实验报告2-EMI电源滤波器插入损耗测试
EMI滤波器插入损耗的精准测量方案及实验研究
452020年第3期 安全与电磁兼容引言GB/T 7343-2017《无 源 EMC 滤 波 器 件 抑 制 特 性 的 测 量 方 法 》( 以 下 简 称 “规 范 ”,等同采用 IEC/CISPR 17: 2011)[1]是国内外大多 EMI 滤波器制造商生产测试的指导文件。
然而,按规范的测量原理、定义和测试方法得到的数据,在各个厂商之间及各个滤波器用户之间往往不尽相同。
所以现行规范的测试方法不能精确地表示滤波器在其预定应用中产生的 EMI 插入损耗性能。
为了弥补现行规范的不足,本文提出利用共差模分离器来提高 EMI 滤波器插入损耗的测试精度,并通过实际测试加以验证。
另外,详细阐述了“对称差模测试”电路和“非对称测试”电路的区别。
1 无源 EMI 滤波器件的插入损耗[1]插入损耗测量是一种确定滤波器或抑制电路对射频骚扰抑制能力的标准化测量方法。
目前,在 EMI 滤波器的插入损耗电路中,主要运用的是四端测试网络 理论[2]。
图 1 为典型的滤波器电路,包含有线-线电容 Cx、线-地电容 Cy 和共模电感(由火线与零对称绕制线同一个磁芯而形成)。
线-线电容 Cx 和电感的互感,在滤波器的火线和零线之间产生很大的电磁耦合,就会产生与之相对应的共模、差模分量。
为了确保滤波器的正常工作和考虑到该情况,必须建立一个四端口插入损耗测量模型。
通用的电源 EMI 滤波器中,大都使用这个典型的基本电路结构。
本文采用四端口网络,分析滤波器插损测试规范中的三种电路,包括不对称(共模)测试电路、对称(差模)测试电路及非对称测试 电路。
1.1 不对称共模测试电路如图 2 所示,不对称(共模)测试电路是使用一个同相输出的 50Ω 0功率分配器电路,每个端口的输出阻抗为 50 Ω,测量分析对插入损耗的影响。
本文使用 mini 公司ZFSC 50 Ω 0功分器,见图 2,其典型性能数据见表 1。
EMI 滤波器插入损耗的精准测量方案及实验研究Precise Measurement Scheme and Experimental Research of EMI Filter Insertion Loss北京理工大学 区健昌 周阔 田元波摘要简要介绍了共模、差模及非对称的测试电路,但都无法精准测量 EMI 滤波器的插入损耗。
插入损耗测试
EMI电源滤波器插入损耗的测量方法EMI滤波器尚没有产品类国标,只是企业标准,EMI电源滤波器的主要性能指标一般包括插入损耗、频率特性、阻抗匹配、额定的电流值、绝缘电阻值、漏电流、物理尺寸及重量、使用环境以及本身的可靠性。
在使用时考虑最多的是额定的电压及电流值、插入损耗、漏电流三项。
本文主要介绍EMI滤波器插入损耗的测量方法。
EMI滤波器插入损耗测量方法是根据CISPR17(1981)出版物提出的滤波器标准测量方法包括共模、差模、常模和Q/ 100 Q阻抗测量方法。
1.共模插入损耗标准测量方法根据CISPR17(1981)出版物B6提出的共模插入损耗标准测量方法(Asymmetrical Measureme nt),如图所示。
根据插入损耗的定义,先要测量没有滤波器时,负载50Q上的电压V1作为OdB的参考电压。
再测量有滤波器后,负载500上的电压V2,通过频谱分析仪将20log(V1V2)随频率变化的结果显示在屏幕上或通过接口打印出来。
测量时注意,滤波器的输入端和输出端是并联的,目的是取得共模插入损耗的平均值。
因为滤波器的Cy电容量尽管标称值和误差等级一样,其实际值也不完全一样,电感尽管绕组匝数一样,但磁芯的磁导率误差和工艺上也很难实现在绕制和装配时完全对称,因此采用平均值才有意义。
图共模插入损耗的典型测量方法2 •差模插入损耗标准测量方法根据CISPR17( 198出版物B5提出的差模插入损耗标准测量方法(SymmetricalMeausurement ),如图 所示。
图差模插入损耗的典型测量方法由于频谱分析仪(或标准信号发生器)输出、输入均采用对地非对称结构的 50 Q 同轴 电缆,为了测量对地对称的差模插入损耗,需对频谱分析仪跟踪发生器的输出信 号(滤波器的输入信号)进行不对称-对称变换,对频谱分析仪输入信号(滤波 器的输出信号)进行对称-不对称的逆变换,其他步骤同上。
3 •常模插入损耗标准测量方法根据 CISPR17(1981)出版物 B7提出的不对称测量方法 (Un symmetrical Measurement )又称常模(Normal Mode )测量,如图所示。
实验四电源滤波器插入损耗仿真
实验四电源滤波器插入损耗仿真(总10页)--本页仅作预览文档封面,使用时请删除本页--电磁场与电磁兼容实验报告学号:姓名:院系:专业:教师:5月28日实验四 电源滤波器插入损耗仿真实验一、 实验目的通过对电源滤波器基本电路的仿真实验,掌握电源滤波器构成以及各器件的功能和作用,理解滤波器EMI 防护原理。
二、 实验原理和内容实验原理图:图 1电源滤波器电路图电源滤波器是一种多级差模和共模低通滤波器级联的应用实例,它可同时滤去差模和共模两种模式的高频噪声。
图1所示为电源滤波器的原理图。
L1和L2是差模电感扼流圈,电感量一般选取几十至几百毫亨,C1是差模滤波电容,一般选取~,L3和L4是共模扼流圈,电感量约为几毫亨,绕在同一个铁氧体环上,C2和C3是共模滤波电容,电容量一般选取几纳法。
插入损耗计算公式:图2 共模扼流圈实验内容:使用EWB或Multisim等电路仿真软件,对电源滤波器进行仿真,通过改变器件参数、输入阻抗、输出阻抗等条件,观察插入损耗的变化,并对实验结果进行分析。
三、实验步骤1、设计电源滤波器电路根据图1的电路图,在仿真软件中建立仿真模型电路如下图2、图3分别为共模、差模插入阻抗测试电路。
图2 共模插入阻抗测试电路图3 共模插入阻抗测试电路2、仿真滤波器的频率响应针对共模电路和差模电路分别进行仿真,分析不同频率下的输出信号。
1)控制输入频率分别等于1kHz, 10kHz, 20kHz, 100kHz,观察示波器的输出波形。
2)改变L1 L2的参数、C2 C3的参数,观察频率响应曲线的变化。
3、仿真计算滤波器共模插入损耗4、仿真计算滤波器差模插入损耗四、实验数据和结果分析1、共模电路仿真结果1)函数发生器参数设置截图通过改变函数发生器的频率参数来调节频率。
选用变压器代替共模扼流圈,但是选用的变压器并不是理想变压器,因此更改其中一些参数如下:2)不同频率仿真结果:f=100Hz f=1kHz f=9kHzf=10kHz f=20kHz f=100kHz从仿真结果可以分析出,当输入频率在一定低频范围内增大时,输出并不出现衰减,反而随着频率的增大而增大;当输入频率达到很高的频率范围时,输出随着频率的增大而衰减。
EMI电源滤波器中的插入损耗测试技术
o o rfl r a ee p a ie n t e e r h a d d v l p n ie to r o n e u . fp we i e r m h sz d a d i r s a c n e e o me td r c in a e p i t d o t t s
d n , 2 2 0 Ch n ) o g 5 7 0 , i a
 ̄b t a t Th m p ra c ft e is r in l s fp ro ma c n e n EM Ip we i e s ito u e . e s r c : e i o tn e o h n e t o s o e fr n e id x i o o r f tri n r d c d Th l
摘 要 : 绍 了E 介 MI电源 滤 波器 中的 插入损 耗性 能指 标 的重要 性 ; 分析 了电源 电磁 干 扰 产 生的机 理 及 电源 滤 波
器 的作 用 ; 明 了插入 损耗 的定 义 、 说 测试 原理 以及 指标 种 类 ; 细描述 了在屏 蔽 室测量 和 频谱 分析 仪 动 态 测量 两 详
维普资讯
《 电气 开关  ̄2 0 . . ) (0 6No 1
文章编号 :04 2 9 2 0 )1 00 -0 10- 8X(060 - 0 1 4
E MI 电源滤波器中的插入损耗测试技术
邓 重 一 ( 罗定 职 业技 术 学院 电子 工 程 系 , 东 罗定 5 7 0 ) 广 2 2 0
L 滤波 电容 C ~c 。L对串模干扰不起作用, 当出 、 但 现 共模 干扰 时 , 由于两 个线 圈 的磁通 方 向相 同 , 经过 耦 合后总电感量迅速增大 , 因此对共模信号呈现很大的 感抗 , 使之不 易通过 , 称作 共 模扼 流 圈。它 的两个 线 故
电源EMI滤波器插入损耗的研究(图)
电源EMI滤波器插入损耗的研究(图)
从抗电磁干扰角度来说,电源EMI滤波器实际是一个只允许直流和工频通过的低通滤波器,即从零频(直流)至截止频率(工频)的通带内以最小衰减通过电流(或电压)。
对电磁干扰的阻带,要求尽可能高的衰减,过渡带曲线尽可能陡(即过渡带尽可能窄)。
由于EMI滤波器衰减的定义与传统滤波器不同,所以,传统滤波器的各种传递函数表达式和现成的数据及图表均不能直接用于EMI滤波器的设计。
EMI滤波器的衰减用插入损耗来表示,本文将探讨电源EMI滤波器插入损耗的计算,以及影响插入损耗的各种原因和改进方法。
EMI滤波器插入损耗的理论分析
EMI滤波器插入损耗IL定义如下:
IL=10log(P1/P2)=20log(U1/U2) (1)
式中,P1和U1分别表示当EMI滤波器未插入前(图1(a)),从噪声源us传递到负载RL的功率和电压;P2和U2分别表示当EMI滤波器接入后(图1(b)),从噪声源传递到负载的功率和电压。
图1 EMI滤波器接入前、后的电路
理论分析EMI滤波器的IL时,把滤波器网络用A参数来表示:
(2)
则可求得EMI滤波器的IL表达式为:
IL=20log|(a11RL+a12+a21RSRL +a22RL)/(RS+RL)| (3)
图2为高性能的EMI滤波器。
其中,E表示共模信号输入端。
图2中网络。
EMI电源滤波器的插入损耗分析
EMI电源滤波器的插入损耗分析随着电子设备的不断增多,电磁干扰(EMI)现象越来越严重。
在传导干扰中,以电源线传导干扰最为严重。
抑制电源线上干扰的主要途径是使用EMI滤波器,通常用插入损耗表征滤波器的特性。
然而,在实际使用时,即使EMI滤波器的插入损耗设计达标,也有可能因为源阻抗和负载阻抗的变化而得不到最佳的滤波效果。
本文针对EMI滤波器的共模和差模插入损耗进行计算分析,并研究滤波器源阻抗与负载阻抗的变化对滤波器性能的影响,通过仿真验证了方法的有效性。
1 EMl滤波器的插入损耗 EMI滤波器对干扰噪声的抑制能力用插入损耗IL(Insertion Loss)来衡量。
插入损耗定义为:没有滤波器接入时,从噪声源传输到负载的功率P1和接入滤波器后,从噪声源传输到负载的功率P2之比,用dB表示,滤波器接入前、后的电路。
滤波器插入损耗的表达式为式(1)中,RS和RL分别表示源阻抗和负载阻抗;a11、a12、a21、a22表示滤波器网络的A参数。
根据式(1)可推导出共模插入损耗的表达式为同理根据式(1)可推导出差模插入损耗的表达式为2 源阻抗、负载阻抗对插入损耗的影响 EMI电源滤波器在不同的源与负载阻抗的情况下,滤波性能有很大的差异。
在一般的滤波器产品说明书中,提供的插入损耗值都是在源阻抗和负载阻抗均为50 Ω的情况下得到的。
在实际使用中,滤波器的端阻抗随着工作环境的变化而变化,因而对滤波器插入损耗的影响也很大。
引用美国测量的源阻抗和负载阻抗的变化范围,在10 kHz~10 MHz(军标CE102规定的抑制频率范围),源阻抗变化范围为0.1~178 Ω,负载阻抗变化范围为0.007~10 kΩ。
(1)共模插入损耗的分析。
对式(2)进行变换得显然,当f(RS,RL)取最小值时,ILCM达到最小值。
式(6)中,当RL不变时,RS取最大值时,f(RS,RL)取最小值。
EMI滤波器插入损耗的人工测试方法的分析
第1 6期 总 第 1 0期 7
20 0 8年 8月
内 蒙 古 科 技 与 经 济
I n rM o g l ce c c n lg n e n oi S i eTe h oo y& Ec n my a n oo
No 1 ,t e 1 0 h i u . 6 h 7 t s e s Au . 0 8 g2 0
要 产 生 的 频 率 , 别 进 行 共 模 测 试 和 差 模 测 试 , 从 分 再 频 谱 分析 仪 读处 测试 数 据 , 后 手 动记 下数 据 。 然
E 滤 波 器 插 入损 耗 的 MI 人工测 试 方法 的分 析
张 淑 萍 赵 亚 军2 ,
(. 1 内蒙 古 万 德 公 司 ; . 蒙 古 自治 区 地 质 环 境 监 测 院 , 2内 内蒙 古 呼 和 浩 特
,
002 ) 1 00
摘 要 : 章 主 要 介 绍 了 利 用 屏 蔽 室 测 量 EM I滤 波 器 的 插 入 损 耗 的 方 法 , 析 了 影 响 测 量 结 果 的 文 分
扰方面 , EM I 波 器 是 十 分 有 效 的 器 件 。 EM I电 源 滤
滤 波 器 是 抑 制 电 源 线 传 导 干 扰 的 重 要 器 件 , 以 研 所
究 EM I 波 器 的 插 入 损 耗 特 性 就 变 得 十 分 重 要 。 滤
本 文 研 究 的 EM I电 源 滤 波 器 是 无 源 网 络 , 防 是
入 损 耗 、 率 特 性 、 抗 匹 配 、 定 的 电 流值 、 缘 电 频 阻 额 绝
随 着 电 子 产 品 日益 增 多 , 而 空 间 电 磁 环 境 越 从
阻 值 、 电 流 、 理 尺 寸 及 重 量 、 用 环 境 以 及 本 身 漏 物 使
实验二 光插入回波损耗综合实验
实验二光插入回波损耗综合实验一、实验目的测试:插入损耗、回波损耗掌握:光纤端面处理和熔接技术了解光无源器件特性二、实验器材光纤熔接机、稳定光源、2×2光耦合器、光功率计、转换器、裸光纤连接器、光跳线三、实验原理回波损耗源于电缆链路中由于阻抗不匹配而产生反射的概念。
这种阻抗不匹配主要发生在有连接器的地方,也可能发生于各种缆线的特性阻抗发生变化的地方。
在光通信中光传输的的光纤链路上,经常需要进行光纤与光纤,光纤与器件,器件与仪器等进行连接。
在连接过程中,光纤端面,器件的光学表面等对其内传输地光不可避免地产生反射。
设PL和Pr分别表示入射和回波反射功率,单位可以是瓦(w)或者毫瓦(mw);定义回波反射光功率与入射光功率之比为回波损耗Rl式中得到的是除法计算的比值,对于多个器件存在时,需要计算乘积,在光通信中很不方便。
若将Rl以分贝表示(单位为dB)时,上述的乘积运算就化为加减运算.【实验内容】待测器件的输入功率与回波功率测量由回波损耗定义可知,对于光纤链路中的任意器件而言,要测量其回波损耗,就需Pl和RR。
∗为方便计算,本实验所测功率的单位全部采用dBm要首先测量其输入端的光功率和反射回波的光功率,再通过公式计算得到。
插入损耗与回波损耗原理:四、实验注意事项为防止或减小反射损耗,可将两根光纤熔接在一起,形成固定接头,也可在光纤端面之间加入折射率与光纤纤芯相同或相近的匹配液。
因此,在实验的过程中要把多余的光纤头插入匹配液,以减小误差。
要注意安全,不能直接用眼睛对着有激光的光纤看,以免对眼睛造成伤害。
在实验过程中要保持光纤及其连接器的洁净。
光纤连接器的使用前,确保连接器内没有堵塞物。
在做熔接实验前,应该对熔接过程了解,以免误操作,对仪器产生不良影响。
切断下来的光纤头要放入指定的废料盒中,以免发生意外五、实验过程与现象实验步骤:(1)按照实验电路图搭建电路;(2)打开光源,检查各连接器是否正常,测量取值。
插入损耗测试
EMI电源滤波器插入损耗的测量方法EMI滤波器尚没有产品类国标,只是企业标准,EMI电源滤波器的主要性能指标一般包括插入损耗、频率特性、阻抗匹配、额定的电流值、绝缘电阻值、漏电流、物理尺寸及重量、使用环境以及本身的可靠性。
在使用时考虑最多的是额定的电压及电流值、插入损耗、漏电流三项。
本文主要介绍EMI滤波器插入损耗的测量方法。
EMI滤波器插入损耗测量方法是根据CISPR17 (1981)出版物提出的滤波器标准测量方法包括共模、差模、常模和0.1Ω/100Ω阻抗测量方法。
1. 共模插入损耗标准测量方法根据CISPR17 (1981)出版物B6提出的共模插入损耗标准测量方法(Asymmetrical Measurement),如图1.1所示。
根据插入损耗的定义,先要测量没有滤波器时,负载50Ω上的电压V1作为0dB的参考电压。
再测量有滤波器后,负载500上的电压V2,通过频谱分析仪将20log(V1/V2)随频率变化的结果显示在屏幕上或通过接口打印出来。
测量时注意,滤波器的输入端和输出端是并联的,目的是取得共模插入损耗的平均值。
因为滤波器的Cy电容量尽管标称值和误差等级一样,其实际值也不完全一样,电感尽管绕组匝数一样,但磁芯的磁导率误差和工艺上也很难实现在绕制和装配时完全对称,因此采用平均值才有意义。
图1.1 共模插入损耗的典型测量方法2.差模插入损耗标准测量方法根据CISPR17( 1981)出版物B5提出的差模插入损耗标准测量方法(Symmetrical Meausurement),如图2.1 所示。
图2.1 差模插入损耗的典型测量方法由于频谱分析仪(或标准信号发生器)输出、输入均采用对地非对称结构的50Ω同轴电缆,为了测量对地对称的差模插入损耗,需对频谱分析仪跟踪发生器的输出信号(滤波器的输入信号)进行不对称-对称变换,对频谱分析仪输入信号(滤波器的输出信号)进行对称-不对称的逆变换,其他步骤同上。
EMI滤波器的设计原则及插入损耗分析
5 2一
科技 论坛
E MI 滤波器的设计原则及插入损耗分析
王 金 霞 ’ 张 蕴 晴
( 1 、 哈 尔滨技师学院电气 系, 黑龙江 哈 尔滨 1 5 0 0 3 0 2 、 东北电力大学 能源与动力工程学院 , 吉林 吉林 1 3 2 0 1 2 ) 摘 要: 在开关电源类的产品 中, E MI 滤波器的设计成 了很 关键的一个环节。在抗 干扰信号 的传导干扰 方面, 采用 E MI 电源干扰滤波 器是非常有效的手段 。本 文在 阐述开关电源电磁干扰基本特点的基础上 , 分析 了开关 电源 电磁 干扰 问题 产生的原 因及 特点,阐述 了 E MI 电源滤波器的基 本原理 、 设计原 则。然后 , 对E M I 滤波器插入损耗进行 了分析及计 算。 关键词 : E M I 电源滤波器; 插入损耗 1 E Ml 滤 波器 的特点 r… : l 我们 在现实生 活 中发现用屏 蔽和接地 的措施 有的也 ‘ , 2 不能完全 防护电磁 干扰 , 还会有干扰信号骚扰接收与发射 天线 。 那么, 我们解决这个 问题最有效的办法是在电缆 的端 口处 安装 E MI 滤波器。 E M I 滤波器 的作用是抑制干扰信号 通过 , 与其他设备 相比,E MI 滤波器具有下列不 同特点 : ( 1 ) E MI 滤波 器有结 构 简单 、 安 装方 便 、 重 量轻 、 尺 寸 _ _ 小、 足够 的机械强 度和工作可靠等优点。 图 1未接滤波器时 图2 接 入滤 波器 时 ( 2 ) 在使用 E MI 滤波器时必须认真 了解其特性 , 并且正 确使 用。 否则会失去滤波功能 , 严重时还会导致新的噪声。 图中 , 噪声 源 , z 为噪声源阻抗 , Z 为噪声的负载阻抗 。如 ( 3 ) 我们在信号处理 中用的滤波器 , 一般是按照阻抗完全 匹配状 图 1 , 2 所示, 接人滤波器前后输 出电压之 比即为插入损耗 I L : 态设 计的 , 所以可以保证得 到预想的滤波特性 。 但是 , 在 电磁兼容设 I L: ( 1 ) 计 中很难做到这点 , 有时滤波 器不得不在失配状态下 运行 , 因此必 在分析 和设计 E M I 滤波器 时。为了方便起见 , 经常采用参 数 须仔细考虑其失配特性 ,以保证 E MI 滤波器在工作频率范 围内有 对其 四端 网络特性进行描述 , 即: 比较高的衰减性能 。 V l =A 1 l V 2 十A 1 2 , 2 ( 2 ) ( 4 ) E MI 滤波器设计 中用 的电感 、 电容元 件 , 必须具有 足够大 的 无功功率容量 , 同时对元件寄生参数的要 求也 十分严格 。 , 1 =A 2 - 4 - A 2 2 J 2 ( 3 ) 由此可以得 到插入损耗为 : ( 5 ) E MI 滤波器在对 电磁干扰抑制的同时 , 能在 大电流和电压下
EMI电源滤波器插入损耗测试技术研究
损 耗 、 率 特 性 、 抗 匹 配 、 定 的 电流 值 、 缘 电 频 阻 额 绝
2 E 电源滤 波器 基本 原理 与插 入损 耗 的 MI
定 义
电源 噪 声是 电磁 干扰 的一 种 。 传 导 噪声 的频 其
谱大 致为 1k z 3 MH 最 高可 达 1 0 z。根据 0 H ~ 0 z. 5 MH 传播方 向的不 同 ,电源 噪声 从 形成 特 点看 ,噪声 干 扰分差 模 干扰与共 模 干扰 两种 ( 图 1所示 ) 如 。共 模 干扰 则 是两 条 电源线 对 大地 ( U1和 U ) 2 的噪 声 , 差 模 干扰 是两 条 电源线 之 间 ( 3 的噪 声 。 U) 由于 干扰信 号 频率 大都 比工 频 高 , 因此 E 电 MI 源滤 波器 定 义 为低 通 滤波 器 .它 是 一 种 由电感 、 电 容 组成 的低 通滤 波 器 。它 允许 直 流 或 5 Hz 信 号 0 的 通 过 。 频 率较 高 的其 它 信号 和 干 扰信 号 有 较 大 的 对 衰减 作 用 。 由于干 扰信 号 有 差模 和共 模 两种 . 因此
阻值 、 电流 、 理 尺寸 及 重量 、 用 环 境 以及 本 身 漏 物 使
的可 靠性 。在使 用 时考 虑最 多 的是额定 的电压及 电
流值 、 插人 损耗 、 电流 3项 。插 人损耗 是 在装置 滤 漏
波 器 前后 负载 端所 接 收能量 之 差异 , 以公 式表示
I = Og u/2 L 2 l(1 ) u () 1
E 电 源 滤 波 器 的插 入 损 耗 测 试 值 可 由下 式 MI
计算得 出
I = 1P L P一 2 () 2
箱 应保证 各 部件 电气 连接 良好 。
电源EMI滤波器插入损耗
中心议题:EMI滤波器插入损耗的理论分析影响插入损耗的各种原因
解决方案:RS与RL对插入损耗的影响及改进方法分布参数对插入损耗的影响电感材料性能对IL的影响RS、RL与EMI滤波器结构的选择关系
从抗电磁干扰角度来说,电源EMI滤波器实际是一个只允许直流和工频通过的低通滤波器,即从零频(直流)至截止频率(工频)的通带内以最小衰减通过电流(或电压)。对电磁干扰的阻带,要求尽可能高的衰减,过渡带曲线尽可能陡(即过渡带尽可能窄)。由于EMI滤波器衰减的定义与传统滤波器不同,所以,传统滤波器的各种传递函数表达式和现成的数据及图表均不能直接用于EMI滤波器的设计。EMI滤波器的衰减用插入损耗来表示,本文将探讨电源EMI滤波器插入损耗的计算,以及影响插入损耗的各种原因和改进方法。 EMI滤波器插入损耗的理论分析 EMI滤波器插入损耗IL定义如下:IL=10log(P1/P2)=20log(U1/U2)(1) 式中,P1和U1分别表示当EMI滤波器未插入前(图1(a)),从噪声源us传递到负载RL的功率和电压;P2和U2分别表示当EMI滤波器接入后(图1(b)),从噪声源传递到负载的功率和电压。图1EMI滤波器接入前、后的电路 理论分析EMI滤波器的IL时,把滤波器网络用A参数来表示:则可求得EMI滤波器的IL表达式为:IL=20log|(a11RL+a12+a21RSRL+a22RL)/(RS+RL)|(3) 图2为高性能的EMI滤波器。其中,E表示共模信号输入端。图2中网络的共模等效电路,差模等效电路。图3(b)中Le1、Le2、Cxi,i=1,2,3,分别表示等效电感和电容。图2EMI滤波器网络图3图2网络的共模与差模等效电路 由图3(a)并根据式(4)可求得共模插入损耗为:ILCM=10lg|(RS+RL-ω2CyD12+ω2D22)|-20lg(RS+RL)(4) 式中,D1=L1RL+L2RS;D2=L1+L2-ω2L1L2Cy+CyRSRL 由图3(b)同理可求得差模插入损耗为:ILDM=10lg|(B12+B2+RSRLB3)|-20lg(RS+RL)(5) 式中,B1=RL(1-ω2Cx2Le2)-ω2Cx2Le1(1-ω2Cx3Le2)+RS(1-ω2Cx2Le2)-ω2Cx1Le2-ω2Cx1Le1(1-ω2Cx2Le2);B2=ωLe2+ωLe1(1-ω2Cx2Le2);B3=ωCx3+ωCx2(1-ω2Cx3Le2)+ωCx1(1-ω2Cx3Le2)–ω3Cx1Cx3Le1-ω3Cx1Cx2Le1(1-ω2Cx3Le2)。 影响插入损耗的各种原因 1RS与RL对插入损耗的影响及改进方法 一般设计时,令RS/RL=50Ω/50Ω,这有利于简化EMI滤波器的理论计算(把RS、RL看成常数而不是变量),但实际运用RS/RL=50Ω/50Ω的概率很少。这显然脱离了实际情况,其理论分析与实际插入损耗相差较大。因此,CISPR出版物4.2.2.2建议:除RS/RL=50Ω/50Ω测试方法外,另外补充RS/RL=0.1Ω/100Ω和RS/RL=100Ω/0.1Ω两种极端情况的测试方法。可以理解为帮助用户了解该EMI滤波器在两种极端情况下,其插入损耗有效范围是否满足要求。 2分布参数对插入损耗的影响 在低频段,电感器和电容器的分布参数可忽略不计,但在较高的频段工作时,它们的分布参数对IL的影响就会显示出来。而电容器中的分布电感,元件与金属外壳之间,元件与元件之间,印刷电路板布线等均存在分布参数。这些分布参数会加入电路运算。解决元件分布参数对IL的影响有下列几种方法: (1)选择优质元件;(2)估计元件分布参数,建立EMI滤波器高频等效模型,并把元件分布参数参加滤波器设计;(3)如果IL达不到要求,可以增加滤波器的级数;(4)通过元件布局、印刷电路板设计有利于电磁兼容等方法来解决。 3电感材料性能对IL的影响 在高频段,电感器采用的纳米晶体软磁性材料的频响不如猛锌铁氧体软磁性材料的频响。因此,在高频段,电感器应采用锰锌铁氧软磁性材料,这有利于高频段加大插入损耗,即提高滤波器对高次谐波的仰制效果。但是,由于纳米晶体软磁材料具有很高的导磁率(μ0可达到13.5万,μe可达到17.9万)和高饱和磁感特性,这些特性指标远优越铁氧体和钴基晶体软磁性材料,因此,采用纳米晶体材料有利于低频段的共模插入损耗,即减少通带的插入损耗。 4RS、RL与EMI滤波器结构的选择关系 由式(4)可知:IL与RS、RL有直接关系,即使EMI滤波器设计达到IL指标,对于不同RS、RL,其结构如果选择不当,也不能达到较好的滤波效果。因此,根据RS、RL的实际情况,选用EMI滤波器结构应遵循下列两点原则: (1)EMI滤波器的串联电感要接到低阻抗源(RS小)或低阻抗负载(RL小); (2)EMI滤波器的并联电容要接到高阻抗源(RS大)或高阻抗负载(RL大)。只有这样,EMI滤波器实际工作的IL与理论分析才能基本一致。
插入损耗测试
EMI电源滤波器插入损耗的测量方法EMI滤波器尚没有产品类国标,只是企业标准,EMI电源滤波器的主要性能指标一般包括插入损耗、频率特性、阻抗匹配、额定的电流值、绝缘电阻值、漏电流、物理尺寸及重量、使用环境以及本身的可靠性。
在使用时考虑最多的是额定的电压及电流值、插入损耗、漏电流三项。
本文主要介绍EMI滤波器插入损耗的测量方法。
EMI滤波器插入损耗测量方法是根据CISPR17 (1981)出版物提出的滤波器标准测量方法包括共模、差模、常模和0.1Ω/100Ω阻抗测量方法。
1. 共模插入损耗标准测量方法根据CISPR17 (1981)出版物B6提出的共模插入损耗标准测量方法(Asymmetrical Measurement),如图1.1所示。
根据插入损耗的定义,先要测量没有滤波器时,负载50Ω上的电压V1作为0dB的参考电压。
再测量有滤波器后,负载500上的电压V2,通过频谱分析仪将20log(V1/V2)随频率变化的结果显示在屏幕上或通过接口打印出来。
测量时注意,滤波器的输入端和输出端是并联的,目的是取得共模插入损耗的平均值。
因为滤波器的Cy电容量尽管标称值和误差等级一样,其实际值也不完全一样,电感尽管绕组匝数一样,但磁芯的磁导率误差和工艺上也很难实现在绕制和装配时完全对称,因此采用平均值才有意义。
图1.1 共模插入损耗的典型测量方法2.差模插入损耗标准测量方法根据CISPR17( 1981)出版物B5提出的差模插入损耗标准测量方法(Symmetrical Meausurement),如图2.1 所示。
图2.1 差模插入损耗的典型测量方法由于频谱分析仪(或标准信号发生器)输出、输入均采用对地非对称结构的50Ω同轴电缆,为了测量对地对称的差模插入损耗,需对频谱分析仪跟踪发生器的输出信号(滤波器的输入信号)进行不对称-对称变换,对频谱分析仪输入信号(滤波器的输出信号)进行对称-不对称的逆变换,其他步骤同上。
插入损耗测试
EMI电源滤波器插入损耗的测量方法EMI滤波器尚没有产品类国标,只是企业标准,EMI电源滤波器的主要性能指标一般包括插入损耗、频率特性、阻抗匹配、额定的电流值、绝缘电阻值、漏电流、物理尺寸及重量、使用环境以及本身的可靠性。
在使用时考虑最多的是额定的电压及电流值、插入损耗、漏电流三项.本文主要介绍EMI滤波器插入损耗的测量方法。
EMI滤波器插入损耗测量方法是根据CISPR17 (1981)出版物提出的滤波器标准测量方法包括共模、差模、常模和0.1Ω/100Ω阻抗测量方法。
1. 共模插入损耗标准测量方法根据CISPR17 (1981)出版物B6提出的共模插入损耗标准测量方法(Asymmetrical Measurement),如图1。
1所示。
根据插入损耗的定义,先要测量没有滤波器时,负载50Ω上的电压V1作为0dB的参考电压.再测量有滤波器后,负载500上的电压V2,通过频谱分析仪将20log(V1/V2)随频率变化的结果显示在屏幕上或通过接口打印出来。
测量时注意,滤波器的输入端和输出端是并联的,目的是取得共模插入损耗的平均值。
因为滤波器的Cy电容量尽管标称值和误差等级一样,其实际值也不完全一样,电感尽管绕组匝数一样,但磁芯的磁导率误差和工艺上也很难实现在绕制和装配时完全对称,因此采用平均值才有意义。
图1。
1 共模插入损耗的典型测量方法2.差模插入损耗标准测量方法根据CISPR17( 1981)出版物B5提出的差模插入损耗标准测量方法(Symmetrical Meausurement),如图2。
1 所示。
图2。
1 差模插入损耗的典型测量方法由于频谱分析仪(或标准信号发生器)输出、输入均采用对地非对称结构的50Ω同轴电缆,为了测量对地对称的差模插入损耗,需对频谱分析仪跟踪发生器的输出信号(滤波器的输入信号)进行不对称-对称变换,对频谱分析仪输入信号(滤波器的输出信号)进行对称-不对称的逆变换,其他步骤同上。
EMI电源滤波器设计与测试
关键词:EMI电源滤波器,插入损耗,软磁铁氧体,电感,抑制元件
ABSTRACT
Power Filter Based on the analysis of network structure and the nature of soft ferrite on the basis of the proposed power filter insertion loss is calculated. The article analyzes the application of network theory power EMI filter insertion loss and related network parameters of the relationship between the power supply EMI filter discussed the basic network architecture and its insertion loss is calculated, the establishment of a single-phase power filter common mode and differential mode equivalent circuit model and filter parts of the high-frequency distributed parameter model, and then an analysis of ferrite materials in nature, are discussed in ferrite EMI filters in power applications, the establishment of a soft ferrite core The equivalent circuit model. And described in the text made in accordance with a kind EMI Power Line Filter. In this paper also discussed the final EMI filter power engineering applications.
EMI电源滤波器设计与测试
EMI电源滤波器设计与测试
EMI(电磁干扰)电源滤波器是用于减少电源中的噪声和电磁干扰的一种装置。
在电源系统中,由于电源设备的运行,会产生电磁干扰并向电源线路传播。
这些干扰信号可能会影响其他设备的正常运行,因此需要采取措施来减少这些干扰。
首先,需要确定滤波器的频率范围。
根据要滤除的干扰信号的频率范围,可以选择适当的滤波器类型。
常见的滤波器类型包括:低通滤波器、带通滤波器和带阻滤波器。
其次,需要选择合适的滤波器参数。
滤波器参数包括:滤波器的截止频率、阻抗特性和衰减特性等。
这些参数的选择需要根据具体的应用需求和电源系统的特点来确定。
然后,需要进行EMI电源滤波器的设计。
可以使用模拟电路设计软件进行电路设计和模拟仿真,以验证滤波器的性能。
设计时需要考虑电容和电感的选择、滤波器电路的布局和组成部分之间的连接方式等。
设计完成后,需要进行EMI电源滤波器的测试。
测试可以使用仪器设备来进行,如频谱分析仪、信号发生器和示波器等。
测试时需要验证滤波器的频率响应、衰减特性和滤波效果等。
在测试中,可以通过调整滤波器参数和组成部分,进一步优化滤波器的性能。
如果测试结果不理想,可以尝试采取其他设计方法或更换滤波器元件。
总之,EMI电源滤波器的设计与测试是一项复杂的工作,需要综合考虑多个因素。
通过合理的设计和精确的测试,可以实现对电源中噪声和电磁干扰的有效滤除,提高电源系统的稳定性和可靠性。
EMI电源滤波器插入损耗分析及仿真
电容容抗最小, 其大小为等效的串联电阻Rs 。
3.2 电感的阻抗特性
理想电感的阻抗为 , 其特性曲线如图 7 所示: 实际应用中的电感器, 其绕制导线中含有串联电阻以及 绕线间分布电容, 因此在某些频率上会发生并联谐振。实际 电感器的等效电路如图 8 所示, 其阻抗为:
ZL 20dB/10 倍频
ω
图 7 理想电感的阻抗特性
图 4 理想电容器的阻抗特性
! ZC
=RS
+jwLP
+
1-
RP jwRP
C
=
1 RP
1+
RS RP
2
- W LP C
+jwLP C+jw
LP RP
+RS C
" ( 4)
其 中 : RU- 绝 缘 介 质 的 漏 电 阻 RS- 引 线 等 的 串 联 等 效 电 阻 Lu- 引 线 电 感 C- 理 想 电 容 器
要取决于绝缘介质的漏电阻 Rp 。 ●当频率逐渐升高时, (4)式可近似为:
ZC
≈RS
+jωLP
+
1 jωC
并 且 引 入 电 容 器 的 自 谐 振 频 率ω0
: ω0 =
1
#LP C
● 当 频 率 小 于 ω0 时 , 电 容 器 表 现 出 容 抗 特 性 , 但 当 频
率 大 于 ω0 时 , 电 容 器 更 多 的 表 现 为 电 感 特 性 ; 在 谐 振 点 处 ,
感抗特性容抗特性1c13滤波器原理图仿真数据实测数据14插损曲线对比电磁兼容emc99201205212012052120120521201205212012052120120521认证与实验室2008第06期6结束语本文详细论述了emi电源滤波器插入损耗在理想低频特性和实际高频特性条件下的区别介绍了emi电源滤波器插入损耗仿真软件的主要功能针对kf2b0tm3a滤波器给出实际算例并和实测数据进行了比较证实了仿真结果具有较高的精度
EMI电源滤波器插入损耗测试
EMI 电源滤波器插入损耗测试一、实验目的掌握EMI 电源滤波器共模与差模等效原理,了解矢量网络分析仪的工作原理,并熟练掌握仪器的基本操作流程,深刻理解屏蔽、接地、滤波在工程设计实践中的相互关系。
二、实验原理插入损耗是指电路中接入滤波器网络前后,由噪声源产生的干扰消耗在同一负载上的功率之比,用分贝值表示,即:式中,P1和U1分别表示当EMI 滤波器滤波器未插入前,从噪声源传递到负载的功率和电压;P2和U2分别表示当EMI 滤波器滤波器接入后,从噪声源传递到负载的功率和电压。
利用矢量网络分析仪测试时,插入损耗测量原理图如图1所示。
()()101/2201/2?IL log P P log U U ==共模插入损耗测试原理差模插入损耗测试原理三、实验仪器1.矢量网络分析仪2.EMI滤波器插入损耗测试夹具3.测试电缆及附件4.被测滤波器样件5.滤波器型号:TF-1E0AM-6A6.A4纸若干四、实验内容及步骤(一)滤波器插入损耗测试1.首先对矢网进行校准。
2.按照测试原理图,正确搭建插入损耗测试系统,分别测量直通时(不加滤波器),共模/差模测试状态下,在100KHz~50MHz范围内,系统的插损,要EMI滤波器信号发生器接收机50Ω50Ω50Ω50ΩEL LN NEMI滤波器信号发生器接收机50Ω50ΩEL LN N求保存S21参数曲线,标记至少10个频点,并记录数据。
3.按原理图安装好受试滤波器样件。
注意,确认引线连接的共模状态和差模状态,并要求滤波器外壳良好接地,同时注意滤波器的输入输出分别与矢网的port1和port2连接。
4.将夹具设定在共模工作状态下,从矢量网络分析仪上读取S21参数曲线,保存曲线图并记录至少10个频点处的数据;切换至差模工作状态再次测试,并记录数据。
(二)滤波器安装使用状态对插入损耗的影响1、滤波器接地状态对插入损耗的影响在共模测试状态下,改变滤波器接地状态,通过矢量网络分析仪测量得到其插入损耗曲线,与(一)中结果对比,并分析其原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EMI 电源滤波器插入损耗测试实验报告
一、实验目的
掌握EMI 电源滤波器共模与差模等效原理,了解矢量网络分析仪的工作原理,并熟练掌握仪器的基本操作流程,深刻理解屏蔽、接地、滤波在工程设计实践中的相互关系。
二、实验原理
插入损耗是指电路中接入滤波器网络前后,由噪声源产生的干扰消耗在同一负载上的功率之比,用分贝值表示,即:
式中,P1和U1分别表示当EMI 滤波器滤波器未插入前,从噪声源传递到负载的功率和电压;P2和U2分别表示当EMI 滤波器滤波器接入后,从噪声源传递到负载的功率和电压。
利用矢量网络分析仪测试时,插入损耗
IL =-20Lg |S 21|
测量原理图如图1所示。
()()101/2201/2?IL log P P log U U ==
共模插入损耗测试原理
差模插入损耗测试原理
三、实验测试系统的构成
1.矢量网络分析仪:绘制S21参数曲线,进而计算插入损耗。
2.EMI 滤波器插入损耗测试夹具
3.测试电缆及附件
4.被测滤波器样件(型号:军用直流电源滤波器TF-2E0UM-20A )
四、实验内容及步骤
(一) 滤波器插入损耗测试
1. 首先对矢网进行校准。
2. 按照测试原理图,正确搭建插入损耗测试系统,分别测量直通时(不加滤波器),共模/差模测试状态下,在100KHz~50MHz 范围内,系统的插损,要求保存S21参数曲线,标记至少10个频点,并记录数据。
3. 按原理图安装好受试滤波器样件。
注意,确认引线连接的共模状态和差模状态,并要求滤波器外壳良好接地,同时注意滤波器的输入输出分别与矢网的port1和port2连接。
4. 将夹具设定在共模工作状态下,从矢量网络分析仪上读取S21参数曲线,保存曲线图并记录至少10个频点处的数据;切换至差模工作状态再次测试,并记录数据。
(二) 滤波器安装使用状态对插入损耗的影响
信号发生器
Ω
50
信号发生器
Ω
50
1、滤波器接地状态对插入损耗的影响
在共模测试状态下,改变滤波器接地状态,通过矢量网络分析仪测量得到其插入损耗曲线,与(一)中结果对比,并分析其原因。
2、滤波器输入输出屏蔽隔离对插入损耗的影响
分别在共模和差模测试状态下,去掉测试夹具中间的隔离挡板,并盖好盖板,通过矢量网络分析仪测量其插入损耗,与(一)中结果对比,并分析其原因。
五、实验数据处理
插入损耗测试数据记录(差模)
插入损耗测试数据记录(共模)
六、实验结果分析
1、测试中(共模)改变滤波器接地状态,观察插入损耗的变化情况,并分析其原因;
答:通过实验测量结果可以发现,改变共模电路中滤波器的接地状态,插入损耗明显减小。
2、测试中改变测试夹具中滤波器的输入/输出屏蔽隔离状态,观察分析插入损耗变化,以及与频率的关系;
答:通过实验测量结果可以发现,在滤波器输入/输出未进行屏蔽隔离的情况下,对于共模电路,其插入损耗与屏蔽状况下基本相同,而对于差模电路,相比屏蔽状况下其插入损耗明显减小,而且随着频率的升高,插入损耗减小量也在增加。
可见,滤波器输入/输出是否屏蔽隔离对于高频段的插入损耗影响更大。
3、滤波器插入损耗曲线与理想低通滤波器插损曲线有什么异同?并进行分析。
答:通过实验测量结果可以发现,滤波器插入损耗曲线与理想低通滤波器插损曲线的相同点是:对低频信号的插入损耗较小,对于高频信号的插入损耗较大。
不同点是:理想低通滤波器插损曲线存在突变,即到达某一频率值时,插入损耗突然增大。
而滤波器插入损耗曲线不存在突变,并且在频率值增大到一定程度时,曲线有下降趋势。
七、实验感想体会
由于第一次接触实验仪器,对于相关操作比较陌生,好在有老师的耐心指导,加上小组成员之间的讨论,总算是得到了预期的实验结果,顺利完成了实验。
总之,实验前一定要熟悉实验原理、对实验结果有所预期,只有这样才能在实验中对测量结果的合理性与准确性作出初步判断,可以及时发现实验中可能存在的问题,提高实验结果的可靠性。