.∴∠ABO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE +OF =BE +CF.探究二:C △AEF =AE +EF +AF =AE +(OE +OF)+AF =(AE +BE)+(AF +CF)=AB +AC =8+6=14.探究三:猜想:EF =BE -CF.证明如下:∵BO 平分∠ABC ,∴∠EBO =∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO.∴∠EBO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE -OF =BE -CF.30. 【答案】(1)证明:如图,连接CD.∵点D 在BC 的垂直平分线上,∴BD =CD.∵DE ⊥AB ,DF ⊥AC ,AD 平分∠BAC ,∴DE =DF ,∠BED =∠CFD =90°.在Rt △BDE 和Rt △CDF 中,⎩⎨⎧DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF(HL).∴BE =CF.(2)在Rt △ADE 和Rt △ADF 中,⎩⎨⎧DE =DF ,AD =AD ,∴Rt △ADE ≌Rt △ADF. ∴AE =AF =6.∴△ABC 的周长=AB +BC +AC =(AE +BE)+BC +(AF -CF)=6+7+6=19.31. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF.∴CF=CE.∴△CEF是等腰三角形.32. 【答案】解:(1)∵线段EF与CD关于y轴对称,EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C(m,a+1),D(m,1).∴CD与直线l之间的距离为m-a.∵线段CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a-(m-a)=2a-m.∴M(2a-m,a+1),N(2a-m,1).(2)能.平移方案(不唯一):将△ABO向上平移(a+1)个单位长度后,再向左平移m个单位长度,即可与△MFE重合.。

广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)

广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)

广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)一、单选题1.以下生活现象不是利用三角形稳定性的是()A .B .C .D .2.如图,在ABC V 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且32ABC S =△,则阴影部分面积是()A .6B .4C .8D .103.如图,四个图形中,线段BE 是ABC 的高的图是()A .B .C .D .4.若3,6,x 是某三角形的三边长,则x 可取的最大整数为()A .10B .9C .8D .75.在三角形纸片ABC 中,9020,∠=︒∠=︒A C ,点D 为AC 边上靠近点C 处一定点,点E 为BC 边上一动点,沿DE 折叠三角形纸片,点C 落在点C '处,①如图1,当点C '落在BC 边上时,40ADC '∠=︒;②如图2,当点C '落在ABC V 内部时,40''∠+∠=︒ADC BEC ;③如图3,当点C '落在ABC V 上方时,40''∠-∠=︒BEC ADC ;④当C E AB '∥时,35CDE ∠=︒或125CDE ∠=︒,以上结论正确的个数是()A .1B .2C .3D .46.如图,已知P 是△ABC 内任一点,AB =12,BC =10,AC =6,则PA+PB+PC 的值一定大于()A .14B .15C .16D .287.如图,在正方形OABC 中,点A 的坐标是(﹣3,1),点B 的纵坐标是4,则B ,C 两点的坐标分别是()A .(﹣2,4),(1,3)B .(﹣2,4),(2,3)C .(﹣3,4),(1,4)D .(﹣3,4),(1,3)8.如图,Rt ACB △中,90,ACB ACB ∠=︒ 的角平分线,AD BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:①135APB ∠=︒;②AD PF PH =+;③DH 平分CDE ∠;④74ABP ABDE S S =四边形△,其中正确的结论有()个A .1B .2C .3D .49.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为()s 时,能够使△BPE 与△CQP全等.A .1B .1或4C .1或2D .310.用四种边长相等的正多边形地砖铺地,每个顶点处每种正多边形各一块拼在一起,刚好能完全铺满地面.已知正多边形的边数为1m ,2m ,3m ,4m ,则12341111m m m m +++的值为()A .1B .14C .12D .1311.如图,在锐角三角形ABC 中,60BAC ∠=︒,将三角形ABC 沿着射线BC 方向平移得到三角形A B C '''(平移后点A ,B ,C 的对应点分别是点A ',B ',C '),连接CA '.若在整个平移过程中,ACA ∠'和CA B '∠的度数之间存在2倍关系,则ACA ∠'的度数不可能为()A .20︒B .40︒C .100︒D .120︒12.如图,ABC V 中,60ACB ∠=︒,AG 平分BAC ∠交BC 于点G ,BD 平分ABC ∠交AC 于点D ,AG 、BD 相交于点F ,BE AG ⊥交AG 的延长线于点E ,连接CE ,下列结论中正确的有()①若70BAD ∠=︒,则5EBC ∠=︒;②BE CE =;③AB BG AD =+;④BFG AFD S BF S AF=△△.A .4个B .3个C .2个D .1个二、填空题13.如图,在ABC V 中,90ACB ∠=︒,6AC =,8BC =.点P 从点A 出发,沿折线AC CB -以每秒1个单位长度的速度向终点B 运动,点Q 从点B 出发沿折线BC CA -以每秒3个单位长度的速度向终点A 运动,P 、Q 两点同时出发.分别过P 、Q 两点作PE l ⊥于E ,QF l ⊥于F ,设运动时间为t ,当PEC 与QFC V 全等时,t 的值为.14.如图,正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为个.15.如图,在ABC V 中,点D 是AB 边上一点,:3:1AD DB =,连接CD ,点E 是线段AC 上一点,:1:2AE EC =,连接BE ,CD 与BE 交于点F ,若8AC =,9BC =,则BDF V 与CEF △面积之和的最大值是.16.现有长分别为4,5,7,9,22(单位:cm )的五根直木条,从中选出四根围一个四边形木框,则该木框的对角线最长可以取到的整数是.17.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123101111a a a a ++++ 的值为.18.如图,在Rt ACB △中,90ACB ∠=︒,ABC V 的角平分线,AD BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论①135APB ∠=︒;②PF PA =;③30F ∠=︒;④::ACD ABD S S AC AB =△△;⑤AH BD AB +=,正确的序号是.三、解答题19.如图,在平面直角坐标系中,点A 和点B 分别在x 轴、y 轴上移动,BE 是ABO ∠的平分线,AF 是BAO ∠的平分线,M 是BE 与AF 的交点.在移动过程中,AMB ∠的大小是否发生变化?如果保持不变,请求出AMB ∠的度数;如果发生变化,请求出变化范围.20.已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40︒.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40︒”,那么满足这一条件,且彼此不全等的三角形共有__________个.21.如图,在平面直角坐标系中,O 为坐标原点,A B 、两点的坐标分别为(),0A m 、()0,B n且40m n --+,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA OB 、的长;(2)连接PB ,若POB V 的面积不大于4且不等于0,求t 的范围;(3)过P 作直线A 的垂线,垂足为C ,直线PC 与y 轴交于点D ,在点P 运动的过程中,是否存在这样的点P ,使DOP AOB ≌?若存在,请求出t 的值;若不存在,请说明理由.22.如图,在ABC 中,A 是中线,10cm AB =,6cm AC =.(1)求ABD 与ACD 的周长差.(2)点E 在边A 上,连接ED ,若BDE 与四边形ACDE 的周长相等,求线段AE 的长.23.如果a b c 、、的长度之和为32cm ,且754a b b c a c +++==,那么这三条线段能围成一个三角形吗?24.如图①,在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 是AE 上一点,且FD ⊥BC 于D 点.(1)试猜想∠EFD ,∠B ,∠C 的关系,并说明理由;(2)如图②,当点F 在AE 的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②25.(规律探究题)如图,在ABC V 中,80A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线交于点2A ,得2A ∠;⋯;7A BC ∠与7A CD ∠的平分线交于点8A ,得8A ∠.求8A ∠的度数.26.已知,AB CD ∥,直线MN 交AB 于点M ,交CD 于点N ,(BMN DNM ∠>∠点E 是线段MN 上一点(不与M 、N 重合),P 、Q 分别是射线MB 、ND 上异于端点的点,连接PE 、EQ ,PF 平分MPE ∠交MN 于点F ,QG 平分DQE ∠交直线PF 于点G .(1)如图1,PE EQ ⊥,42MPE ∠=︒,点G 在线段PF 上.①求EQN ∠的度数;②求PGQ ∠的度数;(2)试探索PGQ ∠与PEQ ∠之间的数量关系;(3)已知404270PGQ MPE MND ∠=︒∠=︒∠=︒,,.直线PE 、GQ 交于点K ,直线M N '从与直线MN 重合的位置开始绕点N 顺时针旋转,旋转速度为每秒4︒,当M N '首次与直线CD 重合时,运动停止,在此运动过程中,经过t 秒,M N '恰好平行于PGK 的其中一条边,请直接写出所有满足条件的t 的值.。

全等图形 苏科版数学八年级上册培优练习(含答案)

全等图形 苏科版数学八年级上册培优练习(含答案)

1.1全等图形培优练习一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对4、下列图形是全等图形的是()A.B.C.D.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④6、在下列各组图形中,是全等的图形是()A.B.C.D.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.9、下列各组图形中不是全等图形的是()A.B.C.D.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.612、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是. 的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个3316、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)19、如图,把大小为4⨯4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4⨯4的正方形方格图形分割成两个全等图形.20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形. (2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.参考答案一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形【解析】解:A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形.故答案为:C.2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.【答案】C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对【答案】C【分析】能够完全重合的两个图形叫做全等形.【详解】图中全等图形是:笑脸,箭头,五角星.故选C4、下列图形是全等图形的是()A.B.C.D.【答案】B【详解】试题解析:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选B.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④【答案】D【分析】全等形要求两图形大小及形状完全相同,观察发现其中两个图形恰巧是可以通过旋转得到的,结合旋转前后的两个图形是全等的,即可确定最终答案.【详解】观察图形,经过旋转,②和④可以完全重合,因此全等的图形是②和④.故选D.6、在下列各组图形中,是全等的图形是()A.B.C.D.【答案】C【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,对各个选项进行判断即可得答案.【详解】解:由全等形的概念可以判断:C中图形的形状和大小完全相同,符合全等形的要求;A、B、D中图形很明显不相同,A中图形的大小不一致,B、D中图形的形状不同.故选:C.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.【解析】解:如图所示:图形分割成两个全等的图形,.故选B.9、下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.【详解】解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.【答案】C【解析】【分析】根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.【详解】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选:C.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.6【答案】A【分析】根据14=(1+6)×2=(2+5)×2=(3+4)×2,可知能围出不全等的长方形有3个.解:∵长为4、宽为3的长方形,∴周长为2×(3+4)=1414=(1+6)×2=(2+5)×2=(3+4)×2,∴能围出不全等的长方形有3个,故选:A.12、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解析】(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)【分析】根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个33【答案】180°.【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.【详解】解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.16、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .【解析】解:,.由全等图形的性质得.故答案为60cm.三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角,可得对应顶点,对应边与对应角,进而可得a,b,c,d,e,α,β各字母所表示的值.【解答】解:对应顶点:A和G,E和F,C和I,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)【解析】解:如图所示:19、如图,把大小为4 4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4 4的正方形方格图形分割成两个全等图形.【解析】解:四种不同的分法:20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?【解答】解:如图所示:.21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形.(2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.【答案】(1)见解析;(2)见解析.【解析】【分析】先将点C 对折到点E ,将对折后的纸片再沿DE 对折.此题要理解折叠的实质是重合,根据重合可以得到BC =BE ,AD =BD ,∠DBE =∠DAE =30°,∠BDE =∠ADE =60°,∠AED=∠BED =90°. 【详解】(1) 如下图1(2) 如下图2 .。

八年级数学上册试题 第6章 数据的分析 单元培优卷 (含详解)

八年级数学上册试题 第6章   数据的分析   单元培优卷  (含详解)

第6章《 数据的分析》(单元培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .882.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.下列数据:,则这组数据的众数和极差是( )A .B .C .D .5.小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.75,80,85,85,8585,1085,580,8580,10根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A .①③B .②④C .②③D .①④6.一组数据的方差可以用式子表示,则式子中的数字50所表示的意义是( )A .这组数据的个数B .这组数据的平均数C .这组数据的众数D .这组数据的中位数7.一组数据的方差为,将这组数据中每个数据都除以3,所得新数据的方差是( )A .B .3C .D .98.已知a 、b 均为正整数,则数据a 、b 、10、11、11、12的众数和中位数可能分别是( )A .10、10B .11、11C .10、11.5D .12、10.59.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )A .小时B .小时C .或小时D .或或小时10.有5个正整数,,,,.某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数,③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件()()()()22221231025050505010x x x x s-+-+-++-=2s 213s2s 219s2s 58104585858101a 2a 3a 4a 5a 1a 2a 3a ()123a a a <<4a 5a ()45a a <12345aa a a a ++=+26a =乙:取,5个正整数满足上述3个条件丙:当满足“是4的倍数”时,5个正整数满足上述3个条件丁:5个正整数,,,,满足上述3个条件,则(为正整数)戊:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是(为正整数)以上结论正确的个数有( )个.A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.下表是某学习小组一次数学测验的成绩统计表:分数708090100人数13x1已知该小组本次数学测验的平均分是85分,则x =_____.12.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.13.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.我们把三个数的中位数记作,直线与函数的图象有且只有2个交点,则的取值为212a =2a 2a 1a 2a 3a 4a 5a 5a =k k 1a 2a 3a 4a 5a 10p p 586,88,90,92,9428.0s =2252s =新1x 2x 3x 4x 011x +21x +31x +41x +,,a b c ,,Z a b c 1(0)2y kx k =+>21,1,1y Z x x x =-+-+k___________________16.已知一组数据a1,a2,a3,……,an的方差为3,则另一组数a1+1,a2+1,a3+1,……,an+1的方差为 _____.17.已知 5 个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.18.某单位设有6个部门,共153人,如下表:部门部门1部门2部门3部门4部门5部门6人数261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表:分数1009080706050及以下比例521110综上所述,未能及时参与答题的部门可能是_______.三、解答题(本大题共6小题,共58分)19.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若每袋的标准质量为450克,则抽样检测的总质量是多少?20.(8分)个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工资能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?21.(10分)某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)、餐厅所有员工的平均工资是多少? (2)、所有员工工资的中位数是多少?(3)、用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当? (4)、去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?()1()2()3()4()5()()3422.(10分)某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组1000.1第二组n第三组2000.2第四组m 0.25第五组1500.15第六组500.050.51x <≤1 1.5x <≤1.52x <≤2 2.5x <≤2.53x <≤3 3.5x <≤第七组500.05第八组500.05合计1(1) 观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量”部分的的圆心角为___________.(2) 如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3) 利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.23.(10分)某商店3,4月份销售同一品牌各种规格空调的情况如表所示:3.54x <≤4 4.5x <≤ 2.5 3.5x <≤1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?24.(12分)甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):平均成绩/环中位数/环众数/环方差/环2甲7712乙78根据以上信息,解决下列问题:(1)求出的值;(2)直接写出乙队员第7次的射击环数及的值,并求出的值;(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.参考答案一、单选题abca b c1.C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解:小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C .2.A【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题.解:由题意可得,去掉一个最低分,平均分为y 最大,去掉一个最高分,平均分为x 最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y >z >x ,故选:A .3.C解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解:【分析】根据众数和极差的定义分别进行求解即可得.解:数据85出现了3次,出现次数最多,所以众数是85,最大值是85,最小值是75,所以极差=85-75=10,故选A.5.A【分析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不是越多越好,集训时间过长,可能造成3352++5352++2352++劳累,导致成绩下滑,故正确;对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A .6.B【分析】根据方差公式的特点进行解答即可.解:方差的定义:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2[(x 1)2+(x 2)2+…+(xn )2],所以50是这组数据的平均数.故答案选:B 7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x 1,x 2,…,x n 表示出已知数据的平均数与方差,再根据题意用x 1,x 2,…,x n 表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.解:设原数据为x 1,x 2,…,x n ,其平均数为,方差为s 2.根据题意,得新数据为,,…,,其平均数为.根据方差的定义可知,新数据的方差为.故选C.8.B【分析】根据众数和中位数的定义即可解答.解:分情况讨论:①当a=b=10时,这组数据的众数是10,则其中位数是10.5②当a=b=12时,这组数据的众数是12,其中位数是11.5③当a=b=11时,这组数据的众数是11,其中位数是11④当a ≠b ≠11时,这组数据的众数是11,其中位数要分类讨论,无法确定故选B9.Cx 1n =x -x -x -x 113x 213x 13n x 13x ()()(222222212121111111111])33333399n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣【分析】利用众数及中位数的定义解答即可.解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C .10.B【分析】甲:根据条件求出,从而求出即可判断甲;乙:同甲判断方法即可;丙:设(n 是正整数),则,,同理求得,即可判断丙;丁:设(m 是正整数),则,,同理求得,即可判断丁;戊:设(k 是正整数),则,,由条件③得,由此求出、、的平均数与与的平均数之和为,即可判断戊.解:甲:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴甲结论正确;乙:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴乙结论正确;丙:若是4的倍数,设(n 是正整数),则,,由条件②得,由条件③得,14a =38a =48a =24a n =142a n =-342a n =+461a n =-12a m =222a m =+324a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 4a 5a ()5551k k +=+26a =14a =38a =542a a =+4518a a +=48a =4a 212a =110a =314a =542a a =+4536a a +=417a =4a 2a 24a n =142a n =-342a n =+542a a =+4512a a n +=解得,∵是奇数,∴丙结论正确;丁:设(m 是正整数),则,,由条件②得,由条件③得,解得,∵当m 为偶数时,也为偶数不符合题意,∴丁结论错误;戊: 设(k 是正整数),则,,由条件③得,∴、、的平均数为,与的平均数为,∴、、的平均数与与的平均数之和为,∵是正整数,∴一定是5的倍数,但不一定是10的倍数,∴戊错误,故选B .二、填空题11.3【分析】利用加权平均数的计算公式列出方程求解即可.解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x =3.故答案为3.12.23.4解:【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.解:从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.461a n =-4a 12a m =222a m =+324a m =+542a a =+4566a a m +=+534a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 22224223k k k k ++++=+4a 5a 33k +1a 2a 3a 4a 5a ()5551k k +=+k ()51k +13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.14.41,3解:试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15.<k ≤1或k =【分析】根据题意画出函数的图象,要使直线与函数的图象有且只有2个交点,只需直线经过(2,3)和经过(-1,0)之间,以此进行分析即可.解:函数的图象如图所示,∵直线与函数的图象有且只有2个交点,当直线经过点(2,3)时,则3=2k+,解得:k=,1234414x x x x x +++==()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦1234+1+1+1+1414x x x x x +++==2=3s 125421,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+21,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+1(0)2y kx k =+>1254当直线经过点(-1,0)时,解得:k=,当k=1时,平行于y=x+1,与函数的图象也有且仅有两个交点;∴直线与函数的图象有且只有2个交点,则k 的取值为:<k ≤1或k =.故答案为:<k ≤1或k =.16.3【分析】设数据a 1,a 2,a 3,……,an 的平均数为,则可求得a 1+1,a 2+1,a 3+1,……,an+1的平均数,根据数据a 1,a 2,a 3,……,an 的方差为3,即可求得另一组数据a 1+1,a 2+1,a 3+1,……,an+1的方程.解:设数据a 1,a 2,a 3,……,an 的平均数为,即,则此组数据的方差为; ∵a 1+1,a 2+1,a 3+1,……,an+1的平均数为:,所以此数据的方差为:故答案为:3.17.8 或 10【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x 从而得出中位数,即是所求答案.解:设众数是8,则由 ,解得:x=4,故中位数是8;1(0)2y kx k =+>1221,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+12541254x x 1231()n a a a a x n++++= 22221231()()+()++(3n a x a x a x a x n ⎡⎤-+---=⎣⎦…12312311(1111)()11n n a a a a a a a a x n n++++++++=+++++=+ 22221231(11)(11)+(11)++(11)n a x a x a x a x n ⎡⎤+--++--+--+--⎣⎦…22221231()()+()++()n a x a x a x a x n ⎡⎤=-+---⎣⎦ (3)=3685x +=设众数是10,则由,解得:x=14,故中位数是10.故答案为8或10.18.5【分析】各分数人数比为5:2:1:1:1,可以求出100分占总人数,90分占总人数,80、70、60分占总人数的,即各分数人数为整数,总参与人数应该为10的倍数,6个部门总共有153人,即未参加部分人数个位数有3,即可求得结果.解:各分数人数比为5:2:1:1:1,即100分占总参与人数的,90分占总参与人数的,80、70、60分占总参与人数的,各分数人数为整数,即×总参与人数=整数,∴总参与人数是10的倍数,6个部门有153人,即26+16+22+32+43+14=153人,则未参与部门人数个位一定为3,∴未参与答题的部门可能是5.故答案为:5.三、解答题19.解:与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).36105x +=121511051521112=++++21521115=++++115211110=++++11020.解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.21.(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;(2)工资的中位数为=2000元;(3)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(4)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.22.解:(1)n=1-(0.1+0.2+0.25+0.15+0.05+0.05+0.05)=0.15,(人),(人),(人),∵100+150+200=450<500,100+150+200+250=700>501,∴第500与第501个数在第四组,中位数落在第四组;故答案为,四;0.15;250;72°;()1()30004504003203503204107750(++++++÷=)()2()3()4504003203503204106375(+++++÷=)()4()5110220018002+1000.11000÷=10000.25250m =⨯=150+50360=721000︒︒⨯10000.15=150⨯(2)∵0.1+0.15+0.2+0.25+0.15=0.85=85%>80%,∴为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为3吨;(3)(元).答:估计该市居民3月份的人均水费为8.8元.23.解:(1)56(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.24.解:(1)甲的平均成绩a =(环);(2)∵已知的环数分别是: 3、4、6、7、8、8、9、10,平均数是7,可知剩余两次的成绩和为:70-55=15(环),根据统计图可知不可能是9和6,只能是7和8,所以乙队员第7次的射击环数是7环或8环;把乙的成绩从小到大排列:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b ==7.5(环),其方差c =×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;()()11002200 2.52503300 1.515040.51 1.5501010008.8⎡⎤⨯+⨯+⨯+⨯+⨯⨯+++⨯⨯÷=⎣⎦1220841630148562x +++++++==5162748291712421⨯+⨯+⨯+⨯+⨯=++++782+110110(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看乙的成绩比甲的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.。

人教版八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

人教版八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

人教版八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).【答案】(1)过程见解析;(2)MN= NC﹣BM.【解析】【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵BD CDMBD ECD BM CE,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,在△DMN与△DEN中,∵MD DEMDN EDN DN DN,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵BM CEMBD ECD BD CD,∴△BMD≌△CED(SAS),∴DM= DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN =∠NDE=60°,在△MDN和△EDN中∵ND NDEDN MDN ND ND,∴△MDN≌△EDN(SAS),∴MN =NE=NC﹣CE=NC﹣BM.【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析【解析】【分析】(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出EM=PN=12AD,EC=MF=12AB,我们只要再证得两对应边的夹角相等即可得出全等的结论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.【详解】(1)如图1,连接CF,线段CE与FE之间的数量关系是CE=2FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=2EF.解法2:易证∠BED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=2EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,又∵∠EFD=∠GFB,DF=BF,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=2FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又点F是BD的中点,∴FA=FB=FD,而AC=BC,CF=CF,∴△ACF≌△BCF,∴∠ACF=∠BCF=12∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=2EF.(3)(1)中的结论仍然成立.解法1:如图3﹣1,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF,∵DF=BF,∴FM∥AB,且FM=12 AB,∵AE=DE,∠AED=90°,∴AM =EM ,∠AME =90°,∵CA =CB ,∠ACB =90°∴CN=AN=12AB ,∠ANC =90°, ∴MF ∥AN ,FM =AN =CN ,∴四边形MFNA 为平行四边形, ∴FN =AM =EM ,∠AMF =∠FNA ,∴∠EMF =∠FNC ,∴△EMF ≌△FNC ,∴FE =CF ,∠EFM =∠FCN ,由MF ∥AN ,∠ANC =90°,可得∠CPF =90°,∴∠FCN+∠PFC =90°,∴∠EFM+∠PFC =90°,∴∠EFC =90°,∴△CEF 为等腰直角三角形,∴∠CEF =45°,∴CE =2FE .【点睛】本题解题的关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.3.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__________;②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)【解析】【分析】(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.【详解】(1)①正方形ADEF 中,AD AF =∵90BAC DAF ==︒∠∠∴BAD CAF ∠=∠在△DAB 与△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴()DAB FAC SAS △≌△∴B ACF ∠=∠∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;②∵DAB FAC △≌△∴=CF BD∵BC BD CD =+∴BC CF CD =+(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC证明:∵△ABC 和△ADF 都是等腰直角三角形∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∴∠BAD =∠CAF在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△FAC (SAS )∴∠ABD =∠ACF ,DB =CF∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°∴∠ABD =180°-45°=135°∴∠ACF =∠ABD =135°∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC∵CD =DB +BC ,DB =CF∴DC =CF +BC(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,∵90BAC ∠=︒,AB AV ==∴1422BC AH BH CH BC ======, ∴114CD BC == ∴3DH CH CD =+=∵四边形ADEF 是正方形∴90AD DE ADE ==︒,∠∵BC CF EM BD EN CF ⊥⊥⊥,,∴四边形CMEN 是矩形∴NE CM EM CN ==,∵90AHD ADC EMD ===︒∠∠∠∴90ADH EDM EDM DEM +=+=︒∠∠∠∠∴ADH DEM =∠∠在△ADH 和△DEM 中ADH DEM AHD DME AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADH DEM △≌△∴32EM DH DM AH ====,∴3CM EM ==∴CE ==【点睛】本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.4.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。

2021-2022学年人教版八年级数学上册期末综合复习培优提升训练(附答案)

2021-2022学年人教版八年级数学上册期末综合复习培优提升训练(附答案)

2021-2022学年人教版八年级数学上册期末综合复习培优提升训练(附答案)1.如图,在△ABC中,∠C=50°,∠BAC=60°,AD⊥BC于D,AE平分∠BAC,则∠EAD的度数为()A.10°B.15°C.20°D.25°2.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠EAD=∠BAC=80°,若∠BDC =160°,则∠DCE的度数为()A.110°B.118°C.120°D.130°3.如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是()A.α﹣β=2x B.2β+α=90°+2xC.β+α=90°+x D.β+2α=180°﹣2x4.已知x a=3,x b=4,则x3a+2b=()A.B.C.432D.2165.已知三个正数a、b、c满足abc=1,++的值()A.2B.3C.﹣1D.16.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE 和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP =PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.27.已知△ABC的三边长分别为a,b,c,则|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|=.8.如图,已知AE=BE,DE是AB的垂线,F为DE上一点,BF=10cm,CF=3cm,则AC =cm.9.如图,在△ABC中,点D为AC边的中点,过点C作CF∥AB,过点D作直线EF交AB 于点E,交直线CF于点F,若BE=9,CF=6,△ABC的面积为50,则△CDF的面积为.10.已知a2=b+6,b2=a+6且a≠b,则a+b=.11.已知实数a2﹣3a﹣1=0,则代数式a2﹣a﹣﹣1的值为.12.如图,平面直角坐标系xOy中,已知定点A(1,0)和B(0,1),若动点C在坐标轴上运动,则使△ABC为等腰三角形的点C有个.13.把下列多项式因式分解.(1)m(m﹣2)﹣3(2﹣m);(2)n4﹣2n2+1.14.(1)计算:;(2)解方程:.15.在如图所示的网格纸中,点A,B,C都在网格点上,请仅用无刻度的直尺按下列要求作图.(1)在图1中过点A画BC的垂线AP,且点P在网格点上.(2)在图2中画∠BCD=∠B,再画DE∥BC,且点D,E都在网格点上.16.如图,在△ABC中,AD是BC边上的中线,过C作AB的平行线交AD的延长线于E 点.若AB=6,AC=2,试求AE的取值范围.17.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE相交于点P,点Q 为EF的中点,探究PQ与EF的位置关系,并证明.18.如图,△ABC中CD⊥AB于点D,CE平分∠ACB,点F在AC的延长线上,过点C作直线MN∥AB,且∠ACM=58°,∠BCN=36°.(1)求∠BCF的度数;(2)求∠DCE的度数.19.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)28和2020这两个数是“神秘数”吗?为什么?(2)设两个连续奇数为2k﹣1和2k+1(其中k取正整数),由这两个连续奇数构造的神秘数是8的倍数吗?为什么?20.某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元.(1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?21.如图,已知A(﹣1,0),B(1,0),C为y轴正半轴上一点,点D为第三象限一动点,CD交AB于F,且∠ADB=2∠BAC.(1)求证:∠ADB与∠ACB互补;(2)求证:CD平分∠ADB;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.22.如图,在等边△ABC中,CD是高,点P在线段CD上,连接P A、PB.(1)如图1,CD一定垂直且线段AB;线段P A、PB的数量关系为.(2)如图2,点E在线段BC上,且PE=P A,设∠P AB=α,则∠APB=,∠BPE =(用α的式子表示),并求∠APE的度数.(3)如图3,延长AP交BC于点F,连接AE.当α=15°时,猜想线段AE和AF的数量关系,并说明理由.23.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠F AC的度数;(2)如图1,请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.参考答案1.解:∵∠C=50°,∠BAC=60°,∴∠B=180°﹣∠BAC﹣∠C=70°.∵AE平分∠BAC,∠BAC=60°,∴∠BAE=∠BAC=×60°=30°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠EAD=∠BAE﹣∠BAD=30°﹣20°=10°.故选:A.2.解:如图所示:∵∠EAD=∠BAC=80°,∴∠1=∠2,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,∵∠BAC=80°,AB=AC,∴∠BCA=∠CBA=50°,∴∠DCE=∠4+∠BCA+∠ACE=∠4+50°+∠ABD=∠4+50°+∠3+∠ABC=∠3+∠4+100°,又∵∠BDC=160°,∴∠3+∠4=180°﹣∠BDC=20°,∴∠DCE=20°+100°=120°,故选:C.3.解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA 于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ=α,∠OQP=∠AQN′=∠AQN,∵∠AQN=∠QNO+∠AOB=β+x,∴∠OQP=∠AQN=β+x,∵∠NPQ=∠OQP+∠AOB,∴α=β+x+x=β+2x∴α﹣β=2x.故选:A.4.解:∵x a=3,x b=4,∴x3a+2b=x3a•x2b=(x a)3•(x b)2=33×42=27×16=432.故选:C.5.解:原式=++,∵abc=1,∴原式=++=+=+=+==1,故选:D.6.解:∵BE、CD分别是∠ABC与∠ACB的角平分线,∠BAC=60°,∴∠PBC+∠PCB=×(180°﹣∠BAC)=×(180°﹣60°)=60°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°,故①正确;∵∠BPC=120°,∴∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,PF=PG=PH,∵BE、CD分别是∠ABC与∠ACB的角平分线,∴AP是∠BAC的平分线,故②正确;若AP=PC,则∠P AC=∠PCA,则BAC=BCA=60°,则△ABC为等边三角形,这与题干任意画一个∠BAC=60°的△ABC不符,故③错误.∵∠BAC=60°∠AFP=∠AGP=90°,∴∠FPG=120°,∴∠DPF=∠EPG,在△PFD与△PGE中,,∴PD=PE,在Rt△BHP与Rt△BFP中,,∴Rt△BHP≌Rt△BFP(HL),同理,Rt△CHP≌Rt△CGP,∴BH=BD+DF,CH=CE﹣GE,两式相加得,BH+CH=BD+DF+CE﹣GE,∵DF=EG,∴BC=BD+CE,故④正确;∵AP是角平分线,∴P到AB、AC的距离相等,∴S△ABP:S△ACP=AB:AC,故⑤正确.故选:B.7.解:∵△ABC的三边长分别为a,b,c,∴a+b>c,b+c>a,a+c>b,∴a﹣b﹣c<0,b﹣c﹣a<0,c+b﹣a>0,∴|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|=﹣(a﹣b﹣c)﹣(b﹣c﹣a)+(c﹣a+b)=﹣a+b+c﹣b+c+a+c﹣a+b=﹣a+b+3c,故答案为:﹣a+b+3c.8.解:∵AE=BE,DE是AB的垂线,∴AD=BD,∠ADE=∠BDE=90°,在△ADF和△BDF中,,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=10cm,CF=3cm,∴AC=13cm,故答案为:13.9.解:∵点D为AC边的中点,∴AD=CD,∵CF∥AB,∴∠A=∠FCD,在△AED和△CFD中,,∴△AED≌△CFD(ASA),∴AE=CF,S△ADE=S△CDF,∵BE=9,CF=6,∴AE=6,∴AB=AE+BE=15,∴AE=AB,∴S△AED=S△ABD,∵D为AC边的中点,△ABC的面积为50,∴S△ABD=S△CBD=S△ABC=25,∴S△ADE=S△CDF=×25=10,故答案为:10.10.解:∵a2=b+6,b2=a+6,∴a2﹣b2=b﹣a,∴(a+b)(a﹣b)+(a﹣b)=0,(a﹣b)(a+b+1)=0,∵a≠b,∴a﹣b≠0,∴a+b+1=0,解得a+b=﹣1.故答案为:﹣1.11.解:由题意可知:a2﹣3a﹣1=0,a≠0,∴a﹣=3,a2﹣a=2a+1,∴原式=(2a+1)﹣﹣1=2a+1﹣﹣1=2(a﹣)=2×3=6,故答案为:6.12.解:分别以A、B为圆心,AB为半径画圆,所画的圆与坐标轴的交点为C点(A、B两点除外).作AB的垂直平分线与坐标轴交于原点.∴满足条件的点C有7个.故答案为;7.13.解:(1)原式=m(m﹣2)+3(m﹣2)=(m﹣2)(m+3);(2)原式=(n2﹣1)2=(n+1)2(n﹣1)2.14.解:(1)原式=+===;(2)x(x+2)﹣(x+2)(x﹣2)=8,x2+2x﹣x2+4=8,2x=8﹣4,x=2,经检验x=2为原方程的增根,∴原方程无解.15.解:(1)如图1,AP即为所作垂线;(2)如图,图中D、E或D'、E'即为所作点.16.解:∵AD是BC边上的中线,∴BD=CD.∵AB∥CE,∴∠BAD=∠E,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC,∵AB=6,AC=2在△ACE中,CE﹣AC<AE<CE+AC,即6﹣2<AE<6+2,∴4<AE<8.17.解:PQ⊥EF.证明如下:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠AFB=∠EDC,∴PE=PF,∵点Q为EF的中点,∴PQ⊥EF.18.解:(1)∵MN∥AB,且∠ACM=58°,∠BCN=36°,∴∠CAB=∠ACM=58°,∠CBA=∠BCN=36°,∴∠BCF=∠CAB+∠CBA=58°+36°=94°;(2)∵CE平分∠ACB,∠BCF=94°,∴∠ACB=2∠ACE=180°﹣∠BCF=180°﹣94°=86°,∴∠ACE=43°,∵CD⊥AB于点D,∠CAD=58°,∴∠ACD=90°﹣58°=32°,∴∠DCE=∠ACE﹣∠ACD=43°﹣32°=11°.19.解:(1)假设28和2020这两个数是“神秘数”,则存在两个连续偶数n,n+2使28=(n+2)2﹣(n)2,即2n+2=14,解得n=6与n为偶数矛盾,故28是“神秘数”,存在两个连续偶数k,k+2使2020=(k+2)2﹣(k)2,即2k+2=1010,解得k=504,存在504,506使2020=5062﹣5042,故2020是“神秘数”,(2)(2k+1)2﹣(2k﹣1)2=(2k+1﹣2k+1)(2k+1+2k﹣1)=2×4k=8k,∵8k是8的倍数,故由两个连续奇数为2k﹣1和2k+1(其中k取正整数)构造的神秘数是8的倍数.20.解:(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意得:,解之得:x=8,经检验,x=8为原方程的解,答:第一批笔记本每本进价为8元.(2)第二批笔记本有:=60(本),设剩余的笔记本每本打y折,由题意得:,解得:y≥7.5,答:剩余的笔记本每本最低打七五折.21.(1)证明:∵A(﹣1,0),B(1,0),∴OA=OB=1,∵CO⊥AB,∴CA=CB,∴∠ABC=∠BAC,∵∠ABC+∠BAC+∠ACB=180°,∠ADB=2∠BAC,∴∠ADB+∠ACB=180°,即∠ADB与∠ACB互补;(2)如图1,过点C作CM⊥DA于点M,作CN⊥BD于点N,则∠AMC=∠DNC=90°,∵∠ADB+∠AMC+∠DNC+∠MCN=360°,∴∠ADB+∠MCN=180°,又∵∠ADB+∠ACB=180°,∴∠MCN=∠ACB,∴∠MCN﹣∠CAN=∠ACB﹣∠CAN,即∠ACM=∠BCN,又∵AC=BC,∴△ACM≌△BCN(AAS),∴CM=CN.∴CD平分∠ADB;(3)∠BAC的度数不变化,如图2,延长DB至点P,使BP=AD,连接CP,∵CD=AD+BD,∴CD=DP,∵∠ADB+∠DBC+∠ACB+∠CAD=360°,∠ADB+∠ACB=180°,∴∠CAD+∠CBD=180°,∵∠CBD+∠CBP=180°,∴∠CAD=∠CBP,又∵CA=CB,∴△CAD≌△CBP(SAS),∴CD=CP,∴CD=DP=CP,即△CDP是等边三角形,∴∠CDP=60°,∴∠ADB=2∠CDP=120°,又∵∠ADB=2∠BAC,22.解:(1)∵△ABC是等边三角形,CD是高,∴CD⊥AB,AD=BD,∠ABC=∠ACB=60°,∴CD垂直平分AB,∴P A=PB,故答案为:平分,P A=PB;(2)∵P A=PB,∴∠P AB=∠PBA=α,∴∠APB=180°﹣2α,∵∠PBE=∠ABC﹣∠ABP,∴∠PBE=60°﹣α,∵PE=P A,P A=PB,∴PB=PE,∴∠PBE=∠PEB=60°﹣α,∴∠BPE=180°﹣2(60﹣α)=60°+2α,故答案为:120°﹣α,60°+2α;(3)AF=AE,理由如下:∵α=15°,∴∠P AB=∠PBA=15°,∠PBE=∠PEB=60°﹣α=45°,∴∠BPE=90°,∠BPF=∠P AB+∠ABP=30°,∴∠FPE=60°,∵∠AFE=∠ABC+∠BAF,∴∠AFE=60°+15°=75°,∵P A=PE,∴∠P AE=∠PEA=30°,∴∠AEF=∠AEP+∠PEF=75°,∴∠AFE=∠AEF=75°,∴AF=AE.23.(1)解:∵AE=AB,∴∠AEB=∠ABE=63°,∵∠BAC=45°,∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠F AC=180°,∴54°+2×45°+∠F AC=180°,∴∠F AC=36°;(2)EF=2AD;理由如下:延长AD至H,使DH=AD,连接BH,如图1所示:∵AD为△ABC的中线,∴BD=CD,在△BDH和△CDA中,,∴△BDH≌△CDA(SAS),∴HB=AC=AF,∠BHD=∠CAD,∴AC∥BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,,∴△ABH≌△EAF(SAS),∴EF=AH=2AD;(3);理由如下:由(2)得,AD=EF,又点G为EF中点,∴EG=AD,由(2)△ABH≌△EAF,∴∠AEG=∠BAD,在△EAG和△ABD中,,∴△EAG≌△ABD(SAS),∴∠EAG=∠ABC=70°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠CAF=180°,即:70°+2∠BAC+∠CAF=180°,∴∠BAC+∠CAF=55°,∴∠BAC=55°﹣∠CAF,∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣∠ACB=110°﹣∠ACB,∴55°﹣∠CAF=110°﹣∠ACB,∴∠ACB﹣∠CAF=55°.。

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷一、选择题(每题3分,共30分) 1.计算4的结果是( )A .4B .-2C .2D .±22.计算(-a )3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 63.下列说法不正确的是( )A .1的平方根是1B .-2是-8的立方根C .4是64的立方根D .0的平方根是04.估计11-2的值在( )A .3和4之间B .2和3之间C .1和2之间D .0和1之间 5.计算-2a 3b 4÷3a 2b ·ab 3的结果是( )A .-23B .-23abC .-23a 6b 8D .-23a 2b 66.数学课上,老师讲了单项式乘多项式,放学回到家,李刚拿出课堂笔记复习,发现一道题:-4xy (3y -2x -3)=-12xy 2●+ 12xy ,●处被墨水弄污了,你认为●处是( ) A .+8x 2yB .-8x 2yC .+8xyD .-8xy 27.计算:52a ×1 0012-52a ×9992=( )A .5 000aB .1 999aC .10 001aD .10 000a8.在多项式16x 2+1中添加一个单项式,使新得到的多项式能运用完全平方公式分解因式,则下列表述正确的是( ) 嘉琪:添加±8x ,16x 2+1±8x =(4x ±1)2; 陌陌:添加64x 4,64x 4+16x 2+1=(8x 2+1)2; 嘟嘟:添加-1,16x 2+1-1=16x 2=(4x )2. A .嘉琪和陌陌的做法正确 B .嘉琪和嘟嘟的做法正确 C .陌陌和嘟嘟的做法正确D .三名同学的做法都正确9.已知10a =20, 100b =50,则2a +4b -3的值是( )A .9B .5C .3D .610.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+(m+2n)(m-2n)的最大值为()A.24 B.443 C.163D.-4二、填空题(每题3分,共15分)11.写出一个比3大且比4小的无理数:________.12.实数a,b在数轴上的对应点的位置如图所示,那么化简|a+b|+|-a|+3b3的结果为________.(第12题)13.计算:1 2342-1 235×1 233=________.14.若M=(x-2)(x-8),N=(x-3)(x-7),则M与N的大小关系为:M______N. 15.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.已知M是一个“完美数”,且M =x2+4xy+5y2-12y+k(x,y是两个任意整数,k是常数),则k的值为________.三、解答题(20题9分,21题10分,22,23题每题12分,其余每题8分,共75分)16.计算:(1)9+3-27-(-2)2;(2)(-1)2 023-|3-2|+2+14-0.25.17.利用乘法公式计算:(1)(x-y)(x+y)-(x-y)2; (2)3.992-4.01×3.97.18.已知5x+2的立方根是3,3x+y-1的算术平方根是4.求:(1)x,y的值;(2)3x-2y-2的平方根.19.分解因式:(1)a3b-ab; (2)(x+y)2-(2x+2y-1).20.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 009.21.阅读下列材料:因为4<5<9,即2<5<3,所以5的整数部分为2,小数部分为5-2.请仿照上述方法,解答下列问题:(1)7的整数部分是________;(2)7的小数部分为m,11的整数部分为n,求m+n-7的值.22.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n的小正方形,五块是长为m、宽为n的小长方形.(1)观察图形可以发现,代数式2m2+5mn+2n2可以因式分解为______________.(2)若每块小长方形的面积为20,四块正方形的面积和为162.①试求图中所有裁剪线(虚线)长度之和;②求(m-n)2的值.(第22题)23.两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算.例如(7x+2+6x2)÷(2x+1),仿照672÷21计算如图①所示.(第23题)因此(7x+2+6x2)÷(2x+1)=3x+2.(1)阅读上述材料后,试判断x3-x2-5x-3能否被x+1整除,并说明理由;(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,求ab的值;(3)有一个长为x+2,宽为x-2的长方形A,若将它的长增加6,宽增加a就得到一个新长方形B,此时长方形B的周长是A周长的2倍(如图),另有一长方形C,它的一边长为x+10,且长方形B的面积比C的面积大76,求长方形C已知边长的邻边长.答案一、1.C 2.A 3.A 4.C 5.D 6.A7.D8.A9.C10.B二、11.15(答案不唯一)12.-2a13.114.<点拨:∵M=(x-2)(x-8)=x2-10x+16,N=(x-3)(x-7)=x2-10x+21,∴M-N=(x2-10x+16)-(x2-10x+21)=16-21=-5<0,即M<N. 15.36点拨:∵M=x2+4xy+5y2-12y+k=(x+2y)2+(y-6)2+k-36,且M是“完美数”,∴k-36=0,∴k=36.三、16.解:(1)原式=3-3-2=-2.(2)原式=-1+3-2+94-0.5=-3+3+32-12=-2+ 3.17.解:(1)原式=x2-y2-(x2-2xy+y2) =x2-y2-x2+2xy-y2=2xy-2y2.(2)原式=3.992-(3.99+0.02)×(3.99-0.02)=3.992-(3.992-0.022)=3.992-3.992+0.000 4=0.000 4.18.解:(1)由题意得,35x+2=3,3x+y-1=4,∴5x+2=27,3x+y-1=16.∴x=5,y=2.(2)由(1)得,x=5,y=2,∴3x-2y-2=15-4-2=9.∴3x-2y-2的平方根是±3.19.解:(1)a3b-ab=ab(a2-1)=ab(a+1)(a-1).(2)(x+y)2-(2x+2y-1)=(x+y)2-2(x+y)+1=(x+y-1)2.20.解:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2=4-a2+a2-5ab+3a5b3÷a4b2=4-a2+a2-5ab+3ab=4-2ab,当ab=-1 009时,原式=4-2×(-1 009)=4+2 018=2 022.21.解:(1)2(2)m=7-2,因为9<11<16,即3<11<4,所以n=3,所以m+n-7=1.22.解:(1)(2m+n)(m+2n)(2)①由题意知mn=20,2m2+2n2=162,∴m2+n2=81,∴(m+n)2=m2+n2+2mn=121,∴m+n=11(负值已舍去),∴图中所有裁剪线(虚线)长度之和为2(2m+n)+2(m+2n)=6(m+n)=66.②(m-n)2=m2+n2-2mn=81-40=41.23.解:(1)x3-x2-5x-3能被x+1整除.理由如下:(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,则有∴a+9=-3,b=6,∴a=-12,∴ab=-2.(3)长方形A的周长为2(x+2+x-2)=4x,长方形B的周长为2(x-2+a+x+2+6)=4x+2a+12. ∵长方形B的周长是A周长的2倍,∴4x+2a+12=8x.∴a=2x-6.∴长方形B的面积为(x+2+6)(x-2+2x-6)=(x+8)(3x-8)=3x2+16x-64. ∴长方形C的面积为3x2+16x-140.∴所求边长为(3x2+16x-140)÷(x+10)=3x-14.。

八年级上数学培优试题及答案

八年级上数学培优试题及答案

第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 …专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-25. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x、8,且x是不等式22x+>123x--的正整数解,试求第三边x的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 7 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC 且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C 解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,∴∠DCB=12∠ACB=34°.∵CE是AB边上的高,∴∠ECB=90°-∠B=90°-72°=18°.∴∠DCE=34°-18°=16°.(2)∠DCE=12(∠B-∠A).6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1=(∠3+∠2+∠1)+(∠6+∠5+∠4)=180°+180°=360°.11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第十二章全等三角形12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△A BE≌△CDF.2.如图,在△AB C中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”). 【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等. 3.“HL ”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等. 【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角; (2)对应顶点所对应的边是对应边; (3)公共边(角)是对应边(角); (4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC ≌△DEF , 说明A 与D ,B 与E ,C 与F 是对应点,则∠ABC 与∠DEF 是对应角,边AC 与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠AB E=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,7654321NME D B CA∵△AEB 由△ADC 旋转而得, ∴△AEB ≌△ADC .∴∠3=∠1,∠6=∠C .∵AB =AC ,AD ⊥BC ,∴∠2=∠1,∠7=∠C .∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM =∠ABN . 又∵AB =AB ,∴△AMB ≌△ANB .∴AM =AN .6.证明:∵△ABC 和△EDC 是等边三角形, ∴∠BCA =∠DCE =60°. ∴∠BCA -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE . 在△DBC 和△EAC 中,BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS ). ∴∠DBC =∠EAC . 又∵∠DBC =∠ACB =60°, ∴∠ACB =∠EAC .∴AE ∥BC .7.B 解析:∵滑梯、墙、地面正好构成直角三角形,又∵BC=EF ,AC=DF ,∴Rt △ABC ≌Rt △DEF .∴∠ABC=∠DEF ,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°. 故选B .8.解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD ,EC=BC ,∴△ABC ≌△CED .∴AB=ED .即量出DE 的长,就是A 、B 两端的距离. 9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACBAC ACCAB CAB=⎧⎪=⎨⎪=⎩∠∠′,,∠∠′,∴△ABC≌△AB′C(ASA).∴AB′=AB.第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B 点、C 点关于DE 对称,有∠DBE=∠BCD ,∠ABC=2∠BCD . 且已知∠A=90°,故∠ABC+∠BCD=90°. 故∠ABC=60°,∠C=30°.6.解:(1)对称点有A 和A',B 和B',C 和C'. (2)连接A 、A′,直线m 是线段AA′的垂直平分线.(3)延长线段AC 与A′C′,它们的交点在直线m 上,其他对应线段(或其延长线)的交点也在直线m 上,即若两线段关于直线m 对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt △FDB 中,∵∠F =30°,∴∠B =60°. 在Rt △ABC 中,∵∠ACB =90°,∠ABC =60°, ∴∠A =30°.在Rt △AED 中,∵∠A =30°, DE =1,∴AE =2.连接EB. ∵DE 是AB 的垂直平分线,∴EB =AE =2. ∴∠EBD =∠A =30°.∵∠ABC =60°,∴∠EBC =30°.∵∠F =30°,∴EF =EB =2.故选B .ABFCED8.8 解析:∵DF 是AB 的垂直平分线,∴DB=DA .∵EG 是AC 的垂直平分线,∴EC=EA . ∵BC=8,∴△ADE 的周长=DA+EA+DE=DB+DE+EC=BC=8. 9.解:AB+BD=DE .证明:∵AD ⊥BC ,BD=DC ,∴AB=AC . ∵点C 在AE 的垂直平分线上, ∴AC=CE . ∴AB=CE .∴AB+BD=CE+DC=DE .10.C 解析:关于y 轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5. 解得1.5<a <2.5,又因为a 必须为整数,∴a=2.∴点P 2(-1,-1). ∴P 1点的坐标是(-1,1).第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x =C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015; (2)(-19)2015×811007.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________.11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:n m n m aa a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m n mn a a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m n a a a-÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”. 3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C .2.C 解析:3x ·2235x x x +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B .8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b , ∵不含x 2项, ∴3b -2=0,得b=23. ∴(3x 2-2x+1)(x+23) =3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23. 9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。

人教版八年级数学上册期末培优练习:手拉手模型和几何动点问题 含答案

人教版八年级数学上册期末培优练习:手拉手模型和几何动点问题   含答案

人教版八年级数学上册期末培优练习手拉手模型和几何动点问题手拉手模型1.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,图中AE、BD有怎样的关系(数量关系和位置关系)?并证明你的结论.2.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.试猜想CE、BF的关系,并说明理由.3.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.4.如图1,AE=AD,AC=AB,∠EAD=∠CAB=α.(1)证明:BD=CE;(2)如图2,BD、AC交于点F,BD、CE交于点P,若α=90°,求∠APB的度数.5.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.6.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).几何动点问题7.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A﹣C路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为多少时,△PEC与△QFC全等?8.如图,已知△ABC中,AB=AC=9cm,∠B=∠C,BC=6cm,点D为AB的中点.(1)如果点P在边BC上以1.5cm/s的速度由点B向点C运动,同时,点Q在边CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度与运动时间t.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)9.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A 停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.10.如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小明发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.11.在等腰三角形ABC中,∠ABC=90度,D是AC边上的动点,连结BD,E、F分别是AB、BC上的点,且DE⊥DF.(1)如图1,若D为AC边上的中点.①填空:∠C=,∠DBC=;②求证:△BDE≌△CDF.(2)如图2,D从点C出发,以每秒1个单位的速度向终点A运动,过点B作BP∥AC,且PB=AC=4,点E在PD上,设点D运动的时间为t秒(0≤t≤4)在点D运动的过程中,图中能否出现全等三角形?若能,请直接写出t的值以及所对应的全等三角形的对数,若不能,请说明理由.12.阅读:如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE,DC.求证:AE=CD,AE⊥CD.证明:延长CD交AE于点F.∵AB=BC,BE=DB.∴Rt△AEB≌Rt△CDB.∴AE=CD,∠EAB=∠DCB.∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°.∴∠AFD=90°.∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE,CD 之间的数量和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由.拓展:若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC =∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问(直接回答问题结果,不要求写结论过程):①图3中的线段AE,CD是否仍然相等?②线段AE,CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?13.两块等腰直角三角尺AOB与COD(不全等)如图(1)放置,则有结论:①AC=BD②AC ⊥BD若把三角尺COD绕着点O逆时针旋转一定的角度后,如图(2)所示,判断结论:①AC=BD②AC⊥BD是否都还成立?若成立请给出证明,若不成立请说明理由.14.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy =∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?15.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC 上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案手拉手模型1.解:结论:AE=BD,AE⊥BD,理由:如图,设AC交BD于N,AE交BD于O,∵∠ACB=∠DCE=90°,∠ACD=∠ACD,∴∠DCB=∠ECA,在△DCB和△ECA中,,∴△DCB≌△ECA(SAS),∴∠A=∠B,BD=AE∵∠AND=∠BNC,∠B+∠BNC=90°∴∠A+∠AND=90°,∴∠AON=90°,∴BD⊥AE.2.解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,∵,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.3.证明:(1)∵AE⊥AB,AF⊥AC,∠EAB=∠FAC=90°,∴∠EAC=∠BAF,在△EAC和△BAF中,,∴△EAC≌△BAF,∴EC=BF.(2)设AC交BF于O.∵△EAC≌△BAF,∴∠AFO=∠OCM,∵∠AOF=∠MOC,∴∠OMC=∠OAF=90°,∴EC⊥BF.4.(1)证明:∵∠EAD=∠CAB=α.∴∠EAD+∠DAC=∠CAB+∠DAC,即∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠CAB=α=90°,∴∠ACB=45°,(2)解:如图,作AM⊥BD,AN⊥CE于点M,N,∵AC=AB,由(1)知△EAC≌△DAB,∴∠ABD=∠ACE,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=AN,∵AM⊥BD,AN⊥CE,∴AP平分∠MPN,∵△EAC≌△DAB,∴∠E=∠D,∵∠AQE=∠DQP,∴∠EAQ=∠DPQ=90°,∴∠MPN=90°,∴∠APB=∠MPN=45°.5.(1)解:结论:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.∴EC=BF,EC⊥BF.(2)证明:作AP⊥CE于P,AQ⊥BF于Q.∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.6.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.几何动点问题7.解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有2种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;答:点P运动1s或3.5s时,△PEC与△QFC全等.8.解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1.5=1.5(厘米),∵AB=9cm,点D为AB的中点,∴BD=4.5cm.又∵PC=BC﹣BP,BC=6cm,∴PC=6﹣1.5=4.5(cm),∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BDP和△CPQ中,,∴△BPD≌△CQP(SAS);②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=3,BD=CQ=4.5,∴点P,点Q运动的时间t=BP÷1.5=3÷1.5=2(秒),∴v Q=CQ÷t=4.5÷2=2.25(cm/s);(2)设经过x秒后点P与点Q第一次相遇,由题意,得 2.25x=1.5x+2×9,解得x=24,∴点P共运动了24×1.5=36(cm).∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.故答案为:24;AC.9.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.10.(1)证明:在△ABD和△CDB中,∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC;(2)解:设运动时间为t,点G的运动速度为v,当0<t≤时,若△DEG≌△BFG,则,∴,∴,∴v=3;若△DEG≌△BGF,则,∴,∴(舍去);当<t≤时,若△DEG≌△BFG,则,∴,∴,∴v=1.5;若△DEG≌△BGF,则,∴,∴,∴v=1.综上,点G的速度为1.5或3或1.11.(1)①解:∵在等腰三角形ABC中,∠ABC=90度,D为AC边上的中点,∴∠C=45°,∠DBC=45°;故答案为:45°;45°;②证明:在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,故BD⊥AC,∵ED⊥DF,∴∠BDE=∠FDC,∴∠C=∠DBC=45°,∴BD=DC,在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);(2)解:如图①所示:当t=0时,△PBE≌△CAE一对;如图②所示:当t=2时,△AED≌△BFD,△ABD≌△CBD,△BED≌△CFD共3对;如图③所示:当t=4时,△PBA≌△CAB一对.12.解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.13.解:①AC=BD②AC⊥BD都还成立.理由:∵∠AOB=∠COD=90°,∴∠AOB+∠DOA=∠COD+∠DOA,∴∠COA=∠DOB,在△ACO和△BDO中,,∴△ACO≌△BDO(SAS),∴AC=BD,∠OBD=∠OAC,又∵∠BEO=∠AED,∴∠AOB=∠ANE=90°,∴AC⊥BD,综上所述:①AC=BD②AC⊥BD都还成立.14.解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t ﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、、12秒时,△OPE与△OQF全等15.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD =CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.。

(完整word版)八年级上数学培优及答案

(完整word版)八年级上数学培优及答案

八年级数学———培优精品教案◆◆◆ 认真解答,一定要细心哟!一、填空题 1、设ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a ,则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

3、在△ABC 中,∠B 和∠C 的平分线相交于O,若∠BOC=α,则∠A=_________。

4、直角三角形两锐角的平分线交角的度数是 。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 .6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km )和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________。

8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )A.m B.2mC.(90—m) D 。

(90-2m)2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则Oy (微克/毫升) x (时)314 8 4 当1≤x ≤6时,y 的取值范围是( ) A .错误!≤y ≤错误! B .错误!≤y ≤8 C .错误!≤y ≤8 D .8≤y ≤16八年级数学—--培优精品教案◆◆◆认真解答,一定要细心哟!3、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③B 。

人教版初中数学八年级上单元试卷第章 轴对称【培优卷】(解析版)

人教版初中数学八年级上单元试卷第章 轴对称【培优卷】(解析版)

第13章轴对称培优一、单选题1. ( 3分) 平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A. (2,﹣3)B. (﹣2,3)C. (﹣2,﹣3)D. (2,3) 【答案】C【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答选:C.【分析】关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;可得.2. ( 3分) 下列图案中,既是中心对称图形也是轴对称图形的个数为()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】轴对称图形【解析】【解答】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,是中心对称图形;第三个图形不是轴对称图形,是中心对称图形;第四个图形是轴对称图形,也是中心对称图形.故选:B.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.3. ( 3分) 在下列命题中,正确的是()A. 一组对边平行的四边形是平行四边形B. 有一个角是直角的四边形是矩形C. 有一组邻边相等的四边形是菱形D. 对角线互相垂直平分的四边形是菱形【答案】D【考点】平行四边形的判定,菱形的判定,矩形的判定【解析】【解答】解:A、有一组对边平行且相等的四边形是平行四边形,错误;B、有一个角是直角的平行四边形是矩形,错误;C、有一组邻边相等的平行四边形是菱形,错误;D、对角线互相垂直平分的四边形是菱形,正确;故答案为:D.【分析】分别利用矩形的判定方法、以及菱形的判定与性质和平行四边形的判定方法分析得出答案.4. ( 3分) 如图,已知AB=AC=BD,那么∠1与∠2之间的关系是()A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°【答案】D【考点】三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵AB=AC=BD,∴∠BAD=∠1,∠B=∠C,∴∠B=180°-2∠1=∠C,∵∠C=∠1-∠2,∴180°-2∠1=∠1-∠2,∴3∠1-∠2=180°.故答案为:D.【分析】根据等边对等角可得∠BAD=∠1,∠B=∠C,利用三角形的内角和可得∠B=180°-2∠1=∠C,由三角形外角的性质可得∠C=∠1-∠2,从而可得180°-2∠1=∠1-∠2,据此即得结论.5. ( 3分) 下列图形既是轴对称图形又是中心对称图形的图形是( )A. 等腰三角形B. 等边三角形C. 长方形D. 梯形【答案】C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形;B、等边三角形是轴对称图形,不是中心对称图形;C、长方形是轴对称图形,是中心对称图形;D、梯形既不是轴对称图形,又不是中心对称图形.故答案为:C.【分析】把一个图形沿着某一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,把一个图形绕着某个点旋转180°,如果它能与原图形完全重合,那么这个图形就是中心对称图形,据此作出判断即可.6. ( 3分) 在平面直角坐标系中,点P(3,-4)关于x轴对称的点的坐标是( )A. (3,4)B. (3,-4)C. (-3,-4)D. (4,3)【答案】A【考点】关于坐标轴对称的点的坐标特征【解析】【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(3,-4)关于x轴对称的点的坐标.【解答】∵点(3,-4)关于x轴对称;∴对称的点的坐标是(3,4).故选A.【点评】这一类题目是需要识记的基础题7. ( 3分) 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A. 8B. 6C. 5D. 3【答案】C【考点】等腰三角形的性质,含30°角的直角三角形【解析】【解答】解:过P作PQ⊥MN,∵PM=PN,∴MQ=NQ=1,在Rt△OPQ中,OP=12,∠AOB=60°,∴∠OPQ=30°,OP=6,∴OQ= 12则OM=OQ-QM=6-1=5.故答案为:C.【分析】过P作PQ⊥MN,根据等腰三角形的性质可得MQ=NQ=1,然后在Rt△OPQ中根据含30°角的直角三角形的边之间的关系可求出OQ的值,进而得到OM的值.8. ( 3分) 如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】等腰三角形的判定【解析】【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合△ABC为等腰三角形的C点有4个;②AB为等腰△ABC其中的一条腰时,符合△ABC为等腰三角形的C点有4个.因为S△ABC=1.5,所以满足条件的格点C只有两个,如图中蓝色的点.故选B.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰;然后根据S△ABC=1.5,再确定点C的位置.9. ( 3分) 如图,在△ABC中,∠ABC=50°,∠ACB=100°,点M是射线AB上的一个动点,过点M作MN∥BC 交射线AC于点N,连结BN。

人教版八年级数学培优题精选18例(含答案)

人教版八年级数学培优题精选18例(含答案)

A、1.5B、2C、2.25D、2.5爬到点 B ,如果它运动的路径是最短,则 AC 的长度是多少?少?车是否超速?例题6、对实数 a , b ,定义新运算☆如下: a ☆ b =八年级数学培优题精选18例(含答案)例题7、计算八年级数学培优题精选18例(含答案)例题9、点 A(3x + 2y , -2)关于 y 轴的对称点为 B(-1 ,2x + 4y), 则点 M (x , y)关于 x 轴的对称点的坐标为多少?答案:(1,1)。

例题10、如图所示,在平面直角坐标系中有 A , B 两点:八年级数学培优题精选18例(含答案)(1)写出 A , B 两点的坐标;(2)若线段 AB 各顶点的横坐标不变,纵坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A1 ,B1 ,并连接 A1B1 ,所得的线段 A1B1 与线段 AB 有怎样的位置关系?(3)在(2)的基础上,纵坐标不变,横坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A2,B2 ,并连接这两个点,所得的线段 A2B2 与线段 AB 有怎样的位置关系?解:(1)点 A 的坐标为(1,2),点 B 的坐标为(3,1);(2)如图所示,线段 A1B1 与线段 AB 关于 x 轴对称;(3)如图所示,线段 A2B2 与线段 AB 关于原点对称。

例题11、甲乙两人赛跑,所跑路程与时间的关系如图所示。

根据图像得到如下四个信息,其中错误的是(C )八年级数学培优题精选18例(含答案)A、这是一次 1500 m 赛跑B、甲、乙两人中先到达终点的是乙C、甲、乙同时起跑D、甲在这次赛跑中的速度为 5 m/s例题12、如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点 G ,∠BDC = 140°,∠BGC = 110°,则∠A 的度数为(C)八年级数学培优题精选18例(含答案)A、70°B、75°C、80°D、85°例题13、如图所示,已知 AB∥DE ,一个弯形管道 ABCDE 的拐角∠EDC = 140°,∠CBA = 150°,则∠C = ?八年级数学培优题精选18例(含答案)答案:∠C = 70°。

人教版数学八年级上等边三角形培优练习含答案

人教版数学八年级上等边三角形培优练习含答案

人教版数学八年级上册第十三章13.3.2 等边三角形培优练习一、选择题1.等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°【答案】B2. 以下说法中,正确的命题是()(1)等腰三角形的一边长为4 cm,一边长为9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(4)(5)【答案】D3. 已知直线DE与不等边△ABC的两边AC,AB分别交于点D,E,若△CAB=60°,则图中△CDE+△BED=()A.180°B.210°C.240°D.270°【答案】C4. 如图,△DAC和△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,有如下结论:△△ACE△△DCB;△CM=CN;△AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个【答案】B.5. 如图,已知△MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64【答案】C.6.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.8【答案】A7.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B。

八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学三角形填空题(难)1.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.2.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.3.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.4.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.5.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.cm.【答案】242【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=1×12×4=24cm2.2考点:1.三角形的面积;2.三角形三边关系.6.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B =40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】【分析】【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.8.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级培优试卷一、填空题1、设∆ABC的三边长分别为a,b,c,其中a,b满足0)2(42=+-+-+baba,则第三边的长c的取值范围是.2、函数34+-=xy的图象上存在点P,点P到x轴的距离等于4,则点P的坐标是________。

3、在△ABC中,∠B和∠C的平分线相交于O,若∠BOC=α,则∠A=_________。

4、直角三角形两锐角的平分线交角的度数是。

5、已知直线()42-+--=axxay不经过第四象限,则a的取值范围是。

6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。

7、如图,折线ABCDE描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h;③汽车在整个行驶过程中的平均速度为803km;④汽车自出发后3h-4.5h之间行驶的速度在逐渐减少。

其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了________千克.”二、选择题1、等腰三角形腰上的高与底边的夹角为Cm°则顶角度数为()A.m°B.2m°C.(90-m)°D.(90-2m)°2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是( )y(微克/毫升)A.错误!≤y≤错误! B.错误!≤y≤8C. 83≤y ≤8 D .8≤y≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )A.5种 B. 6种 C . 7种 D .8种 5、在△AB C中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形 B.直角三角形 C.钝角三角形 D .不能确定6、直线l 1:y =k 1x +b与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于 x的不等式k 1x +b <k 2x +c的解集为( ). A .x >1 B .x <1 C .x >-2 D.x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =-- B .26y x =-- C .23y x =-+ D.26y x =-+ 8、已知一次函数b kx y +=,当x增加3时,y 减少2,则kO 1 xy-2 y =k 2x +c y =k 1x +bxyOBA2y x =-的值是( )A.32B.23 C.32- D.23-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( ) A .第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 ﻩ三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k、t 为常数,k ≠0),若李红从A地回到1 2 3 4 1 2 y s O 1 2 3 4 1 2 y s O s 1 2 3 412 y sO 1 2 3 4 1 2 y O A . B .C .D .工作量1125 16时间(小时)蚌埠用了9小时,且当t=2时,s2=560.①求k与b的值;②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为 km,乙、丙两地之间的距离为km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.ﻩ3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,①求排水时y与x之间的关系式。

②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量。

4、如图,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t ,OPQ △的面积为S ,求S 关于t 的函数关系式.5、探索:在如图①至图③中,三角形AB C的面积为a,(1)如图①,延长△ABC 的边BC 到点D,使CD =BC ,连接DA.若△ACD 的面积为S,则S 1=______(用含a 的代数式表示);(2)如图②,延长△ABC 的边BC 到点D,延长边CA 到点E,使CD=BC ,AE =CA ,连接DE ,若△D EC 的面积为S ,则S 2= (用含a 的代数式表示)并写出理由;(3)在图②的基础上延长AB 到点F,使BF=A B,连接FD ,FE ,得到△D EF (如图③),若阴影部分的面积为S3,则S 3=______(用含a 的代数式表示)L 1发现:象上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图③),此时,我们称△ABC向外扩展了一次,可以发现,扩展后得到的△DEF的面积是原来△ABC面积的____倍。

应用:去年在面积为10m2的△ABC空地上栽种了某种花,今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图④)。

求这两次扩展的区域(即阴影部分)面积共为多少m2?6、如图:已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,求∠DAE的度数。

7、如图:△ABC中,O是内角平分线AD、BE、CF的交点。

⑴求证:∠BOC=90°+21∠A ;⑵过O作OG⊥BC于G,求证:∠ DOB=∠GOC 。

ABE DCAEF答 案1、2〈c 〈4 2、⎪⎭⎫ ⎝⎛-441,或⎪⎭⎫ ⎝⎛-447,、 3、01802-α 4、045或0135 5、4≥a 注意:一次函数图象是直线,但直线不一定是一次函数。

如直线02=+y ,03=-x 6、060或0120 7、② 8、20B ADC B BDC DA CB1、解:(1)S 1=100t …………………………………………………………………………(3分) (2) ① ∵S 2=kt+b ,依题意得t=9时,S2=0,……(4分) ∵t=2,S2=560 ∴⎩⎨⎧=+=+560209b k b k :⎩⎨⎧=-=72080b k ………………………………………(7分)② (解法一)由①得,S2=-80t+720令S 1=S 2,得100t=-80t+720,解得t =4 ……(9分) 当t<4时,S2>S 1 , ∴S 2-S1<288 …………………………(11分) 即(-80t+720)-100t<288 , -180t<-432∴ 180t>432,解得t>2.4 ……………………………(12分)∴ 在两车相遇之前,当2.4<t <4时,两车的距离小于288千米。

…………(13分) (解法二) 由①得,S 2=-80t +720, 令t=0,∴S 2=720,即王红所乘汽车的平均速度为9720=80(千米/时)…………………………………(8分) 设两辆汽车t 1小时后相遇,∴100t 1+80t 1=720,解得t1=4 ……………………(9分) 又设两车在相遇之前行驶t 2小时后,两车之距小于288千米,则有720-(100t 2+80t 2)<288 …………(11分)解得:t2>2.4 ………(12分) ∴在两车相遇之前,当2.4<t<4时,两车的距离小于288千米。

……………(13分)2、解:(2)第二组由甲地出发首次到达乙地所用的时间为:[]0.81082)28(28=÷=÷+⨯÷(小时)第二组由乙地到达丙地所用的时间为:[]0.21022)28(22=÷=÷+⨯÷(小时)(3)根据题意得A、B 的坐标分别为(0.8,0)和(1,2),设线段A B的函数关系式为:b kt S +=2,根据题意得: ⎩⎨⎧+=+= 28.00b k bk 解得:⎩⎨⎧==-810b k ∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t的取值范围是:10.8≤≤t .3、解:(1)4分钟,40升(各一分) (2)y=40-19(x-15)=-19x+325 , (3分) 2升 (1分)4、(1)1y x =-ﻩ2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△.3ﻩ分 ②当121≥t ,即2t ≥时,111122QM t t =-=-,∴11122OPQS t t⎛⎫=-⎪⎝⎭△.∴1110222111 2.22t t tSt t t⎧⎛⎫-<<⎪⎪⎪⎝⎭=⎨⎛⎫⎪-⎪⎪⎝⎭⎩,,,≥ﻩ4分5、a 2a 6a 77(7a)×10m26注意:⑴书写数学符号语言一定要规范!⑵在不会引起误会情况下,角尽量用∠1、∠2、∠3、∠4、…形式表达,或用表示角顶点的一个字母表示,如∠A、∠B、∠C、∠D、…。

相关文档
最新文档