八年级上数学培优试题(1)

合集下载

第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。

八年级数学(上)第一、二、三章培优检测题

八年级数学(上)第一、二、三章培优检测题

八年级数学(上)第一、二、三章培优检测题一、选择题1.在△ABC 中, ∠C =∠B ,与△ABC 全等的三角形有一个角是100°,那么△ABC 中与这个角对应的角是 ( ) A .∠B B .∠A C .∠C D .∠B 或∠C2. 如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A .△ACE ≌△BCD B .△BGC ≌△AFC C .△DCG ≌△ECF D .△ADB ≌△CEA第2题 第4题 第7题3. 根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64. 如图,已知点C 是∠AOB 的平分线上一点,点P 、P ′分别在边OA 、OB 上.如果要得到OP=OP ′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为( ) ①∠OCP=∠OCP ′;②∠OPC=∠OP ′C ;③PC=P ′C ;④PP ′⊥OC .A.①②B.④③C.①②④D.①④③5.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 6.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形; C .等边三角形 D .等腰直角三角形.7.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是( ) A .45° B .55° C .60° D .75°8.已知点P 在线段AB 的垂直平分线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB C .PA+PB =QA+QB D .不能确定 9.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O ,则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点C .线段OA 与OA 1关于直线MN 对称D .以上都不对10.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=( ) A .4 B .3 C .2 D .1 11.∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任一点,则( ) A .PQ >5 B .PQ≥5 C.PQ <5 D .PQ≤5 12.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( )A .3cm 或5cmB .3cm 或7cmC .3cmD .5cm13. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A. 4B. 8C. 10D. 12P AECBDBA DPO C14.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度 15. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等腰三角形16. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( ) A. 18cm B. 20 cm C. 24 cm D. 25cm 17. 适合下列条件的△ABC 中, 直角三角形的个数为( )①;,,514131===c b a ②6=a ,∠A =45°; ③∠A =320, ∠B =58°;④;,,25247===c b a ⑤.422===c b a ,,A. 2个B. 3个C. 4个D. 5个18. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60° 19. 在△ABC 中,AB =12cm ,BC =16cm,,AC =20cm,,则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 2 20. 如图:有一圆柱,它的高等于8cm ,底面直径等于4cm (3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约( )A. 10cmB. 12cmC. 19cmD. 20cm21. 在Rt △ABC 中,∠C =90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( ) A. 5、4、3、 B. 13、12、5 C. 10、8、6 D. 26、24、1022.如图,在同一平面上把三边为BC =3,AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ) A.125 B. 135 C. 56 D. 24523. 直角三角形有一条直角边的长为11,另外两边的长也是正整数,那么此三角形的周长是( )A. 120B. 121C. 132D. 12324.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .6cm 2 B .8cm 2 C .10cm 2 D .12cm 2(22题) (25题) (27题 ) 二、填空题25.如图,AD=AE ,BE=CD ,∠1=∠2=100°,∠BAE=60°,那么∠CAE=________.26.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是 ; 中线AD 的取值范围是 .27. 如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积是30cm 2,AB=18cm ,BC=12cm ,则DE= cm .(20题图)BAA B D C (24题) C ′B C A28.线段轴是对称图形,它有_______条对称轴. 29.等腰△ABC 中,若∠A=30°,则∠B=________.30.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 31.如图,在△ABC 中,∠ABC=∠ACB=72°,BD 、CE 分别是∠ABC 和∠A CB 的 (31题)平分线,它们的交点为F ,则图中等腰三角形有___________个. 32.(2012•梧州)如图,在△ABC 中,AB=AD=DC ,∠BAD=32°,则∠BAC= _______°. 33.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD ,则∠BAC=____________. 34.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. (32题) 35. 如图,AC ⊥CE ,AD =BE =13,BC =5,DE =7,则AC = .36. 如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 .37. 在ΔABC 中,若AB=30,AC=26,BC 上的高为AD=24,则此三角形的周长为 .38. 已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形. 39.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.三、解答题40.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD , 且P 到∠AOB 两边的距离相等.41. 小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?42. 如图,有一个直角三角形纸片,两直角边AC =6cm ,BC 它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?(39题图) AB C DE (35题图) (36题图)2032A BAB CD7cm AC ··DOBC BAD E43. (8分)(1)已知:如图①,在△AOB 和△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=50°, (1)求证:①AC=BD ;②∠APB=50°. (2)如图②,在△AOB 和△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=α,则AC 与BD间的等量关系为 ,∠APB 的大小为 .44. (8分)如图①A 、E 、F 、C 在一条直线上,AE=CF ,过E 、F 分别作DE ⊥AC ,B F ⊥AC ,若AB=CD . (1)图①中有 对全等三角形,并把它们写出来 (2)求证:BD 与EF 互相平分于G ;(3)若将△ABF 的边AF 沿GA 方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.45.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问△APQ 是什么形状的三角形?试说明你的结论.A C BPQ46. 如图1,已知矩形ABED ,点C 是边DE 的中点,且AB=2AD . (1)判断△ABC 的形状,并说明理由;(2)保持图1中△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中(当垂线段AD 、BE 在直线MN 的同侧),试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3)保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.47.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.48.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么? (2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?东北FE A B49.CD 经过BCA ∠顶点C 的一条直线,CA CB =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上, ①如图1,若90BCA ∠=,90α∠=,则BECF ;②如图2,若0180BCA <∠<,请添加一个关于α∠与BCA ∠关系的条件 ,使①中的结论仍然成立,并说明理由.(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想: .50.如图,在等边△ABC 中,AB=AC=BC=10厘米,DC=4厘米.如果点M 以3厘米/秒的速度运动. (1)如果点M 在线段CB 上由点C 向点B 运动,点N 在线段BA 上由B 点向A 点运动.它们同时出发,若点N 的运动速度与点M 的运动速度相等.①经过2秒后,△BMN 和△CDM 是否全等?请说明理由. ②当两点的运动时间为多少时,△BMN 是一个直角三角形?(2)若点N 的运动速度与点M 的运动速度不相等,点N 从点B 出发,点M 以原来的运动速度从点C 同时出发,都顺时针沿△ABC 三边运动,经过25秒点M 与点N 第一次相遇,则点N 的运动速度 是 厘米/秒.(直接写出答案)A B C E F D D A B CEF A DF C E B (图1) (图2) (图3)图1 图2 图351.(1)如图1,∠MAN=90°,射线AE 在这个角的内部,点B 、C 分别在∠MAN 的边AM 、AN 上,且AB=AC ,CF⊥AE 于点F ,BD⊥AE 于点D .求证:△ABD≌△CAF;(2)如图2,点B 、C 分别在∠MAN 的边AM 、AN 上,点E 、F 都在∠MAN 内部的射线AD 上,∠1、∠2分别是△AB E 、△CAF 的外角.已知AB=AC ,且∠1=∠2=∠BAC.求证:△ABE≌△CAF; (3)如图3,在△ABC 中,AB=AC ,AB >BC .点D 在边BC 上,CD=2BD ,点E 、F 在线段AD 上,∠1=∠2=∠BAC.若△ABC 的面积为15,求△ACF 与△BDE 的面积之和.(12分)52.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE ⊥GF 交AB 于点E ,连接EG 。

八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)(1)

八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)(1)

八年级上册数学 全册全套试卷(培优篇)(Word 版 含解析)(1)一、八年级数学全等三角形解答题压轴题(难)1.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__________;②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸 如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,22CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)32【解析】【分析】(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.【详解】(1)①正方形ADEF 中,AD AF =∵90BAC DAF ==︒∠∠∴BAD CAF ∠=∠在△DAB 与△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴()DAB FAC SAS △≌△∴B ACF ∠=∠∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;②∵DAB FAC △≌△∴=CF BD∵BC BD CD =+∴BC CF CD =+(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC证明:∵△ABC 和△ADF 都是等腰直角三角形∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∴∠BAD =∠CAF在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△FAC (SAS )∴∠ABD =∠ACF ,DB =CF∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°∴∠ABD =180°-45°=135°∴∠ACF =∠ABD =135°∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC∵CD =DB +BC ,DB =CF∴DC =CF +BC(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,∵90BAC ∠=︒,AB AV ==∴1422BC AH BH CH BC ======, ∴114CD BC == ∴3DH CH CD =+=∵四边形ADEF 是正方形∴90AD DE ADE ==︒,∠∵BC CF EM BD EN CF ⊥⊥⊥,,∴四边形CMEN 是矩形∴NE CM EM CN ==,∵90AHD ADC EMD ===︒∠∠∠∴90ADH EDM EDM DEM +=+=︒∠∠∠∠∴ADH DEM =∠∠在△ADH 和△DEM 中ADH DEM AHD DME AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADH DEM △≌△∴32EM DH DM AH ====,∴3CM EM ==∴2232CE EM CM =-=【点睛】本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积; (2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.3.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.4.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD ∴∠=∠=︒120AFB ADC ∴∠=∠=︒在ABF ∆和ACD ∆中AFB ADC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD ∴∆∆≌∴=BF DC②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.5.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=12∠ADB,∠AEC=12∠AEB,∴∠ADC+∠AEC=1(ADB AEB)2∠+∠=45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD ⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE ≌△ADF (SAS ),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF 为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD=BD ,AD ⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF ≌△DBE (SAS ),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF 为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.7.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G .(1)求证:AE CG =.(2)如图2,直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M ,求证:BE CM =.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D 是AB 中点,∠ACB =90°,可得出∠ACD =∠BCD =45°,判断出△AEC ≌△CGB ,即可得出AE =CG ;(2)根据垂直的定义得出∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,再根据AC =BC ,∠ACM =∠CBE =45°,得出△BCE ≌△CAM ,进而证明出BE =CM .【详解】(1)∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°,∴∠CAE =∠BCG .又∵BF ⊥CE ,∴∠CBG +∠BCF =90°.又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG .在△AEC 和△CGB 中,∵CAE BCG AC BC ACE CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC ≌△CGB (ASA ),∴AE =CG ;(2)∵CH ⊥HM ,CD ⊥ED ,∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,∴∠CMA =∠BEC .在△BCE 和△CAM 中,BEC CMA ACM CBE BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAM (AAS ),∴BE =CM .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.8.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=【解析】【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO∠=︒,交O B于点F,通过ASA证明CDO CEF∆∆≌,得到,CD CE OD EF==,所以OE OD OE EF OF OC+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.【详解】解:(1)OC平分AOB∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC∴=又456590︒∠+∠=∠+∠=在CDO∆与CEF∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形O DCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形ODCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵60120180AOB DCE∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD∆与CNE∆中,13CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS∆∆≌,∴,CD CE DM EN==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在Rt CMO∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO ∠=∠+∠=︒,∴46∠=∠,在CDO ∆与CEF ∆中,1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA ∆∆≌,∴,CD CE OD EF ==.∴OE OD OE EF OF OC +=+==.②在图4中,(1)中的结论成立,OE OD OC -=.如图,以OC 为一边,作∠OCF=60°与OB 交于F 点∵∠AOB=120°,OC 为∠AOB 的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF 为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.9.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】 (1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC 和△ADE 均为等边三角形(如图1),∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS )∴ BD=CE.② 由△CAE ≌△BAD ,∴ ∠AEC=∠ADB=180°-∠ADE=120°.∴ ∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC 和△ADE 均为等腰直角三角形(如图2),∴ AB=AC ,AD=AE ,∠ADE=∠AED=45°,∵ ∠BAC=∠DAE=90°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS ).∴ BD=CE ,∠AEC=∠ADB=180°-∠ADE=135°.∴ ∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n︒,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.10.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC∆,如图1,并在边AC上任意取了一点F(点F不与点A、点C重合),过点F作FH AB⊥交AB于点H,延长CB到G,使得BG AF=,连接FG交AB于点l.(1)若10AC=,求HI的长度;(2)如图2,延长BC到D,再延长BA到E,使得AE BD=,连接ED,EC,求证:ECD EDC∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论.【详解】解:如图1,作FP ∥BC 交AB 于点P ,∵ABC ∆是等边三角形,∴∠ABC=∠A=60°,∵FP ∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF ∆是等边三角形,∴PF=AF,∵FH AB ⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI ∆和BGI ∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC是等边三角形,∴AB=BC=AC,∠B=60°.∵AE=BD,DQ=AB,∴AE+AB=BD+DQ,∴BE=BQ.∵∠B=60°,∴△BEQ为等边三角形,∴∠B=∠Q=60°,BE=QE.∵DQ=AB,∴BC=DQ.∴在△BCE和△QDE中,BC DQB QBE QE=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△QDE(SAS),∴EC=ED.∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读下列因式分解的过程,再回答所提出的问题:()()()()()()()223111111111x x x x x x x x x x x x +++++=++++=++=⎤⎣+⎡⎦. (1)上述分解因式的方法是______________法.(2)分解220191(1)(1)(1)x x x x x x x ++++++++的结果应为___________.(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++.【答案】(1)提公因式 ; (2)()20201x + ;(3)()11n x ++【解析】【分析】(1)用的是提公因式法; (2)按照(1)中的方法再分解几个,找了其中的规律,即可推测出结果;.(3)由(2)中得到的规律即可推广到一般情况.【详解】解:(1)上述分解因式的方法是提公因式法.(2)()()()()()2333111111x x x x x x x x x x +++++++=+++=()41x + ()()()()()()234441111111x x x x x x x x x x x x +++++++++=+++=()51x + ……由此可知()2201911(1)(1)x x x x x x x ++++++++=()20201x +(3)原式=(1+x )[1+x+x (x+1)]+x (x+1)3+…+x (x+1)n ,=(1+x )2(1+x )+x (x+1)3+…+x (x+1)n ,=(1+x )3+x (1+x )3+…+x (1+x )n ,=(1+x )n +x (x+1)n ,=(1+x )n+1.【点睛】本题考查了提公因式法分解因式,找出整式的结构规律是关键,体现了由特殊到一般的数学思想.12.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.13.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2ac =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负.∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.14.由多项式的乘法:(x +a)(x +b)=x 2+(a +b)x +ab ,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x 2+(a +b)x +ab =(x +a)(x +b).实例 分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3).(1)尝试 分解因式:x 2+6x +8;(2)应用 请用上述方法解方程:x 2-3x -4=0.【答案】(1) (x+2)(x +4);(2) x =4或x =-1.【解析】【分析】(1)类比题干因式分解方法求解可得;(2)利用十字相乘法将左边因式分解后求解可得.【详解】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,如=()2,善于思考的小明进行了以下探索:设=()2(其中a 、b 、m 、n 均为正整数)则有:=m 2+2n 2,所以a=m 2+2n 2,b=2mn .这样小明就找到了一种把的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若()2,用含m 、n 的式子分别表示a 、b ,得a= ,b=(2)若(2(其中a 、b 、m 、n 均为正整数),求a 的值.【答案】(1)m 2+3n 2,2mn ;(2)13.【解析】试题分析:(1)根据完全平方公式运算法则,即可得出a 、b 的表达式;(2)根据题意,4=2mn ,首先确定m 、n 的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a 的值.试题解析:(1)∵)2,∴2+3n 2∴a=m 2+3n 2,b=2mn.故a=m 2+3n 2,b=2mn ;(2)由题意,得223{42a m n mn=+= ∵4=2mn ,且m 、n 为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7或a=12+3×22=13四、八年级数学分式解答题压轴题(难)16.符号a b c d 称为二阶行列式,规定它的运算法则为:a b ad bc c d =-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值.【答案】(1)()()111x x +- (2)5 【解析】【分析】 (1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可.【详解】(1)原式2111x x x =--+ ()()()()11111x x x x x x -=-+-+-()()111x x =+-; (2)根据题意得:21222x x x--=--解之得:5x=经检验:5x=是原分式方程的解所以x的值为5.【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.17.阅读下面的解题过程:已知21 13 xx=+,求241xx+的值。

广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)

广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)

广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)一、单选题1.以下生活现象不是利用三角形稳定性的是()A .B .C .D .2.如图,在ABC V 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且32ABC S =△,则阴影部分面积是()A .6B .4C .8D .103.如图,四个图形中,线段BE 是ABC 的高的图是()A .B .C .D .4.若3,6,x 是某三角形的三边长,则x 可取的最大整数为()A .10B .9C .8D .75.在三角形纸片ABC 中,9020,∠=︒∠=︒A C ,点D 为AC 边上靠近点C 处一定点,点E 为BC 边上一动点,沿DE 折叠三角形纸片,点C 落在点C '处,①如图1,当点C '落在BC 边上时,40ADC '∠=︒;②如图2,当点C '落在ABC V 内部时,40''∠+∠=︒ADC BEC ;③如图3,当点C '落在ABC V 上方时,40''∠-∠=︒BEC ADC ;④当C E AB '∥时,35CDE ∠=︒或125CDE ∠=︒,以上结论正确的个数是()A .1B .2C .3D .46.如图,已知P 是△ABC 内任一点,AB =12,BC =10,AC =6,则PA+PB+PC 的值一定大于()A .14B .15C .16D .287.如图,在正方形OABC 中,点A 的坐标是(﹣3,1),点B 的纵坐标是4,则B ,C 两点的坐标分别是()A .(﹣2,4),(1,3)B .(﹣2,4),(2,3)C .(﹣3,4),(1,4)D .(﹣3,4),(1,3)8.如图,Rt ACB △中,90,ACB ACB ∠=︒ 的角平分线,AD BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:①135APB ∠=︒;②AD PF PH =+;③DH 平分CDE ∠;④74ABP ABDE S S =四边形△,其中正确的结论有()个A .1B .2C .3D .49.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为()s 时,能够使△BPE 与△CQP全等.A .1B .1或4C .1或2D .310.用四种边长相等的正多边形地砖铺地,每个顶点处每种正多边形各一块拼在一起,刚好能完全铺满地面.已知正多边形的边数为1m ,2m ,3m ,4m ,则12341111m m m m +++的值为()A .1B .14C .12D .1311.如图,在锐角三角形ABC 中,60BAC ∠=︒,将三角形ABC 沿着射线BC 方向平移得到三角形A B C '''(平移后点A ,B ,C 的对应点分别是点A ',B ',C '),连接CA '.若在整个平移过程中,ACA ∠'和CA B '∠的度数之间存在2倍关系,则ACA ∠'的度数不可能为()A .20︒B .40︒C .100︒D .120︒12.如图,ABC V 中,60ACB ∠=︒,AG 平分BAC ∠交BC 于点G ,BD 平分ABC ∠交AC 于点D ,AG 、BD 相交于点F ,BE AG ⊥交AG 的延长线于点E ,连接CE ,下列结论中正确的有()①若70BAD ∠=︒,则5EBC ∠=︒;②BE CE =;③AB BG AD =+;④BFG AFD S BF S AF=△△.A .4个B .3个C .2个D .1个二、填空题13.如图,在ABC V 中,90ACB ∠=︒,6AC =,8BC =.点P 从点A 出发,沿折线AC CB -以每秒1个单位长度的速度向终点B 运动,点Q 从点B 出发沿折线BC CA -以每秒3个单位长度的速度向终点A 运动,P 、Q 两点同时出发.分别过P 、Q 两点作PE l ⊥于E ,QF l ⊥于F ,设运动时间为t ,当PEC 与QFC V 全等时,t 的值为.14.如图,正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为个.15.如图,在ABC V 中,点D 是AB 边上一点,:3:1AD DB =,连接CD ,点E 是线段AC 上一点,:1:2AE EC =,连接BE ,CD 与BE 交于点F ,若8AC =,9BC =,则BDF V 与CEF △面积之和的最大值是.16.现有长分别为4,5,7,9,22(单位:cm )的五根直木条,从中选出四根围一个四边形木框,则该木框的对角线最长可以取到的整数是.17.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123101111a a a a ++++ 的值为.18.如图,在Rt ACB △中,90ACB ∠=︒,ABC V 的角平分线,AD BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论①135APB ∠=︒;②PF PA =;③30F ∠=︒;④::ACD ABD S S AC AB =△△;⑤AH BD AB +=,正确的序号是.三、解答题19.如图,在平面直角坐标系中,点A 和点B 分别在x 轴、y 轴上移动,BE 是ABO ∠的平分线,AF 是BAO ∠的平分线,M 是BE 与AF 的交点.在移动过程中,AMB ∠的大小是否发生变化?如果保持不变,请求出AMB ∠的度数;如果发生变化,请求出变化范围.20.已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40︒.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40︒”,那么满足这一条件,且彼此不全等的三角形共有__________个.21.如图,在平面直角坐标系中,O 为坐标原点,A B 、两点的坐标分别为(),0A m 、()0,B n且40m n --+,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA OB 、的长;(2)连接PB ,若POB V 的面积不大于4且不等于0,求t 的范围;(3)过P 作直线A 的垂线,垂足为C ,直线PC 与y 轴交于点D ,在点P 运动的过程中,是否存在这样的点P ,使DOP AOB ≌?若存在,请求出t 的值;若不存在,请说明理由.22.如图,在ABC 中,A 是中线,10cm AB =,6cm AC =.(1)求ABD 与ACD 的周长差.(2)点E 在边A 上,连接ED ,若BDE 与四边形ACDE 的周长相等,求线段AE 的长.23.如果a b c 、、的长度之和为32cm ,且754a b b c a c +++==,那么这三条线段能围成一个三角形吗?24.如图①,在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 是AE 上一点,且FD ⊥BC 于D 点.(1)试猜想∠EFD ,∠B ,∠C 的关系,并说明理由;(2)如图②,当点F 在AE 的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②25.(规律探究题)如图,在ABC V 中,80A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线交于点2A ,得2A ∠;⋯;7A BC ∠与7A CD ∠的平分线交于点8A ,得8A ∠.求8A ∠的度数.26.已知,AB CD ∥,直线MN 交AB 于点M ,交CD 于点N ,(BMN DNM ∠>∠点E 是线段MN 上一点(不与M 、N 重合),P 、Q 分别是射线MB 、ND 上异于端点的点,连接PE 、EQ ,PF 平分MPE ∠交MN 于点F ,QG 平分DQE ∠交直线PF 于点G .(1)如图1,PE EQ ⊥,42MPE ∠=︒,点G 在线段PF 上.①求EQN ∠的度数;②求PGQ ∠的度数;(2)试探索PGQ ∠与PEQ ∠之间的数量关系;(3)已知404270PGQ MPE MND ∠=︒∠=︒∠=︒,,.直线PE 、GQ 交于点K ,直线M N '从与直线MN 重合的位置开始绕点N 顺时针旋转,旋转速度为每秒4︒,当M N '首次与直线CD 重合时,运动停止,在此运动过程中,经过t 秒,M N '恰好平行于PGK 的其中一条边,请直接写出所有满足条件的t 的值.。

八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学三角形填空题(难)1.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.2.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.3.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.4.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.5. 如果一个n 边形的内角和等于它的外角和的3倍,则n=______.【答案】8【解析】【分析】根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,解得:n=8,故答案为:8.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)7.如图:∠A+∠B+∠C+∠D+∠E+∠F等于()A.180°B.360°C.270°D.540°【答案】B【解析】【分析】先根据三角形的外角,用∠AGE表示出∠A,∠B;用∠EMC表示出∠E,∠F;用∠CNA 表示出∠C,∠D,然后再根据对顶角相等的性质解出它们的度数即可【详解】解:如图:∵∠AGE是△ABG的外角∴∠AGE=∠A+∠B;同理:∠EMC=∠E+∠F;∠CNA=∠C+∠D∴∠A+∠B+∠C+∠D+∠E+∠F=∠AGE+∠EMC+∠CNA又∵∠AGE+∠EMC+∠CAN是△MNG的三个外角∴∠AGE+∠EMC+∠CAN=360°故选:B.【点睛】本题主要考查了三角形外角及其外角和,其中找出三角形的外角是解答本题的关键.8.在下列图形中,正确画出△ABC的AC边上的高的图形是()A.B.C.D.【答案】C【解析】【分析】△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段.根据定义正确的只有C.故选:C.【点睛】本题考查了三角形的高线的定义,理解定义是关键.9.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.10.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°【答案】C【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=12∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=12∠ACE ,∠2=12∠ABC , 又∠D=∠1﹣∠2,∠A=∠ACE ﹣∠ABC ,∴∠D=12∠A=25°. 故选C .11.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º【答案】D【解析】【分析】 依据平行线的性质,即可得到∠1=∠DFG =40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF ∥EG ,∴∠1=∠DFG =40°,又∵∠A =30°,∴∠2=∠A +∠DFG =30°+40°=70°,故选D .【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.12.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠【答案】A【解析】【分析】 根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】 如图所示:∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A ,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A 转化到同一个三角形中是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,在△ABC 中,∠C=090,点D 在AB 上,BC=BD,DE ⊥AB 交AC 于点E ,△ABC 的周长为12,△ADE 的周长为6,则BC 的长为_______【答案】3【解析】【分析】连接BE ,由斜边直角边判定Rt BDE ∆≅ Rt BCE ∆,从而DE CE =,再由△ABC 的周长 △ADE 的周长即可求得BC 的长.【详解】如图:连接BE ,DE ⊥AB ,090BDE ∴∠=,在Rt BDE ∆和Rt BCE ∆中,BE BE BD BC =⎧⎨=⎩, ∴Rt BDE ∆≅ Rt BCE ∆,DE CE ∴=,∴△ABC 的周长=AB+BC+AC=2BC+AD+AE+DE=12,△ADE 的周长= AD+AE+DE =6,∴BC=3,故答案为3.【点睛】本题考查三角形全等的判定和性质以及和三角形有关的线段,连接BE 构造全等三角形是解答此题的关键.14.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF ,结论:①EM =FN ;②AF∥EB ;③∠FAN =∠EAM ;④△ACN ≌△ABM 其中正确的有 .【答案】①③④【解析】【分析】由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.【详解】解:在△ABE和△ACF中,∠E=∠F=90°,AE=AF,∠B=∠C,∴△ABE≌△ACF,∴∠EAB=∠FAC,AE=AF,AB=AC,∴∠EAB-∠MAN=∠FAC-∠NAM,即∠EAM=∠FAN,在△AEM和△AFN中,∠E=∠F=90°,AE=AF,∠EAM=∠FAN,∴△AEM≌△AFN,∴EM=FN,∠FAN=∠EAM,故选项①和③正确;在△ACN和△ABM中,∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),∴△ACN≌△ABM,故选项④正确;若AF∥EB,∠F=∠BDN=90°,而∠BDN不一定为90°,故②错误,则正确的选项有:①③④.故答案为①③④15.如图,在平面直角坐标系xOy中,点A、B分别在x轴的正半轴、y轴的正半轴上移动,点M在第二象限,且MA平分∠BAO,做射线MB,若∠1=∠2,则∠M的度数是_______。

2020-2021学年浙江版八年级上册数学 期末测评培优卷(含解析)(1)

2020-2021学年浙江版八年级上册数学 期末测评培优卷(含解析)(1)

2020-2021学年浙江版八年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•温岭市期中)下列线段能组成三角形是()A.1、2、3 B.4、5、6 C.6、8、14 D.5、6、13 2.(2020•拱墅区校级模拟)已知a<b,下列结论中成立的是()A.﹣a+1<﹣b+1 B.﹣3a<﹣3b C.b+2 D.如果c<0,那么3.(2020春•山西期末)直线y=﹣2x+b上有三个点(﹣2.4,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y34.(2020秋•拱墅区期中)将一副直角三角板如图放置,使两直角重合,则∠AFE=()度.A.145 B.155 C.165 D.1755.(2020春•新野县期末)已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n 的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>36.(2020春•平江县期末)若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1 B.1 C.5 D.﹣57.(2020秋•余杭区期中)如图,以Rt△ABC的三边为边长向外作正方形,三个正方形的面积分别为S1、S2、S3,若S1=13,S2=12,则S3的值为()A.1 B.5 C.25 D.1448.(2020秋•西湖区校级期中)如图,在△ABC中,∠BAC=α,点D在BC上,且BD=BA,点E 在BC的延长线上,且CE=CA,则∠DAE的大小为()A.αB.C.D.α9.(2020•宁波模拟)如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A.148°B.140°C.135°D.128°10.(2020•攀枝花)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10km D.王浩月比赵明阳提前1.5h到目的地二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020•全椒县期中)已知直线y=﹣2x+4,则将其向右平移1个单位后与两坐标轴围成的三角形的面积为.12.(2020春•崇川区校级期末)在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN ∥y轴,则a=.13.(2020春•朝阳区校级期末)如图,已知AC与BF相交于点E,AB∥CF,点E为BF中点,若CF=6,AD=4,则BD=.14.(2020秋•卫辉市期末)如图,△ABC中,∠A=90°,AB=3,AC=6,点D是AC边的中点,点P是BC边上一点,若△BDP为等腰三角形,则线段BP的长度等于.15.(2020春•仙居县期末)小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是分钟.16.(2020秋•思明区校级期中)在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020秋•柯桥区期中)(1)解不等式x,并把解表达在数轴上.(2)解不等式组.18.(2019秋•曹县期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠C=70°,求∠AEB的度数.19.(2019秋•郾城区期末)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).20.(2019春•北碚区校级月考)已知函数y=y1+y2,其中y1=(4﹣a)x a2﹣4a﹣1是反比例函数,y2与x﹣5成正比例,函数的自变量x的取值范围是x,且当x=2时,y=﹣1.(1)解析式探究,根据给定的条件,可以确定出该函数的解析式为:.(2)下表是y与x的几组对应值x 1 2 3 4 5 6 7 8y m0 ﹣1 0 n表中m=,n=(3)根据表中数据,在平面直角坐标系中,描点并画出该函数的图象;(4)结合画出的函数图象,解决问题:估计y1+y2=﹣x+5时,x的值约为(精确到0.1).21.如图,在△ABC中,AD⊥BC于D,∠ABC=2∠C,求证:AC2=AB2+AB•BC.22.(2020•宁津县期末)已知一次函数y=(m﹣2)x+3﹣m,求m为何值时,下列各结论分别成立:(1)y随x的增大而减小;(2)函数的图象经过原点;(3)函数的图象与y轴的交点在x轴上方.23.(2020秋•辛集市期末)综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.24.(2020秋•松滋市期末)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.2020-2021学年浙江版八年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•温岭市期中)下列线段能组成三角形是()A.1、2、3 B.4、5、6 C.6、8、14 D.5、6、13【分析】利用三角形的三边关系进行分析即可.【解析】A、1+2=3,不能组成三角形,故此选项不符合题意;B、5+4>6,能组成三角形,故此选项符合题意;C、6+8=14,不能组成三角形,故此选项不符合题意;D、5+6<13,不能组成三角形,故此选项不符合题意;故选:B.2.(2020•拱墅区校级模拟)已知a<b,下列结论中成立的是()A.﹣a+1<﹣b+1 B.﹣3a<﹣3bC.b+2 D.如果c<0,那么【分析】根据不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解析】A、a<b则﹣a+1>﹣b+1,故原题说法错误;B、a<b则﹣3a>﹣3b,故原题说法错误;C、a<b则a+2b+2,故原题说法正确;D、如果c<0,那,故原题说法错误;故选:C.3.(2020春•山西期末)直线y=﹣2x+b上有三个点(﹣2.4,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y3【分析】由k=﹣2<0,利用一次函数的性质可得出y值随x值的增大而减小,结合﹣2.4<﹣1.5<1.3可得出y1>y2>y3,此题得解.【解析】∵k=﹣2<0,∴y值随x值的增大而减小.又∵﹣2.4<﹣1.5<1.3,∴y1>y2>y3.故选:A.4.(2020秋•拱墅区期中)将一副直角三角板如图放置,使两直角重合,则∠AFE=()度.A.145 B.155 C.165 D.175【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠AFE的度数.【解析】∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠AFE+∠AFD=180°,∴∠AFE=180°﹣∠AFD=180°﹣15°=165°.故选:C.5.(2020春•新野县期末)已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n 的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>3【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.【解析】∵三角形的三边长分别是n+2、n+4、n+8,∴n+2+n+4>n+8,解得n>2.故选:C.6.(2020春•平江县期末)若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1 B.1 C.5 D.﹣5【分析】根据点的坐标特征求解即可.【解析】由题意,得x=2,y=﹣3,x+y=2+(﹣3)=﹣1,故选:A.7.(2020秋•余杭区期中)如图,以Rt△ABC的三边为边长向外作正方形,三个正方形的面积分别为S1、S2、S3,若S1=13,S2=12,则S3的值为()A.1 B.5 C.25 D.144【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【解析】由勾股定理得:AC2+BC2=AB2,∵S1=S2+S3,∴S3=S1﹣S2=13﹣12=1.故选:A.8.(2020秋•西湖区校级期中)如图,在△ABC中,∠BAC=α,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,则∠DAE的大小为()A.αB.C.D.α【分析】由AB=BD,AC=CE,可得∠BAD=∠BDA,∠E=∠CAE,设∠BAD=∠BDA=x,∠E=∠CAE=y,∠DAC=z,则,解得y+z=35°,由此即可解决问题.【解析】∵AB=BD,AC=CE,∴∠BAD=∠BDA,∠E=∠CAE,设∠BAD=∠BDA=x,∠E=∠CAE=y,∠DAC=z,则,解得y+zα,∴∠DAE=∠DAC+∠CAE;故选:D.9.(2020•宁波模拟)如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A.148°B.140°C.135°D.128°【分析】证明△ABC≌△EDB(SAS),求出∠A=∠E=43°,求出∠ADE,则答案可求出.【解析】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣62°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故选:A.10.(2020•攀枝花)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10km D.王浩月比赵明阳提前1.5h到目的地【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【解析】由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王皓月的速度为:24÷1﹣8=16(km/h),王皓月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020•全椒县期中)已知直线y=﹣2x+4,则将其向右平移1个单位后与两坐标轴围成的三角形的面积为.【分析】根据“平移k不变,b值加减”可以求得新直线方程;根据新直线方程可以求得它与坐标轴的交点坐标,所以由三角形的面积公式可以求得该直线与两坐标轴围成的三角形的面积.【解析】平移后解析式为:y=﹣2(x﹣1)+4=﹣2x+6,即y=﹣2x+6.当x=0时,y=6,当y=0时,x=3,∴平移后得到的直线与两坐标轴围成的三角形的面积为:6×3=9.故答案是:9.12.(2020春•崇川区校级期末)在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN ∥y轴,则a=.【分析】由MN∥y轴可知点M点N的横坐标相同,从而得出关于a的方程,解得a的值即可.【解析】∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.13.(2020春•朝阳区校级期末)如图,已知AC与BF相交于点E,AB∥CF,点E为BF中点,若CF=6,AD=4,则BD=.【分析】利用全等三角形的判定定理和性质定理可得结果.【解析】∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵点E为BF中点,∴BE=FE,在△ABE与△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=6,∵AD=4,∴BD=2,故答案为:2.14.(2020秋•卫辉市期末)如图,△ABC中,∠A=90°,AB=3,AC=6,点D是AC边的中点,点P是BC边上一点,若△BDP为等腰三角形,则线段BP的长度等于.【分析】分两种情形:①当PD=PB时.②当BD=BP′时分别求解;【解析】如图,当PD=PB时,连接P A交BD于点H,作PE⊥AC于E,PF⊥AB于F.∵AD=DC=3.AB=3,∴AB=AD,∵PB=PD,∴P A垂直平分线段BD,∴∠P AB=∠P AD,∴PE=PF,∵•AB•PF•AC•PE•AB•AC,∴PE=PF=2,在Rt△ABD中,∵AB=AD=3∴BD=3,BH=DH=AH,∵∠P AE=∠APE=45°,∴PE=AE=2,∴P A=2,PH=P A﹣AH,在Rt△PBH中,PB.(也可以根据PB计算)当BD=BP′时,BP′=3,综上所述,满足条件的BP的值为3或.故答案为3或.15.(2020春•仙居县期末)小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是分钟.【分析】根据图象可知:小明从家骑车上学,平路路程是1千米,用3分钟;上坡的路程是1千米,用6分钟,则上坡速度是千米/分钟;下坡路长是2千米,用3分钟,因而速度是千米/分钟,由此即可求出答案.【解析】根据图象可知:小明从家骑车上学,上坡的路程是1千米,用6分钟,则上坡速度是千米/分钟;下坡路长是2千米,用3分钟,则速度是千米/分钟,他从学校回到家需要的时间为:213=16.5(分钟).故答案为:16.5.16.(2020秋•思明区校级期中)在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.【分析】如图,连接PP',过点D作DE⊥BC,由旋转的性质可证△DP'P是等边三角形,由“AAS”可证△BDP≌△CPP',可得BD=CP=2,可求BP=3,由直角三角形的性质和勾股定理可求DP的长.【解析】如图,连接PP',过点D作DE⊥BC,∵DP绕点D逆时针旋转60°,∴DP=DP',∠PDP'=60°,∴△DP'P是等边三角形,∴DP=PP',∠DPP'=60°,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,∴△BDP≌△CPP'(AAS)∴BD=CP=2,∴BP=3,∵∠B=60°,BD=2,DE⊥BC,∴BE=1,DE BE,∴PE=2,∴DP,故答案为.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020秋•柯桥区期中)(1)解不等式x,并把解表达在数轴上.(2)解不等式组.【分析】(1)先去分母,再移项,合并同类项,把不等式的解集在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解析】(1)x,2x﹣1<3x+1,2x﹣3x<1+1,﹣x<2,x>﹣2,把解表达在数轴上为:(2),解①得x≥﹣1,解②得x<3.故不等式组的解集为﹣1≤x<3.18.(2019秋•曹县期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠C=70°,求∠AEB的度数.【分析】(1)由外角的性质可证∠C=∠BDE,由“AAS”可证△AEC≌△BED;(2)由全等三角形的性质可得EC=ED,∠BED=∠AEC,由等腰三角形的性质和三角形内角和定理可求解.【解析】证明:(1)∵∠ADE=∠C+∠2=∠1+∠BDE,且∠1=∠2,∴∠C=∠BDE,又∵∠A=∠B,AE=BE,∴△AEC≌△BED(AAS).(2)∵△AEC≌△BED,∴EC=ED,∠BED=∠AEC,∴∠EDC=∠C=70°,∠2=∠BEA,∴∠2=180°﹣2×70°=40°,∴∠AEB=40°.19.(2019秋•郾城区期末)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).【分析】(1)(2)利用网格特点和对称的性质画出A、B、C的对称点A1、B1、C1,从而得到△A1B1C1各顶点的坐标;(3)可先把得到P点关于y轴的对称点,然后把此对称点向右平移2个单位得到可得到点P1的坐标.【解析】(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.20.(2019春•北碚区校级月考)已知函数y=y1+y2,其中y1=(4﹣a)x a2﹣4a﹣1是反比例函数,y2与x﹣5成正比例,函数的自变量x的取值范围是x,且当x=2时,y=﹣1.(1)解析式探究,根据给定的条件,可以确定出该函数的解析式为:.(2)下表是y与x的几组对应值x 1 2 3 4 5 6 7 8y m0 ﹣1 0 n表中m=,n=(3)根据表中数据,在平面直角坐标系中,描点并画出该函数的图象;(4)结合画出的函数图象,解决问题:估计y1+y2=﹣x+5时,x的值约为(精确到0.1).【分析】(1)求得y1用待定系数法设y2=k2x﹣5),则y k(x﹣5),将已知条件代入得关于k 方程组,即可求得该函数解析式;(2)把x和x=6分别代入(1)求得的解析式,即可求得m、n的值;(3)在平面直角坐标系中描点,用平滑曲线从左到右顺次连接各点,画出图象;(3)函数y=y1+y2和直线y=﹣x+5的交点在4和5之间,通过分析得出结论.【解析】(1)∵y1=(4﹣a)x a2﹣4a﹣1是反比例函数,∴4﹣a≠0且a2﹣4a﹣1=﹣1,解得a=0,∴y1,设y2=k(x﹣5),则y k(x﹣5),∵当x=2时,y=﹣1.∴﹣1k(2﹣5),解得k=1,∴y x﹣5(x),故答案为:y x﹣5(x),(2)把x代入y x﹣5得,y,∴m,把x=6代入y x﹣5得,y,∴n,故答案为,;(3)根据表中数据,在平面直角坐标系中描点,画出图象.(4)观察图象,函数y=y1+y2和直线y=﹣x+5的交点在4和5之间,当x=4.5时,y x﹣5≈0.4,y=﹣x+5=0.5,当x=4.6时,y x﹣5≈0.47,y=﹣x+5=0.4,当x=4.7时,y x﹣5≈0.55,y=﹣x+5=0.3,∴估计y1+y2=﹣x+5时,x的值约为4,6,故答案为4.6.21.如图,在△ABC中,AD⊥BC于D,∠ABC=2∠C,求证:AC2=AB2+AB•BC.【分析】为了把∠ABC=2∠C转化成两个角相等的条件,可以构造辅助线:在DC上取DE=BD,连接AE.根据线段的垂直平分线的性质以及三角形的内角和定理的推论能够证明AB=CE.再根据勾股定理表示出AC2,AB2.再运用代数中的公式进行计算就可证明.【解析】在DC上取DE=BD,连接AE.则AE=AB,∴∠ABC=∠AEB.∵∠ABC=2∠C,又∵∠AEB=∠C+∠EAC,∴∠EAC=∠C,∴AE=EC,∴CE=AB.在Rt△ABD和Rt△ACD中,∵AC2=AD2+CD2,AB2=AD2+BD2,∴AC2﹣AB2=(AD2+CD2)﹣(AD2+BD2)=CD2﹣BD2=(CD+BD)(CD﹣BD)=BC•(CD﹣DE)=BC•CE=BC•AB.即AC2=AB2+BC•AB.22.(2020春•宁津县期末)已知一次函数y=(m﹣2)x+3﹣m,求m为何值时,下列各结论分别成立:(1)y随x的增大而减小;(2)函数的图象经过原点;(3)函数的图象与y轴的交点在x轴上方.【分析】(1)根据一次函数的性质:当k小于0时,y随x的增大而减小即可得结论;(2)当x=0,y=0时,图象经过原点即可得结论;(3)根据图象与y轴的交点在x轴上方说明常数项大于0即可得结论.【解析】(1)要使y随x的增大而减小成立,需m﹣2<0,解得m<2.答:m<2时,y随x的增大而减小;(2)要使函数图象经过原点成立,需3﹣m=0,解得m=3,答:当m=3时,函数图象经过原点;(3)当3﹣m>0,即m<3时,函数的图象与y轴的交点在x轴上方,答:当m<3且m≠2时,函数的图象与y轴的交点在x轴上方.23.(2020秋•辛集市期末)综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【解析】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:设AC交BF于点O,如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=EC=4,∵∠AOB=∠COE,∴∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF EC=2.24.(2020秋•松滋市期末)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.【分析】(1)根据非负数的性质,得出方程(n﹣4)2=0,|n﹣2m|=0,求得m=2,n=4,即可得到A、B两点的坐标;(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,构造全等三角形,再根据BG=BE列出关于x的方程,即可求得OE的长;(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),构造全等三角形,再根据F点的横坐标与纵坐标相等,得出方程m+2x﹣4=m+x,解得:x=4,即可得到点P为(4,﹣4).【解析】(1)∵n2﹣8n+16+|n﹣2m|=0,∴(n﹣4)2+|n﹣2m|=0,∵(n﹣4)2≥0,|n﹣2m|≥0,∴(n﹣4)2=0,|n﹣2m|=0,∴m=2,n=4,∴点A为(2,0),点B为(0,4);(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=2+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°,∴BG=BE=4﹣x,∴4﹣x=2+x,解得:x=1,∴OE=1;(3)如图2,分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+4),∴PN=x,EN=m+2x﹣4,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣4,∴点F为(m+2x﹣4,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣4=m+x,解得:x=4,∴点P为(4,﹣4).。

第十一章 三角形 同步培优专项习题(一)人教版八年级数学上册

第十一章 三角形  同步培优专项习题(一)人教版八年级数学上册

第十一章《三角形》同步培优专项习题(一)1.如图,AE,DE分别平分∠BAC和∠BDC,∠B=∠BDC=45°,∠C=51°,求∠E的度数.2.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.(1)若∠ABC=30°,∠ACB=60°,求∠DAE的度数;(2)写出∠DAE与∠C﹣∠B的数量关系,并证明你的结论.3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠BAE的度数;(2)求∠DAE的度数;(3)探究:小明认为如果只知道∠B﹣∠C=40°,也能得出∠DAE的度数?你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.4.(1)已知:如图1,P是直角三角板ABC斜边AB上的一个动点,CD、CE分别是∠ACP 和∠BCP的平分线,试探究:当点P在斜边AB上移动时,∠DCE的大小是否会发生变化,请说明你的理由.(2)把直角三角板的直角顶点C放在直尺的一边MN上,点A和点B在直线MN的上方(如图2),此时∠ACM与∠BCN的数量关系是∠ACM+∠BCN=;当把这把直角三角板绕顶点C旋转到点A在直线MN的下方,点B仍然在直线MN的上方时(如图3),∠ACM 与∠BCN的数量关系是;当把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图4),∠ACM与∠BCN的数量关系是.5.如图,在△ABC中,∠B=30°,∠C=66°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.6.如图:在直角坐标系中,已知B(b,0),C(0,c),且|b+3|+(2c﹣8)2=0.(1)求B、C的坐标;(2)点A、D是第二象限内的点,点M、N分别是x轴和y轴负半轴上的点,∠ABM=∠CBO,CD∥AB,MC、NB所在直线分别交AB、CD于E、F,若∠MEA=70°,∠CFB=30°.求∠CMB﹣∠CNB的值;(3)如图:AB∥CD,Q是CD上一动点,CP平分∠DCB,BQ与CP交于点P,给出下列两个结论:①的值不变;②的值改变.其中有且只有一个是正确的,请你找出这个正确的结论并求其定值.7.如图,AD是△ABC边BC上的高,BE平分∠ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.8.已知:如图A,△ABC各角的平分线AD,BE,CF交于点O.(1)试说明∠BOC=90°+∠BAC;(2)如图B,过点O作OG⊥BC于G,试判断∠BOD与∠COG的大小关系(大于,小于或等于),并说明理由.9.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.10.一个多边形的内角和与外角和的差为1260°,求它的边数.11.(1)如图,已知△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC 和∠A的关系,并说明理由;(2)如图,若O为∠ABC和∠ACB外角的平分线BO,CO的交点,则∠BOC与∠A的关系又该怎样?为什么?12.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠ABC=40°、∠ACB=50°,则∠BOC=;(2)若∠ABC+∠ACB=116°,则∠BOC=;(3)若∠A=76°,则∠BOC=;(4)若∠BOC=120°,则∠A=;(5)请写出∠A与∠BOC之间的数量关系(不必写出理由).13.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD交BC于G,EH⊥BE交BC于H,∠HEG=55°.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=44°,求∠BAC的度数.14.如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,则有∠MPB+∠NPC=90°﹣∠A.若将直线MN绕点P旋转,(ⅰ)如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系是否依然成立,并说明理由;(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.15.如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.16.如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.17.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.18.已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.(1)当α=40°时,∠BPC=°,∠BQC=°;(2)当α=°时,BM∥CN;(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系:.。

八年级数学上册全册全套试卷(培优篇)(Word版 含解析)

八年级数学上册全册全套试卷(培优篇)(Word版 含解析)

八年级数学上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC ,连接DF.(1)试说明:△AED≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=45综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1、设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a ,
2、函数34+-=x y 的图象上存有点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

3、在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=α,则∠A=__________。

4、直角三角形两锐角的平分线交角的度数是 。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。

6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为___________。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为
80
3
km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中准确的说法有_______________.
8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了________千克.”
二、选择题
1、等腰三角形腰上的高与底边的夹角为m °则顶角度数为( )
A.m °
B.2m °
C.(90-m)°
D.(90-2m)°
O y (微克/毫升)
x (时) 3 14 8 4
2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( ) A . 8 3≤y ≤ 64 11 B . 64 11≤y ≤8 C . 8 3
≤y ≤8 D .8≤y ≤16
3、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关门两个进水口,打开出水口;④5点到6点.同 时打开两个进水口和一个出水口.其中,可能准确的论断是( )
A .①③ B.①④ C.②③ D.②④
4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )
A.5种
B. 6种
C. 7种
D.8种
5、在△ABC 中,适合条件C B A ∠=∠=∠4
1
31,则△ABC 中是 ( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .不能确定
6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式k 1x +b <k 2x +c 的解集为( ).
A .x >1
B .x <1
C .x >-2
D .x <-2
O 1
x
y
-2
y =k 1x +b
7、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( ) A.23y x =-- B.26y x =-- C.23y x =-+ D.26y x =-+ 8、已知一次函数
b kx y +=,当x 增加3时,y 减少2,则k 的值是( )
A.
32
B.23
C.32-
D.2
3-
9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )
10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法准确的是 ( )
A.甲的效率高
B.乙的效率高
x
y
O
B
A
2y x =-
1 2 3 4
1 2 y s
O 1 2 3 4
1 2 y s O s 1 2 3 4
1
2 y s
O 1 2 3 4
1 2 y O A .
B .
C .
D .
工作量
1 12
5 16时间(小时)
C.两人的效率相等
D.两人的效率不能确定
11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )
A.5个
B.6个
C.7个
D.8个
12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限
三、解答题
1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;
⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;
②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?
2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.
(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.
3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、 排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:
(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。

② 如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量。

4
(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;
(2)设OP t ,OPQ △的面积为S ,求S 关于t 的函数关系式.
L 1
5、探索:在如图①至图③中,三角形ABC的面积为a,
(1)如图①,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S,则S1=______(用含a的代数式表示);
(2)如图②,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S,则S2= (用含a的代数式表示)并写出理由;
(3)在图②的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图③),若阴影部分的面积为S3,则S3=______(用汗a的代数式表示)
发现:象上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图③),此时,我们称△ABC向外扩展了一次,能够发现,扩展后得到的△DEF的面积是原来△ABC 面积的____倍。

应用:去年在面积为10m2的△ABC空地上栽种了某种花,今年准备扩大种植规模,把△ABC 向外实行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图④)。

求这两次扩展的区域(即阴影部分)面积共为多少m2?
6、如图:已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,求∠DAE的
度数。

A
B
E D
C
7、如图:△ABC 中,O 是内角平分线AD 、BE 、CF 的交点。

⑴ 求证:∠BOC=90°+
2
1
∠A ; ⑵ 过O 作OG ⊥BC 于G ,求证:∠ DOB=∠GOC 。

A B
C
D E F G。

相关文档
最新文档