GPS原理与应用 考试重点总结

合集下载

GPS原理与应用 复习资料 考试重点

GPS原理与应用 复习资料 考试重点

1.GPS定位系统有哪几部分组成的?各部分的作用是什么?(1)GPS卫星星座1.接受地面站发来的导航电文和其他信号2.接受地面站的指令,修正轨道偏差并启动备用设备3.连续不断地向地面发送GPS导航和定位信号(2)地面监控系统: 一个主控站:收集数据;处理数据;监测协调;控制卫星三个注入站:将主控站发来的导航电文注入到相应卫星的存储器五个监测站:接收卫星信号,为主控站提供卫星的观测数据(3)GPS信号接收机:捕获卫星信号,计算出测站的三维位置或三维速度和时间,达到导航和定位的目的2.GPS信号接收机的任务是:能够捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对所接收到的GPS信号进行变换、放大和处理,以便测量出GPS 信号从卫星到接收机天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出测站的三维位置,甚至三维速度和时间。

3.GPS接收机主要由接收机天线单元、GPS接收机主机单元和电源三部分组成。

完全定义一个空间直角坐标系必须明确:①坐标原点位置②三个坐标轴的指向③长度单位2.参心坐标系和质心坐标系的定义:参心是椭球的几何中心,质心是椭球的质量中心4.WGS—84坐标系的定义原点位于地球质心,Z轴指向BIH1984.0定义的协议地球极(CIP)方向,X轴指向BIH1984.0的零子午面和CIP赤道的交点,Y轴与Z,X轴构成右手坐标系。

5.导航电文(卫星电文、数据码/D码):GPS卫星的导航电文是用户用来定位和导航的数据基础。

主要包括:卫星星历,时钟改正,电离层时延延正,工作状态信息以及C/A码转换到捕获P码的信息。

6.GPS使用L1,L2两种载波的目的:目的在于测量出或消除掉由于电离层效应而引起的延迟误差。

7.C/A码和P码的含义C/A码是用于粗测距和捕获GPS卫星信号的伪随机码。

P码是卫星的精测码。

8. 二体问题:忽略所有的摄动力,仅考虑地球质心引力研究卫星相对于地球的运动,在天体力学中,称之为二体问题。

GPS原理与应用复习总结要点

GPS原理与应用复习总结要点
27+3 轨道面数(个)
3 轨道 倾角 (度)
56 平 均 高 度 ( km )
23616 周 期 ( hm )
14h 卫 星 射 电 频 率 L1
1561-1569MHz 卫 星 射 电 频 率 L2
1224-1232MHz C/A 码 频 率
1176.75 MHz (E
GLONASS 21+3
3 64.8 19100 11h15m 1602-1616MHz 1246-1256MHz 511 kHz
卫星高度为 20200km,卫星运行周期为 11 小时 58 分;
载波 L1 频率为 1575.42MHz, L2 为 1227.60MHz。
GPS工作卫星情况:
在轨重量 843.68kg ,设计寿命七年半;
在轨时依靠太阳能电池及镉镍蓄电池供电;
有 12 根螺旋形天线组成的阵列天线,向地面发射张角为
目前已有 GPS与 GLONSS集成的接收机, 这样 GLONSS可与 GPS卫星一起定位, 使可 接受的卫星数目增加一倍, 提高定位精度, 也可有效地削弱美俄两国对各自定位系统的可能 控制,提高定位的可靠性和安全性。
1.1.5 伽利略 (Galileo)GNSS 系统 Galileo 系统建设始于 2002 年,计划 2008 年投入使用, 我国参与了该系统的投资建设, 是一个全开放型的高精度的民用卫星导航定位系统。
功能: 1 、定位
2、通讯 3 、授时
第一章 绪论
1.2 GPS 系统组成
GPS系统包括三大部分:
空间部分— GPS卫星星座; 地面控制部分—地面监控系统;
用户设备部分— GPS信号接收机。
1.2.1 GPS 工作卫星及其星座

GPS原理与应用复习重点

GPS原理与应用复习重点

一、 填空题1.GPS系统由GPS卫星星座(空间部分)、地面监控系统(地面控制部分)和GPS信号接收机(用户设备部分)等三部分组成。

2.GPS工作卫星的地面系统,目前主要由分布在全球的5个地面站组成,其中包括一个主控站、三个信息注入站和五个卫星监测站。

3.主控站一个,设在美国本土科罗拉多.斯平士(Colorado Springs)的联合空间执行中心。

注入站现有3个,分别设在印度洋的狄哥•伽西亚(Diego Garcia)、南大西洋的阿松森岛(Ascension)和南太平洋的卡瓦加兰(Kwajalein)。

五个监测站除主控站和注入站外,还在夏威夷设立了一个监测站。

4.在GPS信号接收机的分类中,按接收机的载波频率分类:单频接收机(SingleFrequency Receiver) 、双频接收机(Double Frequency Receiver)、双系统接收机 (GPS+GLONASS);按接收机的用途分类:导航(Navigation)型接收机、测地(Survey)型接收机、授时(Time)型接收机;按接收机的通道数分类:多通道接收机、序贯通道接收机、多路复用通道接收机;按接收机的工作原理分类:码相关型接收机、平方型接收机、混合型接收机。

5.坐标系统与时间系统是描述卫星运动,处理观测数据和表达观测站位置的数学与物理基础。

6.坐标系统是由原点(origin)位置、坐标轴(Coordinate Axis)的指向和尺度(Scale)所定义的。

在GPS测量中,坐标系的原点一般取地球的质心(the mass center of the earth),而坐标轴的指向具有一定的选择性。

为了使用上的方便,国际上都通过协议来确定某些全球性坐标系统的坐标轴指向,这种共同确认的坐标系,通常称为协议坐标系(Conventional Coordinate System)。

7.测量时间,同样必须建立一个测量的基准,即时间的单位(尺度)和原点(起始历元)。

GPS测量原理与应用复习要点

GPS测量原理与应用复习要点

测绘09-2班1基本概念:七.GPS 定位的误差来源及其消除方法: (1)与卫星有关的误差: 1)卫星星历误差。

减弱方法:①建立自己的卫星跟踪网独立定轨②轨道松弛法③利用同步观测值求差。

2)卫星钟差。

减弱方法:利用同步观测值求差。

3)相对论效应。

(是由于卫星钟和接收机钟所处的状态不同而引起卫星钟和接收机钟之间产生相对钟误差的现象)减弱方法:在制造卫星钟时预先把频率低。

(2)与信号传播有关的误差:1)电离层延迟。

减弱方法:①利用双频观测。

②利用电离层模型加以修正。

③利用同步观测值求差。

2)对流层延迟。

减弱方法:①充分地掌握观测站周围地区的实时气象资料。

②利用水汽辐射计,准确地测定电磁波传播路径上的水汽积累量,以便精确的计算大气湿分量的改正项。

③当基线较短时(20km),稳定的大气条件下,利用差分法来减弱大气折射的影响。

④完善对流层大气折射的改正模型。

3)多路径效应。

(在GPS 测量中,如果测站周围的反射物所反射的卫星信号进入接收机天线,这就和直接来自卫星的信号产生干涉,从而使观测值偏离真值,产生多路径误差。

)减弱方法:①安置接收机天线的环境应避开较强发射面。

②选择造型适宜且屏蔽良好的天线。

③适当延长观测时间,削弱周期性影响。

④改善接收机的电路设计。

(3)与接收设备有关的误差1)接收机位置误差。

减弱方法:仔细操作。

2)接收机钟差。

减弱方法:①在决定定位中观测4颗卫星,把钟差作为未知数,在数据处理中求解。

②利用观测值求差方法,减弱接收机钟差影响。

③定位精度要求较高时,可采用外接频标。

3)接收机的测量噪声。

减弱方法:观测足够长的时间后,测量噪声的影响可以忽略不计。

5.卫星星历及其作用:卫星星历就是一组对应某一时刻的轨道参数及其变率。

作用:有了卫星星历就可以计算出任意时刻的卫星位置及其速度。

6、GPS 卫星信号:是GPS 卫星向广大用户发送的用于导航定位的调制波,它包含有:载波,测距码,导航电文7、历元:在天文学上,历元是为指定天球坐标或轨道参数而规定的某一特定时刻。

(完整word版)GPS测量原理与应用重点

(完整word版)GPS测量原理与应用重点

1.南方GPS数据处理的基本流程。

①新建项目。

在对话框中按照要求填入“项目名称”、“施工单位”、“负责人”,选择相应的“坐标系统”、“控制网等级”、“基线剔除方式”,最后点击“确定”按钮,完成操作。

②增加野外观测数据。

数据输入,增加观测数据文件③GPS 基线处理。

处理合格后要检查异步、同步环闭合差,首先进行基线全部解算,再观察基线简表中各项方差大小,要求基线各方差的大小至少为20,若各基线小于20则右击进入调整高度截止角、历元间隔、参考卫星、以及观测组合方案等,直至所有基线方差都大于20。

④基线调整完成后调整闭合环,观察超限的闭合环,打开闭合环中的基线,调节方法和基线调节的方法一样,直至所有闭合环都合格。

⑤闭合环调节完成后,点击重复基线,看重复基线是否合格,若不合格,先调节基线,若基线调节不行,则找到该基线在网图中的位置,直接DELL进行选择删除,如此调整所有不合格的重复基线。

⑥重新解算,更新数据。

全部合格进行平差处理、自动处理、三维平差、二维平差、高程拟合、网平差计算。

最后点击成果,输出平差报告。

2.使用RTK进行点校正的基本详细流程。

1、对基准站的设置。

例如我们采用的主机工作模式是电台模式,首先在一个空旷的场地假设基准站,链接电源,设置好电台。

2、对主机的设置。

在主机和手簿开机后,首先打开手簿的NFC功能在主机的电池部位感应将主机和手簿进行连接。

连接成功后对主机进行设置,点击配置,主机设置、主机工作模式设置、设置为移动站。

再进行电台设置、选择电台通道,连接完成后新建一个工程,再配置中设置坐标系统,如果此时没有想要的坐标系统则增加一个,选择椭球为西安80坐标系,中央子午线设置为117度,点击确定,选择该坐标系统。

3、进行点平滑求取转换参数。

点击测量、点测量,分别在已知的控制点上进行至少四次平滑,完成后点击测量、求转换参数、增加、输入刚才进行平滑的控制点的真实坐标、弹出对话框选择从坐标管理库选择,选择对应采集的点,再增加,重复对采集的四个点进行关联。

武大《GPS测量原理与应用》知识点总结

武大《GPS测量原理与应用》知识点总结

武大《GPS测量原理与应用》知识点总结第一篇:武大《GPS测量原理与应用》知识点总结武大《GPS测量原理与应用》知识点总结1、GPS的基本知识NAVSTARGPS“Navigation Satellite Timing and Ranging /Global Positioning System”卫星测时测距导航/全球定位系统.以卫星为基础的无线电导航定位系统,具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时功能。

2、GPS星座的基本参数24颗卫星分布在六个等间隔的轨道上,轨道面相对赤道面的倾角为55度,每个轨道面上有4颗卫星,卫星轨道为圆形,运行周期为11小时58分,3、子午导航系统的缺陷(1)卫星少,观测时间和间隔时间长,无法提供实时导航定位服务;(2)导航定位精度低(3)卫星轨道低,难以进行精密定轨(4)卫星信号频率低,不利于补偿电离层折射效应的影响;(5)观测时间长,效率低4、北斗系统的组成:“北斗卫星导航系统”系统是由空间卫星、地面控制中心站和北斗用户终端三部分构成。

5、北斗系统定位原理:空间球面交会测量原理(1)地面中心站通过2颗同步静止定位卫星传送测距问询信号,如果用户需要定位则马上回复应答信号。

地面中心站可根据用户的应答信号的时差计算出户星距离,这样以两颗定位卫星为中心以两个户星距离为半径可作出两个定位球,两个定位球又和地面交出两个定位圆。

(2)根据地面中心站的数字地图算出用户到地心的距离,然后利用以地心为中心的圆球与交线圆形成两个交点,再进行判断。

4、北斗导航定位系统的优缺点优点:如投资少,组建快;具有通信功能;捕获信号快等。

不足和差距:如用户隐蔽性差;无测高和测速功能;用户数量受限制;用户的设备体积大、重量重、能耗大等。

5、北斗系统三大功能快速定位、短报文通信、精密授时6、GPS系统包括三大部分:空间部分——GPS卫星星座;地面控制部分——地面监控系统;用户设备部分——GPS信号接收机。

GPS测量原理与应用-总复习-总结

GPS测量原理与应用-总复习-总结

第一章绪论1.GPS系统的组成空间部分(GPS卫星星座)设计星座:(21+3)/6当前星座:31颗6个轨道平面,平均轨道高度20200km地面控制部分(地面监控系统)一个主控站: 成导航电文传送到注入站; 负责监测整个地面监测系统的工作三个注入站: 将主控站发来的导航电文注入发送到相应卫星五个监测站: 主要任务:为主控站提供卫星的观测数据用户设备部分(GPS接收机、数据处理软件)天线单元和接收单元2. GPS卫星的作用①用L波段无线载波向GPS用户连续不断地发送导航定位信号。

②在卫星飞越注入站上空时,接收由地面注入站用S波段发送到卫星的导航电文和其他有关信息,并通过GPS信号电路,适时地发送给广大GPS用户。

③接收地面主控站通过注入站发送到卫星的调度命令,适时地改正运行偏差或启用备用时钟。

3. GPS系统的特点(1)定位精度高? GPS相对定位精度在50km以内可达10-6, 100~500km可达10-7,1OOOkm以上可达10-9。

?工程精密定位中,平面位置误差小于1mm(2)观测时间短(3)测站间无需通视(4)可提供三维坐标(5)操作简便(6)全天候作业(7)功能多,应用广4. GLONASS:(21+3)/35. GALILEO(27+3)/36.北斗卫星导航系统6-1系统组成①空间部分:(2+1)地球同步轨道卫星(东经80°~140°和110.5°赤道上空)②地面控制部分一个地面中心站:接收用户终端的应答信号/数据处理/分发给用户若干监测站:③用户终端:北斗导航定位接收机:基本型/通信型/授时型/指挥型6-2 BDS系统的定位原理利用两颗地球同步卫星进行双向测距,进行距离交会得到用户的平面位置(高程则由地面数字高程模型得到)6-3 BDS系统的作业流程地面中心站→卫星1→用户→卫星1→地面中心站→用户(l)地面中心站连续向北斗卫星发射信号,经卫星接收、放大、变频后再播发给用户;(2)用户终端接收到卫星信号后注入必要的测站信息,放大变频后再将应答信号播发给两颗北斗导航卫星;(3)两颗北斗导航卫星收到用户的应答信号后,放大变频,再将信号送往地面中心站;(4)地面中心站量测出卫星信号的到达时间后,采用距离交会法求得用户的平面位置(用户的高程则是通过地面高程模型获得);(5)地面控制中心再通过卫星将计算结果告诉用户6-4 BDS系统的特点①主动式定位方式(接收卫星信号,且发射应答信号),隐蔽性差②定位速度慢,用户数量受到一定的限制用户不能独立进行定位,计算工作必须在地面中心站内完成。

gps测量原理及应用复习

gps测量原理及应用复习

1.在GPS测量定位中,多路径误差是怎样产生的?如何消弱多路径误差对GPS测量所带来的影响?答:经测站附近的反射物反射后的卫星信号若进入GPS接收机,就将与直接进入接收机的信号产生干涉,从而使观测值产生偏差,这就是所谓的多路径误差。

解决方法有①选择合适的站址,远离信号反射物②选择合适的接收机(装抑径板、抑径圈,抑制反射信号等)③适当延长观测时间;2.简述GPS网的布网原则。

答:①GPS网的布设应视其目的,作业时卫星状况,预期达到的精度,成果的可靠性以及工作效率,按照优化设计原则进行。

②GPS网一般应通过独立观测边构成闭合图形,例如一个或若干个独立观测环,或者附合路线形式,以增加检核条件,提高网的可靠性。

③GPS网内点与点之间虽不要求通视,但应有利于按常规测量方法进行加密控制时应用。

④可能条件下,新布设的GPS网应与附近已有的GPS 点进行联测;新布设的GPS网点应尽量与地面原有控制网点相联接,联接处的重合点数不应少于三个,且分布均匀,以便可靠地确定GPS网与原有网之间的转换参数。

⑤GPS网点,应利用已有水准点联测高程。

3.如何重建载波?其方法和作用如何?答:在GPS信号中由于已用相位调整的方法在载波上调制了测距码和导航电文,因而接收到的载波的相位已不在连续,所以在进行载波相位测量之前,首先要进行解调工作,设法将调制在载波上的测距码和卫星电文去掉,重新获取载波。

重建载波一般可采用两种方法:一是码相关法,另一种是平方法。

采用前者,用户可同时提取测距信号和卫星电文,但用户必须知道测距码的结构;采用后者,用户无须掌握测距码的结构,但只能获得载波信号而无法获得测距码和卫星电文。

4.什么是伪距单点定位?说明用户在使用GPS接收机进行伪距单点定位时,为何需要同时观测至少4颗GPS卫星?根据GPS卫星星历和一台GPS接收机的伪距测量观测值来直接独立确定用户接收机天线在WGS-84坐标系中的绝对坐标的方法叫单点定位,也叫绝对定位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释:天球:是以地球质心M为中心,半径r为任意长的一个假象的球体。

春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ。

大地经纬度:表示地面点在参考椭球面上的位置,用大地经度λ、大地纬度和大地高h表示。

天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。

黄道:地球公转的轨道面与天球相交的大圆,即当地球绕太阳公转时,地球上的观测者所见到的太阳在天球上的运动轨迹。

黄道面与赤道面的夹角称为黄赤交角,约23.5°。

赤经:为过春分点的天球子午面与过天体的天球子午面之间的夹角。

赤纬:为原点至天体的连线与天球赤道面之间的夹角。

岁差:实际上地球接近于一个赤道隆起的椭球体,在日月和其它天体引力对地球隆起部分的作用下,地球在绕太阳运行时,自转轴方向不再保持不变,从而使春分点在黄道上产生缓慢西移,此现象在天文学上称为岁差。

章动:在太阳和其它行星引力的影响下,月球的运行轨道以及月地之间的距离在不断变化,北天极在天球上绕北黄极顺时针旋转的轨迹十分复杂。

如果观测时的北天极称为瞬时北天极(或真北天极),相应的天球赤道和春分点称为瞬时天球赤道和瞬时春分点(或真天球赤道和真春分点)。

则在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极产生旋转,轨迹大致为椭圆。

这种现象称为章动。

极移:地球自转轴相对于地球体的位置不是固定的,地极点在地球表面上的位置随时间而变化的现象称为极移。

世界时:以平子夜为零时起算的格林尼治平太阳时称为世界时。

力学时:天文学中,天体的星历是根据天体动力学理论建立的运动方程而编算的,其中所采用的独立变量是时间参数T,这个数学变量T定义为力学时。

原子时:以物质内部原子运动的特征为基础的原子时系统。

协调时:以原子时秒长为基础,在时刻上尽量接近于世界时的一种折衷时间系统,称为世界协调时或协调时。

GPS时间系统:属于原子时系统,秒长与原子时相同,但与国际原子时的原点不同,即GPST 与IAT在任一瞬间均有一常量偏差。

GPS定位:GPS定位系统靠车载终端内置手机卡通过手机信号传输到后台来实现定位。

指利用人造地球卫星确定测站点位置的技术。

GPS导航:利用GPS定位卫星,在全球范围内实时进行定位、导航的系统。

绝对定位:在地球协议坐标系中,确定观测站相对地球质心的位置。

相对定位:在地球协议坐标系中,确定观测站与地面某一参考点之间的相对位置。

动态定位:在定位过程中,接收机天线处于运动状态。

静态绝对定位:接收机安置在基线端点的接收机固定不动,通过观测,确定观测站相对地球质心的位置。

静态相对定位:接收机安置在基线端点的接收机固定不动,通过连续观测,取得充分的多余观测数据,确定观测站与地面某一参考点之间的相对位置。

优点:定位精度高;缺点:定位时间长。

差分动态定位:在已知坐标的点上安置一台GPS接收机(称为基准站),利用已知坐标和卫星星历计算出观测值的校正值,并通过无线电设备(称数据链)将校正值发送给运动中的GPS接收机(称为流动站),流动站应用接收到的校正值对自己的GPS观测值进行改正,以消除卫星钟差钟差、接收机钟差、大气电离层和对流层折射误差的影响。

整周未知数:是在全球定位系统技术的载波相位测量时,载波相位与基准相位之间相位差的首观测值所对应的整周未知数。

整周跳变:在GPS接收机接受信号时,由于种种原因,接收机整波计数器在一定时间内记录下来的周数突然发生了变化,也就是错误地记录了周数,这种突变叫做整周跳变。

几何分布精度因子:是衡量定位精度的很重要的一个系数,它代表GPS测距误差造成的接收机与空间卫星间的距离矢量放大因子。

实际表征参与定位解的从接收机至空间卫星的单位矢量所勾勒的形体体积与GDOP成反比,故又称为几何精度因子。

单差:指不同观测站,同步观测相同卫星所得观测量之差。

双差:即不同观测站,同步观测同一组卫星,所得单差观测量之差。

三差:即与不同历元,同步观测同一组卫星所得双观测量之差。

三差模型消除了整周位置数。

码:表达不同信息的二进制数及其组合码元:码的度量单位,一位二进制数称1码元或1比特。

数码率:二进制数字化信息的传输中,每秒传输的比特数,单位为BPS(bit/s)。

信号调制:为了减少在传输时的耗损,人们一般是先对传输信号进行特殊处理,然后再传递。

把原始的待传信号托附到高频振荡的过程称为调制,调制技术主要用来将模拟或数字信号转换成特殊的模拟信号。

信号解调:从已调信号中恢复出原调制信号的过程。

自相关系数:将随机噪声码序列u(t)平移k个码元,获得具有相同结构的新的码序列u(t)。

比较这两个码序列,假定它们的对应码元中,码值(0或1)相同的码元个数为Su,而码元相异的码元个数为Du,那么两者之差Su-Du与两者之和Su+Du(即码元总数)的比值,即定义为随机噪声码序列的自相关函数遥测码:遥测码位于各子帧的开头,它用来表明卫星注入数据的状态,以次指示用户是否选用该颗卫星。

时延差改正:就是载波L1、L2的电离层时延差。

数据龄期:表示基准时间和最近一次更新星历数据的时间之差。

主要是用于评价钟改正数的可信程度。

2.卫星定位技术发展三阶段:卫星三角测量、卫星多普勒测量、GPS卫星定位测量3.GPS相对于其他导航定位系统特点:1.功能多、用途广2.定位精度高3.实时定位GPS相对于常规测量技术的特点:1.观测站之间无需通视2.定位精度高3.观测时间段4.提供三维坐标5.操作简便6.全天候作业4.GPS系统的组成:空间星座部分、地面监控部分和用户设备部分空间星座部分作用:由24+3(备用),均匀分布在6个轨道面内,每个轨道上分布有4颗卫星,提供星历和时间信息、发射伪距和载波信号、提供其他辅助信息地面监控部分作用:中心控制系统、实现时间同步、跟踪卫星进行定轨(由分布在全球的5个地面站组成,其中包括监测站、主控站和信息注入站,其中出主控站外均无人值守)用户部分作用:提供并观测卫星信号、记录和处理数据、提供导航定位信息5.GPS的应用:板块运动和监测、布设测量控制网、在航空摄影测量、地籍测量、海洋测量中的应用6.天球坐标系和地理坐标系的区别:天球坐标系是一种惯性坐标系,其坐标原点及各坐标轴指向在空间保持不变,用于描述卫星运行位置和状态。

而地球坐标系是与地球相关联的坐标系,用于描述地面点的位置。

7.历元平天球坐标系与瞬时极真平天球坐标系区别:历元平天球坐标系也叫做协议天球坐标系或协议惯性坐标系,通常选择某一时刻作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经该瞬时的岁差和章动改正后,分别作Z轴和X轴的指向。

而瞬时极真天球坐标是指z轴指向瞬时地球自转轴;x轴指向瞬时春分点,也称真天球(赤道)坐标系。

8.国家坐标系和独立坐标系的区别:国家坐标系指为进行测绘和处理其成果,规定在全国范围内使用统一坐标框架的坐标系统,又称国家大地坐标系。

而独立坐标系指相对独立于国家坐标系外的局部平面直角坐标系。

9.历元平天球坐标系到协议平地球坐标系的转换过程:协议天球坐标转为瞬时平天球坐标系(岁差旋转),然后将瞬时平天球坐标系转换为瞬时天球坐标系(章动旋转),然后真天球坐标系转换为真地球坐标系(旋转真春分点时角),然后真地球坐标系转换为协议地球坐标系(极移旋转)。

10.高斯平面直角坐标系与UTM坐标系区别:高斯平面直角坐标系指以中央子午线和赤道投影后的交点O作为坐标原点,以中央子午线的投影为纵坐标轴x,规定x轴向北为正;以赤道的投影为横坐标轴y,规定y轴向东为正,从而构成高斯平面直角坐标系。

UTM坐标系是指通用横轴墨卡托格网系统,它和高斯投影特点基本相同,即托球面上任一角度,投影到平面上后保持不变,中央子午线投影为纵坐标轴,并且是投影点的对称轴。

不同的是高斯投影的中央子午线长度变形m0=1,而UTM投影的m0=0.9996.11.GPS定位时间系统与协调世界时UTC之间的区别:GPS时间系统:属于原子时系统,秒长与原子时相同,但与国际原子时的原点不同,即GPST 与IAT在任一瞬间均有一常量偏差。

协调时:以原子时秒长为基础,在时刻上尽量接近于世界时的一种折衷时间系统,称为世界协调时或协调时。

GPST=UTC+1(分)*n-19(分)12.简述恒星时、真太阳时与平太阳时的区别:恒星时——以春分点为参考点,有春分点的周日视运动所定义的时间成为恒星时。

真太阳时——真太阳视圆面中心的时角加12小时。

因为真太阳时是观测太阳视圆面中心得到的,所以真太阳时也称为视太阳时,简称视时。

平太阳时——假设一个参考点的视运动速度等于真太阳周年运动平均速度,且其在天球赤道上作周年视运动,这个参考点称为平太阳。

平太阳连续两次经过本地子午圈的时间间隔为一平太阳日,1/24平太阳日取为1平太阳时。

13.卫星在轨道上所受力的作用:有两类一个是中心引力(地球质心引力),将地球看做密度均匀并由无限多的同心球层所构成的椭球,它对球外一点的引力等效于质量集中于球心的指点所产生的引力。

另外一类是摄动力(非中心引力)它包括地球非球形对称的作用力、日月引力、大气阻力、光辐射压力及地球潮汐作用力。

14.卫星轨道运动的开普勒三定理:卫星运行的轨道是一个椭圆,而该椭圆的一个焦点与地球的质心重合;卫星的地心向径,在相同的时间内所扫过的面积相等;卫星在近地点处速度最大,远地点最小。

卫星运行周期的平方与轨道椭圆长半径的立方之比为一常量。

15.试画图并用文字说明开普勒轨道6参数:图见教材P43a:椭圆轨道的长半径e:椭圆轨道的偏心率这两个参数确定了开普勒椭圆的形状和大小(轨道椭圆形状参数)i:椭圆轨道平面的倾角(轨道平面与地球赤道面的夹角)Ω:升交点的赤经这两个参数唯一地确定了卫星轨道平面与地球体之间的相对定向(轨道平面定向参数)w:椭圆轨道近地点角距(轨道椭圆定向参数)?f:卫星的真近点角(与时间T有关),卫星与近地点之间的地心角距。

(确定卫星在轨道上的瞬时位置)16.地球引力场摄动力对卫星轨道的影响:主要是与地极扁率有关的二阶谐系数项引起,其对卫星的影响有3点分别为:引起轨道平面在空间旋转,是升交点赤经产生周期性变化、引起近地点在轨道平面内旋转,导致近升角距的变化、引起平近点角的变化17.日月引力对卫星的运动有哪些影响:日月引力对卫星轨道的影响,是有太阳和月亮的质量,对卫星所产生的引力加速度而产生的。

日月引力的影响还会产生潮汐现象,而地球的潮汐现象也将影响卫星的运动。

主要表现为一种长周期摄动;太阳力的影响仅为月球引力影响的46%。

18.广播星历:又叫预报星历,是通过卫星发射的含有轨道信息的导航电文,传递给用户的,用户接收到这些信号,经过解码便可获得所需要的卫星星历。

精密星历,又叫后处理星历,是一些国家的某些部门,根据各自建立的跟踪站所获得的精密观测资料,应用与确定预报星历相似的方法,计算的卫星星历。

相关文档
最新文档