实时荧光定量PCR技术的原理和应用RealtimeQuantitative

合集下载

实时荧光定量PCR的研究进展及其应用

实时荧光定量PCR的研究进展及其应用

实时荧光定量PCR的研究进展及其应用一、本文概述实时荧光定量PCR(Real-Time Quantitative PCR,简称qPCR)是一种在分子生物学领域广泛应用的分子生物学技术,它能够在PCR 扩增过程中实时监测反应产物的积累,从而精确地定量目标DNA或RNA的初始浓度。

自20世纪90年代诞生以来,qPCR技术以其高灵敏度、高特异性、快速性和定量准确等优点,在基因表达分析、病原体检测、基因型鉴定、基因突变分析、药物研发等多个领域发挥了重要作用。

随着技术的不断发展和完善,实时荧光定量PCR已成为现代生物学研究中不可或缺的工具。

本文旨在全面综述实时荧光定量PCR技术的最新研究进展,包括其原理、方法、技术优化、应用领域的拓展以及面临的挑战等。

文章首先简要介绍qPCR技术的基本原理和常用方法,然后重点论述近年来在技术优化、多重PCR、数字化PCR等方向上的进展。

接着,本文详细探讨实时荧光定量PCR在基因表达分析、病原体检测、基因型鉴定、基因突变分析、药物研发等领域的应用案例和前景。

文章还将讨论实时荧光定量PCR面临的挑战,如引物设计、数据分析等问题,并提出相应的解决方案。

通过本文的综述,读者可以对实时荧光定量PCR技术的最新进展和应用有一个全面的了解,为相关研究提供参考和借鉴。

二、实时荧光定量PCR的基本原理与技术特点实时荧光定量PCR(Real-time Fluorescent Quantitative PCR,简称qPCR)是一种在PCR扩增过程中,通过对荧光信号的实时检测,对特定DNA片段进行定量分析的技术。

其基本原理是利用荧光染料或荧光标记的特异性探针,在PCR反应过程中实时检测PCR产物量的变化,从而得到DNA模板的初始浓度。

实时性:通过荧光信号的实时检测,可以实时了解PCR产物的生成情况,无需PCR结束后进行电泳等后续操作,大大缩短了实验时间。

定量性:通过标准曲线的建立,可以准确地计算出DNA模板的初始浓度,实现了PCR的定量分析。

实时荧光定量PCR的原理操作及其应用

实时荧光定量PCR的原理操作及其应用

实时荧光定量PCR的原理操作及其应用实时qPCR的基本原理是利用DNA模板进行PCR扩增,并通过特定荧光探针或抑制剂标记扩增产物,荧光信号的强度与目标模板数量成正比。

PCR扩增过程中,荧光信号逐渐累积,通过荧光检测系统实时监测荧光的强度变化,可以获取PCR扩增曲线,并通过比较样品的荧光信号与标准曲线建立一个浓度与荧光信号的转换关系,从而确定样品中目标物质的数量。

实时qPCR的操作过程通常包括以下几个步骤:1.准备反应体系:根据所需扩增物质选择合适的引物和探针,并根据样品数量和扩增条件计算所需反应体系的配方。

反应体系中通常包括DNA模板、引物、探针、dNTPs、缓冲液和DNA聚合酶等。

2.设定PCR程序:根据不同引物的特性和样品的要求,设置PCR程序。

PCR程序通常包括一个初始变性步骤,多个循环变性/退火/延伸步骤和一个终止步骤。

循环变性/退火/延伸步骤的温度和时间通常根据引物的需求进行设定。

3.反应体系装填:将反应体系装入PCR管或耐热反应板中,确保样品和反应物均匀分布。

4.实时监测:将PCR反应体系置于实时荧光PCR仪中,根据设定的PCR程序进行扩增,并实时监测荧光信号的累积变化。

5.数据分析:根据荧光信号的变化情况,可以绘制PCR扩增曲线,并通过计算荧光信号的阈值周期数(Ct值)来确定样品中目标物质的相对数量。

比较不同样品的Ct值,可以进行定量分析。

实时qPCR具有广泛的应用。

1.基因表达分析:可以通过实时qPCR检测特定基因在不同组织或样品中的表达水平,从而研究基因在生理和病理过程中的作用。

2.病原体检测:实时qPCR可以用于快速、准确地检测和鉴定病原体,如细菌、病毒和寄生虫等,对于临床诊断和流行病学研究具有重要意义。

3.检测基因突变:实时qPCR可以用于检测个体中基因突变的存在与否,并进行基因型分析,从而研究与疾病相关的突变和遗传变异。

4.微生物学研究:可以通过实时qPCR检测微生物的数量和动态变化,了解其在环境中的分布和生物地理学特征,以及其在食品安全、环境保护等方面的应用。

RQ-PCR技术的原理及临床应用

RQ-PCR技术的原理及临床应用
a. 含量高者急性肝炎患者易慢性化 b. 癌变的几率明显高于含量低者
HBV
(三) HBV-DNA定量检测的临床意义
4. HBV-DNA定量有助于指导怀孕与孕期,哺乳期检查 5. 肝脏移植与HBV-DNA
Mazzaferro等报告:< 103copy /ml 无一例再发肝炎 >105copy /ml 发生了严重HBV再感染
绝对定量:从荧光到拷贝数
标准品
标准品梯度稀释方法
谢谢!
实时定量PCR技术:
实时检测PCR扩增,在扩增的指数期对起 始模板进行定量。
荧光阈值是在荧光扩增曲线上人为设定的 一个值,它可以设定在荧光信号指数扩增 阶段任意位置上,一般荧光阈值的设置是 基线(背景)荧光信号的标准偏差的 10 倍。 每个反应管内的荧光信号到达设定的阈值 时所经历的循环数被称为 CT 值 ( threshold value )。
一 二
肝炎病毒定量检测 性病病原体检测
三 结核杆菌及呼吸道病原体检测 四 优生优育(TORCH)相关项目检测
HBV
(二) HBV-DNA与“两对半”
1. “两对半” :机体的免疫反应状态;
FQ-PCR:检测的是HBV本身的遗传物质—DNA,是 病毒存在和复制的最可靠、最直接的指标。
2. “携带者”、“大三阳”、“小三阳”等免疫学指标不 反应体内病毒复制水平与感染程度。
荧光定量PCR化学原理
非特异性荧光标记: 1、SYBR Green
特异性荧光标记: 2、TaqMan
1、SYBR Green 法
SYBR Green 熔解曲线分析
溶解曲线
溶解曲线分析可以用来确定不同的反应产物,包括 非特异性产物。扩增反应完成后,通过逐渐增加温 度同时监测每一步的荧光信号来产生溶解曲线,随 着反应中双链DNA变性,荧光染料又回复到游离状 态导致荧光信号降低,用荧光信号改变的负的一次 倒数与温度作图,在扩增产物的溶解温度上有一特 征峰(Tm,DNA双链解链50%的温度),用这个 特征峰就可以将特异产物与其它产物如引物二聚体 区分开,因为它们在不同的温度溶解.

实时荧光定量pcr检测核酸的原理

实时荧光定量pcr检测核酸的原理

实时荧光定量pcr检测核酸的原理实时荧光定量PCR(Real-Time Quantitative PCR,RT-qPCR)是一种基于聚合酶链反应(Polymerase Chain Reaction,PCR)的技术,能够快速、准确地定量检测核酸。

RT-qPCR的原理基于PCR的扩增和荧光信号的监测。

PCR是一种通过反复复制DNA片段的方法,它由DNA模板、引物和DNA聚合酶组成。

引物是专门设计的短链DNA片段,它们能够在目标DNA序列的两端精确结合并指导DNA聚合酶的复制。

PCR的循环包括三个步骤:变性、退火和延伸。

在变性步骤中,双链DNA被加热至94-98℃,使其解离成两条单链DNA。

在退火步骤中,引物与单链DNA特异性结合。

在延伸步骤中,DNA聚合酶沿着单链DNA模板合成新的DNA链。

每一个PCR循环会使目标DNA的数量翻倍,经过多个循环,目标DNA的数量会大幅增加。

RT-qPCR通过引入荧光探针实现对PCR扩增产物的实时检测。

荧光探针也是一种短链DNA片段,其中包含一个荧光染料和一个荧光信号抑制器。

荧光信号抑制器通过与荧光染料的近距离接触,抑制了荧光信号的发射。

当荧光探针与PCR扩增产物结合时,荧光信号抑制器与荧光染料分离,荧光信号得以释放。

通过荧光信号的增加可以判断PCR扩增产物的数量。

RT-qPCR的步骤包括样品处理、反转录、PCR扩增和荧光信号检测。

首先,需要从待检测样品中提取出核酸。

然后,通过反转录酶将RNA转录成cDNA,以便后续PCR扩增。

接下来,将引物、荧光探针和PCR反应液与样品一起加入PCR扩增管中。

PCR扩增过程中,荧光探针与PCR产物结合,并释放荧光信号。

PCR扩增和荧光信号检测是在同一反应管中进行的,所以可以实现实时监测。

最后,根据荧光信号的强度,可以计算出PCR扩增产物的初始数量。

RT-qPCR具有高灵敏度、高特异性和高准确性的特点。

它可以在短时间内检测到低浓度的核酸,并且能够区分不同的核酸序列。

实时荧光定量PCR的原理及应用

实时荧光定量PCR的原理及应用

实时荧光定量PCR的原理及应用导读实时荧光定量PCR技术是指在PCR反应体系中加入荧光染料或荧光集团,利用荧光信号来实时监测整个PCR进程,最后通过标准曲线对未知模板浓度进行定量分析。

其特点有:(1)用产生荧光信号的指示剂显示扩增产物的量,进行实时动态连续的荧光监测,避免终点定量的不准确性,并且消除了标本和产物的污染,且无复杂的产物后续处理过程。

(2)荧光信号通过荧光染料嵌入双链DNA,或荧光探针特异结合木得检测物等方法获得,打打提高了检测的灵敏度、特异性和精确性。

Real-time O-PCR可以应用于mRNA表达的研究、DNA拷贝数的检测、单核苷酸多态性的测定、细胞因子的表达分析、肿瘤耐药基因表达的研究以及病毒感染的定量监测。

实时荧光定量PCR技术的基本原理在PCR反应体系中加入荧光染料或荧光基团,这些荧光物质有其特定的波长。

仪器可以自动检出,利用荧光信号积累,实时监测整个PCR进程,在PCR循环中,测量的信号将作为荧光阈值的坐标。

并且引入一个——Ct值(Threshold cycle)概念,Ct值是指产生可被检测到得荧光信号所需的最小循环数,是在PCR循环过程中荧光信号由本底开始进入指数增长阶段的拐点所对应的循环次数。

荧光阈值相当于基线荧光信号的平均信号标准偏差的10倍。

一般认为在荧光阈值以上所测出的荧光信号是一个可信的信号,可以用于定义一个样本的Ct值。

通常用不同浓度的标准样品的Ct值来产生标准曲线,然后计算相对方程式。

方程式的斜度可以用来检查PCR的效率,所有标准曲线的线性回归分析需要存在一个高相关系数(R²>0.99),这样才能认为实验的过程和数据是可信的,使用这个方程式计算出未知样本的初始模板量。

实时荧光定量PCR仪都有软件,可以从标准曲线中自动地计算出未知样本的初始模板量。

实时荧光定量PCR技术的应用1. 基因工程研究领域①基因表达研究:对β地中海贫血症患者β与γ珠蛋白mRNA 水平进行检测,其结果特异性强、定量准确,为了解β地中海贫血的分子病理机制及其临床诊断提供了可靠的检测数据。

实时荧光定量PCR技术的原理及其应用

实时荧光定量PCR技术的原理及其应用

实时荧光定量PCR技术的原理及其应用引言实时荧光定量PCR(Polymerase Chain Reaction)技术是一种细胞遗传学和分子生物学研究中常用的分子检测技术。

它能够迅速、准确地进行DNA或RNA的定量测量,并在许多领域中广泛应用,例如基因表达分析、病原微生物检测和病毒定量等。

本文将重点介绍实时荧光定量PCR技术的原理和一些典型应用。

实时荧光定量PCR技术原理实时荧光定量PCR技术是在传统PCR反应的基础上发展而来的一种PCR变体。

其原理可以简单概括为光信号的实时检测和荧光强度的定量分析。

实时荧光定量PCR技术的具体步骤如下:1.引物与探针设计在实时荧光定量PCR反应中,合适的引物和探针设计是至关重要的。

引物用于在反应中特异性地扩增目标DNA或RNA序列,而探针则用于荧光信号的检测。

引物和探针的设计需要确保其与目标序列的亲和力和特异性,以避免非特异性扩增和假阳性结果。

2.标定曲线制备为了进行定量分析,需要事先制备一条标定曲线。

标定曲线通常是通过浓度已知的目标序列的一系列稀释样品制备的。

这些稀释样品经过PCR扩增后,荧光信号的强度与初始浓度呈线性关系。

通过测量待测样品的荧光信号强度,并利用标定曲线进行外推,可以获得目标DNA或RNA的定量结果。

3.PCR反应体系组装PCR反应体系的组装需要考虑到引物和探针的最优浓度,以及反应缓冲液、酶和模板DNA或RNA的最佳配比。

此外,反应体系中还需要加入辅助成分,如酶抑制剂和荧光染料,以提高PCR反应的特异性和灵敏度。

4.实时荧光检测及数据分析在PCR反应进行过程中,荧光信号会随着目标DNA或RNA的扩增而增强。

实时荧光定量PCR仪会实时监测和记录荧光信号的变化情况,并生成扩增曲线。

通过分析荧光信号的增长速度和荧光信号的峰值,可以确定目标DNA或RNA的起始浓度。

实时荧光定量PCR技术应用1. 基因表达分析实时荧光定量PCR技术在基因表达分析中被广泛应用。

实时荧光定量PCR(qPCR,RT-PCR)的原理及应用

实时荧光定量PCR(qPCR,RT-PCR)的原理及应用
•绝对定量(Absolute Quantification,AQ)
病原体检测 转基因食品检测 基因表达研究 •相对定量(Relative Quantification,RQ) 基因在不同组织中的表达差异 药物疗效考核 耐药性研究
RT-PCR技术的数据分析 相对定量通过内标定量
内标(Endogenous Control) 通常是18S、28S、β-actin、GAPDH基因等看家基因
RT-PCR技术的原理及试验流程
RT-PCR技术的原理及试验流程
RT-PCR反应体系 模板 4.5μl Tag mixture 5.0μl F(F’) 0.25μl R(R’) 0.25μl
荧光染料
SYBR Green I
荧光标记的探针TaqMan探针法
RT-PCR技术的原理及试验流程
Monitoring PCR with the SYBR Green I Dye(SYBR Green 法)
克服了普通PCR:1、终点定量重复性不好 2、EB有毒,荧光太贵等缺点
实时荧光定量PCR的定义
PCR技术和荧光检测技术的结合
通过荧光染料或荧光标记的特异性探针,对PCR产物进行 标记跟踪,实时在线监控反应过程,通过仪器和相应的软 件分析结果,对待测样品的初始模板进行定量或定性分析。
RT-PCR技术的原理及试验流程
在定量PCR中,需要经过数个循环后荧光信号才能够 被检测到,一般以15个循环的荧光信号作为荧光本底 信号。
RT-PCR技术的数据分析
扣 除 背 景 荧 光 后 的 相 对 荧 光 量
如何定量?-ΔΔCt
PCR扩增循环数
2. Ct 值的定义 在荧光定量PCR技术中,有一个很重要的概念 — — Ct值。C代表Cycle,t代表threshold,Ct值的含义是: 每个反应管内的荧光信号到达设定的域值时所经历的 循环数(如图所示)。

实时荧光定量pcr的原理

实时荧光定量pcr的原理

实时荧光定量pcr的原理实时荧光定量PCR(real-time quantitative PCR,qPCR)是一种用于检测DNA或RNA的数量的分子生物学技术。

它通过利用荧光探针实时监测PCR反应过程中的DNA合成情况,从而可以快速、准确地定量目标序列的数量。

实时荧光定量PCR的原理基于PCR技术和荧光探针技术的结合,具有高灵敏度、高特异性和高准确性的特点,因此被广泛应用于基础研究、临床诊断、环境监测等领域。

实时荧光定量PCR的原理主要包括PCR反应、荧光探针和检测系统三个方面。

首先,PCR反应是实时荧光定量PCR的核心步骤。

PCR反应通过不断循环的高温变性、低温退火和中温延伸,使目标DNA序列得以扩增。

在每一个PCR循环中,目标序列的数量呈指数增长,这种指数增长的特点为后续的定量提供了基础。

其次,荧光探针是实时荧光定量PCR的关键。

荧光探针是一种含有荧光染料和荧光淬灭剂的寡核苷酸探针,它与目标序列特异性结合,并在PCR反应中被3'→5'外切酶切割,释放出荧光信号。

荧光信号的强度与目标序列的数量成正比,因此可以通过监测荧光信号的变化来实现对目标序列数量的实时定量。

最后,检测系统是实时荧光定量PCR的重要组成部分。

检测系统包括荧光定量PCR仪和数据分析软件,它能够实时监测PCR反应过程中荧光信号的强度,并将荧光信号转化为目标序列的数量。

通过合理设置PCR反应条件和分析荧光信号的曲线,可以实现对目标序列的快速、准确定量。

总的来说,实时荧光定量PCR的原理是基于PCR技术和荧光探针技术的结合,通过PCR反应、荧光探针和检测系统三个方面的协同作用,实现对目标序列数量的实时定量。

这种原理使实时荧光定量PCR成为一种高效、快速、准确的分子生物学技术,为科研和临床诊断提供了重要的技术支持。

实时荧光定量pcr的原理

实时荧光定量pcr的原理

实时荧光定量pcr的原理实时荧光定量PCR(real-time quantitative PCR,qPCR)是一种用于测定DNA或RNA在样本中的数量的技术。

它可以实时监测PCR反应过程中的荧光信号,从而实现对目标序列的定量分析。

实时荧光定量PCR在生物医学研究、临床诊断、环境监测等领域具有广泛的应用价值。

实时荧光定量PCR的原理基于PCR技术,但在PCR反应过程中引入了荧光探针,使得PCR过程中的荧光信号与目标序列的数量成正比。

下面将详细介绍实时荧光定量PCR的原理。

首先,实时荧光定量PCR需要使用一种荧光探针,通常有两种类型,双标记探针和DNA间接染料。

双标记探针是一种含有荧光素和荧光淬灭剂的探针,当它与目标序列结合时,荧光素和淬灭剂之间的距离被拉大,从而导致荧光信号的增加。

DNA间接染料则是一种无需特定探针的染料,它可以与PCR产物结合并发出荧光信号。

其次,实时荧光定量PCR需要使用一种特殊的PCR仪器,称为实时荧光定量PCR仪。

这种仪器可以在PCR反应过程中实时监测荧光信号的强度,并将其转化为目标序列的数量。

实时荧光定量PCR仪器通常配备了特定的软件,可以自动分析荧光信号的强度,并计算出目标序列的起始数量。

最后,实时荧光定量PCR的原理是基于荧光信号与目标序列数量成正比的关系。

在PCR反应过程中,荧光信号的强度随着PCR产物的增加而增加,从而可以通过监测荧光信号的动态变化来实现对目标序列的定量分析。

实时荧光定量PCR可以实现高灵敏度、高特异性和高准确性的目标序列定量分析,因此在科学研究和临床诊断中得到了广泛的应用。

总之,实时荧光定量PCR是一种基于PCR技术的定量分析方法,它利用荧光探针和实时监测荧光信号的PCR仪器,可以实现对DNA或RNA目标序列的高灵敏度、高特异性和高准确性的定量分析。

实时荧光定量PCR在基础科学研究、临床诊断和环境监测等领域具有广泛的应用前景。

实时荧光定量PCR技术详解和总结

实时荧光定量PCR技术详解和总结

实时荧光定量PCR技术详解和总结
一、什么是实时荧光定量PCR
实时荧光定量PCR(Real-Time Quantitative Polymerase Chain Reaction,简称RT-qPCR)是一种PCR扩增技术,具有灵敏度高、重复性好等特点,可以在实时监测PCR扩增过程中特定片段DNA的产生。

它可以用来检测细胞中其中一特定基因mRNA的表达水平,从而揭示基因活动和表达情况,同时用于特定基因检测,如非病毒性疾病的病原检测以及芯片高通量分析等。

二、实时荧光定量PCR的基本原理
实时荧光定量PCR其基本原理就是利用PCR技术,在特定温度、适当时间内,将少量的模板 DNA 放大成数十亿倍以上。

实时荧光定量PCR的一大特点就是,它能够在实时监测PCR的扩增过程中,随时得知扩增物(amplicon)的数量。

根据扩增的量,从而确定所检测样本中的特定片段DNA的数量,即“定量”。

实时荧光定量PCR可实现定量检测,是因为它引入了一种特殊的参考基因,即“内参基因”,其用来抵消PCR条件、酶种类、反应液等的影响,从而测定量结果的准确性。

三、实时荧光定量PCR的实验步骤
(一)模板提取和核酸纯化:根据实验材料,提取DNA或RNA模板,进行核酸纯化,获得纯度较高的核酸。

(二)制备PCR反应液:制备由dNTPs、PCR酶、聚合酶等试剂组成的PCR反应液,根据所要检测的基因。

实时荧光定量pcr的原理及应用

实时荧光定量pcr的原理及应用

实时荧光定量PCR的原理及应用1. 简介实时荧光定量PCR(Real-time quantitative polymerase chain reaction,简称qPCR)是一种强大的分子生物学技术,能够在同一反应体系中完成DNA扩增和定量,具有高灵敏度、高特异性和高精确性的优势。

本文将介绍实时荧光定量PCR 的原理和应用。

2. 原理实时荧光定量PCR基于传统PCR技术的基础上,引入荧光染料或探针来实时监测PCR反应过程中产生的增量扩增DNA量。

其原理如下:1.DNA模板的变性:通过加热将DNA模板的双链DNA变性成两个单链。

2.引物结合:待扩增的特定DNA序列的引物(Forward primer和Reverse primer)与模板DNA的互补序列结合。

3.DNA聚合酶扩增:DNA聚合酶沿着模板DNA链酶解附近的单链DNA,并将新的DNA链合成。

4.荧光信号监测:引入特定的荧光染料(如SYBR Green)或探针(如TaqMan探针),实时监测PCR反应体系中DNA扩增量的变化。

5.数据分析:使用特定的PCR仪器记录和分析荧光信号,根据荧光信号的变化量确定目标DNA序列的起始量。

3. 应用实时荧光定量PCR技术在许多领域中有广泛的应用,主要包括以下方面:3.1 疾病诊断与检测实时荧光定量PCR可以用于快速检测和诊断各种疾病,例如:•新型冠状病毒(COVID-19)检测•癌症标志物的检测•细菌和病毒感染的检测•遗传性疾病的检测3.2 基因表达分析实时荧光定量PCR可以用于研究基因的表达水平,包括:•基因表达差异分析•基因调控网络的研究•基因表达谱的分析•转录因子的研究3.3 环境监测实时荧光定量PCR可以应用于环境监测领域,用于检测和量化环境中的微生物和污染物,例如:•水质监测中细菌和病毒的检测•土壤中污染物降解菌的鉴定和定量•空气中微生物的检测3.4 遗传学研究实时荧光定量PCR在遗传学研究中也有广泛的应用,包括:•DNA定量和质量检测•突变检测和鉴定•群体遗传学分析•基因组学研究4. 总结实时荧光定量PCR技术是一种准确、高效、灵敏的分子生物学技术,广泛应用于医学、生物学、环境科学和农业等领域。

实时荧光定量PCR(qPCR)技术简介

实时荧光定量PCR(qPCR)技术简介

实时荧光定量 PCR 技术简介实时荧光定量PCR(Quantitative Real-time PCR)是一项以PCR 反应为基础的DNA定量技术,通过对目标基因在扩增过程中产生的拷贝数进行实时的定量,从而达到对目的基因的定性和定量分析。

现有两种常用的方法对PCR 产物进行荧光定量:一种是利用荧光染料与双链DNA 结合,通过荧光强度进行定量;另一种是利用携带了荧光报告基团的特异DNA探针对目标基因进行定量。

一、利用荧光染料进行定量一种最为常用的定量方法就是在PCR 反应体系中加入荧光染料,此类荧光染料会与所有的双链DNA 结合,并产生荧光。

游离的荧光分子不会产生荧光信号,只有与双链DNA结合的荧光分子才会释放荧光,随着DNA 拷贝数的增加,测得的荧光强度也会增强。

利用荧光染料进行定量的优势就是成本低廉,只需要一对普通的引物就能完成定量。

然而,常用的诸如SYBR Green 染料会与所有的双链DNA 无差别地结合,包括引物二聚体,因此有可能会导致对目标基因的定量不精确,灵敏度偏低。

二、利用荧光探针进行定量荧光探针只能检测出与自身序列互补的DNA 片段,因此用探针法定量可以有效地避免引物二聚体的干扰,使定量结果更加精确。

此外,通过使用携带不同荧光信号的多种探针,我们可以同时对一个样品中的多个靶序列进行定量。

荧光探针的5’端携带有一个荧光报告基团,3’端则为淬灭基团,在正常情况下两个基团间的距离很近,淬灭基团会抑制报告基团使其无法发出荧光。

在PCR 反应过程中,引物和荧光探针在退火阶段都会与目的片段结合;在延伸阶段,Taq 酶因为具有5’-3’核酸外切酶活性,会将探针,使得报告基团和淬灭基团相互分开,从而释放出荧光。

每增加一条目的基因的拷贝,就会有一个探针被切开并释放荧光信号,因此随着PCR 反应的进行,荧光信号会逐渐增强。

使用探针进行荧光定量的优点就是精确度和灵敏度都要比荧光染料高,且可以做到同时对多个基因进行定量,但是相应的合成探针的成本也要比使用荧光染料高出许多。

实时荧光定量pcr原理

实时荧光定量pcr原理

实时荧光定量pcr原理实时荧光定量PCR(Real-Time Quantitative PCR,rt-qPCR)是一种常用于新生儿筛查和诊断病原体检测的分子定量方法。

它利用荧光标记的分子生物学技术,可以快速直接对特异的核酸序列进行检测,使检测过程更加精确快速,具有更高的特异性,可以测量微量样品。

实时PCR是基于PCR(聚合酶链反应)技术,它可以连续调整DNA或RNA片段的分子复制,目的是使目标DNA或RNA片段的量变得更多。

实时荧光定量PCR与其他实时PCR技术类似,但具有独特的优势,即在各个PCR周期中,它不仅可以检测和计数特定的DNA或RNA片段,而且可以定量检测,其特异性高强烈。

实时荧光定量PCR的工作原理是将一种可燃的标记的荧光物质(如恩替卡韦)收集到一起,成为荧光标记物或标记基因。

在性能上,它是一种热力学分子生物学技术,可以直接对特异的核酸序列进行检测。

当溶液中的特定核酸序列(如基因型)与检测溶液中的匹配(比如,使用收集器)时,荧光探针的特定的荧光单片将被激活,以及一系列的共同发光反应,从而产生荧光终级产物(FIP)。

最终,FIP的强度可以确定检测溶液中特定的基因的数量,用于定量。

实时荧光定量PCR的优势有:(1)高灵敏度。

它可以检测出非常小的核酸序列,即使它们微乎其微,甚至只有几个DNA底片;(2)快速。

可以在几个小时内完成;(3)高选择性。

它只是仅仅检测和计数特定的基因序列;(4)高特异性。

实时荧光定量PCR可以检测出比单次PCR更多的核酸片段,因此更加精确可靠;(5)高绝对量数据。

它可以提供准确的检测结果,并可以用于直接比较不同标本的数量差异;(6)同时测量多个基因。

可以特异性地检测不同家族的基因,即使这些基因的序列和尺寸都存在很大的差异,也可以很容易的检测到它们。

实时荧光定量PCR的主要应用是在基因组学及病毒学研究中,如检测HIV抗原、癌症基因组遗传学分析、突变定位以及新生儿疾病筛查等。

实时荧光定量pcr的技术原理

实时荧光定量pcr的技术原理

实时荧光定量pcr的技术原理
实时荧光定量PCR(Real-time quantitative polymerase chain reaction)是一种可以在PCR反应过程中实时监测DNA扩增的方法。

其技术原理基于PCR反应中的DNA扩增和荧光探针的结合。

实时荧光定量PCR主要包括以下步骤:
首先,将待扩增的DNA模板,引物和荧光探针混合在一起。

荧光探针由一个与待扩增的DNA序列相互补的引物和一个带有荧光染料和一个抑制退火的小分子的探针组成。

接着,将混合物加入到特定设计的PCR反应体系中,其中包括缓冲液、DNA聚合酶以及其他所需的试剂。

PCR反应开始后,通过热循环过程,将DNA模板的两条链分离,并进行DNA扩增。

在PCR反应过程中,荧光探针与DNA扩增产物结合,当探针结合到合适的位置上时,荧光探针的荧光染料会释放出荧光信号。

PCR反应体系中含有一个光学系统,可以实时监测PCR反应进行过程中的荧光强度变化。

光学系统通常由一个光源、一个荧光探测器和一个数据处理单元组成。

实时荧光定量PCR中的数据处理单元会收集、分析和解释荧光强度变化的数据,根据扩增产物的荧光信号强度,可以推断
出反应体系中的扩增产物的绝对或相对数量。

通过定量PCR技术,可以对DNA进行定量分析,确定起始模板的数量。

实时荧光定量PCR在基因表达分析、病原体检测、拷贝数变异检测等领域得到广泛应用。

QRT-PCR(荧光定量PCR)

QRT-PCR(荧光定量PCR)
实用文档
实用文档
CT 值( threshold value ):每个反应管内的 荧光信号到达设定的域值时所经历的循环数被称 为 CT 值。 研究表明,各模板的CT值与该模板的起始拷贝数 的对数存在线性关系,起始拷贝数越多,CT值越 小。反之亦然。 利用已知起始拷贝数的标准品可作出标准曲线, 其中横坐标代表起始拷贝数的对数。纵坐标代表 CT值。因此,只要获得未知样品的CT值,即可从 标准曲线上计算出该样品的起始拷贝数。
• 评估基因表达水平等方面的工作,并在不需要构建和筛选 cDNA的前提下,完成对cDNA片段的克隆
实用量的飞跃,而 且与常规PCR相比,它具有特异性更强、有效解 决PCR污染问题、自动化程度高等特点。 在实时荧光定量 PCR 反应中,引入了一种荧光 化学物质,随着 PCR 反应的进行, PCR 反应产 物不断累计,荧光信号强度也等比例增加。每经 过一个循环,收集一个荧光强度信号,这样我们 就可以通过荧光强度变化监测产物量的变化,从 而得到一条荧光扩增曲线图 ( 如下图) 。
实用文档
荧光定量PCR化学原理
1、SYBR Green (荧光染料掺入法) 在PCR反应体系中, 加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入 DNA双链后,发射荧光信号,而不掺入链中的SYBR染料 分子不会发射任何荧光信号,从而保证荧光信号的增加与 PCR产物的增加完全同步。
2、TaqMan (探针法) PCR扩增时在加入一对引物的同时 加入一个特异性的荧光探针,该探针为一寡核苷酸,两端 分别标记一个报告荧光基团和一个淬灭荧光基团。探针完 整时,报告基 团发射的荧光信号被淬灭基团吸收;PCR扩 增时,Taq酶的5’-3’外切酶活性将探针酶切降解,使报 告荧光基团和淬灭荧光基团分离,从而荧光监测系统可 接收到荧光信号,即每扩增一条DNA链,就有一个荧光 分子形成,实现了荧光信号的累积与PCR产物形成完全同 步。

实时荧光定量pcr检测原理

实时荧光定量pcr检测原理

实时荧光定量pcr检测原理实时荧光定量PCR(Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。

这种方法通过内参或者外参法对待测样品中的特定DNA序列进行定量分析。

Real-timePCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。

由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。

实时荧光定量PCR的基本原理是利用DNA聚合酶的5’-3’外切酶活性,在DNA合成过程中检测荧光信号的变化。

当DNA聚合酶与特定荧光染料标记的DNA引物结合时,荧光染料会被标记在引物的3’端。

在PCR反应过程中,每当DNA聚合酶添加一个核苷酸到引物3’端时,聚合酶的外切酶活性将荧光染料从引物上切割下来,释放出荧光。

通过实时检测荧光信号的变化,可以实时监测DNA的合成过程。

实时荧光定量PCR的定量原理是利用PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系。

在PCR扩增的指数时期,随着循环次数的增加,DNA产物的量呈指数增长。

在这个阶段,每个循环的DNA产物量与上一个循环的DNA产物量成比例。

因此,通过实时检测荧光信号的变化,可以确定PCR进程中的DNA产物量。

由于每个模板的起始拷贝数不同,因此不同模板的Ct值也不同。

通过比较不同模板的Ct值,可以确定模板的起始拷贝数。

实时荧光定量PCR具有许多优点,如高灵敏度、高特异性和高自动化程度。

它可以用于多种类型的样本检测,包括血液、组织、细胞培养液等。

此外,实时荧光定量PCR还可以用于基因表达分析、突变检测和病原体鉴定等应用。

实时荧光定量PCR是一种非常有用的技术,可以用于多种类型的样本检测和分析。

它的基本原理是利用DNA聚合酶的外切酶活性和荧光染料标记的引物来实时监测DNA的合成过程。

通过比较不同模板的Ct值,可以确定模板的起始拷贝数,从而实现定量分析。

实时荧光定量PCR原理及应用

实时荧光定量PCR原理及应用

实时荧光定量PCR原理及应用一、原理:1.荧光探针原理:a. TaqMan探针:TaqMan探针是由小分子荧光染料和一个捕获目标序列的DNA探针构成。

在PCR过程中,TaqMan探针会结合到特定的目标序列上,当DNA聚合酶在PCR反应中扩增特定序列时,探针被加性外切酶活性所降解,导致荧光信号逐渐降低,通过荧光信号的减弱来量化目标DNA的数量。

b. SYBR Green探针:SYBR Green探针是一种可以与双链DNA特异性结合的染料,当SYBR Green与PCR产物结合时,荧光信号增加。

通过测量荧光信号的增加来量化目标DNA的数量。

c. Molecular Beacons:Molecular Beacons是由在末端带有荧光分子和淬灭荧光的猝灭体构成的。

在PCR过程中,当Molecular Beacons与目标序列匹配时,荧光信号释放,通过测量荧光信号的释放来量化目标DNA的数量。

2.PCR反应原理:a.变性:将含有目标DNA序列的模板DNA样品与引物和荧光探针混合,加热至高温,使DNA双链解除成两股单链DNA。

b.引物结合:将反应体温度降低,引物结合到目标DNA序列的特定区域,并与模板DNA进行互补组装。

c.扩增:在DNA聚合酶的作用下,引物在模板上逐渐沿着DNA链延伸,产生新的DNA片段。

每一轮PCR循环结束后,荧光信号会相应地增加。

二、应用:1.目标基因表达分析:可以用实时荧光定量PCR测定特定目标基因的表达水平,从而研究基因的功能、调控机制或者生理功能的变化。

2.病原体检测:实时荧光定量PCR可以检测和定量各种病原体,例如病毒、细菌、真菌等。

常见的应用包括检测呼吸道病原体、性传播疾病病原体、食物中污染的细菌等。

3.肿瘤检测:实时荧光定量PCR可以用于肿瘤相关标志物的检测,帮助早期筛查和诊断肿瘤。

4.遗传突变检测:可以通过实时荧光定量PCR检测人类基因中的突变位点,提供遗传病检测和个体基因组分析的支持。

实时荧光定量PCR技术的原理与应用

实时荧光定量PCR技术的原理与应用

实时荧光定量PCR技术的原理与应用PCR技术是分子生物学中非常重要的分析手段,具有高效、灵敏、快速的特点。

而实时荧光定量PCR技术是PCR技术的一种重要应用,因其具有高精准、可靠性强的特点,在医学、生物工程等领域得到广泛应用。

本文将介绍实时荧光定量PCR技术的原理、优点和应用,以便更好地了解和应用该技术。

一、实时荧光定量PCR技术的原理实时荧光定量PCR技术是PCR技术进一步发展的产物,是一种可以对PCR扩增反应进行实时监测和测量的技术。

实时荧光定量PCR技术采用荧光探针来定量PCR扩增产物,具有高灵敏度、高精准度、自动化程度高等优点。

实时荧光定量PCR技术的基本原理是利用特殊荧光探针来定量PCR扩增产物。

荧光探针用于测量PCR扩增反应的进行程度,它具有独特的结构和物理性质。

荧光探针由两部分组成,一部分是荧光染料,另一部分是与染料相连的标记序列。

在PCR过程中,荧光探针与PCR扩增产物结合后,在DNA聚合酶的作用下,标记序列被切断,导致荧光染料释放出来,从而使荧光强度发生变化。

荧光强度的变化与PCR扩增产物量呈正比关系,样品产量越多,荧光信号越强,反之越弱。

二、实时荧光定量PCR技术的优点实时荧光定量PCR技术具有以下优点:1. 灵敏度高:实时荧光定量PCR技术可以检测极低数量的DNA分子,可以检测单个DNA分子。

2. 精准性高:实时荧光定量PCR技术可以精确测量PCR扩增产物的数量,可以避免使用传统的分析方法中存在的误差和测量误差。

3. 可靠性强:实时荧光定量PCR技术可以消除PCR扩增反应中的不确定性因素,减少用户操作的干扰,提高检测的可靠性和准确性。

4. 实时检测:实时荧光定量PCR技术可以在PCR扩增反应进行的同时,实时检测PCR扩增产物数量的变化情况,从而可以及时判断PCR反应的质量和结果。

三、实时荧光定量PCR技术的应用实时荧光定量PCR技术在医学、生物工程、农业等领域得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档