半导体物理综合练习题(1)
半导体物理学练习题(刘恩科)
半导体物理学练习题(刘恩科)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
《半导体物理学》试题与及答案
练习1-课后习题7
第二章 半导体中杂质和缺陷能级
锑化铟的禁带宽度E g = 0.18 e V ,相对介电常数 εr = 17 ,电子的 有效质量mn∗ = 0.015 m0, m 0为电子的惯性质量,求 ⅰ)施主杂质的电离能, ⅱ)施主的弱束缚电子基态轨道半径。
解:
练习2
第二章 半导体中杂质和缺陷能级
所以样品的电导率为: q(n0 n p0 p )
代入数据得,电导率为2.62 ×1013S/cm 所以,电场强度 E J 1.996103 mA / cm
作业-课后习题2
第四章 半导体的导电性
试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1450cm2/V·S 和500cm2/V·S。当掺入百万分之一的As 后,设杂质全部电离,试计算其电 导率。比本征Si 的电导率增大了多少倍?(ni=1.5×1010cm-3; Si原子浓度为 =5.0×1022cm-3,假定掺杂后电子迁移率为900cm2/V·S)
m0为电子惯性质量,k1=1/2a; a=0.314nm。试求: (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化。
练习2-课后习题2
第一章 半导体中的电子状态
2.晶格常数为0.25nm的一维晶格,当外加102V/m和107V/m 的电 场时,试分别计算电子自能带底运动到能带顶所需的时间。
所以,300k时,
nT 300
(1.05 1019
5.7
1018 )
exp(
0.67 1.61019 21.381023 300)
1.961013cm3
77k时,
半导体物理试题及答案
半导体物理试题及答案一、单项选择题(每题2分,共20分)1. 半导体材料的导电能力介于导体和绝缘体之间,这是由于()。
A. 半导体的原子结构B. 半导体的电子结构C. 半导体的能带结构D. 半导体的晶格结构答案:C2. 在半导体中,电子从价带跃迁到导带需要()。
A. 吸收能量B. 释放能量C. 吸收光子D. 释放光子答案:A3. PN结形成的基础是()。
A. 杂质掺杂B. 温度变化C. 压力变化D. 磁场变化答案:A4. 半导体器件中的载流子主要是指()。
A. 电子B. 空穴C. 电子和空穴D. 光子答案:C5. 半导体的掺杂浓度越高,其导电性能()。
A. 越好B. 越差C. 不变D. 先变好再变差答案:A二、填空题(每题2分,共20分)1. 半导体的导电性能可以通过改变其________来调节。
答案:掺杂浓度2. 半导体的能带结构中,价带和导带之间的能量差称为________。
答案:带隙3. 在半导体中,电子和空穴的复合现象称为________。
答案:复合4. 半导体器件中的二极管具有单向导电性,其导通方向是从________到________。
答案:阳极阴极5. 半导体的PN结在外加正向电压时,其内部电场会________。
答案:减弱三、简答题(每题10分,共30分)1. 简述半导体的掺杂原理。
答案:半导体的掺杂原理是指通过向半导体材料中掺入少量的杂质元素,改变其电子结构,从而调节其导电性能。
掺入的杂质元素可以是施主杂质(如磷、砷等),它们会向半导体中引入额外的电子,形成N型半导体;也可以是受主杂质(如硼、铝等),它们会在半导体中形成空穴,形成P型半导体。
2. 描述PN结的工作原理。
答案:PN结是由P型半导体和N型半导体结合而成的结构。
在PN结中,P型半导体的空穴会向N型半导体扩散,而N型半导体的电子会向P型半导体扩散。
由于扩散作用,会在PN结的交界面形成一个内建电场,该电场会阻止更多的载流子通过PN结。
《半导体物理学》习题库完整
《半导体物理学》习题库完整第1章思考题和习题1. 300K时硅的晶格常数a=5.43?,求每个晶胞所含的完整原⼦数和原⼦密度为多少?2. 综述半导体材料的基本特性及Si、GaAs的晶格结构和特征。
3. 画出绝缘体、半导体、导体的简化能带图,并对它们的导电性能作出定性解释。
4. 以硅为例,简述半导体能带的形成过程。
5. 证明本征半导体的本征费⽶能级E i位于禁带中央。
6. 简述迁移率、扩散长度的物理意义。
7. 室温下硅的有效态密度Nc=2.8×1019cm-3,κT=0.026eV,禁带宽度Eg=1.12eV,如果忽略禁带宽度随温度的变化,求:(a)计算77K、300K、473K 3个温度下的本征载流⼦浓度。
(b) 300K本征硅电⼦和空⽳的迁移率分别为1450cm2/V·s和500cm2/V·s,计算本征硅的电阻率是多少?8. 某硅棒掺有浓度分别为1016/cm3和1018/cm3的磷,求室温下的载流⼦浓度及费⽶能级E FN的位置(分别从导带底和本征费⽶能级算起)。
9. 某硅棒掺有浓度分别为1015/cm3和1017/cm3的硼,求室温下的载流⼦浓度及费⽶能级E FP的位置(分别从价带顶和本征费⽶能级算起)。
10. 求室温下掺磷为1017/cm3的N+型硅的电阻率与电导率。
11. 掺有浓度为3×1016cm-3的硼原⼦的硅,室温下计算:(a)光注⼊△n=△p=3×1012cm-3的⾮平衡载流⼦,是否为⼩注⼊?为什么?(b)附加光电导率△σ为多少?(c)画出光注⼊下的准费⽶能级E’FN和E’FP(E i为参考)的位置⽰意图。
(d)画出平衡下的能带图,标出E C、E V、E FP、E i能级的位置,在此基础上再画出光注⼊时,E FP’和E FN’,并说明偏离E FP的程度是不同的。
12. 室温下施主杂质浓度N D=4×1015 cm-3的N型半导体,测得载流⼦迁移率µn=1050cm2/V·s,µp=400 cm2/V·s,κT/q=0.026V,求相应的扩散系数和扩散长度为多少?第2章思考题和习题1.简述PN结空间电荷区的形成过程和动态平衡过程。
半导体物理学试题及答案
半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
半导体物理试卷
半导体物理试卷一、选择题(每题3分,共30分)1. 本征半导体是指()的半导体。
A. 不含杂质和缺陷B. 电子浓度等于空穴浓度。
C. 导电性介于导体和绝缘体之间D. 以上都是。
2. 在半导体中,导带底附近的电子有效质量()。
A. 大于零B. 小于零C. 等于零D. 可正可负。
3. 对于N型半导体,其多数载流子是()。
A. 电子B. 空穴C. 离子D. 光子。
4. 杂质半导体中的杂质能级位于()。
A. 禁带中B. 导带中C. 价带中D. 以上都有可能。
5. 半导体的费米能级随温度升高()。
A. 向禁带中央移动B. 向导带底移动。
C. 向价带顶移动D. 不确定,取决于半导体类型。
6. 当PN结正向偏置时,()。
A. 势垒高度降低,扩散电流大于漂移电流。
B. 势垒高度升高,扩散电流小于漂移电流。
C. 势垒高度不变,扩散电流等于漂移电流。
D. 势垒高度降低,扩散电流小于漂移电流。
7. PN结的电容包括()。
A. 势垒电容和扩散电容B. 仅势垒电容。
C. 仅扩散电容D. 寄生电容。
8. 在半导体中,空穴的运动是()。
A. 实际的粒子运动B. 电子运动的等效。
C. 离子运动的等效D. 光子运动的等效。
9. 半导体的电导率与()有关。
A. 载流子浓度和迁移率B. 禁带宽度。
C. 杂质浓度D. 以上都是。
10. 以下哪种现象不是半导体的特性()。
A. 光电导效应B. 压阻效应。
C. 超导现象D. 热电效应。
二、填空题(每题2分,共20分)1. 半导体的晶格结构主要有_____和_____(举两种)。
2. 根据杂质在半导体中提供载流子的类型,杂质可分为_____杂质和_____杂质。
3. 半导体的载流子散射机制主要有_____散射、_____散射等。
4. 在热平衡状态下,半导体中的电子浓度和空穴浓度的乘积为_____(表达式)。
5. PN结的空间电荷区是由_____和_____形成的。
6. 半导体的霍尔效应中,霍尔系数与载流子浓度和_____有关。
半导体物理习题答案
半导体物理习题答案半导体物理是固体物理的一个重要分支,它研究的是半导体材料的物理性质及其在电子器件中的应用。
以下是一些常见的半导体物理习题及其答案。
习题一:半导体的能带结构问题:简述半导体的能带结构,并解释价带、导带和禁带的概念。
答案:半导体的能带结构由价带和导带组成,两者之间存在一个能量间隔,称为禁带。
价带是半导体中电子能量最低的能带,当电子处于价带时,它们是被束缚在原子周围的。
导带是电子能量最高的能带,电子在导带中可以自由移动。
禁带是价带顶部和导带底部之间的能量区间,在这个区间内不存在允许电子存在的能级。
半导体的导电性能介于导体和绝缘体之间,主要因为其禁带宽度较小,电子容易从价带激发到导带。
习题二:PN结的形成与特性问题:解释PN结的形成过程,并描述其正向和反向偏置特性。
答案:PN结是由P型半导体和N型半导体接触形成的结构。
P型半导体中存在空穴,而N型半导体中存在自由电子。
当P型和N型半导体接触时,由于扩散作用,P型中的空穴会向N型扩散,而N型中的电子会向P型扩散。
这种扩散导致在接触区域形成一个耗尽层,其中电子和空穴复合,留下固定电荷,形成内建电场。
正向偏置时,外加电压使内建电场减弱,允许更多的电子和空穴通过PN结,从而增加电流。
反向偏置时,外加电压增强了内建电场,阻碍了电子和空穴的流动,导致电流非常小。
习题三:霍尔效应问题:描述霍尔效应的基本原理,并解释霍尔电压的产生。
答案:霍尔效应是指在垂直于电流方向的磁场作用下,载流子受到洛伦兹力的作用,导致电荷在样品一侧积累,从而在垂直于电流和磁场方向上产生一个横向电压差,即霍尔电压。
霍尔效应的发现为研究材料的载流子类型和浓度提供了一种有效的方法。
霍尔电压的大小与电流、磁场强度以及材料的载流子浓度有关。
习题四:半导体的掺杂问题:解释半导体掺杂的目的和方法,并举例说明。
答案:半导体掺杂的目的是为了改变半导体的导电性能。
通过在纯净的半导体中掺入微量的杂质原子,可以增加或减少半导体中的载流子数量。
半导体物理第1章习题答案
第一章1. ① 导带:E c (K )=ℏ2k 23m 0+ℏ2(k−k 1)2m 0两边对k 求导,得到dE c (K )dk=2ℏ2k 3m 0+2ℏ2(k−k 1)m 0由dE c (K )dk=0得:k =34k 1,又d 2E c (K )dk 2=2ℏ23m 0+2ℏ2m 0=8ℏ23m 0>0所以在k =34k 1处,E c (K )取得极小值 价带:dE V (K )dk=−6ℏ2k m 0,由dE V (K )dk=0 得:k =0又d 2E v (K )dk 2=−6ℏ2m 0<0,所以在K=0处,E v (K )取得极大值E g =E c (34k 1)−E v (0)=ℏ2k 1212m 0=(1.054×10−34)2( 3.140.314×10−9)212×9.108×10−31=1.016×10−19J =1.016×10−191.602×10−19=0.63ev②m nc ∗=ℏ2d 2E c (K)dk 2=ℏ28ℏ23m 0=38m 0=38×9.108×10−31=3.4×10−31kg③m nv∗=ℏ2d 2E v (K)dk 2=ℏ2−6ℏ2m 0=−m 06=−16×9.108×10−31=−1.5×10−31kg④准动量的定义:p =ℏkΔp =(ℏk )k=34k 1−(ℏk )k=0=34ℏk 1−0=34ℏk 1=34×1.054×10−34×3.140.314×10−9=7.95×10−25N/s2. 由运动方程F =ℏdk dt,令电场力F =−qE 沿着k 轴的正方向,则−qE =ℏdk dt。
考虑到电子从能带底运动到能带顶对应于波矢从0到πa,因此∫(−qE )dt t=∫ℏπadk ⟹−qEt =ℏπa⟹t =−ℏπqE a当E =102V/m 时 t 1=−ℏπqE a= 1.054×10−34×3.141.6×10−19×102×2.5×10−10=8.27×10−8 s t 2=−ℏπqE a=1.054×10−34×3.141.6×10−19×107×2.5×10−10=8.27×10−13 s3.根据立方对称性可以判断,总共存在12个不同方向的极值点,其回旋共振的实验结果与磁感应强度的方向有关。
半导体物理试题库及答案
半导体物理试题库及答案一、单项选择题(每题2分,共20分)1. 在半导体中,电子从价带跃迁到导带所需能量的最小值称为:A. 禁带宽度B. 费米能级C. 载流子浓度D. 电子亲和能答案:A2. 下列哪种半导体材料的禁带宽度大于硅?A. 锗B. 砷化镓C. 硅D. 碳化硅答案:D3. PN结在正向偏置时,其导电性能主要取决于:A. 电子B. 空穴C. 杂质D. 复合答案:B4. 半导体器件中,二极管的导通电压通常为:A. 0.2VB. 0.7VC. 1.5VD. 3.3V答案:B5. 在半导体物理学中,霍尔效应可以用来测量:A. 载流子浓度B. 载流子迁移率C. 载流子类型D. 所有以上答案:D二、多项选择题(每题3分,共15分)1. 下列哪些因素会影响半导体的载流子浓度?(多选)A. 温度B. 光照C. 杂质浓度D. 材料类型答案:ABCD2. 半导体器件的能带结构包括:A. 价带B. 导带C. 禁带D. 费米能级答案:ABC3. 下列哪些是半导体材料的特性?(多选)A. 导电性介于导体和绝缘体之间B. 导电性随温度升高而增加C. 导电性随光照强度增加而增加D. 导电性随杂质浓度增加而增加答案:ABCD三、填空题(每空1分,共20分)1. 半导体材料的导电性可以通过掺杂来改变,其中掺入____类型的杂质可以增加载流子浓度。
答案:施主2. 在PN结中,当外加电压的方向与PN结内电场方向相反时,称为______偏置。
答案:反向3. 半导体材料的导电性随温度升高而______。
答案:增加4. 半导体器件的能带结构中,价带和导带之间的区域称为______。
答案:禁带5. 霍尔效应测量中,当载流子受到垂直于电流方向的磁场作用时,会在垂直于电流和磁场的方向上产生______。
答案:霍尔电压四、简答题(每题5分,共10分)1. 简述半导体材料的导电机制。
答案:半导体材料的导电机制主要涉及价带中的电子获得足够能量跃迁到导带,从而成为自由电子,同时在价带中留下空穴。
半导体物理习题及答案
1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248am h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C = ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m V n -== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
[解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qEh dk∴t=⎰tdt 0=⎰a qEh 210dk =a qE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s ) 当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。
半导体物理综合练习题参考答案
1、晶格常数2.5Å的一维晶格,当外加102V/m和107V/m电场时,试分别计算电子自能带底运动到能带顶所需时间。
(1Å=10nm=10-10m)2、指出下图中各表示的是什么半导体?3、如图所示,解释一下n0~T关系曲线。
4、若费米能E F=5eV,利用费米分布函数计算在什么温度下电子占据E=5.5eV能级的概率为1%。
并计算在该温度下电子分布概率0.9~0.1所对应的能量区间。
5、两块n型硅材料,在某一温度T时,第一块与第二块的电子密度之比为n1/n2=e(e是自然对数的底)(1)如果第一块材料的费米能级在导带底之下3k0T,试求出第二块材料中费米能级的位置;(2)求出两块材料中空穴密度之比p1/p2。
6、硼的密度分别为N A1和N A2(N A1>N A2)的两个硅样品,在室温条件下:(1)哪个样品的少子密度低?(2)哪个样品的E F离价带顶近?(3)如果再掺入少量的磷(磷的密度N`D< N A2),它们的E F如何变化?7、现有三块半导体硅材料,已知在室温下(300K)它们的空穴浓度分别为p01=2.25×1016cm-3、p02=1.5×1010cm-3、p03=2.25×104cm-3。
(1)分别计算这三块材料的电子浓度n01、n02、 n03;(2)判别这三块材料的导电类型;(3)分别计算这三块材料的费米能级的位置。
8、室温下,本征锗的电阻率为47Ω·cm,试求本征载流子浓度。
若掺入锑杂质,使每106个锗原子中有一个杂质原子,计算室温下电子浓度和空穴浓度。
设杂质全部电离。
锗原子的浓度为4.4×1022/cm3,试求该掺杂锗材料的电阻率。
设µn=3600cm2/(V·s),µp=1700cm2/(V·s)且认为不随掺杂而变化。
n i=2.5×1013cm-3。
半导体物理学习题答案(有目录)
半导体物理学习题答案(有目录)半导体物理习题解答目录1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E v(k)分别为: (2)1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
(3)3-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试求锗的载流子有效质量mn*和mp*。
(3)3-8.(P82)利用题7所给的Nc和Nv数值及Eg=0.67eV,求温度为300k和500k时,含施主浓度ND=5×1015cm-3,受主浓度NA=2×109cm-3的锗中电子及空穴浓度为多少? (4)3-11.(P82)若锗中杂质电离能△ED=0.01eV,施主杂质浓度分别为ND=1014cm-3及1017cm-3,计算(1)99%电离,(2)90%电离,(3)50%电离时温度各为多少? (5)3-14.(P82)计算含有施主杂质浓度ND=9×1015cm-3及受主杂质浓度为1.1×1016cm-3的硅在300k 时的电子和空穴浓度以及费米能级的位置。
(6)3-18.(P82)掺磷的n型硅,已知磷的电离能为0.04eV,求室温下杂质一般电离时费米能级的位置和磷的浓度。
(7)3-19.(P82)求室温下掺锑的n型硅,使EF=(EC+ED)/2时的锑的浓度。
已知锑的电离能为0.039eV。
(7)3-20.(P82)制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型的外延层,再在外延层中扩散硼、磷而成。
①设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300k时的EF位于导带底下面0.026eV处,计算锑的浓度和导带中电子浓度。
(8)4-1.(P113)300K时,Ge的本征电阻率为47Ω.cm,如电子和空穴迁移率分别为3900cm2/V.S和1900cm2/V.S,试求本征Ge的载流子浓度。
半导体物理学试题及答案
半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
半导体物理综合练习题(1)
1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
解:在一定温度下,价带电子获得足够的能量(≥E g)被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
2、试指出空穴的主要特征。
解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、E P=-E nD、m P*=-m n*。
3、试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
4、简述Ge、Si和GaAS的能带结构的主要特征。
解:(1)G e、Si:a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)G aAs:a)E g(300K)= 1.428eV,Eg (0K) = 1.522eV;b)直接能隙结构;c)Eg负温度系数特性:dE g/dT = -3.95×10-4eV/K;5、什么叫浅能级杂质?它们电离后有何特点?解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。
它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴。
6、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。
半导体物理学试题及答案
半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
半导体物理习题 (一)
半导体物理习题 (一)半导体物理习题是半导体材料与器件学习中的重要内容。
半导体物理习题可以加深对半导体物理概念的理解,同时也可以提高解决问题的能力。
下面从三个方面讨论半导体物理习题。
一、结构与物理性质的习题半导体的性质与其结构密切相关。
半导体物理习题中要求分析半导体结构的物理性质,同时对材料的各种参数如能带宽度、材料常量等进行计算。
例如:已知硅的导带和价带的有效密度和平带宽度,求硅的费米能级和费米温度;已知材料常量和结构参数,求掺杂浓度;已知光谱分别是1.5和1.8微米的激光与掺杂为5\times 10^{18}/cm^3的硅相互作用时,求硅的电导率。
二、半导体器件的习题半导体物理习题着重强调半导体器件的原理,同时考虑器件的物理性质和电路应用。
这种问题需要理解PN结、二极管、MOSFET、BJT等器件的操作原理和特性,通过计算量和电压来确定器件的工作点。
例如:已知硅二极管的开启电压为0.7V,其内阻与器件其它参数,求交流电源上限制流电阻多大时,正弦信号最大幅值的一半被路过的电流平均值所展现;已知P型硅和N型硅掺杂浓度与宽度,求PN结势垒。
三、量子力学问题半导体物理涉及多种物理现象,例如:自旋极化、能带结构、结晶场的空间不对称等,这些现象不能通过牛顿力学解释,只能采用量子力学。
这种问题需要考虑波粒二象性、量子叠加态、双重斯特恩-盖拉赫效应等基本量子力学理论。
例如:已知材料常量,电子以多瓦范围高速碰撞在单氧化碳上,求碰撞标记的红移值;已知单电子波函数,求其具有的典型时间尺度。
总之,半导体物理习题对学习者的理解能力、分析问题的能力、数学技巧和编程能力有很大的提高作用,做好习题可以加深对知识点的掌握,培养解决实际问题的能力,是学习半导体材料与器件学习的关键部分之一。
(完整版)半导体物理试题
一、名词解释1、施主杂质:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。
受主杂质:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。
2、本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。
实际半导体不可能绝对地纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。
3、多子、少子(1)少子:指少数载流子,是相对于多子而言的。
如在半导体材料中某种载流子占少数,在导电中起到次要作用,则称它为少子。
(2)多子:指多数载流子,是相对于少子而言的。
如在半导体材料中某种载流子占多数,在导电中起到主要作用,则称它为多子。
4、欧姆接触指金属与半导体的接触,其接触面的电阻远小于半导体本身的电阻,实现的主要措施是在半导体表面层进行高参杂或引入大量的复合中心。
5、(1)费米能级: 费米能级是绝对零度时电子的最高能级。
(2)受主能级: 被受主杂质所束缚的空穴的能量状态称为受主能级(3)施主能级:被施主杂质束缚的电子的能量状态称为施主能级6、电子亲和能:真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。
7、深/浅能级(1)浅能级杂质:在半导体中,能够提供能量靠近导带的电子束缚态或能量接近价带的空穴束缚态的杂质称为浅能级杂质。
(2)深能级杂质:在半导体中,能够提供能量接近价带的电子束缚态或能量接近导带的空穴束缚态的杂质称为深能级杂质。
8、肖特基势垒金属与半导体接触时,若二者功函不同,载流子会在金属与半导体之间流动,稳定时系统费米能级统一,在半导体表面一层形成表面势垒,是一个高阻区域,称为阻挡层。
电子必须跨越的界面处势垒通常称为肖特基势垒。
二、简答题1.简述PN结反向击穿的原理(雪崩效应、齐纳击穿、热电击穿)答:(1)雪崩击穿:半导体中, pn 结反向电压增大时,势垒区中的电场很强,在势垒区内的电子和空穴由于受到强电场的漂移作用,具有很大的动能,它们与势垒区内的晶格原子发生碰撞时,能把价键上的电子和空穴碰撞出来,成为导电电子,同时产生一个空穴。
半导体物理习题答案
第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同?7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
解:在一定温度下,价带电子获得足够的能量(≥E g)被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
2、试指出空穴的主要特征。
解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、E P=-E nD、m P*=-m n*。
3、试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
4、简述Ge、Si和GaAS的能带结构的主要特征。
解:(1)G e、Si:a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)G aAs:a)E g(300K)= 1.428eV,Eg (0K) = 1.522eV;b)直接能隙结构;c)Eg负温度系数特性:dE g/dT = -3.95×10-4eV/K;5、什么叫浅能级杂质?它们电离后有何特点?解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。
它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴。
6、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。
施主电离成为带正电离子(中心)的过程就叫施主电离。
施主电离前不带电,电离后带正电。
例如,在Si中掺P,P 为Ⅴ族元素,本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与Si的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。
这个过程就是施主电离。
n型半导体的能带图如图所示:其费米能级位于禁带上方7、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。
解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。
受主电离成为带负电的离子(中心)的过程就叫受主电离。
受主电离前带不带电,电离后带负电。
例如,在Si中掺B,B为Ⅲ族元素,而本征半导体Si为Ⅳ族元素,P掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共价电子,而B倾向于接受一个由价带热激发的电子。
这个过程就是受主电离。
p型半导体的能带图如图所示:其费米能级位于禁带下方8、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。
解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。
掺杂半导体又分为n型半导体和p型半导体。
例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。
当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为2.25╳104cm-3。
半导体中的多数载流子是电子,而少数载流子是空穴。
9、两性杂质和其它杂质有何异同?解:两性杂质是指在半导体中既可作施主又可作受主的杂质。
如Ⅲ-Ⅴ族GaAs中掺Ⅳ族Si。
如果Si替位Ⅲ族As,则Si为施主;如果Si替位Ⅴ族Ga,则Si为受主。
所掺入的杂质具体是起施主还是受主与工艺有关。
10、深能级杂质和浅能级杂质对半导体有何影响?解:深能级杂质在半导体中起复合中心或陷阱的作用。
浅能级杂质在半导体中起施主或受主的作用。
11、何谓杂质补偿?杂质补偿的意义何在?解:当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。
利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。
12、对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。
即E Fn>E Fi。
证明:设n n为n型半导体的电子浓度,n i为本征半导体的电子浓度。
显然n n> n ii ni n F F F c c F c c E E T k E E N T k E E N >⎪⎪⎭⎫ ⎝⎛--⋅>⎪⎪⎭⎫ ⎝⎛--⋅则即00exp exp即得证。
13、试分别定性定量说明:(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;(2) 对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。
解:(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。
由公式T k E v c i ge N N n 02-=也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。
(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而增加。
由公式可知,这时两式中的指数项将因此而增加,从而导致载流子浓度增加。
14、若两块Si 样品中的电子浓度分别为 2.25×1010cm -3和 6.8×1016cm -3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。
假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,这两块样品的导电类型又将怎样?解:由 200i n p n =得()()()()⎪⎪⎩⎪⎪⎨⎧⨯≈⨯⨯==⨯=⨯⨯==--3316210022023101021001201103.3108.6105.1100.11025.2105.1cm n n p cm n n p i i 可见,型半导体本征半导体n p n p n →>→≈02020101又因为 T k E E v vF e N p 00--=,则⎪⎪⎩⎪⎪⎨⎧+=⎪⎪⎭⎫ ⎝⎛⨯⨯⋅+=⎪⎪⎭⎫ ⎝⎛⋅+=+≈⎪⎪⎭⎫ ⎝⎛⨯⨯⋅+=⎪⎪⎭⎫ ⎝⎛⋅+=eV E E p N T k E E eV E E p N T k E E v v n v F v v v v F 331.0103.3101.1ln 026.0ln 234.0100.1101.1ln 026.0ln 319020210190101假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。
⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⋅=T k E E N p T k E E N n V F V F c c 0000exp exp 和答:第一种半导体中的空穴的浓度为1.1x1010cm -3,费米能级在价带上方0.234eV 处;第一种半导体中的空穴的浓度为3.3x103cm -3,费米能级在价带上方0.331eV 处。
掺入浓度为2.25×1016cm -3的受主杂质后,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。
15、Si 样品中的施主浓度为4.5×1016cm -3,试计算300K 时的电子浓度和空穴浓度各为多少?解:在300K 时,因为N D >10n i ,因此杂质全电离n 0=N D ≈4.5×1016cm -3()()3316210020100.5105.4105.1-⨯=⨯⨯==cm n n p i 答: 300K 时样品中的的电子浓度和空穴浓度分别是4.5×1016cm -3和5.0×103cm -3。
16、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。
解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。
对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。
17、何谓迁移率?影响迁移率的主要因素有哪些?解:迁移率是单位电场强度下载流子所获得的漂移速率。
影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。
18、试定性分析Si的电阻率与温度的变化关系。
解:Si的电阻率与温度的变化关系可以分为三个阶段:(1)温度很低时,电阻率随温度升高而降低。
因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。
(2)温度进一步增加(含室温),电阻率随温度升高而升高。
在这一温度范围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。
对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。
(3)温度再进一步增加,电阻率随温度升高而降低。
这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。
当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。
19、何谓非平衡载流子?非平衡状态与平衡状态的差异何在?解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。
通常所指的非平衡载流子是指非平衡少子。
热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态,跃迁引起的产生、复合不会产生宏观效应。
在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。
20、漂移运动和扩散运动有什么不同?解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。
前者的推动力是外电场,后者的推动力则是载流子的分布引起的。
21、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。
而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。