NE555人工启动单稳态延时(定时)应用电路
NE555原理及应用

NE555原理及应用
NE555的原理是基于RC时间常数(R是电阻,C是电容)的变化来实
现定时功能。
在NE555中,有三个外部引脚,1号引脚(GND,接地引脚)、8号引脚(Vcc,正电源引脚)和4号引脚(RESET,复位引脚)。
通过控制这些引脚与外部电路的连接,可以实现不同的工作模式。
1.单稳态多谐振荡器:单稳态多谐振荡器可以输出一段固定宽度的方
波脉冲。
在此应用中,通过连接电容和电阻来控制输出脉冲的宽度。
当触
发引脚接收到一个负脉冲时,输出引脚产生一个高电平,持续时间由电容
电压充放电时间决定。
这种应用常用于电子钟、计时器等。
2.方波发生器:通过连接电容和电阻,可以使NE555工作在方波发生
器模式。
当输出引脚处于高电平时,电容开始充电,当电压达到高阈值时,输出引脚将变为低电平,电容开始放电,当电压达到低阈值时,输出引脚
再次变为高电平,重复这个过程。
这种应用常用于音频设备、脉冲调制等。
3.频率分频器:通过改变电阻和电容的数值,可以实现NE555的频率
分频功能。
频率分频器可以将输入信号的频率分频为较低的输出频率。
这
种应用常用于计数器、频率计等。
4.PWM调制器:NE555也可以作为PWM(脉冲宽度调制)调制器,通
过改变电阻和电容的数值可以控制输出脉冲的占空比。
这种应用广泛用于
电机控制、逆变器、电源管理等领域。
555定时器应用电路的设计与调试

555定时器应用电路的设计与调试1.555定时器的原理概述2.555定时器的基本工作原理555定时器的基本工作原理是通过外部RC电路产生的时间常数来控制输出的时间周期。
具体来说,当电源正常通电后,555定时器的电源引脚将被高电平激活,通过内部比较器将电压与阀值进行比较,并将结果传递给RS触发器。
RS触发器的输出信号会控制放电开关,根据输入信号的变化来控制电容的放电与充电,从而实现定时和脉冲控制功能。
3.555定时器的应用电路设计(1)单稳态触发器电路单稳态触发器电路常用于产生固定宽度的脉冲信号。
通过一个电容和一个电阻连接到555定时器的触发脚,当电源通电或接收到外部触发脉冲信号时,555定时器会产生一个固定宽度的脉冲信号输出。
(2)Astable多谐振荡器电路Astable多谐振荡器电路常用于产生固定频率和变量占空比的方波信号。
通过一个电容和两个电阻连接到555定时器的控制脚与放电脚,当电源通电后,555定时器会自动产生方波信号输出。
4.实验步骤与调试方法(1)准备实验所需材料,包括555定时器芯片、电容、电阻、开关和示波器等。
(2)按照设计电路图连接实验电路,注意正确连接每个元件的引脚。
(3)接通电源,通过示波器观察输出信号,并根据需要调整电容和电阻的数值以达到所需的定时和脉冲控制效果。
(4)通过实验数据和示波器观察结果,对实验电路进行调试和优化,直至达到预期的结果。
5.实验注意事项(1)实验时要注意正确连接元件的引脚,避免引脚连接错误导致电路无法正常工作。
(2)实验中可以选择合适的电阻和电容数值以达到所需的定时和脉冲控制效果。
(3)在实验过程中可以适当添加一些调试电路,如LED灯、蜂鸣器等,以便更直观地观察电路的工作情况和调试结果。
6.本文总结本文对555定时器应用电路进行了设计与调试的详细解析,介绍了555定时器的基本工作原理和应用电路设计,以及相关的实验步骤和调试方法。
通过合理的设计和调试,可以实现各种定时和脉冲控制功能,满足不同场合的需求。
NE555组成的单稳态型时间继电器电路图

NE555组成的单稳态型时间继电器电路图
NE555组成的单稳态型时间继电器电路图
NE555组成的单稳态型时间继电器电路图
图2是用时基电路NE555组成的单稳态型时间继电器,合上开关S1,电路进入稳定状态,IC的3脚和7脚均为低电平,这时电容C不能充电;三极管VT1截止,继电器K不动作。
按一下启动按钮S2,IC的2脚受由高变低的脉冲触发,IC的3脚变高,7脚呈悬空状态,电路进入单稳态,这时三极管VT1饱和导通,继电器线圈得电动作,其触点闭合,直流大电流有输出。
同时,电容C经过电阻R2和电位器RP充电,当电容C两端电压达到2/3VCC时,单稳态结束,IC的3脚变低,继电器失电释放,直流大电流停止输出。
电路恢复稳态后,电容C经IC的7脚放电,等待下一次触发。
单稳态持续时间t即直流大电流输出时间的长短由单稳态电路的定时元件电阻R2、电位器RP和电容C的参数决定,可由下式进行估算:t=1.1(R2+RP)C,经过调整RP可满足延时20±2秒的时间要求。
555芯片功能及电路

555芯片功能及电路
555芯片具有多种功能,包括定时器、脉冲发生器和振荡器等。
它具
有三个独立的操作模式:单稳态(monostable)、震荡器(astable)和
双稳态(bistable)模式。
这些模式的切换由外部电阻和电容决定,因此555芯片可以根据用户的需求进行灵活的配置。
在单稳态模式下,555芯片可以用作延时触发器,即单脉冲发生器。
它可以在输入触发脉冲到达时生成一个固定宽度的输出脉冲。
这个功能在
许多应用中非常有用,比如脉冲测量、时间延迟和触发器控制等。
在震荡器模式下,555芯片可以产生一系列连续的脉冲,输出信号的
宽度和周期可以通过外部电阻和电容来控制。
这使得555芯片非常适合用
作时钟发生器、频率计数器和数字-模拟转换器(DAC)的参考时钟等应用。
在双稳态模式下,555芯片可以充当开关或触发器。
当输入信号到达时,输出将切换到另一个稳态,除非再次触发,否则保持在该稳态。
这使
得555芯片在前沿或下降沿触发的触发器电路中非常有用,例如计时器和
计数器。
555芯片的电路相对简单,它通常由几个外围元件组成。
最常见的电
路配置包括一个电阻、一个电容和一个比较器。
通过调整电阻和电容的值,可以调节输出脉冲的参数,例如宽度和频率。
此外,还可以添加其他元件,如放大器、开关和滤波器等,以增强电路的功能。
总之,555芯片是一个非常实用且功能强大的集成电路。
它可以用于
各种应用,包括定时、计时、控制和测量等。
其简单的电路配置和灵活的
功能使得它成为电子爱好者和工程师们常用的选择之一。
555定时器的典型应用电路

555定时器得典型应用电路单稳态触发器555定时器构成单稳态触发器如图2221所示,该电路得触发信号在2脚输入,R与C就是外接定时电路。
单稳态电路得工作波形如图2222所示。
在未加入触发信号时,因u i=H,所以u o=L。
当加入触发信号时,u i=L,所以u o=H,7脚内部得放电管关断,电源经电阻R向电容C充电,u C按指数规律上升。
当u C上升到2V CC/3时,相当输入就是高电平,555定时器得输出u o=L。
同时7脚内部得放电管饱与导通就是时,电阻很小,电容C经放电管迅速放电。
从加入触发信号开始,到电容上得电压充到2V CC/3为止,单稳态触发器完成了一个工作周期。
输出脉冲高电平得宽度称为暂稳态时间,用t W表示。
图2221 单稳态触发器电路图图2222 单稳态触发器得波形图暂稳态时间得求取:暂稳态时间得求取可以通过过渡过程公式,根据图2222可以用电容器C上得电压曲线确定三要素,初始值为u c(0)=0V,无穷大值u c(∞)=V CC,τ=RC,设暂稳态得时间为t w,当t= t w时,u c(t w)=2V CC/3时。
代入过渡过程公式[1p205]几点需要注意得问题:这里有三点需要注意,一就是触发输入信号得逻辑电平,在无触发时就是高电平,必须大于2V CC/3,低电平必须小于V CC/3,否则触发无效。
二就是触发信号得低电平宽度要窄,其低电平得宽度应小于单稳暂稳得时间。
否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。
此时单稳态触发器成为一个反相器。
R得取值不能太小,若R太小,当放电管导通时,灌入放电管得电流太大,会损坏放电管。
图2223就是555定时器单稳态触发器得示波器波形图,从图中可以瞧出触发脉冲得低电平与高电平得位置,波形图右侧得一个小箭头为0电位。
图2223 555定时器单稳态触发器得示波器波形图[动画45]多谐振荡器555定时器构成多谐振荡器得电路如图2224所示,其工作波形如图2225所示。
NE555应用 触摸开关电路图

NE555应用触摸开关电路图
图1和图2是采用555时基电路制作的双键触摸开关与单键触摸延迟开关。
图1中M1是“开”触摸片,当人手触碰时,人体感应的杂波信号加到时基电路的低电平触发端IC 的②脚,电路置位,③脚输出高电平,继电器K得电吸合,其常开触点闭合,被控电器通电工作。
M2为“关”触摸片,一旦触碰,人体感应的杂波信号加到555的阈值端IC⑥,电路复位,③脚输出低电平,继电器失电跳
闸,被控电器停止工作。
图2是延迟开关电路,555集成块接成单稳态触发器,平时处于复位状态,继电器K 不动作。
当M受到触摸时,电路被触发进人暂态,③脚输出高电平,继电器K吸合,被控电器工作。
暂态时间t=1.1R2 X C4,暂态时间结束,电路翻转成稳态,继电器K释放,被控电器停止工作。
Ne555延时1到10s可调电路的原理是什么?

Ne555延时1到10s可调电路的原理是什么?
555接成的单稳延时电路在电子电路中用的很广,其可以用于延时、定时、脉冲整形、频率-电压转换(部分数字万用表的频率档就是用CMOS555构成的频率-电压转换器来测量频率的)等电路中。
下面详细介绍一下555单稳态延时电路的工作原理及延时时间的计算方法。
▲ NE555延时电路原理图。
上图中的NE555接成单稳态工作模式,电路的延时时间由电阻R 及电容C决定(由于与R串联的1KΩ电阻远小于R,故忽略其影响),其计算公式为t=1.1RC。
假定R=1MΩ,C=10μF,则延时时间t=11秒,改变R的阻值即可获得所需的延时时间。
平时,NE555的输出端③脚输出为低电平,继电器不工作。
按一下微动开关S1,NE555受触发工作,其输出端③脚输出变为高电平,继电器线圈得电工作,其常开触点闭合,接通负载电源使其工作,约1.1RC时间后,NE555的③脚又变为低电平,负载停止工作,这就是NE555延时电路的工作原理。
▲ NE555引脚功能。
▲ DIP-8封装的NE555。
NE555为双极型555时基电路,其输出端③脚的输出电流和灌入电流皆可达200mA,足可以驱动普通的小型继电器。
若想了解更多的电子电路及元器件知识,请关注本头条号,谢谢。
ne555定时器工作原理

ne555定时器工作原理NE555定时器是一种集成电路,广泛应用于各种定时、脉冲和振荡电路中。
它是由Signetics公司于1972年推出的,是一种非常经典的定时器集成电路。
NE555定时器工作原理的理解对于电子爱好者和工程师来说是非常重要的,因为它在电子电路设计中有着广泛的应用。
本文将从NE555定时器的基本原理、内部结构、工作模式以及应用实例等方面进行介绍。
首先,NE555定时器的基本原理是基于电荷和放电的原理。
它内部有两个比较器,一个RS触发器和一个输出级。
NE555定时器可以工作在脉冲振荡模式和双稳态触发器模式。
在脉冲振荡模式下,NE555可以产生一定频率和占空比的方波信号。
在双稳态触发器模式下,NE555可以产生稳定的高电平或低电平输出。
NE555的内部结构包括电压比较器、RS触发器、输出级、电压分压器和电压调节器等部分。
这些部分共同作用,实现了NE555定时器的各种功能。
NE555定时器有三种工作模式,单稳态触发器模式、脉冲振荡模式和连续工作模式。
在单稳态触发器模式下,NE555定时器在接收到触发脉冲时,输出一个固定时间的高电平脉冲。
在脉冲振荡模式下,NE555定时器可以产生一定频率和占空比的方波信号。
在连续工作模式下,NE555定时器一直处于工作状态,输出高电平或低电平。
NE555定时器在电子电路设计中有着广泛的应用。
例如,它可以用于LED闪烁电路、蜂鸣器驱动电路、定时报警电路、PWM调速电路等。
在LED闪烁电路中,NE555定时器可以控制LED的闪烁频率和占空比。
在蜂鸣器驱动电路中,NE555定时器可以产生一定频率的方波信号驱动蜂鸣器发声。
在定时报警电路中,NE555定时器可以产生一定时间间隔的报警信号。
在PWM调速电路中,NE555定时器可以产生一定频率和占空比的PWM信号,用于驱动电机进行调速。
总之,NE555定时器是一种非常经典的定时器集成电路,它的工作原理基于电荷和放电的原理。
(完整版)NE555经典应用电路图

NE555应用电路图
图1 方波电路图2 振荡器实践电路图3 GIC PROBE WITH PULSE 逻辑脉冲探头
图4 TRONOME电子节拍器电路图5 0-5分定时器电路
图6 铃电路图图7 SCHMITT TRIGGER施密特触发器电路
图8 倾斜开关(水银开关)传感器电路图9TIMER TESTER定时器测试电路图10TWO TONE EXPERIMENT双音实验电路
图11动机调速器电路
图12电源报警电路图13 LED调光器电路图14敏电阻光控报警电路图15光敏电阻光控开关电路
图16红外线发射电路图17 简单闪光电路图18易触摸开关电路图19氖灯驱动电路
图20 50%对称波电路图21 触摸开关电路
图22 单稳态电路触发器
电热毯温控器
一般电热毯有高温、低温两档。
使用时,拨在高温档,入睡后总被热醒;拨在低温档,有时
醒来会觉得温度不够。
这里介绍一种电热毯温控器,它可以把电热毯的温度控制在一个合适的范围。
工作原理:
电路如图所示。
图中IC为NE555时基电路。
RP3为温控调节电位器,其滑动臂电位决定IC的触发电位V2和阀电位Vf,且V5=Vf=2Vz。
220V交流电压经C1、R1限流降压,D1、D2整流、C2滤波,DW稳压后,获得9V左右的电压供IC用。
室温下接通电源,因已调V2<VZ、V6Vz,V6≥Vf时,IC翻转,3脚变为低电平,BCR截止,电热丝停止发热,温度开始逐渐下降,BG1的ICEO随之逐渐减小,V2、V6降低。
当V6。
NE555构成的自动延时电路

NE555构成的自动延时电路
用NE555时基电路制作一个通电后延迟几十秒,继电器才能得电工作的延时电路。
下面我们给出一款采用NE555设计的这种延时电路。
NE555构成的自动延时电路。
上图电路中,NE555时基电路接成单稳态工作模式,每次接通电源后,由于电容C1两端的电压为0V,NE555的②脚和⑥脚为高电平,其输出端③脚输出为低电平,继电器K不工作。
当电容C1充满电后,NE555的②脚变为低电平,其③脚输出变为高电平,继电器K得电吸合,接通负载电源,直到12V电源断开,继电器才会停止工作。
本电路中,从接通12V电源到NE555输出高电平使继电器吸合这段时间(即延时时间)由电阻RP及电容C1决定,其计算公式为1.1·RP·C1。
一般通过调整RP阻值来改变延时时间。
若RP和C1采用图示数值,则延时时间约为24秒。
NE555内部框图及引脚功能。
NE555是一种双极型555时基电路,其工作电压范围为4.5~16V,输出端③脚的最大输出电流可达200mA,可以直接驱动小功率的电磁继电器。
NE555内部结构及应用电路

555定时器及其应用555定时器是一种中规模的集成定时器,应用非常广泛。
通常只需外接几个阻容元件,就可以构成各种不同用途的脉冲电路,如多谐振荡器、单稳态触发器以及施密特触发器等。
555定时器有TTL集成定时器和CMOS集成定时器,它们的逻辑功能与外引线排列都完全相同。
TTL型号最后数码为555,CMOS 型号最后数码为7555。
一、555的结构组成和工作原理555定时器是一种模拟电路和数字电路相结合的器件,下图为其内部组成和引脚图。
内部电路原理图等效逻辑图引脚图由图知,电路由一个分压器,两个电压比较器,一个R-S触发器,一个功率输出级和一个放电晶体管组成。
比较器A1为上比较器,由BG1~BG8组成,它是由一个NPN管的复合结构做输出级的两级差分放大器。
上比较器的反相输入端固定设置在2/3V CC上,它的同相输入端⑥脚称作阈值端(或高触发端),常用来测外部时间常数回路电容上的电压。
比较器A2为下比较器,由BG9~BG13组成,它是由一个PNP管组成的复合输出级的差分放大器。
上比较器的同相输入端固定设置在1/3V CC上,反向入端②脚称作触发输入端,用来启动电路。
电路中的比较器的主要功能是对输入电压和分压器形成的基准电压进行比较,把比较的结果用高电平"1 "或低电平"0" 两种状态在其输出端表现出来。
555 电路中的R-S触发器是由两个与非门交叉连接,上图中是由BG14~BG18构成。
其中BG15和B G14的基极分别受上比较器和下比较器的输出端控制。
A1控制R端,A2控制S端。
为了使R-S 触发器直接置零,触发器还引出一个④端,只要在④端置入低电平"0",不管触发器原来处于什么状态,也不管它输入端加的是什么信号,触发器会立即置零,即Q=O=Uo所以④端也称为总复位端。
BG18~BG21构成功率输出级,③脚为输出端,能输出最大为200mA的电流,故课直接驱动小型电机、继电器、地租扬声器等功率负荷。
555延时电路

555延时电路简介555延时电路是一种常用的定时器芯片。
它可以产生精确的延时信号,并且具有广泛的应用范围。
本文将介绍555延时电路的基本原理、工作方式、应用和常见问题解决方法。
基本原理555延时电路是由NE555集成电路实现的,它包含电压比较器、RS触发器、RS锁存器以及输出驱动器等组件。
它的基本工作原理如下:1.初始状态下,555延时电路的触发端(TRIG)和复位端(RST)都为低电平,控制电平(CONT)为高电平。
2.当TRIG端口的电压低于2/3的控制电平时,RS锁存器的输出反转为高电平。
3.当RS锁存器的输出为低电平时,输出端(OUT)输出高电平,同时电容开始充电。
4.当电容充电到2/3的控制电平时,RS锁存器的输出反转为低电平,输出端输出低电平。
5.当电容充电到1/3的控制电平时,RS锁存器的输出再次反转为高电平,输出端输出高电平。
根据这一基本的工作原理,可以通过调整电容和电阻的值来实现不同的延时时间。
工作方式555延时电路有三种工作方式:单稳态(Monostable)、边沿触发(Astable)和连续触发(Bistable)。
单稳态(Monostable)在单稳态模式下,当TRIG端口的电压低于2/3的控制电平时,输出端将输出一段预设的时间,然后自动恢复到初始状态。
实现单稳态模式的电路图如下:+-----++-------+ | 3 | +---+TRIG ------->| | | NE | | |+ | | | 555 | | || | | | | |RST ---------+ | +-----+ | | +3V+---------+ |||GND边沿触发(Astable)在边沿触发模式下,输出端将在一段时间内交替输出高电平和低电平,形成一个方波信号。
实现边沿触发模式的电路图如下:+-----++-------+ | 3 | +---+RST -------| | | NE | | |+ +--->| | | 555 | | || | | | | | || | | +-----+ | | +3V| +-----------------+ || |+-------------------------+连续触发(Bistable)在连续触发模式下,输出端在输入端的触发信号变化时,输出端的状态会根据RS触发器的状态进行切换。
NE555芯片实现单稳态触发器电路

NE555芯片实现单稳态触发器电路
电路原理图如下:
工作方式:
当VI处于高电平时,VOUT为低电平。
如果此时VI变成了低电平,那么我们的VOUT马上变为高电平,而且VOUT的高电平一直持续到,我们的VC=2/3VCC(就是电容C2一直充电到2/3VCC),而不管在我的电容C2一直充电到2/3VCC的过程中,VI是否又变成了高电平,在我的电容C2充电到2/3VCC后,VOUT马上又会变回为低电平。
这样,我们VOUT的低电平就是稳态,而出现的暂时的VOUT的高电平,称为暂稳态。
只有一个稳态就是VOUT低电平。
另外需要我们注意的一点的是:在暂稳态时间内(VOUT为高电平时间内/电容C2充电到2/3VCC的时间内)。
VI出现新的低电平,将不会起作用。
暂态的持续时间TW=1.1*R1*C1。
仿真的结果如下:
我们粗略的计算下:理论上我们的暂态时间TW=1.1*R1*C1=1.1*1k*1uf=1.1ms。
仿真的结果为TW=5.3*0.22ms=1.166ms. **每格是0.22ms,一共有5.6格。
** 二者的结果相当。
单稳态触发器电路的工作波形。
555定时器延时电路

555定时器延时电路1. 介绍555定时器是一种广泛应用于电子电路中的集成电路,它可以用来产生各种类型的时间延迟。
在本文中,我们将重点介绍555定时器的延时电路。
2. 延时电路原理555定时器延时电路的原理基于555定时器的内部结构和工作原理。
555定时器由比较器、RS触发器和放大器组成。
它的工作模式可以通过外部元件的连接方式来确定。
在延时电路中,我们使用555定时器的单稳态(monostable)模式。
单稳态模式下,555定时器的输入引脚(TRIG引脚)接收到一个负脉冲时,输出引脚(OUT引脚)会产生一个正脉冲。
这个正脉冲的宽度可以通过外部连接的电阻和电容来确定。
3. 555定时器延时电路的设计设计一个555定时器延时电路需要确定以下参数:•延时时间:即输出正脉冲的宽度,可以通过电阻和电容的选择来确定。
•输入触发方式:触发方式可以是正脉冲或负脉冲,取决于输入引脚的连接方式。
下面是一个基本的555定时器延时电路的设计步骤:步骤1:确定延时时间首先,确定所需的延时时间。
假设我们需要一个延时时间为1秒的延时电路。
步骤2:选择电阻和电容根据所需的延时时间,选择合适的电阻和电容。
延时时间的计算公式如下:延时时间 = 1.1 * R * C其中,R为电阻的阻值(单位为欧姆),C为电容的容值(单位为法拉)。
假设我们选择一个100k欧姆的电阻和一个10uF的电容。
步骤3:连接电阻和电容将选定的电阻和电容连接到555定时器的相应引脚上。
具体连接方式如下:•将电阻连接到电源正极(VCC)和引脚7(DISCHARGE)之间。
•将电容的正极连接到引脚7(DISCHARGE),负极连接到地(GND)。
•将电容的负极连接到引脚6(THRESHOLD)和引脚2(TRIG)之间。
步骤4:选择触发方式根据实际需求选择触发方式。
如果需要负脉冲触发,将触发信号连接到引脚2(TRIG);如果需要正脉冲触发,将触发信号连接到引脚6(THRESHOLD)。
NE555内部全解及应用电路集合

简易催眠器 时基电路555构成一个极低频振荡器,输出一个 个短的脉冲,使扬声器发出类似雨滴的声音(见附 图)。扬声器采用2英寸、8欧姆小型动圈式。雨滴声 的速度可以通过100K电位器来调节到合适的程度。 如果在电源端增加一简单的定时开关,则可以在使用 者进入梦乡后及时切断电源。
直流电机调速控制电路 这是一个占空比可调的脉冲振荡器。电机M是用它的输出脉冲 驱动的,脉冲占空比越大,电机电驱电流就越小,转速减慢;脉冲 占空比越小,电机电驱电流就越大,转速加快。因此调节电位器RP 的数值可以调整电机的速度。如电极电驱电流不大于200mA时,可 用CB555直接驱动;如电流大于200mA,应增加驱动级和功放级。 图中VD3是续流二极管。在功放管截止期间为电驱电流提供通路, 既保证电驱电流的连续性,又防止电驱线圈的自感反电动势损坏功 放管。电容C2和电阻R3是补偿网络,它可使负载呈电阻性。整个电 路的脉冲频率选在3~5千赫之间。频率太低电机会抖动,太高时因占 空比范围小使电机调速范围减小。
无稳类电路 第三类是无稳工作方式。无稳电路就 是多谐振荡电路,是555电路中应用最广的 一类。电路的变化形式也最多。为简单起 见,也把它分为三种。
第一种(见图1)是直接反馈型,振荡电阻 是连在输出端VO的。 第二种(见图2)是间接反馈型,振荡 电阻是连在电源VCC上的。其中第1个单元 电路(3.2.1)是应用最广的。第2个单元电 路(3.2.2)是方波振荡电路。第3、4个单 元电路都是占空比可调的脉冲振荡电路,功 能相同而电路结构略有不同,因此分别以 3.2.3a 和3.2.3b的代号。
第3种(图3)是压控振荡器。单稳型压控振 荡器电路有很多,都比较复杂。为简单起见, 我们只把它分为2个不同单元。不带任何辅助器 件的电路为1.3.1;使用晶体管、运放放大器等 辅助器件的电路为1.3.2。图中列出了2个常用电 路。
NE555中文资料

NE555中文资料通用时基电路NE555P概述:封装外形图NE555P是一块通用时基电路,电路包含24个晶体管,2 Array个二极管和17个电阻,组成阈值比较器,触发比较器,RS触发器,复位输入,放电和输出等6部分。
采用DIP8、SOP8封装形式。
主要特点:关闭时间小于2 S。
最大工作频率大于500kHz。
定时可从微秒级至小时级(由外接电阻电容精确控制)。
可工作于振荡方式或单稳态方式。
输出电流大,200mA(可提供或灌入)。
占空比可调。
可同TTL电路相接。
温度稳定性好,0.005%/℃功能框图极限值(绝对最大额定值,若无其它规定,Tamb=25℃)电特性(若无其它规定,Vcc=5~15V,Tamb=25℃)参考参数注:* 指外部RC回路漂移不计入时间参数。
应用图555芯片引脚图及引脚描述555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器6脚A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。
NE555管脚功能介绍:1脚为地。
2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。
当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。
6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。
3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。
4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。
5脚是控制端。
7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。
NE555定时器都有什么用?

NE555定时器都有什么用?NE555是可以说是电子爱好者非常熟悉的一种集成电路,其在电子电路中的用途相当广泛,但这些应用都是基于555电路的三种基本应用。
下面结合一些具体电路来详细介绍一下NE555的各种用途。
1、555单稳态应用电路▲ NE555构成的触摸延时电路。
上图为555单稳态应用电路,图中的延时时间由R1和C1决定,延时时间T=1.1R1C1。
平时,NE555的②脚为高电平,其③脚输出为低电平,LED指示灯不亮,当用手触摸三极管的基极时,NE555的②脚变为低电平,单稳态电路受触发工作,其③脚输出一个高电平,LED点亮。
这个高电平的持续时间(即LED的点亮时间)为1.1R1C1。
在1.1R1C1时间之后,NE555的③脚重新变为低电平。
这就是555的单稳态应用(注意:这里NE555的②脚与电源正极之间应接一个数百KΩ以上的电阻,图中漏画了该电阻)。
555的单稳态电路用途相当广泛。
在生活中可以楼道延时灯、定时开关、延时断电器,在测量电路中可以用于测量频率、大容量电容、转速等。
2、555无稳态应用电路▲ 555无稳态基本电路。
上图为555无稳态电路,这种电路是作为振荡器使用的,其振荡频率W1、R1及C1决定,并且这种振荡器的振荡频率较稳定,受电源电压及温度变化影响较小。
这种电路中555输出端③脚输出的是矩形波。
▲ NE555构成的马达调速电路。
上图为NE555构成的一个简易马达调速电路。
555及其外围元件构成一个占空比可调的矩形波发生器,调P1即可改变555输出端③脚的脉冲宽度,从而改变马达的转速。
由于NE555的③脚最大输出电流仅200mA,故这里加一个MOS场效应管来驱动马达。
555无稳态应用也是非常广泛。
在报警器中其可以接成振荡器构成声光报警电路;其可以构成超低频振荡器,驱动各种小灯发出闪烁光;在测量电路中,其可以作为简易的波形发生器;由于NE555的驱动电流较大,在红外遥控电路中可以使用NE555作为振荡器,直接驱动红外发射管工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NE555人工启动单稳态延时(定时)应用电路
特别注意,若控制交流电应防触电!!!
特别注意,若控制交流电应防触电!!!
特别注意,若控制交流电应防触电!!!
经试验
NE555P。
电源4V,15V。
1M,100uF时间90秒(RT,CT决定)
RT10M,CT100u时间21分
RT两10M并(即5M),ct220uF,约20分。
RT10M,CT220u时间约55分。
RT加按钮开关SB2停止延时(定时)。
谨慎用继电器控制大功率用电器!
输出应该是电源电压,延时时间主要就看你R1和C1的充电时间,延时时间适可调的
调整R1可以改变延时时间,延时后就没有输出了。
开关S是按下之后一直是闭合的吗?如果是那种按下后又弹开的开关,也就是只通路了那么一瞬间,能达到延时效果吗?
回答按下后电容放电,2脚低于4V时,out输出高电平+12V,案件松开后电容通过R1充电,当2脚电压达到三分之一电压时(就是4V)3脚翻转,输出为低电平。
当按键松开后电容通过R1充电,当2脚电压达到三分之一电压时(就是4V)3脚翻转,输出为低电平。
这个低电平是0伏
在数字电路中:1,TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。