专题训练 不等式(组)及整式的加减

合集下载

整式的加减(一)专题训练

整式的加减(一)专题训练
- ・ — — — … - - ・ - — — — — — ・ — … - - - - - - ・ — — — — — — — — ・ — — ‘ ‘ 。 ・ — — — — ‘ ‘ 。 … ・ - - - - — — - - - - — 。 - - — — — ‘ 。 。 。 。 。 。 ‘ 。 。 ’ — 。 。 。 。 ’ — 。 。 。 。 。 。 — — 。 。 。 。 — 。 ‘ 。 。 。 ’
人 的 天 职在 于 有 足够 的勇 气 去探 索 真 理 。— — 尼古 拉 斯 ・ 自尼 哥
整式的加减( 专题硼练 一)
1 .- x + x + y) 一 4 + ,) 0 (3 8y 4 一( 一 Z2 ,
四 、 算 计
1 . (x一7 +2 一 x+5 . 652 ) (3 )
I i me s uy t ec u a e u n u h t e kf r r t. t s n’ t b o r g o se o g s e u h d o o ot
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
人生只是由一系列下决 心的努力所构成 。——托马斯 ・ 富勒
一 一 , 一一
23
24 f 一6 , 6 丢 5 一7 (_ 其 = . . - 5剖 中 一 6 6

2 . O 一{a b 一 a b 一( —b C ], 6 1 a 2 — 一[3 +2 —c a — ) }

七年级数学专题训练:整式的加减计算题100题(含答案)

七年级数学专题训练:整式的加减计算题100题(含答案)

题减整式的加计算1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。

5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。

《整式的加减》专项练习100题(有答案)

《整式的加减》专项练习100题(有答案)

《整式的加减》专项练习100题(有答案)哎,说起《整式的加减》,这可是我们数学学习中的基本功啊!今天,我就来给大家分享一组我精心准备的专项练习题,一共100题,每题都有答案哦!准备好了吗?咱们开始吧!首先,咱们来点简单的,比如这样一道题:1. 3a + 2b 4a + b = ?哎呀,这个题很简单,先把同类项放一起,3a和4a,2b和b,然后相加减,不就出来了嘛!答案是a + 3b。

再来一道稍微有点挑战性的:2. 5x^2 3x + 2 2x^2 + 4x 1 = ?这个题,咱们先把同类项合并,5x^2和2x^2是同类项,3x和4x也是同类项,常数项2和1也是同类项。

合并后,5x^2 2x^2等于3x^2,3x + 4x等于7x,2 1等于1。

所以答案是3x^2 + 7x + 1。

好啦,接下来咱们来点更有趣的:3. 如果a = 2,b = 3,那么2a^2 + 3b^2 a b等于多少?这个题,咱们先把a和b的值代入进去,2 * 2^2 + 3 * 3^2 2 3。

计算一下,4 * 2 + 9 * 3 2 3等于8 + 27 5,答案是30。

哎呀,做数学题真是件开心的事情,尤其是当你看到那些复杂的式子在你手里变得简单时,心里那个美啊!现在,让我们来点更有挑战性的:4. (x + y)(x y) + 2xy = ?这个题,我们要用到平方差公式,x^2 y^2 + 2xy。

然后,我们可以把它写成(x + y)^2的形式。

所以答案是(x + y)^2。

好啦,做到这里,我已经有点累了,但是我知道你们肯定还意犹未尽。

那么,接下来的题目,就交给大家自己挑战吧!5. 4m^2n 3mn^2 + 2mn n^3 = ?6. (2x 3y)^2 (x + 2y)^2 = ?7. 5a^2b 3ab^2 + 2ab b^3 = ?8. (x + 2)(x 3)(x + 1) = ?这些题目,都是我精心挑选的,既有基础的加减法,也有乘法、平方差的应用,还有代数式的化简。

整式的加减专项练习25题

整式的加减专项练习25题

整式的加减专项练习25题练习1:(2x + 3y) - (4x - 5y)解答:使用分配律展开括号,得到2x + 3y - 4x + 5y。

合并同类项,得到-2x + 8y。

练习2:(6a - 4b) + (8a + 9b)解答:使用分配律展开括号,得到6a - 4b + 8a + 9b。

合并同类项,得到14a + 5b。

练习3:(5x^2 - 3xy + 2y^2) - (2x^2 + xy - 4y^2)解答:使用分配律展开括号,得到5x^2 - 3xy + 2y^2 - 2x^2 - xy + 4y^2。

合并同类项,得到3x^2 - 4xy + 6y^2。

练习4:(-2x^2 + 3xy - y^2) + (4x^2 - 2xy + 5y^2)解答:使用分配律展开括号,得到-2x^2 + 3xy - y^2 + 4x^2 - 2xy + 5y^2。

合并同类项,得到2x^2 + xy + 4y^2。

练习5:(-7a^3 + 4a^2b - 3ab^2) - (-2a^3 - 5a^2b + ab^2)解答:使用分配律展开括号,得到-7a^3 + 4a^2b - 3ab^2 + 2a^3 +5a^2b - ab^2。

合并同类项,得到-5a^3 + 9a^2b - 4ab^2。

练习6:(3x - 4y)(5x + 2y)解答:使用分配律展开括号,得到15x^2 + 6xy - 20xy - 8y^2。

合并同类项,得到15x^2 - 14xy - 8y^2。

练习7:(2a^2 - 3ab + 4b^2)(3a + 2b)解答:使用分配律展开括号,得到6a^3 + 4a^2b - 9a^2b - 6ab^2 + 12ab^2 + 8b^3。

合并同类项,得到6a^3 - 5a^2b + 14ab^2 + 8b^3。

练习8:(5x^3 - 2xy^2)(3x^2 + 4y^2)解答:使用分配律展开括号,得到15x^5 + 20x^2y^2 - 6x^3y^2 -8xy^4。

七年级数学专题训练07 整式的加减(附答案)

七年级数学专题训练07 整式的加减(附答案)

七年级数学专题训练07 整式的加减阅读与思考整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.例题与求解[例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.(江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.[例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( )A.a+b B.a-b C.a+b2D.a2+b(“希望杯”初赛试题)解题思路:采用赋值法,令a=12,b=-12,计算四个式子的值,从中找出值最大的式子.[例3]已知x=2,y=-4时,代数式ax2+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值.(北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.(北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.[例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?(“希望杯”初赛试题) 解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.[例6]能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.(“华罗庚金杯”少年邀请赛试题) 解题思路:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.能力训练A级1.若-4x m-2y3与23x3y7-2n是同类项,m2+2n=______.(“希望杯”初赛试题) 2.当x=1,y=-1时,ax+by-3=0,那么当x=-1,y=1时,ax+by-3=______.(北京市“迎春杯”竞赛试题) 3.若a+b<0,则化简|a+b-1|-|3-a-b|的结果是______.4.已知x2+x-1=0,那么整式x3+2x2+2002的值为______.5.设2332,4536,x y zx y z++=⎧⎨++=⎩则3x-2y+z=______.(2013年全国初中数学联赛试题)6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则C=( ).A.5a2+3b2+2c2B.5a2-3b2+4c2A.3a2-3b2-2c2A.3a2+b2+4c27.同时都有字母a,b,c,且系数为1的7次单项式共有( ).A.4个B.12个C.15个D.25个(北京市竞赛题) 8.有理数a,b,c则代数式|a|-|a+b|+|c-a|+|b-c|化简后的结果是为( ).A.-a B.2a-2b C.2c-a D.a9.已知a+b=0,a≠b,则化简ba (a+1)+ab(b+1)得( ).A.2a B.2b C.+2 D.-210.已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值.11.若a,b均为整数,且a+9b能被5整除,求证:8a+7b也能被5整除.(天津市竞赛试题)B级1.设a<-b<c<0,那么|a+b|+|b+c|-|c-a|+|a||+b|+|c|=______.(“祖冲之杯”邀请赛试题) 2.当x的取值范围为______时,式子-4x+|4-7x|-|1-3x|+4的值恒为一个常数,这个值是______.(北京市“迎春杯”竞赛试题)第8题图3.当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于______.4.已知(x +5)2+|y 2+y -6|=0,则y 2-15xy +x 2+x 3=______. (“希望杯”邀请赛试题)5.已知a -b =2,b -c =-3,c -d =5,则(a -c )(b -d )÷(a -d )=______.6.如果对于某一特定范围内x 的任意允许值,P =|1-2x |+|1-3x |+…+|1-9x |+|1-10x |的值恒为一个常数,则此值为( ).A .2B .3C .4D .5(安徽省竞赛试题)7.如果(2x -1)6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6等于______;a 0+a 2+a 4+a 6等于______.A .1,365B .0,729C .1,729D .1,0(“希望杯”邀请赛试题)8.设b ,c 是整数,当x 依次取1,3,6,11时,某学生算得多项式x 2+bx +c 的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是( ).A .当x =1时,x 2+bx +c =3B .当x =3时,x 2+bx +c =5C .当x =6时,x 2+bx +c =21D .当x =11时,x 2+bx +c =93(武汉市选拔赛试题)9.已知y =ax 7+bx 5+cx 3+dx +e ,其中a ,b ,c ,d ,e 为常数,当x =2时,y =23;当x =-2时,y =-35,那么e 的值是( ).A .-6B .6C .-12D .12(吉林省竞赛试题)10.已知a ,b ,c 三个数中有两个奇数,一个偶数,n 是整数,如果s =(a +n +1)·(b +2n +2)(c +3n +3),那么( ).A .s 是偶数B .s 是奇数C .s 的奇偶性与n 的奇偶性相同D .s 的奇偶性不能确定(江苏省竞赛试题)11.(1)如图1,用字母a 表示阴暗部分的面积;(2)如图2,用字母a ,b 表示阴暗部分的面积;(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需12.将一个三位数abc 中间数码去掉,成为一个两位数ac ,且满足abc =9ac +4c ,如155=9×15+4×5.试求出所有这样的三位数.a a a xy z 图3 ba b图2 a专题07答案整式的加减例1 -17例2 B例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2b+1)+2×(b -3)-5=-17.解得b=-1,故原多项式为-x2-4 x-5.当x=-2时,-x2-4 x-5=-4+8-5=-1.例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a7=80+b8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).例6 如图,由题意得a1+a2+a3=29,a2+a3+a4=29,…a6+a7+a 1=29,a7+a1+a 2=29,将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.∴a1+a2+a3+a4+a5+a6+a7=672 3 .这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.故不存在满足题设要求的7个整数.A级1. 292. -63. -24.20035. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.6.C7.C提示:设满足条件的单项式为a m b n c p的形式,其中m,n,p为自然数,且m+n+p=7.8.C9. D10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).11. 提示:8 a+7 b=8(a+9 b)-65 b.B级1. -a+b+c2. ≥471 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.3. 224. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2-15x y+x 2+x 3=y 2+y+(-5)2+(-5)3=6+25-125=-94.5. -1 26. B 提示:利用绝对值的几何意义解此题. x的取值范围在18与17之间7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.8. C 9. A10. A提示:原式=a+b+c+6n+6是偶数.11. 提示:(1)4.5πa2S阴影=12(a+a+a)2=4.5πa2(2)12ab-12b2+14πb2 S阴影=12(a+a)b-(b2-14πb2)=12a b-12b 2+14πb2(3)3 x+3 y+2 z总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.12. 因为abc=100 a+10 b+c,ac=10a+c.由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)又∵5是质数,故5,6,ca b=⎧⎨+=⎩,从而1,2,3,4,5,6,5,4,3,2,1,0,ab=⎧⎨=⎩则符合条件的abc=155,245,335,425,515,605.。

第2章 整式的加减八大专题训练

第2章  整式的加减八大专题训练

第2章:《整式的加减》八大专题训练专训1:列代数数式◐名师点金◑列代数式就是先将文字叙述的语言表示为数量或数量关系,再用数学式子表示出来,要正确列出代数式需要注意以下几点:(1)仔细辨别词义;(2)弄清数量关系;(3)注意运算顺序;(4)规范书写格式.训练角度1:列代数式表示数量关系1.用代数式表示:(1)a,b两数的平方和减去它们乘积的2倍;(2)a,b两数的和的平方减去它们的平方和;(3)偶数,奇数;(4)一个两位数,个位上的数字为a,十位上的数字为b,请表示这个两位数;(5)若a表示三位数,现把2放在它的右边,得到一个四位数,请表示这个四位数。

训练角度2:列代数式解决几何问题2.有若干张边长都是2的三角形纸片,从中取出一些纸片按如图所示的方式拼接起来,可以拼成一个大的平行四边形或一个大的梯形,如果取的纸片数为a,试用含n的代数式表示拼成的平行四边形或梯形的周长。

训练角度3:列代数式解决实际生活中的问题3.随着十一黄金周的来临,父亲、儿子、女儿三人准备外出旅游.甲旅行社规定:大人买一张全票,两个孩子的票价可按全票价的一半优惠;乙旅行社规定:三人可购买团体票,团体票价是全票价的60%.已知两个旅行社的全票价相同,则他们选择哪个旅行社较省钱?训练角度4:列代数式解决规律探究问题4.观察图中小黑点的摆放规律,并按照这样的规律继续摆放,若第n个图形中小黑点的个数为y.请解答下列问题:(1)填表(2)当n=8时,y=__________.(3)用含n的代数式表示y.n 1 2 3 4 5 ⋅⋅⋅y 1 3 7 13 ⋅⋅⋅专训2:与数有关的排列规律◐名师点金◑1.探究数式中的排列规律,关键是找出前面几个数与自身序号数的关系,从而找出一般规律,进而解决问题.2.探究数阵中的排列规律,一般都是先找一个具有代表性的数(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.训练角度1:数式中的排列规律1.从1开始得到如下的一列数:1,2,4,8,16,22,24,28,….其中每一个数加上自己的个位数,成为下一个数.上述一列数中小于100的个数为()A.21B.22C.23D.992现察规律:1=21,1+3=22,1+3+5=23,1+3+5+7=24,…,1+3+5+7+…+(2n-1)的值是____________; 1+3+5+7+…+31的值为______________.训练角度2:数阵中的排列规律类型1:三角形排列3.请看杨辉三角(如图),并观察下列等式:4322344322332221464)(33)(2)(b ab b a b a a b a b ab b a a b a b ab a b a b a b a ++++=++++=+++=++=+)(根据前面各式的规律,则6)(b a +=______________________________________.类型2:长方形排列4.如图是某月的月历.(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系?(2)不改变带阴影的长方形框的大小,将带阴影的长方形框移至其他几个位置试一试,你还能得出上述结论吗?你知道为什么吗?(3)这个结论对于任何一个月的月历都成立吗?类型3:十字排列5.将连续的奇数1,3,5,7,9,…,按如图所示的规律排列.(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.类型4:斜排列6.如图所示是2018年8月份的月历.(1)平行四边形框中的5个数的和与其中间的数有什么关系?(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间这个数为a,请将这5个数的和用含有a的式子表示出来.【例2】把正偶数按如图所示的方法排成数阵,现用一平行四边形框圈出四个数(如下图):(1)若框中最小的一个数为x,请用x的代数式表示另外三个数;(2)若框中最大的一个数为第n行第三列所在的数,请用含n的代数式表示另外三个数,并求出此时框内四个式子的和.专训3:图形中的排列规律◐名师点金◑图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.训练角度1:图形变化规律探究1.观察下列一组图形(如图),其中图①中共有2颗星,图2中共有6颗星,图③中共有11颗星,图④中共有17颗星,…,按此规律,图⑧中星星的颗数是()A.43B.45C.51D.53训练角度2:图形个数规律探究类型1:三角形个数规律探究2.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成的.第1个图案中有4个三角形,第2个图案中有7个三角形,第3个图案中有10个三角形……依此规律,第n个图案中有________个三角形(用含n的代数式表示)类型2:四边形个数规律探究3.如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个,…,按此规律,则第6个图形中面积为1的正方形的个数为( )A.20B.27C.35D.404.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的有90人,则需要这样的餐桌多少张?类型3:点阵图形中点的个数规律探究4.观察如图所示的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应等式;(2)通过猜想,写出与第n个图形相对应的等式.专训4:巧用整式的相关概念求值◐名师点金◑根据整式的概念求某些字母的值时,一般需要列出关于这些字母的方程.解此类问题经常利用的是单项式或多项式的次数概念;同类项的概念;单项式的系数不等于0;多项式某项的系数等于0或不等于0等。

专题训练 不等式(组)及整式的加减

专题训练 不等式(组)及整式的加减

专题训练:不等式(组)及应用【考点链接】1.判断不等式是否成立判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向.2.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边同乘以或除以负数时,不等号的方向要改变。

不等式组的解集是取公共解集,若a<b,则有:(1)ab<⎧⎨<⎩的解集是x<a,即“小小取小”. (2)ab>⎧⎨>⎩的解集是x>b,即“大大取大”.(3)ab>⎧⎨<⎩的解集是a<x<b,即“大小小大取中间”. (4)ab<⎧⎨>⎩的解集是空集,即“大大小小取不了”.3.求不等式(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解, 首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想.4.列不等式(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题.【典例精析】1.判断不等式是否成立例1如图,若数轴的两点A、B表示的数分别为a、b,则下列结论正确的是( )A.12b-a>0 B.a-b>0 C.2a+b>0 D.a+b>02.在数轴上表示不等式的解集例2不等式组212xx<⎧⎪⎨≥⎪⎩的解集在数轴上应( )A BCD3.求字母的取值范围例3如果关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为_____________. 4.解不等式组例4解不等式组3(2)451312x xxx x-+<⎧⎪⎨--≥+⎪⎩5.应用题例5 某学校计划购买若干台电脑,现从两家了解到同一型号电脑每台报价均为6000元,并且多买有一定的优惠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练:不等式(组)及应用
【考点链接】
1.判断不等式是否成立
判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向.
2.解一元一次不等式(组)
解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边
同乘以或除以负数时,不等号的方向要改变。

不等式组的解集是取公共解集,若a<b,则有:
(1)
a
b
<


<

的解集是x<a,即“小小取小”. (2)
a
b
>


>

的解集是x>b,即“大大取大”.
(3)
a
b
>


<

的解集是a<x<b,即“大小小大取中间”. (4)
a
b
<


>

的解集是空集,即“大大小小取不了”.
3.求不等式(组)的特殊解
不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解, 首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想.
4.列不等式(组)解应用题
注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题.
【典例精析】
1.判断不等式是否成立
例1如图,若数轴的两点A、B表示的数分别为a、b,则下列结论正确的是( )
A.1
2
b-a>0 B.a-b>0 C.2a+b>0 D.a+b>0
2.在数轴上表示不等式的解集
例2不等式组
2
1
2
x
x
<




⎪⎩
的解集在数轴上应( )
A B
C
D
3.求字母的取值范围
例3如果关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为_____________. 4.解不等式组
例4解不等式组
3(2)45
1
31
2
x x
x
x x
-+<


⎨-
-≥+
⎪⎩
5.应用题
例5 某学校计划购买若干台电脑,现从两家了解到同一型号电脑每台报价均为6000元,并且多买有一定的优惠。

甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,乙商场的优惠条件是:每台优惠20%。

(1)什么情况下到甲商场购买更优惠?什么情况下到乙商场购买更优惠?
(2)什么情况下两家商场的收费相同?什么情况下甲商场购买比乙商场优惠?
【练习反馈】
1.不等式组
20
10
x
x
-<


+>

的解集为( )
A.x>-1
B.x<2
C.-1<x<2
D.x<-1或x>2
2.不等式组
23
182
x
x x
>-


-≤-

的最小整数解是( )
A.-1
B.0
C.2
D.3
3.在直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是( )
A.3<x<5
B.-3<x<5
C.-5<x<3
D.-5<x<-3
4.如果a+b<0,且b>0,那么a、b、-a、-b的大小关系为( )
A.a<b<-a<-b
B.-b<a<-a<b
C.a<-b<-a<b
D.a<-b<b<-a
5.不等式5x-9≤3(x+1)的解集是________.
6.不等式组
230
320
x
x
-<


+>

的整数解是________.
7.关于x的不等式组
521
x
x a
-≥-


->

8.解不等式组
312(1)
2(1)4
x x
x x
+≥-


+>

,并把它的解集在数轴上表示出来.
9.在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s, 引爆员点着导火索后,至少以每秒多少米的速度
才能跑到600m或600m以外的安全区域?
10.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10——25人,甲乙两家旅行社的服务质量相同,且
报价都是每人200元,经过协商,甲旅行社表示给予每位游客七五折优惠;乙旅行社表示可免去一位旅客的旅游费用,其余
游客八折优惠,该单位选择哪家旅行社支付旅游费用较少?
11.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件。

若前面每人分4件,则最后一个人的玩具不到3件。

求小朋友
的人数与玩具数。

1
b
0 a
专题训练: 整式的加减
【考点链接】
1.整式的概念:
单项式:系数、次数;
多项式:项数、次数、同类项、降、升幂排列;
2.整式的加减:合并同类项,去、添括号
要处理好合并同类项及去(添)括号中各项符号处理,式的运算是数的运算的深化,加强式与数的运算对比与分析,体会其中渗透的转化思想。

【典例精析】
题型一 利用同类项,项的系数等重点定义解决问题
例1已知关于x 、y 的多项式ax 2
+2bxy+x 2
-x-2xy+y 不含二次项,求5a-8b 的值。

解:
点评:题中“不含二次项”的含义应弄清楚是系数等于零 题型二 化简求值题
例2 先化简,再求值: 5x 2
-(3y 2
+5x 2
)+(4y 2
+7xy ),其中x=-2,y=-1。

解:
点评:整式化间的过程实际上就是去括号、含并同类项的过程,去括号注意符号问题。

【练习反馈】
一、选择题:
1.下列说法错误的是( )
A.0和x 都是单项式;
B.3n
xy 的系数是3n ,次数是2;
C.-
3x y +和1
x
都不是单项式; D.2
1x
x +
和8
x y +都是多项式 2.小亮从一列火车的第m 节车厢数起,一直数到第n 节车厢(n>m ),他数过的车厢节数是( ) A.m+n B.n-m C.n-m-1 D.n-m+1 3.下列运算中正确的是( ) A.-
3-=3 B.41)21(2=; C.(-1)2012=-1 D.613
12=
4. x-(2x-y )的运算结果是( )
A.-x+y
B.-x-y
C.x-y
D.3x-y
二、填空题: 1.多项式x
2y -9xy+52x y-25的二次项系数是__________。

2.若a=-2(2)-,b=-3(3)-,c=-2
(4
)-,则-〔a-(b-c )
〕的值是__________。

3.计算(1) -5a+2a=___ __。

(2) (a+b )-(a-b )=_______。

4.若2x 与2-x 互为相反数,则x 等于___________。

5.把多项式3x 3y +3x y+6-422x y 按x 的升幂排列是_______ _____。

三、解答题
1.化简:52a -〔2a +(52a -2a )-2(2
a -3a )〕。

2.已知2
(2)50a a b ++++=,求32a b-〔22a b-(2ab-2a b )-42a 〕-ab 的值.
3.已知a 、b 是互为相反数,c 、d 是互为倒数,求ab b a 2
1
)2(2+-+-的值。

4.已知:
3a =,b=2,且a b b a -=-,求代数式92a -〔7(2a -
2
7
b )-3(
132a -b )-1〕-12
的值。

3.某轮船顺流航行3h ,逆流航行1.5h ,已知轮船静水航速为每小时akm , 水流速度为每小时bkm ,轮船共航行了多少千米?
5.在公式(a+1)2=a 2
+2a+1中,当a 分别取1、2、3、...、n 时,可得下列等式:
(1+1)2
=12
+2×1+1 (2+1)2
=22
+2×2+1 (3+1)2
=32
+2×3+1
(4+1)2
=42
+2×4+1 ... (n+1)2
=n 2
+2×n+1
将这几个等式的左右两边分别相加,可推导出求和公式1+2+3+…+n=____ _____。

(用含n的关系式表示)。

相关文档
最新文档