人教七年级数学上册整式的加减小结
七年级数学上册第二章整式的加减解题技巧总结
(名师选题)七年级数学上册第二章整式的加减解题技巧总结单选题1、如图所示,在这个运算程序当中,若开始输入的x是2,则经过2021次输出的结果是()A.1B.3C.4D.8答案:C分析:根据运算程序代值求解得到输出结果的规律求解即可.解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,……以此类推,可知每6个一循环,且输入次数与输出结果的对应规律是:6n+1对应1;6n+2对应6;6n+3对应3;6n+4对应8;6n+5对应4;6n+6对应2;∵2021=6×336+5,∴经过2021次输出的结果是4.故选:C.小提示:本题考查运算程序背景下的数字规律,根据运算程序算出输出结果,然后找到输出结果的规律是解决问题的关键.2、化简a-2a的结果是()A.-a B.a C.3a D.0答案:A分析:根据整式的加减运算中合并同类项计算即可;解:a−2a=(1−2)a=−a;故选:A.小提示:本题主要考查整式加减中的合并同类项,掌握相关运算法则是解本题的关键.3、去括号x−(−13y+3)等于()A.x−13y−3B.x+13y−3C.x−13y+3D.x+13y+3答案:B分析:利用去括号法则解答即可.解:x−(−13y+3)=x+13y−3故选:B.小提示:此题考查去括号,解题的关键是熟练掌握去括号法则.注意括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.4、如果代数式2x−3y+2的值为5,那么代数式5+6y−4x的值为()A.−1B.11C.7D.−3答案:A分析:先根据题意得到2x−3y=3,然后整体代入到5+6y−4x=5−2(2x−3y)中进行求解即可.解:∵代数式2x−3y+2的值为5,∴2x−3y+2=5,∴2x−3y=3,∴5+6y−4x=5−2(2x−3y)=5−2×3=−1,故选A.小提示:本题主要考查了代数式求值,正确得到2x −3y =3是解题的关键. 5、若单项式−35xy 3的系数是m ,次数是n ,则m +n =( ) A .75B .115C .175D .195 答案:C分析:根据单项式的次数与系数的定义(单项式中的数字因数叫做这个单项式的系数;一个单项式中,所有字母的指数的和叫做这个单项式的次数)解决此题. 解:由题意得:m =−35 ,n =4.∴m +n =−35+4=175.故选:C .小提示:本题主要考查单项式,熟练掌握单项式的系数与次数的定义是解决本题的关键. 6、“x 的平方与5的和的相反数减去x 的差”用代数式表示为( ) A .−(x 2+5)−x B .−(x +5)2−x C .x 2−5−x D .x 2+5−x 答案:A分析:根据“x 的平方与5的和”为x 2+5,在用相反数的定义,最后计算的是差; 解:由题意得:−(x 2+5)−x , 故选:A .小提示:本题考查列代数式,解题关键弄清运算顺序,注意x 的平方与5的和与x 与5的和的平方之间的区别.7、如图,小明在3×3的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为B 1,B 2,B 3,每列的三个式子的和自左至右分别记为A 1,A 2,A 3,其中值可以等于732的是( )A.A1B.B1C.A2D.B3答案:D分析:将A1,A2,B1,B3的式子表示出来,使其等于732,求出相应的n的数值即可判断答案.解:A1=2n−2+2n−4+2n−6=732,整理可得:2n=248,n不为整数;故选项A不符合题意;A2=2n−8+2n−10+2n−12=732,整理可得:2n=254,n不为整数;故选项B不符合题意;B1=2n−2+2n−8+2n−14=732,整理可得:2n=252,n不为整数;故选项C不符合题意;B3=2n−6+2n−12+2n−18=732,整理可得:2n=256,n=8;故选项D不符合题意;故选:D.小提示:本题主要考查规律型的数字变化问题,解答本题的关键是能够理解题意,写出相对应的式子并进行求解.8、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.9、要使多项式mx2−2(x2+3x−1)化简后不含x的二次项,则m的值是()A.2B.0C.−2D.3答案:A分析:先将原式化简,再根据题意判断m的值即可;解:原式=mx2−2x2−6x+2=(m−2)x2−6x+2∵原式化简后不含x的二次项,∴m−2=0,∴m=2,故选:A.小提示:本题主要考查代数式的应用,掌握相关运算法则是解题的关键.10、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此类推,则a2022的值为()A.-1010B.-1011C.-1012D.-2022答案:B分析:分别求得a1,a2,a3,a4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.解:∵a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=−|−a4+4|=−2,a6=−|−a5+5|=−3…,当下标为偶数时,其值等于下标的一半的相反数,∴a2022的值为-1011.故选B.小提示:本题考查了数字类规律,找到规律是解题的关键.填空题11、三个连续整数中,n是最小的一个,则这三个数的和为 ________.答案:3n+3分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.所以答案是:3n+3.小提示:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12、如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第20个图形需要___________根火柴棍.答案:41分析:分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,∴拼成第20个图形共需要2×19+2=41根火柴棍,所以答案是:41.小提示:此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.13、按规律排列的单项式:x,−x3,x5,−x7,x9,…,则第20个单项式是_____.答案:−x39分析:观察一列单项式发现偶数个单项式的系数为:−1,奇数个单项式的系数为:1,而单项式的指数是奇数,从而可得答案.解:x,−x3,x5,−x7,x9,…,由偶数个单项式的系数为:−1,所以第20个单项式的系数为−1,第1个指数为:2×1−1,第2个指数为:2×2−1,第3个指数为:2×3−1,······指数为2×20−1=39,所以第20个单项式是:−x39.所以答案是:−x39小提示:本题考查的是单项式的系数与次数的含义,数字的规律探究,掌握“从具体到一般的探究方法”是解本题的关键.14、古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图④中第五个正六边形数是______.答案:45分析:根据题意找到图形规律,即可求解.根据图形,规律如下表:整理得:S=(1+n)n2+n(n−1)(m−3)2,则有第5个正六边形中,n=5,m=6,代入可得:S=(1+n)n2+n(n−1)(m−3)2=(1+5)52+5(5−1)(6−3)2=45,所以答案是:45.小提示:本题考查了整式--图形类规律探索,理解题意是解答本题的关键.15、计算4a+2a−a的结果等于_____.答案:5a分析:根据合并同类项的性质计算,即可得到答案.4a+2a−a=(4+2−1)a=5a所以答案是:5a.小提示:本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.解答题16、在整式的加减练习课中,已知A=3a2b−2ab2,嘉淇错将“A−B”看成“A+B”,所算的错误..结果是4a2b−3ab2.请你解决下列问题.(1)求出整式B;(2)若a=−1,b=2.求B的值;(3)求该题的正确计算结果.答案:(1)a2b-ab2(2)6(3)2a2b-ab2分析:(1)根据A+B=4a2b−3ab2即可得B=4a2b-3ab2-A,从而可求出整式B;(2)把a=−1,b=2代入(1)中的整式B即可求解;(3)直接将整式A、B代入A-B,利用整式的加减法则即可求解.(1)解:∵A+B=4a2b−3ab2,A=3a2b−2ab2,∴B=4a2b-3ab2-A=4a2b-3ab2-(3a2b-2ab2)=a2b-ab2;(2)解:当a=−1,b=2时,B=(-1)2×2−(-1)×22=2+4=6;(3)解∶∵A=3a2b−2ab2,B=a2b-ab2,∴A-B=3a2b-2ab2-(a2b-ab2)=2a2b-ab2.小提示:本题考查了整式的加减以及求代数式的值,熟练掌握合并同类项法则是解题的关键.17、斐波那契数列是数学家莱昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13…也就是从第三个数开始,每一个数都是前两个数的和.如图所示的长方形是由几个正方形依次拼接而成,其中最小的正方形的边长为1.(1)如图1中最大的正方形的边长是_________.(2)如图2所示,在小正方形中画弧,将6段圆弧依次连接起来得到曲线ABCDEFG,求曲线ABCDEFG的长.(3)如果按此规律继续画弧,将9段圆弧依次连起来得到的曲线的长为____.答案:(1)8(2)10π(3)44π分析:(1)由图可以看出最大的正方形是F5,它的的边长是“兔子数列”的第六个数,可得;(2)由图2可知,每个小正方形内的圆弧的半径都为这个小正方形的边长,根据弧长公式可求每个小正方形内的弧长,然后相加即可;(3)根据“兔子数列”的规律继续画弧,第9段圆弧的半径是34,根据弧长公式可求.(1)解:∵F1=1,由图1知,F5是数列中的第六项,∴F5=8,故答案为:8;(2)解:由图2可知,每个小正方形内的圆弧的半径都为这个小正方形的边长,则l AB=l BC=90×π×1180=12π×1l CD=90π×2180=12π×2l FG=90π×8180=12π×8∴L ABCDEFG=12π×(1+1+2+3+5+8)=12π×20=10π∴曲线ABCDEFG的长为10π;(3)解:根据题意得:按此规律继续画弧,将9段圆弧依次连起来得到的曲线的长为:12π×(1+1+2+3+5+8+13+21+34)=44π所以答案是:44π.小提示:本题考查用归纳推方法需求数列规律及弧长,理解“兔子数列”的特征是求解本题的关键.18、已知A=2a2−a,B=a2−2a+1(1)化简:A−2(A−B)−3;(2)当a=−13时,求A−2(A−B)−3的值.答案:(1)−3a−1(2)0分析:(1)A−2(A−B)−3=−A+2B−3,再将A和B的代数式代入化简即可;(2)由(1),得A−2(A−B)−3=−3a−1,将a=−13代入求值即可.(1)解:A−2(A−B)−3=−A+2B−3,∵A=2a2−a,B=a2−2a+1,∴原式=−2a2+a+2(a2−2a+1)−3=−2a2+a+2a2−4a+2−3=−3a−1.(2)解:由(1),得A−2(A−B)−3=−3a−1,当a=−13时,原式=−3×(−13)−1=0.小提示:本题考查整式加减的应用,注意先化简,正确的计算能力是解决问题的关键.。
七年级数学上册《整式的加减》教学反思
七年级数学上册《整式的加减》教学反思七年级数学上册《整式的加减》教学反思1一.注意与小学相关内容的衔接整式及其相关概念和整式的加减运算,与列代数式表示数量关系密切联系,而同整式表示数量关系是建立在同字母表示数的基础上的,在小学学生已经学过用字母表示数,简单的列式表示实际问题中的数量关系和简单方程。
这些知识是学习本章的直接基础。
因此充分注意与这些内容的联系,使学生感受到式子中的字母表示数,让学生充分体会字母的真正含义,逐渐了解用式子表示数量关系,理解字母可以像数一样进行计算,为学习整式的加减运算打好基础。
二.加强与实际的联系在解决实际问题时,似乎遇到的都是具体的数字,但在数字运算的背后,却隐含着式的运算,加强了与实际的联系,无论是概念引出,还是运算法则的探讨,都是紧密结合实际问题展示的,在教学中,一方面要让学生体会整式的概念与整式的加减运算来源于实际,是实际的需要,同时也可以让学生看到整式及其加减运算在解决实际问题中所起的作用,感受从实际问题抽象出数学问题的过程,体会整式比数学更具一般性的道理。
三.类比数学习式,加强知识的内在联系,重视教学思想方法的渗透整式可以简洁地表明实际问题中的数量关系,它比只有具体数字表示的算式更有一般性,关于整式的运算与数的运算有一致性,数的运算是式的运算的特殊情况,由于学生已经学习了有理数的运算,能灵活利用有理数的运算法则和运算律进行运算,因此,充分注意数式联系与类比,根据数与式之间的联系,体现数学知识间具体与抽象的内在联系和数学的内在统一性。
四.抓住重点,加强练习,打好基础整式的加减运算,合并用类项和去括号是进行整式加减的基础,整式的加减主要是通过合并同类项把整式化简,准确判断同类项,把握去括号要领,防止学生易出错地方,并进行一定的训练,才能有效的掌握。
七年级数学上册《整式的加减》教学反思2去括号法则是第二章整式的重点和难点,同时它又是解方程的必要步骤,可见这节课的重要性。
(人教版)南京七年级数学上册第二章《整式的加减》知识点总结
1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律. 2.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( ) A .(x ﹣8%)(x+10%) B .(x ﹣8%+10%) C .(1﹣8%+10%)x D .(1﹣8%)(1+10%)x D解析:D 【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润. 【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D . 【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 8.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解.解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项. 11.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.14.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.15.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 1.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.2.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.3.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.4.一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x的二次三项式其中二次项是x2一次项是-x常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律 【分析】直接利用整式的加减运算法则进而得出答案. 【详解】解:原式=2a 2b+5ab+a 2b-3ab =2a 2b+a 2b+5ab-3ab =(2a 2b+a 2b )+(5ab-3ab ) =3a 2b+2ab .第②步依据是:加法交换律. 故答案为:加法交换律. 【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键. 6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值. 【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-. 故答案为:2-. 【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于 解析:8128a【分析】根据题意给出的规律即可求出答案. 【详解】由题意可知:第n 个式子为2n-1a n , ∴第8个式子为:27a 8=128a 8, 故答案为:128a 8. 【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型. 8.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案. 【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.9.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.10.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.11.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键. 1.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.2.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.3.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.解析:22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得;(3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
七年级数学上册第二章整式的加减基础知识点归纳总结
(名师选题)七年级数学上册第二章整式的加减基础知识点归纳总结单选题1、已知:关于x,y的多项式ax2+2bxy+3x2−3x−4xy+2y不含二次项,则3a−4b的值是()A.-3B.2C.-17D.18答案:C分析:先对多项式ax2+2bxy+3x2−3x−4xy+2y进行合并同类项,然后再根据不含二次项可求解a、b 的值,进而代入求解即可.解:ax2+2bxy+3x2−3x−4xy+2y=(a+3)x2+(2b−4)xy−3x+2y,∵不含二次项,∴a+3=0,2b−4=0,∴a=-3,b=2,∴3a−4b=−9−8=−17.故选:C.小提示:本题主要考查整式加减中的无关型问题,熟练掌握整式的加减是解题的关键.2、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.3、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.4、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此类推,则a2022的值为()A.-1010B.-1011C.-1012D.-2022答案:B分析:分别求得a1,a2,a3,a4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.解:∵a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=−|−a4+4|=−2,a6=−|−a5+5|=−3…,当下标为偶数时,其值等于下标的一半的相反数,∴a2022的值为-1011.故选B.小提示:本题考查了数字类规律,找到规律是解题的关键.5、一个矩形的周长为l,若矩形的长为a,则该矩形的宽为( )A.l2−a B.l−a2C.l−a D.l2a答案:A分析:根据矩形的周长公式进行计算即可.解:∵矩形的周长为l,矩形的长为a,∴矩形的宽为l−a.2故选A.小提示:本题考查列代数式,解题的关键是熟记矩形的周长=2(长+宽).6、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.7、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.8、将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为()A.x3+x2y−3xy2−9B.−9+3xy2−x2y+x3C.−9−3xy2+x2y+x3D.x3−x2y+3xy2−9答案:D分析:根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.解:多项式−9+x3+3xy2−x2y按x的降幂排列为x3−x2y+3xy2−9.故选D.小提示:此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.9、用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41答案:C分析:第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.小提示:本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.10、下列整式与ab2为同类项的是()A.a2b B.−2ab2C.ab D.ab2c答案:B分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与ab2不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与ab2是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与ab2不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与ab2不是同类项,故选项不符合题意.故选:B.小提示:此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.填空题+cd的值是_________.11、若a、b互为相反数,c、d互为倒数,m是(−3)的相反数,则m+a+b9答案:4分析:利用相反数、倒数的定义,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,m=3,原式=3+0+1=4.所以答案是:4.小提示:本题主要考查了有理数的混合运算,相反数、倒数的定义,根据题意得出a+b=0,cd=1,m=3,是解本题的关键.12、立信初一年级周二体锻课站队时,有三个人数一样多的小组(假设人数足够多)分别记为A、B、C三个小组,依次完成以下三个步骤:第一步,A组二个人去B组;第二步,C组三个人去B组;第三步,A组还有几个人,B组就去多少人到A组.请你确定,最终B组人数为 _____人.答案:7分析:设A、B、C原来人数为a人,根据题意列出关系式,去括号合并即可得到结果.解:设A、B、C原来人数为a人,根据题意得:a+2+3﹣(a﹣2)=a+2+3﹣a+2=7(人),则最终B组人数为7人.所以答案是:7.小提示:此题考查了整式的加减,弄清题意是解本题的关键.13、若一个多项式加上3xy+2y2−8,结果得2xy+3y2−5,则这个多项式为___________.答案:y2−xy+3分析:设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,求解即可.设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,∴A=(2xy+3y2−5)−(3xy+2y2−8)=2xy+3y2−5−3xy−2y2+8=y2−xy+3,所以答案是:y2−xy+3.小提示:本题考查了整式的加减,准确理解题意,列出方程是解题的关键.14、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.15、按照列代数式的规范要求重新书写:a×a×2−b÷3,应写成_________.答案:2a2-b3分析:根据代数式的书写要求填空.解:应写成:2a2-b.3.所以答案是:2a2-b3小提示:本题考查了代数式的书写要求.解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.解答题.16、先化简,再求值:a2b-[2a2-2(ab2-2a2b)-4]-2ab2,其中a=-2,b=12答案:−3a2b−2a2+4;-10分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=a2b−(2a2−2ab2+4a2b−4)−2ab2=a2b−2a2+2ab2−4a2b+4−2ab2=−3a2b−2a2+4当a=-2,b=12时,原式=−3×(−2)2×12−2×(−2)2+4=−6−8+4=-10小提示:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17、东坡区某学校举办“传承三苏家国情怀弘扬中华传统文化”的校园演讲比赛,设立了一、二、三等奖,根据设奖情况买了36件奖品,且一等奖奖品数比二等奖奖品数的12倍少1件,各奖品单价如表所示.若二等奖奖品买了a件,全部奖品的总价是b元.a的代数式表示b,并化简;(2)当a=8时,买一等奖奖品和三等奖奖品分别花费了多少元?(3)若买二等奖奖品花费504元,则买全部奖品花费了多少元?答案:(1)12a−1;37−32a;b=42a +680(2)买一等奖奖品花费180元,买三等奖奖品花费500元(3)1184元分析:(1)利用题干中的数量关系即可表示出一等奖的件数,用总数减去一、二奖的奖品数量即可得到三等奖的奖品数量;利用表格中的信息分别计算三种奖品的费用再相加即可得出结论;(2)利用费用=件数×单价分别列出代数式,再将a=8代入计算即可得出结论;(3)利用已知条件求得a值,再将a值代入(1)中的代数式b=42a+680,计算即可得出结论.(1)一等奖奖品12a−1(件),三等奖奖品36-a-(12a−1)=37−32a(件)所以答案是:12a−1;37−32a.用含有a的代数式表示b是:b=(12a−1)×60+42a+(37−32a)×20=30a-60+42a +740-30a=42a +680;即b=42a +680.(2)当a=8时,买一等奖奖品花费(12×8−1)×60=180(元)买三等奖奖品花费(37−32×8)×20=25×20=500(元)答:当a=8时,买一等奖奖品花费180元,买三等奖奖品花费500元.(3)买二等奖奖品花费504元,则二等奖奖品买了504÷42=12(件),即a=12,又(1)可知b=42a +680,故买全部奖奖品花费了42×12+680=1184(元)答:若买二等奖奖品花费504元,则买全部奖奖品花费了1184元.小提示:本题主要考查了列代数式,求代数式的值,利用公式:费用=件数×单价解答是解题的关键.18、化简:(1)4xy-(3x2-3xy)-2y+2x2(2)(a+b)-2(2a-3b)+3(a-2b)答案:(1)-x2+7xy-2y;(2)b-3a.分析:(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy-(3x2-3xy)-2y+2x2=4xy-3x2+3xy-2y+2x2=-x2+7xy-2y;(2)解:(a+b)-2(2a-3b)+3(-2b)=a+b-4a+6b-6b=b-3a.小提示:本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.。
人教版初中七年级数学上册第二单元《整式的加减》知识点总结(含答案解析)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4B .8C .±4D .±82.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元D .(1+20%)15%a 元3.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)4.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --5.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 6.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=27.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π-8.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .10099.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n10.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++11.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个12.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3±13.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2 B .﹣2 C .0 D .4 14.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c15.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23π 二、填空题16.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__. 17.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.18.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.19.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.20.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.21.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.22.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.23.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.24.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.25.在x y +,0,21>,2a b -,210x +=中,代数式有______个.26.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.三、解答题27.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m m m 的值.28.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).29. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .30.有这样一道题,计算()()4322433222422x x y x yxx y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?。
人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)
人教版七年级数学上册整式的加减知识点总结及题型汇总(无答案)整式的加减知识点总结及题型汇总整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值. 13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。
人教版七年级上册数学整式的加减小结复习1说课稿
1.加强对学生的个别辅导,针对性地解决他们的疑问;
2.设计更多与实际生活相关的例题,提高学生的应用能力;
3.利用课后时间,为学生提供更多学习资源和辅导。
课后,我将通过以下方式评估教学效果:
1.观察学生的课堂表现,了解他们对知识点的掌握程度;
2.收集学生的作业和测试成绩,分析他们的学习进步;
(二)学习障碍
学生在学习本节课之前,具备的前置知识有:基本的算术运算、代数式的初步认识等。然而,他们在学习本节课时可能存在以下障碍:
1.对整式的定义和分类理解不透彻,容易混淆;
2.在整式加法和减法运算过程中,对合并同类项、去括号等规则掌握不熟练;
3.面对实际问题时,难以将其转化为整式加法和减法问题进行求解。
(2)培养学生合作学习的意识,养成团结互助的良好习惯;
(3)使学生认识到数学在生活中的重要性,激发他们应用数学解决实际问题的热情。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重源自和难点如下:1.教学重点:
(1)整式的定义和分类;
(2)整式加法和减法的运算法则;
(3)应用整式加法和减法解决实际问题。
2.探究式教学:基于发现学习理论,鼓励学生在实践中探索和发现数学规律,从而加深对整式加法和减法的理解,提高学生的自主学习和创新能力。
3.分组合作学习:依据社会建构主义理论,通过小组合作,促进学生之间的交流与互动,培养学生的团队协作能力和沟通能力。
(二)媒体资源
在教学过程中,我将使用以下教具、多媒体资源和技术工具:
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一个与整式加法和减法相关的实际问题,如购物时合并付款、减去折扣等,让学生感受到数学与日常生活的紧密联系,激发他们的学习兴趣;
七年级数学上册整式的加减知识点及题型总结
第二单元(整式的加减)【考点一】用字母表示数(1)用字母表示数时,数字与字母,字母与字母相乘,中间的( )可以忽略不写,或用( )表示。
(2)数字与字母相乘时,数字应写在( )前(3)系数是带分数时,带分数要化成( )(4)出现除式时,用( )表示(5)结果含加减运算的,单位前加( )例1:下列各式:①x 411; ②2•3 ; ③20%x ; ④c b a ÷-; ⑤3n m - ;⑥5-x 千克 其中符合书写要求的有( )A. 5个B. 4个C. 3个D. 2个 例2:用式子表示:a 的2倍与3的和,下列表示正确的是( )A.32-aB. 32+aC. )3(2-aD. )3(2+a例3:某种苹果的单价是x 元/ kg(x <10),用50元买5kg 这种苹果,应找回 元. 例4:用不同的方法表示出阴影部分的面积。
(至少写出两种)【考点二】单项式(1)单个数,单个字母,数和字母的乘积,字母和字母的乘积,都是单项式,数与字母相乘通常把数写在前面。
例如:1,a ,a 4,ab 都是单项式(2)单项式的系数:单项式的数字因数叫做这个单项式的系数,例如:单项式ab 100的系数是100,a 的是1(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数,例如a 100次数为1,b a 2100次数为3例题1:判断下列代数式是否为单项式,如果是,请写出它的系数和次数,0 ,1- xy -, 3a , x -3, x 1, 21x -, ab π31, 22yz x -, b例题2:如果15--m xy 为四次单项式,则=m ( ) 例题3:当21-=x ,2=y 时,求y x 42-的值。
例3:已知单项式426y x 与2231+-m z y 的次数相同,求m 的值.【考点三】多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,在多项式里,次数最高项的次数,叫做这个多项式的次数。
人教版数学七年级上册 整式的加减
整式的加减(一)——合并同类项(基础)【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.类型二、合并同类项3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=14.已知35414527m n ab pa b a b ++-=-,求m+n -p 的值.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ).A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn 7.计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4 二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++-(3)2222630.835m n mn mn n m mn n m --+--(4)33331()2()()0.5()3a b a b b a a b +-+-+-+17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.。
七年级上册数学《整式的加减》教案
七年级上册数学《整式的加减》教案整式的加减篇一整式的加减,其本质是合并同类项,而合并同类项是以有理数的加减为基础。
下面是由小编为大家带来的关于《整式的加减》教学反思,希望能够帮到您!《整式的加减》教学反思一《整式的加减》是全日制人教版七年级数学教材的一个主要内容,它是解方程、解不等式的重要基础,《整式的加减》是在学生已经学习了单项式、多项式的有关概念的基础上学习的。
在《整式的加减》教学中,我主要是从我班学生现有的认知水平和已掌握的知识出发。
第一步:在导入新课时,我首先将各种粉笔头混合在一起,要求学生从中挑出红色、黄色、白色的粉笔头进行分类;再让学生想想,在饭堂吃饭后洗的饭碗与汤匙的摆放,引导学生想一想东西这样摆放有什么好处。
虽然这些事情看似与数学学习毫不相干,但适当的联系生活实际,从学生身边的生活实际出发却可以让学生自然而然地感受到了分类思想,为学习合并同类项的概念及方法打下了较好的基础。
同时也使学生明白在现实生活中还蕴藏着大量的数学信息,从而引起学生学习数学的兴趣。
第二步:为了让学生建立起同类项的概念,我首先出一些单项式,其中也有一些单项式是有相同字母且相同字母的指数也相同的单项式,让学生把这些单项式进行分类,并引导学生观察其特点,找出其相同点:含有相同字母,相同字母的指数也相同的,我就告诉学生这样的项就叫做同类项,否则,不是。
然后让学生举出一些同类项的例子,明确强调要成为同类项必须具备两个条件:一、所含字母要相同;二、相同字母的指数也必须要相同。
所以在举同类项的例子的时候,只要让学生把系数改变,字母部分不变就可以了,这样通过学生的体验,很快的明白了同类项的意义并且能够准确地举出同类项的例子。
第三步:在学生对同类项的概念已经有了初步的体验后,然后提出问题在多项式3x2-2y4-4xy-2+3+5x2-5y4+2xy中。
1、这个多项式中有那些项?2、哪些项可以合并在一起?(特别强调常数项也是同类项,学生往往会不注意)为什么?这样,可以增强学生参与数学活动的意识,并从中体验到数学学习的过程是充满着乐趣的过程,在这个过程中逐步巩固了同类项的概念,从而提高数学课堂教学的实效性。
第4章整式的加减+复习与小结课件2024-2025学年人教版数学七年级上册
知识点讲练 知识点3 合并同类项
1.与单项式 6a2b 是同类项的是( C )
A.5ab
B. 4ab22.已知 3x5 ym与2xn y2为同类项,则m+n的值等于 ___7__.
4x2 2y 1 2x2 2y 6 2x2 4y 7 (2)当x 1, y 2时,原式 2 8 7 17
课堂小结
表示数或字母的积的代数式叫做单项式. 几个单项式的和叫做多项式. 单项式与多项式统称整式. 整式加减的运算法则:几个整式相加减,如果有括号 就先去括号,然后再合并同类项.
4x2 5xy 3(x2 xy 1) 4x2 5xy 3x2 3xy 3 x2 8xy 3
当x 2,y 1时,原式 4 16 3 23
综合练习 5.化简
(1)a 4b 3a 5b 解: (a 3a) (4b 5b)
2a b
(2)4x2 3x 2 2x2 4x 5 (4x2 2x2 ) (3x 4x) (2 5) 2x2 x 3
A.5
B.1
C.4
D. 3
4.多项式 2x3 3x2 x 5 的常数项是___5__,二次项 是____3_x_2 __.
知识点讲练 知识点3 合并同类项 (1)所含_字__母__相同,并且相同字母的_指__数_也相同的 项叫做同类项. (2)把多项式中的_同__类__项__合并成一项,叫做合并同类项.
第4章 整式的加减
小结与复习
R·七年级上册
(1) 复习掌握单项式的系数和次数,多项式的项 和次数,整式的分类等概念。 (2) 会熟练地进行整式的加减运算。
理解单项式、多项式、整式等概念,学懂它们之 间的区别和联系; 正确运用法则,进行整式的加减运算.
人教版七年级数学上册(RJ)第2章 整式的加减 第3课时 整式的加减
第二章 整式的加减2.2 整式的加减 第2课时 整式的加减学习目标:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系.重点:熟练进行整式的加减运算.难点:能根据题意列出式子,表示问题中的数量关系.一、知识链接1.同类项:必须同时具备的两个条件(缺一不可):①所含的 相同;②相同 也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的 相加,而 不变. 2.去括号法则:①如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ;②如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是.二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c 元.请你计算:(1)小亮花了________元;小莹花了__________元;小亮和小莹共花___________________元.(2)小亮比小莹多花_______________元.想一想:如何进行整式的加减运算?【自主归纳】整式加减运算的基础是__________、_____________,运算结果仍是____________.三、自学自测1.求单项式24xy2xy,2-的和.5x y,22x y-,22.求2x xy467+-的差.x xy-+与231一、要点探究探究点1:整式的加减合作探究:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 .交换这个两位数的十位数字和个位数字,得到的数是 .将这两个数相加可得: + = .结论:这些和都是_________的整数倍.做一做:任意写一个三位数交换它的百位数字与个位数字,又得到一个数,两个数相减.你又发现什么规律了吗?例如:原三位数728,百位与个位交换后的数为827,由728 -827= -99.你能看出什么规律并验证它吗?任意一个三位数可以表示成100a+10b+c设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a -c).议一议:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式 2453x x -+ 与多项式 2273x x -+- 的和与差.练一练:求上述两多项式的差.总结归纳:1. 几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式加减实际上就是:去括号、合并同类项.3. 对于运算结果,常将多项式按某个字母(如 x )的降幂(升幂)排列. 探究点2:整式的加减的应用例3 一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:整式加减解决实际问题的一般步骤:(1)根据题意列代数式;(2)去括号、合并同类项;(3)得出最后结果.例5 求2211312()()2323x x y x y --+-+的值,其中32,2=-=y x .【能力提升】有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.二、课堂小结1.已知一个多项式与的和等于,则这个多项式是( ) A .B .C .D .2.长方形的一边长等于3a+2b,相邻边比它大a-b,那么这个长方形的周长是( )A.14a+6bB.7a+3bC.10a+10bD.12a+8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( )A.2B.-2C.4D.-4 5.已知,,则=_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?1232+-=a a A 2352+-=a a B BA 32-思路:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.参考答案自主学习一、知识链接1.字母字母的指数系数字母的指数2.正数相同负数相反分配律二、新知预习做一做:(1)(10a+5b)(6a+4b+2c)(16a+9b+2c)(2)(4a+b-2c)想一想:有括号先去括号,然后再合并同类项.【自主归纳】去括号合并同类项整式三、自学自测1.和为x²y.2.差为-x²-7xy+8.课堂探究一、要点探究合作探究:10a+b 10b+a 10a+b 10b+a 11a+11b= 11(a + b) 结论:这些和都是 11 的倍数.议一议:整式的加减运算,去括号、合并同类项解: (1)原式=7a+b. (2)原式=4a-2b.2 解:4-5x2+3x +(-2x+7x2-3)=4-5x2+3x-2x+7x2-3=(-5x2+7x2)+(3x-2x)+(4-3)=2x2+x+1.练一练:-5x2+3x -(-2x+7x2-3)=4-5x2+3x+2x-7x2+3=(-5x2-7x2)+(3x+2x)+(4+3)= -12x2+5x+7.3 解:小红买笔记本和圆珠笔共花费 (3x + 2y) 元,小明买笔记本和圆珠笔共花费 (4x + 3y) 元.小红和小明一共花费(单位:元)(3x + 2y)+ (4x + 3y) = 7x+5y,则小红与小明一共花费(7x+5y)元.另解:小红和小明买笔记本共花费 (3x + 4x) 元,买圆珠笔共花费 (2y + 3y) 元.小红和小明一共花费(单位:元)(3x + 4x) + (2y + 3y) = 7x + 5y.4 解:小纸盒的表面积是 ( 2ab+2bc+2ac ) cm²;大纸盒的表面积是( 6ab+ 8bc+ 6ca ) cm²(1)做这两个纸盒共用料(单位:cm2)(2ab+2bc+2ac)+(6ab+ 8bc+ 6ca )=8ab+10bc+8ac.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=4ab+6bc+4ac.【能力提升】解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与a的取值无关,所以即使把a抄错,最后的结果都会一样.当堂检测1.A2.A3.D4.C5. -9a2+5a-46. 18. 设大圆半径为R,小圆半径依次为r1,r2,r3,则图(1)的周长为4πR,图(2)的周长为2πR+2πr1+2πr2+2π r3=2πR+2π(r1+ r2+ r3),因为2 r1+2 r2+2 r3=2R,所以r1+ r2+ r3=R,因此图(2)的周长为2πR+2πR=4πR.这两种方案,用材料一样多.将三个小圆改为n个小圆,用料还是一样多.第11页共11页。
人教版七年级上册数学整式的加减小结复习1教学设计
-鼓励学生进行自我评价和同伴评价,培养学生的自我监控能力和批判性思维。
4.拓展学习资源,激发学生的学习潜能。
-鼓励学生阅读数学故事、参与数学竞赛等活动,拓宽知识视野,提高数学素养。
-结合生活实际,设计有趣的数学活动,让学生体会数学在生活中的应用,增强学习的实践性。
2.运用多元化的教学方法,提高教学效果。
-采用探究式学习,鼓励学生主动探索整式加减的规律,培养学生的发现能力和创新思维。
-利用小组合作学习,促进学生的交流与合作,通过互帮互助,共同解决难题。
-引入信息技术,如多媒体教学、网络资源等,丰富教学手段,提高学生的学习兴趣。
3.注重过程评价,及时给予反馈。
-在教学中,教师应关注学生的学习过程,及时发现并纠正错误,指导学生建立正确的数学思维。
4.设计梯度练习题,由简到繁,培养学生逐步解决问题的能力,同时通过错题分析,帮助学生建立正确的数学思维习惯。
(三)情感态度与价值观
1.培养学生积极主动参与数学学习活动的兴趣,树立学习数学的自信心,认识到数学与生活的紧密联系。
2.引导学生体会数学的简洁美和逻辑美,培养他们欣赏数学、热爱数学的情感。
3.培养学生的探究精神和批判性思维,让学生在学习中学会质疑、学会思考,形成独立解决问题的能力。
4.强调数学学习中的严谨性和准确性,引导学生形成认真细致的学习态度,对待数学问题不马虎、不粗心。
本章教学设计旨在通过系统复习,使学生在知识与技能、过程与方法、情感态度与价值观三方面得到全面发展,为后续的数学学习打下坚实的基础。
二、学情分析
针对人教版七年级上册数学整式的加减小结复习,学生已具备以下基础: