半导体物理学基本概念汇总

合集下载

半导体知识点总结大全

半导体知识点总结大全

半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。

它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。

本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。

一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。

原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。

2. 能带:在固体中,原子之间的电子形成了能带。

能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。

3. 半导体中的能带:半导体材料中,能带又分为价带和导带。

价带中的电子是成对出现的,导带中的电子可以自由运动。

(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。

典型的本征半导体有硅(Si)和锗(Ge)。

2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。

常见的杂质有磷(P)、硼(B)等。

(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。

P型半导体中导电的主要载流子是空穴。

2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。

N型半导体中导电的主要载流子是自由电子。

3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。

4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。

二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。

2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。

3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。

半导体物理学概念总结

半导体物理学概念总结

半导体物理学概念总结
半导体物理学是研究半导体材料及其在电子学和光学中的性质和行为的学科。

以下是对半导体物理学概念的总结:
1. 半导体材料,半导体是一种介于导体和绝缘体之间的材料。

它的导电性介于导体和绝缘体之间,具有在一定条件下可控制的电导率。

2. 禁带宽度,半导体中的电子处于能带中,禁带宽度是指价带和导带之间的能量差。

当禁带宽度较小时,半导体易于导电。

3. 载流子,半导体中的载流子包括电子和空穴。

电子是带负电荷的载流子,而空穴是带正电荷的载流子。

4. 杂质,在半导体中加入少量的杂质可以改变其导电性能。

掺杂可以分为n型和p型,分别引入额外的自由电子或空穴。

5. PN结,PN结是半导体器件中常见的结构,由n型半导体和p型半导体组成。

在PN结中,会出现内建电场和整流特性。

6. 肖特基结,肖特基结是由金属和半导体组成的二极管。

它具有低反向漏电流和快速开关特性。

7. 光电子学,半导体在光照射下会产生光生载流子,这一特性被广泛应用于光电子学领域,如光电二极管和太阳能电池。

8. 晶体管,晶体管是半导体器件中的重要组成部分,可以放大和控制电流。

它的发明对电子技术产生了深远影响。

在半导体物理学中,以上概念都是非常重要的,它们构成了半导体器件和电子技术的基础。

研究半导体物理学不仅有助于深入理解现代电子器件的工作原理,也对半导体材料的开发和应用具有重要意义。

希望以上总结能够帮助你更好地理解半导体物理学的基本概念。

半导体物理学中的基本概念

半导体物理学中的基本概念

半导体物理学中的基本概念半导体是一种电子性能介于导体和绝缘体之间的物质。

在现代电子技术中,半导体被广泛应用于各种电子器件中。

要了解半导体,首先要掌握一些基本概念。

1. 能带结构能带结构是描述半导体电子状态的重要工具。

一个半导体晶体中的电子被排列在一系列能带中。

能带是一段能量范围,其中的电子具有相似的能量和动量。

在导带(conduction band)中,电子的能量很高,它们可以流动在半导体中,而在价带(valence band)中,电子的能量较低,它们被束缚在原子核和其他离子周围。

2. 禁带宽度禁带宽度(bandgap)是能带结构的一个重要参数。

它是导带和价带之间的能量间隙,通过这个间隙电子要么不能被激发到导带中,要么不能从导带回到价带中。

禁带宽度的大小是半导体的一个重要参数。

它的大小直接决定了半导体的电子和光学性质。

3. n型半导体和p型半导体n型半导体和p型半导体是两种不同类型的半导体。

n型半导体中存在较多的自由电子,它们带负电荷。

p型半导体中存在较多的空穴,它们带正电荷。

当n型半导体和p型半导体接触时,会出现pn结,这种结构在电子器件中得到了广泛应用。

4. pn结pn结是由n型半导体和p型半导体组成的结构。

在pn结中,n型半导体和p型半导体之间的禁带宽度是逐渐变小的。

这是因为在p型半导体中大量的电子会移动到n型半导体中,形成空穴。

这些空穴和n型半导体中的自由电子可以在pn结中重新组合,产生光子释放出能量。

5. 掺杂半导体需要通过掺杂来实现特定的电子性能。

掺杂是向半导体中引入特定的杂质元素,改变其电学性质的过程。

p型半导体中通常掺杂一些III族元素(例如硼),使得p型半导体中存在大量的空穴。

n型半导体中通常掺杂一些V族元素(例如砷),使得n型半导体中存在大量的自由电子。

总之,半导体物理学是现代电子技术的重要基础。

了解半导体物理学的基本概念对于理解电子器件原理、设计和制造都非常重要。

半导体物理主要概念

半导体物理主要概念

半导体物理主要概念在现代科技和电子领域中,半导体材料具有重要的地位。

半导体物理学涉及了许多核心概念,这些概念对我们理解半导体材料的性质和应用至关重要。

本文将重点介绍一些关键的半导体物理主要概念。

1. 能带理论(band theory)能带理论是解释固体材料电子结构的核心理论。

它描述了原子的电子如何在固体中形成能带(电子能量分布的区域)。

根据能带理论,固体材料中的电子可以填充到不同能量的能带中。

价带是离自由电子最近的能带,其中填满电子的能带称为价带;离自由电子最远的能带是导带,其中可以存在自由电子。

价带和导带之间的能量间隔称为能隙(band gap),是一个半导体的重要参数。

有无能隙区分了导电性质和绝缘性质的半导体。

2. 禁带宽度(band gap width)禁带宽度,也称能隙宽度,是半导体能带理论的一个重要概念。

禁带宽度是价带和导带之间的能量差异。

半导体材料根据禁带宽度的不同,可以分为直接带隙半导体和间接带隙半导体。

直接带隙半导体的价带和导带在动量空间中的最小距离很小,电子可以通过发射或吸收光子以较高的效率进行能带跃迁。

而间接带隙半导体的最小距离较大,电子的能带跃迁一般需要借助缺陷或其他粒子的参与。

3. 斯特克斯位移(Stark effect)斯特克斯位移描述了外加电场对半导体能带结构的影响。

当半导体材料中存在电场时,它会改变价带和导带的能量分布,导致能带发生位移。

斯特克斯位移是半导体器件如光电二极管等的基础理论。

4. 谐振频率(resonant frequency)谐振频率是指在某种特定的条件下,半导体材料会表现出共振特性。

半导体材料中的晶格结构和电子能级之间的相互作用会导致谐振频率的存在,这在电子器件的设计和性能优化中发挥重要作用。

5. 载流子(charge carrier)载流子是指在半导体材料中能够自由移动的电荷粒子。

在半导体中,载流子通常可以分为两类:电子和空穴(空穴可以看作是价带内缺少电子导致的正电荷)。

半导体物理学

半导体物理学

半导体物理学半导体物理学是研究半导体材料及其物性的学科领域。

半导体材料是一种将电流在导电和绝缘体之间进行调控的材料,具有在一定条件下可变的电导特性。

在现代电子技术中,半导体器件如晶体管、二极管和集成电路等起着重要作用。

本文将介绍半导体物理学的基本概念、理论与应用。

一、半导体的基本概念半导体是介于导体和绝缘体之间的一类材料。

与导体相比,半导体的电导率较低;而与绝缘体相比,半导体在一定条件下可以导电。

半导体材料通常由硅、锗和化合物半导体等组成。

半导体中主要存在两种载流子:电子和空穴。

电子是带负电荷的粒子,而空穴则可以被视为缺少一个电子的位置。

在半导体中,电子和空穴的行为决定了它的导电特性。

二、半导体的能带结构半导体的能带结构与其导电特性密切相关。

能带是描述材料中电子能量和允许电子处于的状态的能级。

常用的能带有价带和导带。

在绝缘体和绝缘态半导体中,价带和导带之间存在能隙,电子需要克服能隙才能跃迁到导带中形成电流。

而在半导体中,能隙相对较小,室温下部分电子已经跃迁到导带,因此半导体材料具有较好的导电性。

三、半导体的掺杂掺杂是通过向半导体材料中引入杂质来改变其电导特性。

掺杂分为n型和p型两种类型。

n型半导体是通过掺入五价杂质(如磷或砷)来引入额外的自由电子,从而增加半导体的导电性能。

而p型半导体则是通过掺入三价杂质(如硼或铝)来引入额外的空穴,从而增加半导体的导电性能。

四、半导体器件半导体物理学的应用主要体现在各种半导体器件的研制和应用上。

晶体管是最重要的半导体器件之一。

晶体管的基本原理是通过控制电流在半导体材料中的流动来放大和开关信号。

晶体管的发明极大地改变了电子技术的发展,并推动了计算机、通信和各种电子设备的进步。

二极管是另一种常见的半导体器件,它是由一个p型半导体和一个n型半导体组成。

二极管具有只允许单向电流通过的特性,可以用于整流、光电探测和电压调节等应用。

集成电路是一种将多个晶体管、二极管和其他电子元件集成在一起的半导体器件。

半导体物理学

半导体物理学

半导体物理学前言半导体物理学是一门研究半导体材料及器件的学科。

半导体材料具有介于导体和绝缘体之间的特性,因此在电子学、光电子学和微电子学等领域具有重要应用。

本文将介绍半导体物理学的基本概念、半导体材料的性质以及常见的半导体器件。

半导体的概述半导体是指导电性介于导体和绝缘体之间的材料。

在半导体中,电子的能带结构决定了其导电性能。

常见的半导体材料包括硅(Si)、锗(Ge)和化合物半导体如镓砷化物(GaAs)。

在半导体材料中,存在两个主要的能带:价带和导带。

价带是最高填充电子能级的带,而导带则是能够自由移动的电子能级带。

两个能带之间的能量间隙被称为带隙。

在绝缘体中,带隙非常大,电子无法跃迁到导带,因此无法导电;而在导体中,带隙几乎为零,电子可以自由地从价带跃迁到导带,导致材料具有良好的导电性。

半导体的性质半导体具有一些独特的性质,使得其在电子学领域中得以广泛应用。

英贝尔激发在半导体中,当外界能量(如光)与材料相互作用时,可以激发出电子从价带跃迁到导带。

这一过程被称为英贝尔激发,是光电子学和光伏效应的基础。

N型和P型半导体通过在半导体材料中引入杂质,可以改变其导电性质。

掺入五价元素(如磷)的半导体被称为N型半导体,具有额外的自由电子;而掺入三价元素(如硼)的半导体被称为P型半导体,具有额外的空穴。

N型和P型半导体通过PN结的形成可以构成多种半导体器件。

脱层和外延生长在半导体器件的制备过程中,常常需要将不同类型的半导体材料堆叠起来。

脱层是将不同类型的材料分离的一种技术,而外延生长是在已有的材料上生长新的材料层。

这两种技术在半导体器件的制造中具有关键作用。

常见的半导体器件半导体物理学的研究为设计和制造各种半导体器件提供了理论和实验基础。

下面介绍几种常见的半导体器件。

PN结二极管PN结二极管是最简单的半导体器件之一。

它是由N型和P 型半导体材料组成的结构。

当正向偏置时,电子从N型区域向P型区域流动;当反向偏置时,电子被阻挡。

半导体物理学 基本概念汇总

半导体物理学  基本概念汇总

半导体物理学基本概念有效质量-----载流子在晶体中的表观质量,它体现了周期场对电子运动的影响。

其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。

空穴-----是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。

回旋共振----半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。

施主-----在半导体中起施予电子作用的杂质。

受主-----在半导体中起接受电子作用的杂质。

杂质电离能-----使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。

n-型半导体------以电子为主要载流子的半导体。

p-型半导体------以空穴为主要载流子的半导体。

浅能级杂质------杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。

浅能级杂质对半导体的导电性质有较大的影响。

深能级杂质-------杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。

深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。

位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。

杂质补偿-----在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。

直接带隙-----半导体的导带底和价带顶位于k 空间同一位置时称为直接带隙。

直接带隙材料中载流子跃迁几率较大。

间接带隙-----半导体的导带底和价带顶位于k 空间不同位置时称为间接带隙。

间接带隙材料中载流子跃迁时需有声子参与,跃迁几率较小。

平衡状态与非平衡状态-----半导体处于热平衡态时,载流子遵从平衡态分布,电子和空穴具有统一的费米能级。

半导体物理学的基本概念和应用

半导体物理学的基本概念和应用

半导体物理学的基本概念和应用半导体物理学是研究半导体材料及其性质、特性和应用的学科。

本文将介绍半导体物理学的基本概念以及其在实际应用中的重要性。

一、半导体的基本概念半导体是一种导电性介于导体和绝缘体之间的材料。

与导体相比,半导体的导电性较差;与绝缘体相比,半导体的导电性又较强。

半导体晶体的原子结构和能带结构决定了其导电性质。

1. 原子结构半导体材料通常由硅(Si)和锗(Ge)等元素组成。

这些元素在晶体中形成原子网格结构,每个原子通过共享电子与相邻原子相连接,形成晶体的稳定结构。

2. 能带结构能带是描述电子在晶体中能量分布的概念。

在半导体中,能带又被分为价带和导带。

价带是指电子在静止状态下的能量最高的带,其中填满了电子;导带是指离子在晶体振动下电子能量较高的带,其中存在着能够移动的自由电子。

3. 禁带宽度禁带是指价带和导带之间的能量空隙,也称为禁带宽度。

在绝缘体中,禁带宽度较大,几乎不存在电子的跃迁。

而在半导体中,禁带宽度较小,电子可以通过吸收或释放能量从价带跃迁到导带,从而产生导电性。

二、半导体物理学的应用1. 半导体器件在现代科技领域,半导体器件被广泛应用于电子、光电子、通信等领域。

常见的半导体器件包括二极管、晶体管、太阳能电池等。

这些器件通过控制电子的流动,实现电流、电压以及光信号的调节和转换。

2. 光电子学半导体物理学在光电子学中发挥着重要作用。

半导体材料的光电特性使其成为制造光电二极管、激光器和光电传感器等设备的理想选择。

光电二极管利用光的能量将光信号转化为电信号,激光器则利用载流子的复合过程产生高亮度、单色、相干的光束,广泛应用于通信、医疗和激光加工等领域。

3. 太阳能电池半导体物理学对太阳能电池的研究和应用具有重要意义。

太阳能电池利用半导体材料的光电特性,将太阳光直接转换为电能。

该技术在可再生能源领域具有巨大潜力,可解决传统能源短缺和环境污染等问题。

4. 半导体材料的研究半导体物理学对新材料的研究和开发也具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理学基本概念有效质量-----载流子在晶体中的表观质量,它体现了周期场对电子运动的影响。

其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。

空穴-----是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。

回旋共振----半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。

施主-----在半导体中起施予电子作用的杂质。

受主-----在半导体中起接受电子作用的杂质。

杂质电离能-----使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。

n-型半导体------以电子为主要载流子的半导体。

p-型半导体------以空穴为主要载流子的半导体。

浅能级杂质------杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。

浅能级杂质对半导体的导电性质有较大的影响。

深能级杂质-------杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。

深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。

位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。

杂质补偿-----在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。

直接带隙-----半导体的导带底和价带顶位于k 空间同一位置时称为直接带隙。

直接带隙材料中载流子跃迁几率较大。

间接带隙-----半导体的导带底和价带顶位于k 空间不同位置时称为间接带隙。

间接带隙材料中载流子跃迁时需有声子参与,跃迁几率较小。

平衡状态与非平衡状态-----半导体处于热平衡态时,载流子遵从平衡态分布,电子和空穴具有统一的费米能级。

半导体处于外场中时为非平衡态,载流子分布函数偏离平衡态分布,电子和空穴不具有统一的费米能级,载流子浓度也比平衡时多出一部分,但可认为它们各自达到平衡,可引入准费米能级表示。

电中性条件-----半导体在任何情况下都维持体内电中性,即单位体积内正电荷数与负1电荷数相等。

非简并半导体----半导体中载流子分布可由经典的玻尔兹曼分布代替费米分布描述时,称之为非简并半导体。

简并半导体-----半导体重掺杂时,其费米能级有可能进入到导带或价带中,此时载流子分布必须用费米分布描述,称之为简并半导体。

简并半导体有如下性质:1)杂质不能充分电离;2)杂质能级扩展为杂质能带。

如果杂质能带与导带或价带相连,则禁带宽度将减小。

本征半导体-----本征半导体即纯净半导体,其载流子浓度随温度增加呈指数规律增加。

杂质半导体----在半导体中人为地,有控制地掺入少量的浅能级杂质的半导体,可在较大温度范围内保持半导体内载流子浓度不随温度改变。

即掺杂的主要作用是在较大温度范围维持半导体中载流浓度不变。

多数载流子与少数载流子------多数载流子是在半导体输运过程中起主要作用的载流子,如n-型半导体中的电子。

而少数载流子在是在半导体输运过程中起次要作用的载流子,如n-型半导体中的空穴。

费米分布------费米分布是费米子(电子)在平衡态时的分布,其物理意义是在温度T 时,电子占据能量为E 的状态的几率,或能量为E 的状态上的平均电子数。

费米能级-----费米能级是T=0 K时电子系统中电子占据态和未占据态的分界线,是T=0 K时系统中电子所能具有的最高能量。

漂移速度----载流子在外场作用下定向运动的平均速度,弱场下漂移速度大小正比于外场强度。

迁移率----描述半导体中载流子在外场中运动难易程度的物理量,若外场不太强,载流子运动遵从欧姆定律时,迁移率与电场强度无关,为一常数。

强场时,迁移率与外场有关。

电导率-----描述材料导电性质的物理量。

半导体中载流子遵从欧姆定律时,电流密度正比于电场强度,其比例系数即为电导率。

电导率大小与载流子浓度,载流子的迁移率有关。

从微观机制看,电导率与载流子的散射过程有关。

电阻率-----电导率的倒数。

本征半导体电阻率随温度上升而单调下降。

同样,电阻率与载流子的散射过程有关。

金属电阻率-----随温度上升而上升。

(晶格振动散射)散射几率-----载流子在单位时间内被散射的次数。

平均自由时间-----载流子在两次散射之间自由运动的平均时间。

强场效应-----电场强度较高时载流子的平均漂移速度与电场强度间的关系偏离线性关系的现象,此时迁移率不再是常数。

电场强度继续增加时,漂移速度不再随外场增加而变化,达到饱和。

热载流子-----半导体处于强场中时,电子的平均能量高于晶格平均能量,以温度度量,则电子平均温度高于晶格平均温度,因此称强场中电子为热载流子。

多能谷散射-----半导体中有多个能量值接近的导带底时,电子被散射到不同能谷的现象。

负微分电导(电阻)------定义dJ/dE为微分电导,当半导体中电流密度随电场增加而减小时,微分电导小于零,称为负微分电导。

耿氏振荡-----存在负微分电导的半导体在强场中电流出现振荡的现象。

由于载流子分布不均匀,在高阻区形成偶极畴,偶极畴不断产生、长大、漂移和吸收的过程便产生微波振荡。

非平衡载流子-半导体处于非平衡态时,比平衡态时多出来的那一部分载流子称为非平衡载流子。

Δp=Δn非平衡载流子的注入与复合-----非平衡载流子的产生过程称为注入,非平衡载流子湮灭的过程称为复合。

准费米能级-----半导体处于非平衡态时,导带电子和价带空穴不再有统一的费米能级,但可以认为它们各自达到平衡,相应的费米能级称为电子和空穴的准费米能级。

少子寿命----非平衡少数载流子在半导体中存在的平均时间。

即产生非平衡载流子的因素去除后,非平衡载流子浓度衰减至初始时浓度的1/e倍所需的时间。

直接复合-----电子从导带直接跃迁至价带与空穴相遇而复合。

间接复合-----电子通过禁带中的能级而跃迁至价带与空穴相遇而复合。

表面复合----发生在半导体表面处的复合。

体内复合----发生在半导体内部的复合。

辐射复合----电子从高能级跃迁至低能级与空穴复合时,多余的能量以辐射光子的形式释放。

无辐射复合-----电子从高能级跃迁至低能级与空穴复合时,多余的能量以辐射声子的形式释放。

俄歇复合----电子从高能级跃迁至低能级与空穴复合时,释放的能量用于其它载流子由较低能态跃迁至较高能态。

复合中心-----对间接复合起促进作用的深能级杂质。

相应的杂质能级称为复合中心能级,通常位于半导体禁带中央能级附近。

载流子陷阱------对间接复合起阻碍作用的深能级杂质。

相应的杂质能级称为陷阱能级。

2半导体物理学计算问题能态密度费米分布杂质电离能载流子浓度费米能级与准费米能级电阻率电导率例1. 已知Si 导带底在<100>方向,等能面为旋转椭球面,等能面附近能谱:2222k 3⎫⎛k 1+k 2E =+试求Si 导带的能⎪式中m t 和m l 分别为横向和纵向有效质量。

2⎝m t m l ⎭态密度。

解:由能态密度定义:g (E =dZ dE式中dZ 为E-E+dE之间的能量状态数,也可以视为k 空间中两等能面之间的状态数,对一支能带:dZ i =g i (E dE =2g k dk(式中g k =(V(2π3,dk 为k 空间体积元。

k 3⎫k 3k 1+k 2 ⎛k 1+k 2E =++=1 ⎪⇒2m t E 2m l E 2⎝m t m l ⎭22V*等能面为椭球面,此等能面所围的体积为:4π⎛2m t E ⎫⎛2m l E ⎫=abc = ⎪⎪2233⎝⎭⎝⎭4π=4π(23312m t m312lE32两等能面之间的体积:3⇒dZ gi =i (E dE =2g (k dkdk =dV *=4π(2m 12t m l 3123 32E dE 12=2V2π(2 32m t m l E12dE(232m 23 3=2πt m 1lπ3E1dE (23=V⎛2⎫1122π2 2m ⎝⎪⎭t m l EdESi 导带底在<100>方向,包括六个旋转椭球等能面,故能态密度:3g (E =∑g i (E =6⋅V⎛2⎫112i2π2 m ⎝ 2⎪⎭t m l E3=V⎛2⎫m 122π2 2⎪6⎝⎭t mlE2=V⎛2m 32c ⎫2π2 E2⎝ 2⎪⎭m c =(6m t m 1l2=62(m 213t m l能态密度有效质量例2. 某晶体价电子具有球形等能面,电子能谱为:E = 2 k 22m试求其能态密度。

解:dZ =g (E dE =2g (kdk=2V2m E ⎛2m ⎫1-(2π34πk dk =V 2π2 2⎪dE⎝⎭2E32=V ⎛2m ⎫2π2 2⎪EdE⎝⎭3⇒g (E =V ⎛2m ⎫12π2 ⎝ 2⎪E ⎭例3. 求本征半导体的费米能级和载流子浓度。

解:本征半导体的电中性条件:n 0=p 0⎧⎪n ⎪=N E c -E F C exp (-k ⎨B T ⎪⎪p =N exp(-E F -E v ⎩0v k B T ⇒N E c -E F E F -E vC exp (-k =N v exp(-B T kB T⇒-E c -E F E F -E vk =-B Tk +lnN v B TN CE +E vi =E F =E c 2+k B T 2lnN v N C *⇒E v3k B T i =E F =E c +E 2+4ln m p m *nn 12i =n 0=p 0=(N c N vexp (-E g 2kB T例4. 已知处于平衡态的非简并半导体中施主浓度为N D ,当半导体处于饱和区时,求其费米能级和载流子浓度。

解:只含一种施主杂质的半导体的电中性条件:n 0=p 0+n +Dor :n 0=p 0+(N D -n D半导体处于饱和区时,p 0≈0, n 0=n +D ≈N DN ⎛E c -E F ⎫c exp -⎝k ⎪=N DB T ⎭⇒-E c -E FD N D k F =E c +k B T lnB T=lnN N ⇒E cN c载流子浓度:n 0=N D n 20p 0=n i⇒p =n 2n 20i /n 0=i /N D=⎛ N c N v ⎫⎛E ⎝N ⎪exp -g ⎫D ⎭⎝k B T ⎪⎭半导体物理学作图问题半导体能带结构示意图分布函数曲线能态密度曲线准费米能级典型半导体的能带结构半导体的能带结构-价带为满带,价带与紧邻空带间禁带宽度较小;室温下即有电子从价带跃升至导带:空带(导带)导带(近乎空带). . . . . . . . .Ec EcGaAs的能带结构(直接带隙)EvEv 价带(近乎满带)T=0KT>0KSi 、Ge的能带结构(间接带隙)分布函数曲线能态密度曲线 N (E1E0E 0FEF半导体平衡时能带结构:Ec EcE FE F EvEvn 型半导体p 型半导体处于非平衡态时半导体的准费米能级:E FnEc EcE EF E Fp E E Fn FpF EvEvn 型半导体p 型半导体半导体物理学实验规律费米能级与杂质浓度和温度的关系费米能级的位置与半导体的导电类型及电子填充能级水平的关系杂质半导体中载流子浓度与温度的关系杂质半导体中载流子浓度与杂质浓度的关系载流子的迁移率与杂质浓度和温度的关系半导体的电阻率与温度的关系半导体中非平衡载流子的运动图象E费米能级的位置与半导体的导电类型及电子填充能级水平的关系杂质半导体中载流子浓度与温度的关系5杂质半导体中载流子浓度与杂质浓度的关系半导体中非平衡载流子的运动图象 6。

相关文档
最新文档