【精品】浮阀塔课程设计
化工原理课程设计浮阀塔
化工原理课程设计浮阀塔针对化学工程专业中的化工原理课程,课程设计是一个非常重要而且具有启发性的过程。
在课程设计中,同学们需要充分掌握化工原理的基础知识,学习并掌握化工行业的重要原理和流程,以此为基础,会设计出各种不同类型的化工设备,如浮阀塔等。
在接下来的文本中,我们将介绍化工原理课程设计中的浮阀塔,并探讨其结构、操作和应用。
一、浮阀塔的概念浮阀塔是一种广泛使用的化工设备。
它是一种塔式反应器,用于吸收、分离和提纯混合物。
浮阀塔可以通过不同的设计和流体动力学技术来满足许多不同的化学过程,包括精馏、吸收、萃取、反应和分离等。
浮阀塔可以在一些重要的工业领域得到广泛应用,例如炼油、化工、制药、食品和饮料、制造和环境控制等。
二、浮阀塔的结构浮阀塔一般由圆柱形台式烟囱筒体和立体阀组成,顶部设有入口气流和转子装置,底部装有液体入口和出口。
浮阀塔的圆柱形塔体可根据不同的需求和工艺流程独立选择材料来制作,如不锈钢、碳钢等。
然而,其圆柱形体受到直径与高度比值限定,通常为2-6之间。
浮阀塔可以采用多种转子装置设计,例如平板型、齿轮型、排柱型等。
为防止液面波动,还应在浮阀上设置抑泡板。
阀口下设有气体入口,气体将带动浮阀中的液体上升,并通过液泵进入浮阀塔。
浮阀上的液体将通过分隔板同时与气体接触以达到吸收、萃取、分离和其他化学过程。
三、浮阀塔的操作方式在浮阀塔的化学过程中,上述操作将被重复进行,直到流体达到所需的纯度或浓度,或已完成所需的化学反应。
浮阀塔可以通过各种不同的方式进行操作,取决于所需的化学过程和设备的规格。
浮阀塔中的物流通过操作阀控制,以达到所需的流量,同时还需要控制循环液流量、液位和温度。
在施工过程中,还需要确保严格的安全措施和浮阀的正确操作。
四、浮阀塔的应用场景浮阀塔可用于各种不同类型的操作和化学反应,其中最常见的是可用于精馏塔、萃取塔、吸收塔、氢化处理塔、水解塔、酯化塔、醇酸分离塔等其他一些任何需要操作混合物的化工液态流程。
浮阀塔课程设计甲醇水
浮阀塔 课程设计甲醇水一、课程目标知识目标:1. 学生能理解浮阀塔的基本结构、工作原理及其在化工过程中的应用。
2. 学生能掌握甲醇与水的相平衡关系,了解其在浮阀塔中的分离过程。
3. 学生能运用相关公式计算浮阀塔的塔板数、处理能力和分离效率。
技能目标:1. 学生能够运用所学知识,分析实际浮阀塔操作过程中存在的问题,并提出改进措施。
2. 学生能够通过实验操作,观察和记录甲醇与水的分离过程,提高实验技能。
3. 学生能够运用计算机软件,对浮阀塔进行模拟和优化,提高解决实际问题的能力。
情感态度价值观目标:1. 学生能够认识到浮阀塔在化工生产中的重要作用,增强对化学工程学科的兴趣。
2. 学生能够通过学习,培养严谨的科学态度,树立良好的团队合作精神。
3. 学生能够关注化工生产对环境的影响,提高环保意识,培养可持续发展观念。
本课程针对高年级化学工程与工艺专业学生,结合课程性质、学生特点和教学要求,制定具体、可衡量的课程目标。
通过本课程的学习,学生将能够掌握浮阀塔相关知识,提高解决实际问题的能力,同时培养良好的情感态度和价值观。
为实现课程目标,后续教学设计和评估将围绕具体学习成果展开。
二、教学内容1. 浮阀塔的基本概念与结构:介绍浮阀塔的定义、分类、结构及其在化工生产中的应用。
- 教材章节:第三章第二节“浮阀塔的结构与特点”2. 甲醇与水的相平衡关系:讲解甲醇与水的相平衡原理,分析不同温度、压力下二者的相态变化。
- 教材章节:第二章第五节“液-液平衡”3. 浮阀塔中的分离过程:阐述甲醇水混合物在浮阀塔中的分离原理,包括塔内流体流动、传质与传热过程。
- 教材章节:第三章第三节“浮阀塔的分离过程”4. 浮阀塔设计与计算:介绍浮阀塔设计方法,包括塔板数、处理能力、分离效率的计算。
- 教材章节:第四章第二节“浮阀塔的设计计算”5. 实验操作与观察:组织学生进行浮阀塔实验,观察甲醇与水的分离过程,记录数据,分析结果。
- 教材章节:第五章“实验操作”6. 计算机模拟与优化:运用相关软件,对浮阀塔进行模拟和优化,提高学生解决实际问题的能力。
甲醇水浮阀塔课程设计
甲醇水浮阀塔课程设计。
一、课程目标知识目标:1. 让学生理解并掌握甲醇水浮阀塔的工作原理和基本结构;2. 使学生了解甲醇水浮阀塔在化工生产中的应用及重要性;3. 帮助学生掌握甲醇与水分离的物理过程及相关的化学知识。
技能目标:1. 培养学生运用所学知识分析和解决实际工程问题的能力;2. 提高学生在实验操作中观察、记录、分析数据的能力;3. 培养学生运用计算机等工具进行模拟计算和优化设计的能力。
情感态度价值观目标:1. 培养学生对化学工程学科的兴趣,激发他们探索未知领域的热情;2. 增强学生的环保意识,认识到化工生产过程中环保的重要性;3. 培养学生的团队协作精神,使他们学会与他人共同解决问题。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够阐述甲醇水浮阀塔的工作原理,并绘制其基本结构图;2. 学生能够运用所学知识,分析甲醇与水分离过程中可能存在的问题,并提出解决方案;3. 学生能够在实验操作中,熟练使用相关设备,正确记录和分析数据;4. 学生能够利用计算机软件进行甲醇水浮阀塔的模拟计算,并进行优化设计;5. 学生在课程学习过程中,表现出积极的学习态度,具备良好的团队协作精神。
二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 甲醇水浮阀塔的基本原理及结构:- 介绍浮阀塔的工作原理及其在化工生产中的应用;- 分析甲醇与水分离的物理和化学原理;- 解析塔内浮阀、分布器、填料等关键部件的结构和功能。
2. 甲醇水浮阀塔的工艺计算与设计:- 讲解塔内气液两相流动的特性和计算方法;- 介绍甲醇与水分离过程的模拟计算方法;- 分析塔内填料选择、塔径、塔高等参数对分离效果的影响。
3. 实验操作与数据分析:- 安排实验操作,让学生实际操作甲醇水浮阀塔;- 指导学生正确记录实验数据,并进行数据分析;- 分析实验过程中可能存在的问题,探讨解决方案。
4. 教学大纲与进度安排:- 教学内容分为基本原理、工艺计算与设计、实验操作三个模块;- 教学进度按照教材章节顺序进行,共计10个课时;- 教材章节涵盖:第一章 化工塔设备概述;第二章 浮阀塔的原理与结构;第三章 甲醇水分离过程;第四章 塔内工艺计算;第五章 塔设备设计;第六章实验操作与数据分析。
化工设备机械基础课程设计(浮阀塔)
北京理工大学珠海学院课程设计任务书2013~2014学年第2 学期学生姓名:专业班级:化工一班指导教师:工作部门:化工与材料学院一、课程设计题目浮阀塔的机械设计二、课程设计内容1.塔设备的结构设计包括:塔盘结构,塔底、塔顶空间,人孔数量及位置,仪表接管选择、工艺接管管径计算等。
2. 塔体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)计算危险截面的重量载荷、风载荷、地震载荷及偏心载荷;(3)计算危险截面的由各种载荷作用下的轴向应力;(4)计算危险截面的组合轴向拉应力和组合轴向压应力,并进行强度和稳定性校核。
3. 筒体和裙座水压试验应力校核4. 裙座结构设计及强度校核包括:裙座体、基础环、地脚螺栓5. 编写设计说明书一份6. 手工绘制3(A3)号装配图一张,Auto CAD绘3(A3)号图一张(换热器)。
三、设计条件1. 设备类型:自支承式塔设备(塔顶无偏心载荷);2. 设置地区环境:基本风压:q o=400N/㎡;设计地震烈度:7度(或8度);场地土:Ⅱ类。
地震加速度0.3g,地震系数根据自己的需要任取一组;3. 塔体及裙座的机械设计条件:(1)塔体内径Di=2200mm,塔高近似取H=45000mm(每隔一组数据不同,详见安排表);(2)计算压力Pc=1.0MPa(每组中各人的计算压力根据安排表中数据),设计温度t=250℃;(3)塔体装有N=75层浮阀塔盘,每块塔盘上存留介质层高度为hw=100mm,介质密度为ρ1=800kg/m3;(4)沿塔高每5m左右开设一个人孔,人数为8-10个,相应在人孔处安装半圆形平台8-10个,平台宽度为B=900mm,高度为1000mm。
(5)塔外保温层厚度为δs=120mm,保温材料密度为ρ2=300kg/m3;(6)塔体与裙座间悬挂一台再沸器,其操作质量为me=4000kg,偏心距e=2000mm;(7)塔体与封头材料在低合金高强度刚中间选用,并查出其参数。
浮阀塔课程设计7页word
化工原理课程设计—浮阀塔塔板设计专业:化学工程与工艺班级:化工0701姓名:曾超学号:0701010101成绩:指导教师:张克铮题目:拟建一浮阀塔用以分离苯-氯苯混合物(不易气泡),决定采用F1型浮阀,试根据以下条件做出浮阀塔(精馏段)的设计计算。
已知条件见下表:物系液相密度ρL3-⋅mkg气相密度ρV3-⋅mkg液相流量L S13-⋅sm气相流量V S13-⋅sm表面张力σ1-⋅mN苯-氯苯841.9 2.996 0.006 1.61 0.0209要求:(1)进行塔板工艺设计计算及验算(2)绘制负荷性能图(3)绘制塔板结构图(4)给出设计结果列表(5)进行分析和讨论设计计算及验算1.塔板工艺尺寸计算(1)塔径 欲求塔径应先给出空塔气速u ,而 式中c 可由史密斯关联图查出,横标的数值为取板间距m H T 45.0=,板上液层高度m h L 05.0=,则图中参数值为 由图53-查得0825.020=c ,表面张力./9.20m mN =σ 取安全系数为0.6,则空塔气速为 塔径m u V D s562.184.014.361.144=⨯⨯==π按标准塔径圆整m D 6.1=,则 塔截面积 22201.2)6.1(414.34m D A T =⨯==π实际空塔气速 s m A V u T s /801.001.261.1===(2)溢流装置 选用单溢流弓形降液管,不设进口堰。
各项计算如下: ①堰长W l :取堰长D l W 66.0=,即 ②出口堰高W h :OW L W h h h -=采用平直堰,堰上液层高度OW h 可依下式计算: 近似取1=E ,则可由列线图查出OW h 值。
③弓形降液管宽度d W 和面积f A : 由图103-查得:124.0,0721.0==DW A A dTf ,则 停留时间s L H A L H A sT f hTf 88.10006.045.0145.03600=⨯===θs 5>θ,故降液管尺寸可用。
课程设计浮阀式精馏塔图
课程设计浮阀式精馏塔图一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握浮阀式精馏塔的基本原理、结构和设计方法;技能目标要求学生能够运用所学知识对浮阀式精馏塔进行分析和设计,提高解决实际问题的能力;情感态度价值观目标要求学生在学习过程中培养科学精神、创新意识和团队合作能力。
通过对浮阀式精馏塔的学习,使学生能够了解其在化工、石化等领域的应用,提高学生对专业知识的学习兴趣,培养学生解决实际问题的能力,为学生未来的学习和工作打下坚实的基础。
二、教学内容本课程的教学内容主要包括浮阀式精馏塔的基本原理、结构设计、操作优化等方面。
具体包括以下几个部分:1.浮阀式精馏塔的基本原理:包括塔内质量传递、热量传递和塔内流体动力学等方面的基本概念和理论。
2.浮阀式精馏塔的结构设计:包括塔体、塔板、浮阀等主要部件的设计方法和原则。
3.浮阀式精馏塔的操作优化:包括操作参数的调整、塔内温度和压力的控制等方面的知识和技能。
通过对以上内容的学习,使学生能够全面掌握浮阀式精馏塔的基本知识和应用技能。
三、教学方法本课程的教学方法包括讲授法、案例分析法、实验法等。
在教学过程中,教师将结合具体内容选择合适的教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:通过教师的讲解,使学生了解和掌握浮阀式精馏塔的基本原理和设计方法。
2.案例分析法:通过分析实际案例,使学生了解浮阀式精馏塔在实际工程中的应用和操作优化方法。
3.实验法:通过实验操作,使学生掌握浮阀式精馏塔的结构和操作方法,提高学生的实践能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。
教学资源将用于支持教学内容和教学方法的实施,丰富学生的学习体验。
1.教材:选用国内权威出版的教材,为学生提供系统的理论知识。
2.参考书:推荐相关的专业书籍,拓宽学生的知识视野。
3.多媒体资料:制作课件、视频等多媒体资料,提高课堂教学效果。
浮阀塔课程设计
浮阀塔课程设计化工原理课程设计浮阀塔的设计专业:化学工程与工艺班级:化工1003姓名:孙皓升学号:1001010310成绩:指导教师:王晓宁设计任务书拟建一浮阀塔用以分离甲醇——水混合物,决定采用F1型浮阀(重阀),试根据以下条件做出浮阀塔的设计计算。
已知条件:其中:n为学号要求:1.进行塔的工艺计算和验算2.绘制负荷性能图3.绘制塔板的结构图4.将结果列成汇总表5.分析并讨论一 、塔板工艺尺寸计算(1)塔径 欲求塔径应先给出空塔气速u ,而max u )(⨯=安全系数uvv l Cu ρρρ-=max 式中C 可由史密斯关联图查出,横标的数值为0963.0)01.1819(89.10064.0)(5.05.0==v l h h V L ρρ 取板间距m H T 5.0=,板上液层高度m h l07.0= ,则图中参数值为m h H L T 38.007.045.0=-=-由图53-查得085.020=c ,表面张力./38m mN =σ 0.20.22038()0.085=0.0962020c c σ⎛⎫=⨯=⨯ ⎪⎝⎭max 819 1.010.096 2.73/1.01u m s -==取安全系数为0.6,则空塔气速为max u=0.6u =0.6 2.73=1.63m/s ⨯则塔径D 为:44 1.891.223.14 1.63sV D muπ⨯===⨯按标准塔径圆整D=1.4m ,则 塔截面积:22254.1)4.1(414.34m D A T =⨯==π1.89 1.227/1.54s T V u m s A ===实际空塔气速:(2)溢流装置 选用单溢流弓形降液管,不设进口堰。
各项计算如下:① 堰长W l :取堰长D l W 67.0=,即0.67 1.40.94W l m =⨯=② 出口堰高h w :W L OW h h h =-采用平直堰,堰上液层高度OW h 可依下式计算:32)(100084.2Wh OWl L E h = 近似取1=E ,则可由列线图查出OW h 值。
浮阀塔的设计方案(优秀)
滨州学院课程设计任务书一、课题名称甲醇——水分离过程板式精馏塔设计二、课题条件(原始数据)原料:甲醇、水溶液处理量:3200Kg/h原料组成:33%(甲醇的质量分率)料液初温:20℃操作压力、回流比、单板压降:自选进料状态:冷液体进料塔顶产品浓度:98%(质量分率)塔底釜液含甲醇含量不高于1%(质量分率)塔顶:全凝器塔釜:饱和蒸汽间接加热塔板形式:筛板生产时间:300天/年,每天24h运行冷却水温度:20℃设备形式:筛板塔厂址:滨州市三、设计内容1、设计方案的选定2、精馏塔的物料衡算3、塔板数的确定4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数)5、精馏塔塔体工艺尺寸的计算6、塔板主要工艺尺寸的计算滨州学院化工原理课程设计说明书7、塔板的流体力学验算8、塔板负荷性能图(精馏段)9、换热器设计10、馏塔接管尺寸计算11、制生产工艺流程图(带控制点、机绘,A2图纸)12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸)13、撰写课程设计说明书一份设计说明书的基本内容⑴课程设计任务书⑵课程设计成绩评定表⑶中英文摘要⑷目录⑸设计计算与说明⑹设计结果汇总⑺小结⑻参考文献14、有关物性数据可查相关手册15、注意事项⑴写出详细计算步骤,并注明选用数据的来源⑵每项设计结束后列出计算结果明细表⑶设计最终需装订成册上交四、进度计划(列出完成项目设计内容、绘图等具体起始日期)1、设计动员,下达设计任务书0.5天2、收集资料,阅读教材,拟定设计进度1-2天3、初步确定设计方案及设计计算内容5-6天4、绘制总装置图2-3天5、整理设计资料,撰写设计说明书2天6、设计小结及答辩1天目录摘要 (1)绪论 (2)第一章设计方案的选择和论证 (3)1.1设计思路 (3)1.2设计方案的确定 (3)1.3设计步骤 (4)第二章塔的工艺设计 (4)2.1基础物性数据 (4)2.2精馏塔的物料衡算 (6)2.2.1原料液及塔顶、塔底产品的摩尔分数 (6)2.2.2进料热状况q的确定 (6)2.2.3操作回流比R的确定 (7)2.2.4求精馏塔的气液相负荷 (7)2.2.5操作线方程 (7)2.2.6用图解法求理论塔板数 (8)2.2.7实际板数的求取 (8)2.3 精馏塔的工艺条件及有关物性数据的计算 (9)2.3.1进料温度的计算 (9)2.3.2 操作压强 (9)2.3.3平均摩尔质量的计算 (10)2.3.4平均密度计算 (10)2.3.5液体平均表面张力计算 (11)2.3.6液体平均粘度计算 (12)2.4 精馏塔工艺尺寸的计算 (12)2.4.1塔径的计算 (12)2.4.2精馏塔有效高度的计算 (14)2.5 塔板主要工艺尺寸的计算 (15)2.5.1溢流装置计算 (15)2.6浮阀数目、浮阀排列及塔板布置 (16)2.7塔板流体力学验算 (17)2.7.1计算气相通过浮阀塔板的静压头降 (17)2.7.2淹塔 (17)2.8精馏段塔板负荷性能图 (19)2.8.1雾沫夹带线 (19)2.8.2液泛线 (19)2.8.3液相负荷上限线 (20)2.8.4气体负荷下限线(漏液线) (20)2.8.5液相负荷下限线 (20)2.9小结 (21)第三章辅助设备的计算 (21)3.1精馏塔的附属设备 (21)3.1.1再沸器(蒸馏釜) (22)3.1.2塔顶回流全凝器 (23)3.1.3原料贮罐 (24)3.1.4泵的计算及选型 (24)第四章塔附件设计 (24)4.1接管 (24)4.1.1进料 (24)4.1.2回流管 (25)4.1.3塔底出料管 (25)4.1.4塔顶蒸气出料管 (25)4.1.5塔底进气管 (25)4.2除沫器 (25)4.3裙座 (26)4.4人孔 (26)4.5塔总体高度的设计 (26)4.5.1塔的顶部空间高度 (26)4.5.2塔的底部空间高度 (26)4.5.3塔立体高度 (26)设计结果汇总 (28)致谢 (29)主要符号说明 (31)附录 (33)摘要化工生产常需进行二元液相混合物的分离以达到提纯或回收有用组分的目的馏是利用液体混合物中各组分挥发度的不同,并借助于多次部分汽化和多次部分冷凝达到轻重组分分离目的的方法。
化工原理课程设计---浮阀塔设计
化⼯原理课程设计---浮阀塔设计设计条件:常压:p=1atm处理量:50000t/y进料组成:馏出液组成:釜液组成:(以上均为质量分数)塔顶全凝器:泡点回流每年实际⽣产天数:330天(⼀年中有⼀个⽉检修)精馏塔塔顶压强:4kPa加热⽅式:间接加热第⼀章塔板⼯艺计算1.基础物性数据表1-1 苯、甲苯的粘度表1-2 苯、甲苯的密度表1-3 苯、甲苯的表⾯张⼒表1-4 苯、甲苯的摩尔定⽐热容表1-5 苯、甲苯的汽化潜热2物料衡算2.1 塔的物料衡算(1)苯的摩尔质量:78.11A M /kg kmol甲苯的摩尔质量:B M =92.13/kg kmol(2)原料液及塔顶、塔底产品的摩尔分数塔顶易挥发组分质量分数,摩尔分数釜底易挥发组分质量分数,,摩尔分数原料液易挥发组分质量分数,摩尔分数料液流量F=50000*1000/(330*24)=6313.13kg/h=80.82kmol/h 由公式:F=D+W ,F =D +W代⼊数值有:塔顶产品(馏出液)流量D=45.12 kmol/h ;釜底产品(釜液)流量W=35.70 kmol/h 。
2.2 分段物料衡算根据相平衡曲线,泡点进料时q=1有,1.38由梯形图可知,全回流下最少理论板8。
有理论板得捷算法有根据兰吉利图,选取不同的R值,计算值,吉利兰图找到对应点,⾃此引铅垂线与曲线相交,由于此交点相应的纵标值,可以做出以下图像:曲率变化最⼤的点是在R=2.15,N=14.4915处,即理论板是15块所以精馏段液相质量流量*45.12=97kmol/h,精馏段⽓相质量流量 3.15*45.12=142.13kmol/h,精馏段操作线⽅程,即=+0.307,因为泡点进料,所以进料热状态q=1,所以,提馏段液相质量流量L'=L+qF=177.8kmol/h,提馏段⽓相质量流量V'= V-(1-q)F=142.13kmol/h,所以,提馏段操作线⽅程,即=-0.006, 画出的梯形图如下:总板数=13-1=12,,进料板为第7块。
浮阀塔课程设计范文
浮阀塔课程设计范文浮阀塔是一种重要的化工设备,广泛应用于石油化工、化学工程、环保等领域,用于气体液体两相的分离。
本课程设计旨在对浮阀塔的设计过程进行深入研究,从而培养学生的设计能力和实践动手能力。
一、课程设计目的和任务本课程设计的主要目的是培养学生在化工工程领域的设计和实践能力,具体任务包括:1.了解浮阀塔的工作原理和结构特点;2.掌握浮阀塔设计的基本步骤和方法;3.进行浮阀塔设计的案例分析和实践操作;4.掌握使用计算机辅助设计软件进行浮阀塔的设计。
二、课程设计内容1.理论知识学习:学生需要通过文献资料、教材和网络资源等途径,了解浮阀塔的工作原理、结构特点、设计步骤和方法等方面的知识。
2.设计案例分析:学生需要选择一个具体的工程案例进行分析,包括流程图、设备选择、计算等方面的内容。
通过对案例的分析,学生可以更好地理解浮阀塔的设计过程和要点。
3.实践操作:在项目实践中,学生需要亲自完成浮阀塔的设计和计算,包括计算设计参数、绘制设备图、流程图、计算设备尺寸等。
通过实践操作,学生可以更好地掌握浮阀塔的设计方法和技巧。
4. 计算机辅助设计:学生需要使用计算机辅助设计软件,如AutoCAD等,进行浮阀塔的绘图和计算。
通过计算机辅助设计,学生可以提高设计效率,减少设计错误。
三、课程设计方法本课程设计采用综合教学方法,即理论与实践相结合,计算机辅助设计与手工绘图相结合。
具体方法包括:1.理论学习:学生通过课堂教学和自主学习等方式,学习浮阀塔的理论知识和设计方法。
2.设计案例分析:学生通过分组进行案例分析,共同讨论和解决设计难题,提高设计能力。
3.实践操作:学生通过实际操作,亲自完成浮阀塔的设计和计算,提高实践动手能力。
4.计算机辅助设计:学生通过使用计算机辅助设计软件,进行浮阀塔的绘图和计算,提高设计效率。
四、课程设计评价本课程设计的评价主要包括以下几个方面:1.设计报告评价:通过对学生设计报告的评阅,评价学生对浮阀塔设计过程的理解和掌握程度。
化工原理课程设计(浮阀塔).
板式连续精馏塔设计任务书一、设计题目:分离苯—甲苯系统的板式精馏塔设计试设计一座分离苯—甲苯系统的板式连续精馏塔,要求原料液的年处理量为50000 吨,原料液中苯的含量为35 %,分离后苯的纯度达到98 %,塔底馏出液中苯含量不得高于1%(以上均为质量百分数)二、操作条件1. 塔顶压强: 4 kPa (表压);2. 进料热状态:饱和液体进料3. 回流比:加热蒸气压强:101.3 kPa(表压);单板压降:≤ 0. 7 kPa三、塔板类型:浮阀塔板四、生产工作日每年300天,每天24小时运行。
五、厂址厂址拟定于天津地区。
六、设计内容1. 设计方案的确定及流程说明2. 塔的工艺条件及有关物性数据的计算3. 精馏塔的物料衡算4. 塔板数的确定5. 塔体工艺尺寸的计算6. 塔板主要工艺尺寸的设计计算7. 塔板流体力学验算8. 绘制塔板负荷性能图9. 塔顶冷凝器的初算与选型10. 设备主要连接管直径的确定11. 全塔工艺设计计算结果总表12. 绘制生产工艺流程图及主体设备简图13. 对本设计的评述及相关问题的分析讨论目录一、绪论 (1)二、设计方案的确定及工艺流程的说明 (2)2.1设计流程 (2)2.2设计要求 (3)2.3设计思路 (3)2.4设计方案的确定 (4)三、全塔物料衡算 (5)3.2物料衡算 (5)四、塔板数的确定 (6)4.1理论板数的求取 (6)4.2全塔效率实际板层数的求取 (7)五、精馏与提馏段物性数据及气液负荷的计算 (9)5.1进料板与塔顶、塔底平均摩尔质量的计算 (9)5.2气相平均密度和气相负荷计算 (10)5.3液相平均密度和液相负荷计算 (10)5.4液相液体表面张力的计算 (11)5.5塔内各段操作条件和物性数据表 (11)六、塔径及塔板结构工艺尺寸的计算 (14)6.1塔径的计算 (14)6.2塔板主要工艺尺寸计算 (15)6.3塔板布置及浮阀数目与排列 (17)七、塔板流体力学的验算及负荷性能图 (19)7.1塔板流体力学的验算 (19)7.2塔板负荷性能图 (22)八、塔的有效高度与全塔实际高度的计算 (27)九、浮阀塔工艺设计计算总表 (28)十、辅助设备的计算与选型 (30)10.1塔顶冷凝器的试算与初选 (30)10.2塔主要连接管直径的确定 (31)十一、对本设计的评述及相关问题的分析讨论 (33)13.1设计基础数据 (36)13.2附图 (38)一、绪论化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。
浮阀式精馏塔课程设计
浮阀式精馏塔课程设计
一、设计任务和要求
1.设计一个浮阀式精馏塔,以满足给定的分离要求。
2.根据给定的进料条件、产品要求和操作条件,确定合适的操作方式和工艺参数。
3.使用适当的设计软件进行模拟和优化,以确定最佳塔体尺寸和分离效果。
4.编写设计报告,包括塔体尺寸、分离流程、操作条件、经济效益等方面的分析。
二、设计步骤
1.确定设计任务和要求,明确进料条件、产品要求和操作条件。
2.进行物性分析和热力学分析,选择合适的精馏分离流程。
3.根据流程图和工艺参数,使用设计软件建立浮阀式精馏塔的模型。
4.进行模拟计算,优化塔体尺寸和分离效果。
5.根据模拟结果,确定塔体尺寸、填料和附件等参数。
6.编写设计报告,包括流程图、模拟结果、塔体尺寸、经济效益等方面的分析。
7.准备答辩材料,向老师和同学展示设计成果。
三、注意事项
1.在设计过程中,应充分考虑安全、环保和经济效益等方面的因素。
2.注意数据的准确性和可靠性,以确保设计的可行性和可靠性。
3.在答辩过程中,应注意表达清晰、逻辑严谨,回答问题时要准确、全面。
四、总结
本课程设计通过模拟和优化浮阀式精馏塔,使我们更深入地了解了精馏分离的原理和工艺参数,提高了我们的工程设计能力和实际操作能力。
同时,也使我们认识到了工程实践中的复杂性和多样性,培养了我们的创新思维和实践能力。
在未来的学习和工作中,我们将不断积累经验,提高自己的综合素质和能力水平。
浮阀式塔板课程设计
浮阀式塔板课程设计一、教学目标本课程旨在让学生掌握浮阀式塔板的基本原理、结构特点及其在化工过程中的应用。
通过本课程的学习,学生能理解浮阀式塔板的工作原理,掌握其设计计算方法,并能够分析解决实际工程问题。
1.掌握浮阀式塔板的基本原理和结构特点。
2.理解浮阀式塔板的设计计算方法。
3.了解浮阀式塔板在化工过程中的应用。
4.能够运用浮阀式塔板的基本原理分析和解决实际工程问题。
5.能够运用浮阀式塔板的设计计算方法进行简单的设计计算。
情感态度价值观目标:1.培养学生的工程意识,使其能够将理论知识应用于实际工程实践。
2.培养学生对化工行业的兴趣,提高其对化工专业的认同感。
二、教学内容本课程的教学内容主要包括浮阀式塔板的基本原理、结构特点、设计计算方法以及在化工过程中的应用。
1.浮阀式塔板的基本原理:介绍浮阀式塔板的工作原理,包括塔板的作用、塔板流体力学原理、塔板效率等。
2.浮阀式塔板的结构特点:介绍浮阀式塔板的结构组成,包括塔板本体、浮阀、升气管、塔板孔等,并分析各种结构特点对塔板性能的影响。
3.浮阀式塔板的设计计算方法:介绍浮阀式塔板的设计计算方法,包括塔板孔径计算、塔板压降计算、塔板流量计算等。
4.浮阀式塔板在化工过程中的应用:介绍浮阀式塔板在化工过程中的应用实例,包括蒸馏、吸收、萃取等,并分析浮阀式塔板在各种化工过程中的优缺点。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。
1.讲授法:通过讲解浮阀式塔板的基本原理、结构特点、设计计算方法等,使学生掌握相关理论知识。
2.讨论法:学生针对浮阀式塔板在实际工程中的应用进行讨论,培养学生的工程意识和解决问题的能力。
3.案例分析法:分析浮阀式塔板在化工过程中的实际应用案例,使学生能够将理论知识与实际工程相结合。
4.实验法:安排实验室实践活动,使学生能够直观地了解浮阀式塔板的工作原理和结构特点,提高学生的实践操作能力。
浮阀塔课程设计
1 引言精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。
精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。
实现原料混合物中各组成分离该过程是同时进行传质传热的过程。
本次设计任务为设计一定处理量的精馏塔,实现苯—甲苯的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。
浮阀有很多种形式,但最常用的形式是F1型和V-4型。
F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中。
1.1 精馏塔对塔设备的要求1.生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。
2.效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。
3.流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。
4.有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。
5.结构简单,造价低,安装检修方便。
6.能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。
1.2 浮阀塔的优点1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。
2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。
苯甲苯浮阀塔的课程设计
苯甲苯浮阀塔的课程设计一、课程目标知识目标:1. 让学生掌握苯、甲苯的基本物理化学性质,理解其在浮阀塔中的行为和作用。
2. 使学生了解并掌握浮阀塔的基本结构、工作原理及其在化工过程中的应用。
3. 引导学生掌握基本的流体力学原理,并能应用于解释浮阀塔内物质的流动现象。
技能目标:1. 培养学生运用理论知识分析苯、甲苯在浮阀塔中的分离效果,提高问题解决能力。
2. 培养学生通过实验、图表等手段,对浮阀塔的操作参数进行优化,提高实践操作能力。
3. 培养学生运用科技文献、网络资源等,获取与浮阀塔相关的信息,提高自主学习能力。
情感态度价值观目标:1. 培养学生对化工过程及设备的好奇心和探索精神,激发学生的学习兴趣。
2. 培养学生关注化工行业的发展,认识到化工技术在实际生产中的应用价值。
3. 增强学生的环保意识,认识到化工生产过程中应遵循的可持续发展原则。
本课程针对高年级化学工程与工艺专业学生,结合苯甲苯浮阀塔的知识点,注重理论与实践相结合。
课程目标旨在使学生通过本章节的学习,对苯甲苯浮阀塔的相关知识有深入理解,提高学生的理论分析和实践操作能力,同时培养学生的情感态度价值观,使其成为具有创新精神和环保意识的高素质化工人才。
二、教学内容1. 苯、甲苯的物理化学性质:结合课本第三章第二节内容,讲解苯、甲苯的结构、密度、沸点、溶解度等基本性质,分析其在浮阀塔中的行为特点。
2. 浮阀塔结构及工作原理:参照课本第四章第一节内容,介绍浮阀塔的基本结构、浮阀的作用及工作原理,阐述其在化工过程中的应用。
3. 流体力学原理:结合课本第二章第五节内容,讲解流体力学基本原理,如雷诺数、牛顿流体等,分析浮阀塔内物质的流动现象。
4. 苯甲苯在浮阀塔中的分离效果:依据课本第四章第二节内容,分析影响苯甲苯在浮阀塔中分离效果的因素,如塔板设计、回流比等。
5. 实验操作与参数优化:参考课本实验教程部分,组织学生进行浮阀塔实验,学习操作方法,掌握实验技巧,通过调整操作参数优化分离效果。
苯-氯苯浮阀塔课程设计
苯-氯苯浮阀塔课程设计一、课程目标知识目标:1. 学生能够掌握苯和氯苯的基本性质,理解其结构与性质的内在联系;2. 学生能够描述浮阀塔的工作原理及其在化工生产中的应用;3. 学生能够了解有机化合物在浮阀塔中的分离过程,掌握相关化学工程术语。
技能目标:1. 学生能够运用所学知识,分析苯-氯苯混合物在浮阀塔中的分离效果,提出优化方案;2. 学生能够运用实验技能,进行浮阀塔实验操作,观察并记录实验现象;3. 学生能够运用图表、数据等工具,展示实验结果,并进行简单的数据分析。
情感态度价值观目标:1. 学生通过学习本课程,培养对化学工程的兴趣和热情,增强对化学科学的好奇心;2. 学生能够认识到化学知识在实际生产中的应用价值,提高将化学知识服务于社会发展的意识;3. 学生在学习过程中,培养团队合作精神,增强实验操作的规范性和责任心。
课程性质:本课程为化学工程与工艺专业的一门专业核心课程,旨在帮助学生建立有机化合物分离与纯化的基本理论,提高实验操作技能。
学生特点:学生为高中二年级学生,具备一定的化学基础知识,对实验操作感兴趣,但缺乏化学工程方面的实践经验和系统知识。
教学要求:结合学生特点,注重理论联系实际,强化实验操作训练,培养学生的实际操作能力和工程思维。
通过课程学习,使学生达到上述课程目标,为后续相关课程的学习打下坚实基础。
二、教学内容1. 理论教学:- 有机化学基础:苯、氯苯的结构与性质,芳香性特征;- 化学工程基础:浮阀塔的工作原理,塔板效率,气液相传质过程;- 分离工程:有机化合物在浮阀塔中的分离原理,影响分离效果的因素。
2. 实践教学:- 实验操作:苯-氯苯混合物的浮阀塔分离实验,实验操作步骤及注意事项;- 实验数据分析:实验结果的处理,分离效果的评估,优化方案的设计。
3. 教学进度安排:- 第一周:苯、氯苯的基本性质及芳香性特征;- 第二周:浮阀塔的工作原理及分离工程基础;- 第三周:实验操作技能培训及实验操作;- 第四周:实验数据分析及优化方案设计。
浮阀塔裙座课程设计
浮阀塔裙座课程设计一、教学目标本课程旨在通过学习浮阀塔裙座的相关知识,让学生掌握浮阀塔裙座的结构、工作原理和应用。
具体目标如下:1.了解浮阀塔裙座的基本结构及其各部分的作用。
2.掌握浮阀塔裙座的工作原理,能运用相关知识分析实际问题。
3.了解浮阀塔裙座在不同领域的应用,理解其在工程中的重要性。
4.能够运用浮阀塔裙座的相关知识,解决实际工程问题。
5.具备一定的浮阀塔裙座设计和优化能力。
6.能够对浮阀塔裙座进行正确的操作和维护。
情感态度价值观目标:1.培养学生对浮阀塔裙座技术的兴趣,提高学生对工程领域的认识。
2.培养学生创新意识和团队合作精神,提高学生解决实际问题的能力。
3.培养学生关注国家经济建设,理解浮阀塔裙座技术在国民经济发展中的重要地位。
二、教学内容本课程的教学内容主要包括以下几个部分:1.浮阀塔裙座的基本结构:介绍浮阀塔裙座各部分的作用和相互关系,理解其整体结构。
2.浮阀塔裙座的工作原理:讲解浮阀塔裙座的工作原理,通过实例分析其在工作过程中的作用。
3.浮阀塔裙座的应用于优化:介绍浮阀塔裙座在不同领域的应用,讲解其在工程中的重要性,探讨优化方向。
4.浮阀塔裙座的操作与维护:讲解浮阀塔裙座的正确的操作方法,介绍维护措施,确保设备正常运行。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:通过讲解浮阀塔裙座的基本概念、原理和应用,使学生掌握相关知识。
2.案例分析法:通过分析实际工程案例,使学生更好地理解浮阀塔裙座的工作原理和应用。
3.实验法:学生进行浮阀塔裙座的实验操作,培养学生的动手能力和实际问题解决能力。
4.讨论法:学生进行分组讨论,分享学习心得,提高学生的沟通能力和团队合作精神。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选择权威、实用的教材,为学生提供系统的学习资料。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT,生动的动画和视频,帮助学生更好地理解抽象概念。
苯_甲苯浮阀塔课程设计
苯_甲苯浮阀塔课程设计一、课程目标知识目标:1. 理解苯和甲苯的基本性质,掌握其在浮阀塔中的分离原理;2. 学会运用浮阀塔的相关知识,分析苯和甲苯在不同操作条件下的分离效果;3. 掌握浮阀塔的结构、操作原理及影响因素,能够运用相关公式进行简单计算。
技能目标:1. 培养学生运用化学知识解决实际问题的能力,能够设计简单的苯和甲苯分离实验方案;2. 提高学生的实验操作技能,熟练使用浮阀塔进行分离实验;3. 培养学生通过观察、分析和解决问题的能力,能够根据实验结果调整实验方案。
情感态度价值观目标:1. 培养学生对化学实验的兴趣,激发学生主动探索科学奥秘的欲望;2. 培养学生的团队合作意识,学会在实验过程中相互协作、共同进步;3. 增强学生的环保意识,认识到化学实验中应遵循的绿色化学原则,关注化学对环境的影响。
课程性质:本课程为化学实验课程,结合理论教学,注重实践操作和实际应用。
学生特点:学生为高年级化学专业或相关领域的学生,具备一定的化学基础知识和实验操作技能。
教学要求:通过本课程的学习,使学生能够将化学理论知识与实际应用相结合,提高学生的实验操作能力和问题解决能力。
在教学过程中,注重引导学生主动参与、积极思考,培养学生的创新精神和实践能力。
课程目标分解为具体的学习成果,以便进行后续的教学设计和评估。
二、教学内容本课程教学内容主要包括以下几部分:1. 苯和甲苯的基本性质:讲解苯和甲苯的结构特点、物理性质及化学性质,结合教材相关章节,深入理解二者在浮阀塔中的分离原理。
2. 浮阀塔的结构与操作原理:介绍浮阀塔的结构特点、操作原理,分析影响分离效果的因素,包括塔内压力、温度、流量等。
3. 分离实验方案设计:根据苯和甲苯的物性差异,引导学生设计实验方案,包括实验步骤、操作方法及所需仪器设备。
4. 实验操作技能训练:组织学生进行浮阀塔分离实验,培养学生熟练使用实验设备,掌握实验操作技巧。
5. 实验结果分析:指导学生分析实验数据,探讨不同操作条件下苯和甲苯的分离效果,培养学生观察、分析和解决问题的能力。
浮阀塔课程设计任务书
浮阀塔课程设计任务书一、设计背景与目的浮阀塔作为一种重要的传质设备,广泛应用于石油化工、精细化工等行业的分离提纯过程中。
本次课程设计旨在通过浮阀塔的设计实践,使学生掌握传质设备的基本原理、设计方法和操作步骤,培养学生的工程实践能力和问题解决能力。
二、设计任务与要求1. 设计任务(1)根据给定的工艺条件和分离要求,选择合适的浮阀塔类型和结构;(2)确定浮阀塔的主要尺寸和操作参数,包括塔径、塔高、塔板数、进料位置等;(3)进行浮阀塔的流体力学计算和传质性能评估;(4)绘制浮阀塔的工艺流程图和设备布置图;(5)编写浮阀塔的设计说明书和操作指南。
2. 设计要求(1)设计应符合安全生产、环境保护和节能减排的要求;(2)设计应充分考虑实际生产中的可操作性和可维护性;(3)设计应具有一定的经济性和先进性,降低生产成本,提高分离效率;(4)设计图纸应清晰、规范,符合相关标准和规范;(5)设计说明书和操作指南应详细、准确,便于他人理解和操作。
三、设计步骤与方法1. 收集相关资料,了解浮阀塔的基本原理、结构类型和应用范围;2. 分析工艺条件和分离要求,确定浮阀塔的设计目标和约束条件;3. 选择合适的浮阀塔类型和结构,进行初步的尺寸估算;4. 进行流体力学计算和传质性能评估,优化浮阀塔的设计参数;5. 绘制浮阀塔的工艺流程图和设备布置图,编写设计说明书和操作指南;6. 进行设计评审和修改,完善浮阀塔的设计方案。
四、进度安排与时间节点1. 第一周:收集资料,了解浮阀塔的基本原理和结构类型;2. 第二周:分析工艺条件和分离要求,确定设计目标和约束条件;3. 第三周:选择合适的浮阀塔类型和结构,进行初步的尺寸估算;4. 第四周:进行流体力学计算和传质性能评估;5. 第五周:绘制浮阀塔的工艺流程图和设备布置图;6. 第六周:编写设计说明书和操作指南,进行设计评审和修改。
五、考核方式与评价标准1. 考核方式:课程设计报告、设计图纸、答辩表现等综合评价;2. 评价标准:设计的合理性、创新性、实用性、经济性等方面进行评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计—浮阀塔塔板设计专业:化学工程与工艺班级:化工0701姓名:曾超学号:0701010101成绩:指导教师:张克铮题目:拟建一浮阀塔用以分离苯—氯苯混合物(不易气泡),决定采用F1型浮阀,试根据以下条件做出浮阀塔(精馏段)的设计计算。
已知条件见下表:(1)进行塔板工艺设计计算及验算 (2)绘制负荷性能图 (3)绘制塔板结构图 (4)给出设计结果列表进行分析和讨论设计计算及验算1.塔板工艺尺寸计算塔径欲求塔径应先给出空塔气速u ,而max u )(⨯=安全系数u vvl cu ρρρ-=max 式中c 可由史密斯关联图查出,横标的数值为0625.0)996.29.841(61.1006.0)(5.05.0==v l h h V L ρρ取板间距m H T 45.0=,板上液层高度m h L 05.0=,则图中参数值为m h H L T 4.005.045.0=-=-由图53-查得0825.020=c ,表面张力./9.20m mN =σ0832.0)20(2.020=⨯=σc c s m u /399.1996.2996.29.8410832.0max =-⨯=取安全系数为0。
6,则空塔气速为m /s 84.0399.16.0u max =⨯=⨯=安全系数u塔径m u V D s562.184.014.361.144=⨯⨯==π按标准塔径圆整m D 6.1=,则 塔截面积22201.2)6.1(414.34m D A T =⨯==π(1)实际空塔气速s m A V u T s /801.001.261.1===溢流装置选用单溢流弓形降液管,不设进口堰。
各项计算如下: ①堰长W l :取堰长D l W 66.0=,即m l W 056.16.166.0=⨯=②出口堰高W h :OW L W h h h -=采用平直堰,堰上液层高度OW h 可依下式计算:32)(100084.2Wh OWl L E h =近似取1=E ,则可由列线图查出OW h 值。
m021.0h 056.1,/6.213600006.0OW 3===⨯=,查得m l h m L W h m h h h OW L W 029.0021.005.0=-=-=则③弓形降液管宽度d W 和面积f A :66.0=D l W 由图103-查得:124.0,0721.0==DWA A d T f ,则 2145.001.20721.0m A f =⨯=m W d 199.06.1124.0=⨯=停留时间sL H A L H A sT f hTf 88.10006.045.0145.03600=⨯===θs 5>θ,故降液管尺寸可用。
④降液管底隙高度''03600u l L u l L h W s W h o ==取降液管底隙处液体流速,/13.0'0s m u =则 m h o 0437.013.0056.1006.0=⨯=取m h o 04.0=塔板布置及浮阀数目与排列取阀动能因子,10=o F 用下式求孔速,o u 即s m F u voo /78.5996.210===ρ每层塔板上的浮阀数,即23478.5)039.0(461.14220=⨯⨯==ππosu d V N 取边缘区宽度m W c 06.0=,破沫区宽度m W s 10.0=,m W D R c 74.006.026.12=-=-=m W W D x s d 501.0)10.0199.0(26.1)(2=+-=+-= 222222236.1]74.0501.0arcsin)74.0(180501.074.0501.0[2]arcsin 180[2m RxR x R x A a =+-=+-=ππ浮阀排列方式采用等腰三角形叉排。
取同一横排的孔心距m mm t 075.075==,则可按下式估算排间距't ,即mm Nt A t a 5.770775.0075.023436.1'==⨯==考虑到塔的直径较大,必须采用分块式塔板,而各分块的支承与衔接也要占去一部分鼓泡区面积,因此排间距不宜采用77.5mm,而应小于此值,故取m mm t 065.065'==。
按mm t 75=、mm t 65'=以等腰三角形叉排方式作图(见附图1),排得阀数228个。
按228=N 重新核算孔速及阀孔动能因数:s m u o /91.5228)039.0(461.12=⨯=π23.10996.291.5=⨯=⨯=v o o u F ρ浮阀动能因数o F 变化不大,仍在12~9范围内。
塔板开孔率=%6.13%10091.5801.00=⨯=u u2.附图1(图中细实线为塔板分块线)塔板流体力学验算气相通过浮阀塔板的压强降可根据下式计算塔板压强降,即σh h h h c p ++=1①干板阻力:由下式计算,即sm u v oc /76.5996.21.731.73852.1852.1===ρ因oc o u u >,故按下式计算干板阻力,即m g u h L V c 034.081.99.841291.5996.234.5234.5220=⨯⨯⨯⨯=⨯=ρρ液柱②板上充气液层阻力:本设备分离苯和甲苯混合物,即液相为碳氢化合物,可取充气系数5.00=ε,有m h h L 025.005.05.001=⨯==ε液柱③液体表面张力所造成的阻力:此阻力很小,忽略不计。
因此,与气体流经一层浮阀塔板的压强降所相当的液柱高度为m h p 059.0025.0034.0=+=液柱(2)则单板压降Pa g h P L p p 48781.99.841059.0=⨯⨯==∆ρ淹塔为了防止淹塔现象的发生,要求控制降液管中清液层高度)(w T d h H H +≤φ.d H 可用下式计算,即d L p d h h h H =+=①与气体通过塔板的压强降所相当的液柱高度p h :前已算出m h p 059.0=液柱②液体通过降液管的压头损失:因不设进口堰,故按下式计算,即m h l L h oW sd 00309.0)04.0056.1006.0(153.0)(153.022=⨯⨯==液柱③板上液层高度:前已选定板上液层高度为m h L 05.0=则m H d 112.000309.005.0059.0=++=取5.0=φ,又已选定m H T 45.0=,m h W 029.0=。
则m h H W T 24.0)029.045.0(5.0)(=+⨯=+φ可见)(W T d h H H +<φ,符合防止淹塔的要求。
雾沫夹带按以下两式计算泛点率,即%10036.1⨯+-=bF Ls v L vsA KC Z L V ρρρ泛点率及%10078.0⨯-=TF L v sA KC V ρρρ泛点率板上液体流径长度 m W D Z d L 202.1199.0260.12=⨯-=-=板上液流面积272.1145.0201.22m A A A f T b =⨯-=-=苯和甲苯为正常系统,取物性系数0.1=K ,又查图得泛点负荷系数128.0=F C ,将以上数值代入下式得%2.48%10072.1128.00.1202.1006.036.1996.29.841996.261.1=⨯⨯⨯⨯⨯+-=泛点率3.又按下式计算泛点率,得%9.47%10001.2128.00.178.0996.29.841996.261.1=⨯⨯⨯⨯-=泛点率根据以上两式计算出的泛点率都在80%以下,故可知雾沫夹带量能够满足气)液)(/(1.0kg kg e V <的要求。
塔板负荷性能图⑴雾沫夹带线 依下式做出,即%10036.1⨯+-=bF Ls vL vsA KC Z L V ρρρ泛点率按泛点率为80%计算如下:80.072.1128.0202.136.1996.29.841996.2=⨯⨯+-s sL V整理得1761.0635.10598.0=+s s L V 或s s L V 3.27945.2-= (1)由式(1)知雾沫夹带线为直线,则在操作范围内任取两个Ls 值,依式(1)算出相应的Vs 值列于本例附表1中。
据此,可做出雾沫夹带线(1)。
0.0020。
0102。
892。
67附表1 ⑵液泛线d L o c d L p W T h h h h h h h h h H ++++=++=+1)(φ由上式确定液泛线。
忽略式中0h ,则有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛+=+3/20223600100084.2)1(153.0234.5)(W s W oW s L o v W T l L E h h l L g uh H ερρφ因物系一定,塔板结构尺寸一定,则T H ,W h ,0h ,W l ,v ρ,L ρ,0ε及φ等均为定值,而0u 与s V 又有如下关系,即Nd Vsu 2004π=式中阀孔数N 与孔径0d 亦为定值,因此可将上式简化为s V 与s L 的如下关系式:3222s s s dL cL b aV --=即3/222968.075.85197.001293.0s s s L L V --=或3/222965.073480.15s s s L L V --=在操作范围内任取若干个Ls 值,依式(2)算出相应的Vs 值列于本例附表2中。
0.0010.0050。
0090.0133。
803。
583.383。
15 附表2⑶液相负荷上限线液体的最大流量应保持在降液管中停留时间不低于3~5s.依下式知液体在降液管内停留时间为s L H A hTf 5~33600==θ以s 5=θ作为液体在降液管中停留时间的下限,则s m H A L T f s /013.0545.0145.05)(3max =⨯==(3)求出上限液体流量Ls 值(常数)。
在s s L V -图上液相负荷上限线为与气体流量s V 无关的竖直线(3) ⑷漏液线对于1F 型重阀,依500==v u F ρ计算,则vu ρ50=.又知0204Nu d V s π=则得vs Nd V ρπ5420=以50=F 作为规定气体最小负荷的标准,则s m F Nd Nu d V vs /787.0996.25228)039.0(444)(32020020min =⨯⨯⨯===πρππ(4)据此做出与液体流量无关的水平漏液线(4)⑸液相负荷下限线取堰上液层高度m h ow 006.0=作为液本负荷下限条件,依ow h 的计算式计算出s L 的下限值,依此做出液相负荷下限线,该线为与气相流量无关的竖直线(5)。
006.0)(3600100084.23/2min =⎥⎦⎤⎢⎣⎡W s l L E 取1=E ,则s m l L W s /0009.03600056.184.21000006.03600184.21000006.0)(32/32/3min=⨯⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛⨯⨯=(5) 根据本题附表1,2及式(3),(4),(5)可分别做出塔板负荷性能图上的(1),(2),(3),(4)及(5)共五条线,见附图2.附图2由塔板负荷性能图可以看出:①任务规定的气,液负荷下的操作点P (设计点),处在适宜操作区内的适中位置。