2019中考数学模拟试题附答案
2019年中考数学模拟试卷含答案解析4
2019年中考数学模拟试卷一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3分)﹣2的绝对值是()A.2 B.﹣ C.D.﹣22.(3分)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a23.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25π B.24π C.20π D.15π5.(3分)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.6.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x ﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣19.(3分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>010.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.511.(3分)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.12.(3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)分解因式:﹣a2+2a﹣2= .14.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(3分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(3分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、填空题(本题包括7小题,共66分)19.(7分)解不等式组,并将解集在数轴上表示出来.20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y (万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(12分)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y 轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.【解答】解:﹣2的绝对值是2,故选:A.2.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.3.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.4.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.5.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.6.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.7.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.8.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.9.【解答】解:(A)由图象开口可知:a<0 由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.10.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.11.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.12.【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF =12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)214.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)>0,且m﹣5≠0,解得m<5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.15.【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.16.【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.17.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.18.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).三、填空题(本题包括7小题,共66分)19.【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.20.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.21.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.22.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛年前后的中位数和众数看,比赛后学生名背诵诗词的积极性明显提高,这次举办后的效果比较理想.23.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(8分)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(9分)∴==6,即最快在第7个月可还清10万元的无息贷款.(10分)24.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.25.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)带入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4 (2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=∵EF为BC中垂线∴BE=在Rt△BEF和Rt△BOC中,cos∠CBF=∴∴BF=5,EF=,OF=3设⊙P的半径为r,⊙P与直线BC和EF都相切如图:①当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1是正方形∴ER1=P1Q1=r1在Rt△BEF和Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=,OP1=∴点P1坐标为(,0)②同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7∴P2坐标为(7,0)∴点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,①若DN和MP为平行四边形对边,则有DN=MP当x=时,y=﹣∴DN=MP=∴点N坐标为(﹣1,)②若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知,点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(﹣1,)当点N在x轴下方时,点N坐标为(﹣1,﹣)当点P坐标为(7,0)时,所求N点不存在.故答案为:(﹣1,)、(﹣1,)、(﹣1,﹣)。
2019年中考数学模拟试题及答案共10套
九年级(上)第二次模拟数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.22.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×1034.(3分)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.5.(3分)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)6.(3分)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.7.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.08.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm9.(3分)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)计算2﹣的结果是.13.(3分)把多项式3m2﹣6mn+3n2分解因式的结果是.14.(3分)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=.15.(3分)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是.16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.17.(3分)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)20.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)21.(8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.(8分)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.23.(8分)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.24.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.25.(10分)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.26.(10分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?27.(13分)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.28.(13分)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.-学年江苏省南通市通州区九年级(上)第二次模拟数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(•成都)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.2【解答】解:﹣2<﹣1<0<2,故选:D.2.(3分)(•吉林一模)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.3.(3分)(2009•武汉)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×103【解答】解:102 000=1.02×105.故选B.4.(3分)(•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选:D.5.(3分)(秋•南通月考)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)【解答】解:A、∵52+122=132,∴能构成直角三角形,故本选项不符合题意;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合题意;C、∵62+82≠122,∴不能构成直角三角形,故本选项符合题意;D、∵(3a)2+(4a)2=(5a)2,∴能构成直角三角形,故本选项不符合题意.故选C.6.(3分)(秋•南通月考)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.【解答】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,∴OG=OA•cos30°=6×=3,故选A.7.(3分)(2010•武汉)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.0【解答】解:原方程可化为:x2﹣4=0;∴x1+x2=﹣=0;故选D.8.(3分)(•防城港)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm【解答】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选:B.9.(3分)(秋•南通月考)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时【解答】解:A、∵函数图象中y值的最大值为2.5,∴体育场离王强家2.5千米,该结论符合题意;B、∵30﹣15=15(分钟),∴王强在体育场锻炼了15分钟,该结论符合题意;C、∵2.5﹣1.5=1(千米),∴体育场离早餐店1千米,该结论不符合题意;D、∵1.5÷=3(千米/小时),∴王强从早餐店回家的平均速度是3千米/小时,该结论符合题意.故选C.10.(3分)(秋•南通月考)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个【解答】解:设OA的解析式为y=kx,则3k=1,解得k=,则OA的解析式为y=x,∵A(3,1),∴C点坐标为(1.5,0.5),设CD的解析式为y=﹣3x+b,则﹣3×1.5+b=0.5,解得b=5,则CD的解析式为y=﹣3x+5,则=1,解得k=3,则双曲线为y=,联立双曲线与CD的解析式可得﹣3x+5=,∴3x2﹣5x+3=0,△=(﹣5)2﹣4×3×3=﹣11<0,∴方程无解,根据反比例函数的对称性可得:若△AOB为等腰三角形,则点B为(1,3),(﹣1,﹣3)(﹣3,﹣1),一共3个.故选:A.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(秋•南通月考)在函数y=中,自变量x的取值范围是x≠1.【解答】解:由题意,得x+1≠0,解得x≠1,故答案为:x≠﹣1.12.(3分)(•高淳县一模)计算2﹣的结果是﹣.【解答】解:原式=﹣2=﹣.故答案为:﹣.13.(3分)(•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.【解答】解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.14.(3分)(•哈尔滨模拟)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=3.【解答】解:由题意知:=,解得x=3.故答案为3.15.(3分)(秋•南通月考)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是24.【解答】解:∵l=,∴r===24.故答案为:24.16.(3分)(秋•南通月考)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是150度.【解答】解法1:∵OA=OB=OC,∴∠OAB=∠OBA,∠OBC=∠OCB,∵∠ABC=∠OBA+∠OBC=70°,∴∠OAB+∠OBA+∠OBC+∠OCB=140°,即∠OAB+∠ABC+∠OCB=140°,又∵∠ABC+∠BCD+∠ADC+∠BAD=360°,即∠ABC+∠OCB+∠OCD+∠ADC+∠DAO+∠OAB=360°,∵∠ADC=70°,∠OAB+∠ABC+∠OCB=140°,∴∠DAO+∠DCO=360°﹣140°﹣70°=150°.解法2:由AO=BO=CO,可知O是三角形ABC的外心,∠ABC是圆周角,∠AOC是圆心角,所以∠AOC=2∠ABC=140°,又∠D=70°,所以∠DAO+∠DCO=360°﹣140°﹣70°=150°.故答案为:150.17.(3分)(秋•南通月考)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.【解答】解:过A作AE⊥BC于E,∵AB=AC=2,BC=8,∴BE=CE=4,∵DE垂直平分AB,∴BD=AB=,∵∠BDE=∠AEB=90°,∠B=∠B,∴△BED∽△ABE,∴=()2=,∵S△ABC=2S△ABE,∴=,∴=.故答案为:.18.(3分)(秋•南通月考)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.【解答】解:设P点坐标为P(a,a2﹣2ma+m2+m﹣1),AP2=(m﹣a)2+[a2﹣2ma+m2+m﹣1﹣(m+1)]2=(m﹣a)2+[(m﹣a)2﹣2]2令(m﹣a)2=t(t≥0)则有AP2=t+(t﹣2)2=t2﹣3t+4=(t﹣)2+,所以,当t=时,AP2有最小值,所以AP=,故答案为.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(秋•南通月考)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)【解答】解:(1)原式=2﹣2﹣1+4=3;(2)原式=•=﹣x﹣1.20.(8分)(•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:年该城市有219天不适宜开展户外活动.21.(8分)(秋•南通月考)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB 的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【解答】解:如图,作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2,AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1,在Rt△BCH中,BH==≈=5.6,∴AB=AH+BH=9.1+5.6=14.7,答:改直的公路AB的长14.7千米.22.(8分)(秋•南通月考)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.【解答】解:(1)连结OA.∵∠ACD=22.5°,∴∠AOD=45°,∵CD⊥AB,∴∠AEO=90°,∴AE=OE,在Rt△AOE中,OA=2,∴AE=OE=,由垂径定理,得AB=2AE=2;(2)∵CE=2+,AE=,∴tan∠BAC===+1.23.(8分)(秋•南通月考)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.【解答】解:(1)∵点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上,∴k=a(a+5)=6(a+1),整理得:a2﹣a﹣6=(a+2)(a﹣3)=0,解得:a=﹣2或a=3(舍去),∴k=a(a+5)=﹣2×(﹣2+5)=﹣6.(2)∵a=﹣2,∴A(﹣2,3),B(6,﹣1).设直线AB的解析式为y=kx+b(k≠0),将A(﹣2,3)、B(6,﹣1)代入y=kx+b中,,解得:,∴直线AB的解析式为y=﹣x+2.设直线AB与y轴交于点C,则点C的坐标为(0,2),∴OC=2,∴S△AOB=OC•(x B﹣x A)=×2×[6﹣(﹣2)]=8.24.(8分)(•朝阳区一模)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.25.(10分)(秋•南通月考)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.【解答】解:(1)小明答对第一道题的概率=;故答案为;(2)若小明“求助”第一题(假设去掉错误选项C)画树状图为:共有8种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,若小明“求助”第二题(假设去掉错误选项D)画树状图为:共有9种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,而>,所以他应该在第一题使用“求助”,顺利通关的概率才更大.26.(10分)(秋•南通月考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,又∵EF是公共边,∴AE=2BE;(2)设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,AB=3a=﹣x+30∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,∴0<x<40(3)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.27.(13分)(秋•南通月考)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB ﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E 运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG (SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.28.(13分)(秋•南通月考)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A (﹣1,0),B(5,0)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|﹣m+15|①若﹣m2+m+2=﹣m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(﹣m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.∴点F的坐标为(2,0)或(,0).(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴=,即=,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的m的值为0或﹣或4或3+.中考数学模拟试卷好题精选(河北一模)12.(2分)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径(河北一模)19.(4分)如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.(河北一模)20.(8分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.(河北一模)26.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x 轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.(江苏南通通州二模)8.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm(江苏南通通州二模)10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个(江苏南通通州二模)16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.(江苏南通通州二模)18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.(安徽宿州灵璧磬乡协作校一模)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.(安徽宿州埇桥一模)15.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.(安徽宿州埇桥一模)22.(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.(安徽宿州埇桥一模)23.(14分)如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.(1)点A的坐标是;抛物线l1的解析式是;(2)当BM=3时,求b的值;(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2.①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围;②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN 的最小值与此时b的值.(广东韶关南雄二中一模)19.(6分)如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.(广东韶关南雄二中四模)14.(4分)在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C 的度数为.(广东韶关南雄二中四模)19.(6分)已知:如图,在△ABC中,AD平分∠ABC.(1)作线段AD的垂直平分线MN,MN与AB边交于点E,AC边交于点F.(2)若AB=AC,请直接写出EF和BC的关系.(广东韶关南雄二中五模)18.(6分)如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.(广东深圳龙岗一模)15.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.(河北保定涿州一模)11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1 C.2a+b=﹣1 D.2a+b=1(河北保定涿州一模)12.(2分)如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°(河北数学模拟三)9.(3分)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0(河北数学模拟三)15.(2分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B.(1,)C.(,)D.(,)(河北数学模拟三)26.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.(河南南阳新野新航中学模拟)5.(3分)两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0,则ab的值为()A.1 B.﹣1 C.D.(河南南阳新野新航中学模拟)9.(3分)对于一次函数y=kx+b,当自变量x的取值为﹣2≤x≤5时,相应的函数值的范围为﹣6≤y≤﹣3,则该函数的解析式为.(河南濮阳一模)7.(3分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5(河南濮阳一模)9.(3分)从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2 B.﹣3 C.D.(河南濮阳一模)16.(8分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.(河南濮阳一模)21.(10分)阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.(河南濮阳一模)22.(10分)(1)【问题发现】。
2019中考数学模拟试题含答案(精选5套)
2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E 处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2019年中考数学模拟试题附答案共四套
2019年中考数学模拟试题1考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间120分钟. 2.答题时,应该在答题卷指定位置写明校名,姓名和准考证号.3.所有答案都必须做在答题卷指定的位置上,请务必注意试题序号和答题序号相对应。
4.考试结束,上交试题卷和答题卷。
一、选择题(每小题3分,共60分) 1.计算错误的是( )A.1)2012(0=-B.393-=-C.2)21(1=- D.()81322=2.下列函数中,y 随x 增大而减小的是( )A.y=—2xB.y=x 21 C.y=-x4D. y= -x -1 3.函数中自变量x 的取值范围是x >2的是 ( )A .21-=x yB .2-=x yC .21-=x y D .xy -=214.2011年,萧山区在省、市领导的正确领导下,在全区人民的共同努力下,萧山经济社会发展呈现了良好的态势。
全区实现地区生产总值1446。
78亿元。
进步喜人。
将1146。
78亿元用科学记数法表示为:( )A.1.44678×1011 元B.0.144678×1012 元C. 1.44678×1010元D. 1.44678×109 元5. 九年级(3)班数学进行了六次测试,其中李明六次成绩分别为:110、98、97、103、105、105,则他的中位数和众数分别是( )A.100、105 B.104、105 C.105、105 D.103、1056.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为内含,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( )A 、B 、C 、 D第6题7.如图,将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,则剩余部分的面积为( )A .36B . 3536-C .310D .3336- 8.已知)0(2≠++=a c bx ax y 的图像如图所示,则)20,0(2<<≠=++n a n c bx ax 的方程的两实根,x x ,则满足( )第7题A.3121<<<x xB. 2131x x <<<C. 3121<<<x xD. 3,1021><<x x 且 9.已知0°<α<90°,则m =sin α+cos α的值( ) A .m >1B .m =1C .m <1D .m ≥110.如图:已知⊙O 1与⊙O 2都过点A ,A O 1是⊙O 2的切线,⊙O 1交O 1 O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C ,如果AB ·BC=16,O 2C=5,tan ∠A O 1 O 2的值为( ) A .158 B .53 C .54 D .151311. 4的平方根是( )A .2B . -2C .±2D .±212. 2012年,针对社会反映非常强烈的入园难问题,国务院出台十条举措;中央财政划拨5.5亿实施“国培计划”,中央特岗计划招聘的教师达6万人。
黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)
黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。
2019年中考数学模拟试卷(附答案)
2019年中考数学模拟试卷(附答案)一、选择题(本大题10题,每小题3分,共30分).在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 四个数0,3-,2,32中,无理数的是( ) A .0 B .3- C .2 D .32 2. 2019年濠江区保障性住房建设预计资金投入约5300000元,将5300000用科学记数法表示为( )A .51053⨯B .5103.5⨯C .71053.0⨯D .6103.5⨯ 3. 如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )A .B .C .D .4. 数据3,4,6,7,3的众数和中位数分别是( )A .3 ,4B .3 ,7C .4 ,3D .4 ,6 5. 下列计算正确的是( )A .326x x x =÷B .2)1(1+-=--x xC .222)(b a b a -=-D .226)3(x x = 6.使1+x 有意义的x 的取值范围是( )A .1->xB .x ≥1-C .1-<xD .x ≤1- 7. 如图,已知∠AOB =70°,OC 平分∠AOB ,DC ∥OB ,则∠C 为( )A.20°B.35°C.45°D.70°8. 将2x y =向上平移2个单位后所得的抛物线的解析式为( )A .22+=x yB .22-=x yC .2)2(+=x yD .2)2(-=x y 9. 如图,边长相等的正方形和正六边形的一边重合,则∠1的度数是( )A .10°B .20°C .30°D .40°10.如图①,点P 从等边△ABC 的顶点A 出发,沿A →B →C 以1cm/s 的速度匀速运动到点C ,图②是点P 运动时,△PAC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .3B .1C .23D .32 二、填空题(本大题6题,每小题4分,共24分).请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:222-a = .12.不等式组⎪⎩⎪⎨⎧+>--<-2115304x x x 的解集为 .13.已知关于x 的方程02=-+n x x 有两个相等的实数根,那么n 的值为 . 14.如图,在△ABC 中,DE ∥BC ,AE :EC=2:3,则ABC ADE S S ∆∆:的值为 . 15.如图,在边长为1的正方形网格中,AB 是半圆的直径,则阴影部分的面积为 (结果保留π)16.规定12-=i ,且i 满足运算律.如:i i i i i 2)1(21121)1(222=-++=+⨯⨯+=+,那么8)1(i -的值为三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:10220199|2|-+-+-18.先化简,再求值:21)231(2+-÷+-a a a ,其中13-=a19.如图,在△ABC中,∠A=30°,∠B=50°.(1)作∠ACB的平分线交AB边于点D,(要求:尺规作图,保留作图痕迹,不写作法);(2)求证:DC=DB.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某校为奖励在学校活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价.(2)若学校计划花费1000元购买甲、乙两种奖品,且要求甲、乙两种奖品的数量比为2:3,问最多可以购买多少件甲种奖品?21.如图,矩形EFGH的四个顶点分别在平行四边形ABCD的各条边上,AB=EF.(1)求证:△AFE≌△CHG;(2)若点H为DC的中点,∠A=90°,试判断AF和BF的数量关系,并说明理由.22.某中学为关注儿童成长的健康,实施“关注留守儿童计划”,对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图: (1)全校班级个数 个,并将该条形统计图补充完整;(2)在扇形统计图中,表示“3名”的扇形圆心角为 度;(3)为了了解留守儿童的饮食情况,某校决定从只有2名留守儿童的这些班级中,任选两名进行调查,请用列表法或画树形图的方法,求出所选两名留守儿童来自同一个班级的概率.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在矩形OABC 中,OC=2,OA=3,以OA 所在的直线为x 轴,以OC 所在的直线为y 轴建立平面直角坐标系.反比例函数xmy 的图象与CB 交于点D (2,2),与BA 交于点E ,连接AC ,DE ,OE.(1)求反比例函数的解析式; (2)求 sin ∠EOA 的值; (3)求证:DE ∥CA .24.如图,在正方形ABCD中,AD=4,E是AB上一点,AC与DE相交于点F.以DE为直径的⊙O与AC相交于点G,连接EG,DC与BG的延长线相交于点H.(1)求证:∠AEG=∠AFD;(2)若∠EGB=∠BAC,判断BH与⊙O的位置关系,并说明理由;(3)在(2)的条件下,求AE的长.25.如图1,已知Rt△ABC,∠AB C=90°,AB=3,BC=6,将Rt△ABC绕点B顺时针旋转90°,连接CD,与AE的延长线交于点F,连接BF,与ED相交于点G.(1)填空:∠BCD= °;(2)求BG的长度;(3)如图2,点M从点E出发,沿EA方向以每秒2个单位长度的速度向终点A运动,点N 从点E出发,沿ED方向以每秒5个单位长度的速度向终点D运动,M,N两点同时出发,当点M停止时,点N也随之停止.设运动时间为x秒,问:是否存在x的值,使得△BMN 为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.数学参考答案与评分标准一、选择题二、填空题11.)1)(1(2-+a a ;12.7-<x ;13. ;14. ;15. ;16.16三、解答题(一)17.解:原式= ………………4分 = ………………6分18.解:原式11)1)(1(2212)1)(1(2322+=-++⋅+-=+-+÷⎪⎭⎫ ⎝⎛+-++=a a a a a a a a a a a a ……………………3分 ………………4分当13-=a 时,原式331131=+-=………………6分 19.解:(1)如图所示,CD 即为所求。
2019届九年级数学 中考模拟试卷含解析
2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。
【2019年中考数学】山东省青岛市2019年中考数学模拟试卷(一)(含答案)
山东省青岛市2019年中考数学模拟试卷(一)(解析版)一、选择题(共9小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×109元 C.523×109元D.5.23×109元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.19个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.49.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,94分)16.(9分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.19.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)19.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.99,tan15°≈0.29,sin95°≈0.99,cos95°≈0.26,tan95°≈3.93)20.(9分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(9分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过190元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=,=.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=..②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2019年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共9小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0 没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×109元 C.523×109元D.5.23×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:53200万=5.23×109,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.19个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有90次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.9.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,﹣=2.故答案为﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,94分)16.(9分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.【分析】(1)通过解方程组可得到两直线的交点坐标;(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式=•=•=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.19.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=95%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=19000(名).答:估计该市初中生中大约有19000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.99,tan15°≈0.29,sin95°≈0.99,cos95°≈0.26,tan95°≈3.93)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.99≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(9分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(9分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过190元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤190;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣190)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为190元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1900﹣60=1340,解得x的值,根据100≤x≤190,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤190;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣190)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为190元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1900,则﹣x2+36x﹣1900﹣60=1340,解得x1=200,x2=160,∵100≤x≤190,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=CD,=CD.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.。
2019年人教版中考数学模拟试题十套(含答案)
中考数学模拟试题一一. 选择题。
(30分)1.在-2,0,3这四个数中,最大的数是( )A .-2. 去年中国GDP (国内生产总值)总量为636463亿元,用科学计数法表示636463亿为( )。
A .6.36463×1014 B. 6.36463×1013 C. 6.36463×1012 D. 63.6463×10123.在下列水平放置的几何体中,其三种视图都不可能是长方形的是( )A . B. C. D. 4.下列图形既是轴对称图形又是中心对称图形的是( )A . B. C. D. 5.下列计算结果正确的是( )A .222352x y x y x y -⋅= B. 23354222x y x y x y -⋅=- C. 3223557x y x y xy ÷= D. 22(2)(2)4x y x y x y --⋅+=-6.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2017年4月份用电量的调查结果:那么关于这10户居民用电量(单位:度),下列说法错误的是( )A .中位数是55 B.众数是60 C. 平均数是54 D.方差是297.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .1 B.12 C. 32D.2 8. 某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( )A .()4804804150%x x -=- B. ()48048041+50%x x -=C.()48048041+50%x x-= D. 4804804(150%)x x -=-9.如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dm B. 22dm C. 25dm D. 45dm第9题图 第10题图10.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE=∠B=α,DE 交AC 于点E ,且4cos 5α=。
2019届中考数学模拟试题及答案
中考数学模拟试题及答案、选择题(每小题3分,共24分)计算:-1+3=()(A)-2.(B)4.(C)2.(D)-4.已知点A ( 2, 3 ),则点A在()(A)第一象限.(B)第二象限.(第3题)(C)第三象限.(D)第四象限.3.如图是一块手表早上8时的时针、分针的位置,那么分针与时针所成的角的度数是()(A)60°.(B)80°.(C)120°.(D)150°.4.以长为3cm,5cm,7cm,10cm的四根木棍中的三根木棍为边,可以构成三角形的个数是()(A)1个.(B)2个.(C)3个.(D)4个.5.下列计算正确的是()(A)(ab)2=ab2.(B)a2·a3=a6.(C)a5+a5=2a5.(D) (a2)3=a5.6.下列图形既是轴对称图形又是中心对称图形的有().班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是()(A)4小时和4.5小时.(B)4.5小时和4小时. (C)4小时和3.5小时.(D)3.5小时和4小时.8.二次函数y = x2+10x -5的最小值为()(A)-35.(B)-30.(C)-5. (D)20.二、填空题(每小题3分,共18分)9.人体中成熟的红细胞的平均直径为0.00000077m,用科学记数法表示m.10.因式分解:.1.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为.2.如图,正方体的棱长和圆柱直径均为1,且圆柱的高为2,则这个组合体右视图的面积是.(第13题)(第12题)(右视图)3.如图,已知,为上一点,以点为圆心,为半径作,若点在边上运动,则当cm时,与相切.14.已知一次函数y=ax+b(a,b是常数,且a≠0).x与y的部分对应值如下表:那么不等式ax+b>0的解集是.三、解答题(每小题5分,共20分)5.化简求值:,其中a=.6.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.17. 如图,在ABCD中,点E、F在BD上,且BF=DE,(1)直接写出图中所有全等的三角形(不再添加辅助线);(2)延长AE交DC于G,延长CF交BA 于H(请补全图形),探索四边形AGCH的形状,并说明理由.8.某印刷厂将分别包装好的初一语文、初二语文、初一数学、初二数学共4捆书送到了一书店.由于包装时粗心,这4捆书的外包装上没有作任何的标记,而这4捆书的外包装及形状、大小、重量等均相同.书店需将其中两捆数学书送到外国语学校,而书店又一时无法确认哪两捆是数学书,为此售货员拿来剪刀将其中的两捆书打开.(1)用列表法或画树状图法,(设初一语文、初二语文、初一数学、初二数学分别用A、B、C、D表示)分析售货员打开的两捆书可能出现的所有情况;(2)计算打开的这两捆书恰好都是数学书的概率.四、解答题(每小题6分,共12分)9.某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,).0.已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A 与边CD 上的点E重合.如果折痕FG分别与AD、AB交与点F、G,,求五边形DFGBC的周长.五、解答题(每小题6分,共12分)21.如图,将一个的直角三角形板的斜边BC放在轴上,直角顶点A在反比例函数的图像上,AB = 1,求点C的坐标.2.典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:⑴典典同学共调查了名居民的年龄,扇形统计图中=;⑵补全条形统计图;⑶若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.六、解答题(每小题7分,共14分)3.如图,把正方形ACFG与Rt△ACB按如图(1)所示重叠在一起,其中AC=,∠BAC =,若把Rt△ACB绕直角顶点C按顺时针方向旋转,使斜边AB恰好经过正形ACFG的顶点F,得△A/B/C,AB分别与A/C、A/B/相交于D、E,如图(2)所示.(1)△ACB至少旋转多少度才能得到△A/B/C?说明理由;(2)求△ACB与△A/B/C的重叠部分(即四边形CDEF)的面积.24.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过中进水、清洗、排水时洗衣机中的水量(升)与时间(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升(2)已知洗衣机的排水速度为每分钟19升,① 如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.②求排水时y与x之间的函数关系式.七、解答题(每小题10分,共20分)5.已知:如图△ABC是边长为4的等边三角形,点P、Q分别从A、C两点同时出发,速度为每秒1个单位长度, B与原点重合,PQ交AC于D.⑴写出点A的坐标;⑵当△DCQ为等腰三角形时,求t的值;⑶若△PCQ的面积为S,P、Q运动的时间为t秒,求S与t的函数关系式,并求S的最大值.6.在平面直角坐标中,A为x轴上一点,过A点的直线L的解析式为(其中k为常数,且k≠0),B(3,m)为直线L上的另一点,C是y轴上动点,过C点作直线L的平行线L′,连结AC,过B点作BD∥AC交于L ′ 于D点。
2019年数学中考一模试卷带答案
2019年数学中考一模试卷带答案一、选择题1.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .2.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠3.-2的相反数是( ) A .2B .12C .-12D .不存在4.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°5.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A 10B 5C .22D .36.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x ﹣12x 2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:27.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .48.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A.10°B.15°C.18°D.30°10.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+二、填空题13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三0.3600.3870.4040.4010.3990.400位)根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).15.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.17.使分式的值为0,这时x=_____.18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.三、解答题21.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).22.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.23.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l 与x 轴交于点B ,直线l 与y 轴交于点C ,求四边形OBEC 的面积; (3)如图2,已知矩形MNPQ ,PQ =2,NP =1,M (a ,1),矩形MNPQ 的边PQ 在x 轴上平移,若矩形MNPQ 与直线l 或l 有交点,直接写出a 的取值范围_____________________________24.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F 'V V ≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.3.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.4.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.5.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22=++=()22;211路径二:AB22=++=().21110<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.6.A解析:A 【解析】分析:求出当y=7.5时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C ,根据直线解析式和坡度的定义判断D . 详解:当y=7.5时,7.5=4x ﹣12x 2, 整理得x 2﹣8x+15=0, 解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意; y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩,则小球落地点距O 点水平距离为7米,C 正确,不符合题意; ∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意; 故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B(0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误; 当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.8.C解析:C 【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.9.B解析:B 【解析】 【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案. 【详解】由题意可得:∠EDF=45°,∠ABC=30°, ∵AB ∥CF ,∴∠ABD=∠EDF=45°, ∴∠DBC=45°﹣30°=15°. 故选B. 【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.10.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A.考点:由实际问题抽象出分式方程.二、填空题13.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.15.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.三、解答题21.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.22.(1)甲组抽到A小区的概率是14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A小区的概率是14,故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.23.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.24.(1)证明见解析;(2)四边形AECF是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA判定△ABE≌△AD′F;(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16. 【解析】【分析】(1)根据A 项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A 、C 、D 项目的人数,求出B 项目的人数,从而补全统计图; (3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
2019年中考数学模拟试卷含答案
2019年中考数学模拟试卷含答案2019年九年级数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.-3的相反数是()A。
3 B。
-3 C。
1/3 D。
-1/32.计算2×3的结果是()A。
5 B。
6 C。
23 D。
33.某市棚户区改造项目总占地亩。
这个数用科学计数法表示为()A。
1.29×10^5 B。
1.129×10^1 C。
1.129×10^4 D。
1.129×10^34.下列命题中错误的是()A。
两组对边分别对应相等的四边形是平行四边形B。
两条对角线相等的平行四边形是矩形C。
两条对角线垂直的平行四边形是菱形D。
两条对角线垂直且相等的四边形是正方形5.某同学一周中每天体育运动所花时间(单位:分钟)分别为:35,40,45,40,55,40,48.这组数据的中位数是()A。
35 B。
40 C。
45 D。
486.如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:AD=2:1,△ABC的面积是18,则△DEC的面积是()A。
8 B。
9 C。
12 D。
157.若关于x的一元二次方程kx^2-2x-1=0没有实数根,则k的取值范围是()A。
k>-1 B。
k>-1且k≠0 C。
k<1 D。
k<-18.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2)。
设AE=x(0<x<2),则以下哪个选项是正确的?A。
当x=1时,点P是正方形ABCD的中心。
B。
当x=1/2时,EF+GH=AC。
C。
当0<x<2时,六边形AEFCHG面积的最大值是3.D。
当0<x<2时,六边形AEFCHG周长的值不变。
二、填空题(本大题共10小题,每小题3分,共30分,把答案填在相应的空格内)9.分解因式:2x^2-8=2(x+2)(x-2)10.二次根式1-x有意义的条件是x≤1.11.已知∠α=20°,则∠α的余角等于70°。
2019年数学中考一模试卷(附答案)
2019年数学中考一模试卷(附答案)一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .15B .14C .15D .417 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分4.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12 5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.547.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.下面的几何体中,主视图为圆的是()A.B.C.D.10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y ﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y 4+y2++2y3+y 2+y+y 4+y2+﹣2y3+y 2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB=154,故选A 3.B解析:B 【解析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.5.C【解析】从上面看,看到两个圆形,故选C .6.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 7.B解析:B【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.8.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =216.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM ⊥BDDN ⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB ∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x 2+22=(4-x )2,解得,∴BE=; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3.三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨+=⎩ ,解得5400k b =⎧⎨=⎩, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
2019年中考数学模拟试卷含答案和解析
2019年中考数学模拟试卷(五)一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.﹣2的倒数是()A.﹣B.C.2 D.﹣2[答案]A[解析]∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6[答案]C[解析]A.a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.3.下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10[答案]D[解析]∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.4.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200[答案]C[解析]抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.5.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38[答案]B[解析]将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.6.下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.[答案]D[解析]不是轴对称图形,故选:D.7.若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2[答案]A[解析]∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.8.如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108[答案]D[解析]2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.8的立方根是2.[解析]8的立方根为2,故答案为:2.10.使有意义的x的取值范围是x≥﹣1.[解析]∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.11.方程x2﹣4=0的解是±2.[解析]x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.12.若a=b+2,则代数式a2﹣2ab+b2的值为4.[解析]∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:413.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16.[解析]∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.14.如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.[解析]多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为6cm.[解析]圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.16.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)[解析]作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.17.已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.[解析]设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.18.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有3个.[解析]以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.20.(10分)(1)解方程:+1=(2)解不等式组:解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x=;经检验x=是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:乙1 2 3 4积甲1 123 42 2 4 6 83 3 6 9 12(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.解:(1)补全表格如下:1 2 3 41 123 42 2 4 6 83 3 6 9 12 (2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC 的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?解:设剪去正方形的边长为x cm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为x cm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.图案的长度10cm 20cm 30cm 40cm 50cm 60cm 所有不同图案的个数 1 2 3 4 5 6 解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发x min时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?解:(1)设甲、乙两人的速度分别为a m/min,b m/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.P A的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠P AM=∠P AH,P A=P A,∴△P AM≌△P AH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.。
2019年中考数学模拟试卷解析版
2019中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项的字母填涂在答题卡上.1.在1,﹣2,0,(﹣1)﹣3这四个数中,最小的数是()A.﹣2B.0C.(﹣1)﹣3D.12.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20°B.40°C.60°D.80°4.下列计算正确的是()A.2a+3a=6a B.a2+a3=a5C.a8÷a2=a6D.(a3)4=a75.一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根6.在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()A.﹣1B.0C.1D.27.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.3B.4C.5D.68.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH 的长等于( )A .3.5B .4C .7D .149.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( )A .x ≥B .x ≤3C .x ≤D .x ≥310.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,则下列结论正确的是( )A .乙的速度是4米/秒B .离开起点后,甲、乙两人第一次相遇时,距离起点12米C .甲从起点到终点共用时83秒D .乙到达终点时,甲、乙两人相距68米二、填空题:本大题共8小题,每小题4分,共32分.11.若分式有意义,则x 的取值范围为 .12.分解因式:3m 2﹣6mn +3n 2= .13.菱形两条对角线的长为12cm 、16cm ,则菱形的周长为 .14.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .15.某煤厂原计划x天生产120吨煤,由于采用新的技术,每天比原计划多生产3吨,因此提前2天完成任务,根据题意列出方程为.16.如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx+3=0的根是.17.在函数y=﹣的图象上有三个点为(x1,y1)、(x2,y2)、(x3,y3),若y1<0<y2<y3,则x1,x2,x3的大小关系是.18.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n 个式子是(用含的n式子表示,n为正整数).三、解答题(一):本共5小题,共38分,解答应写必要的文字说明,证明过程或验算步骤.19.计算:(π﹣)0++(﹣1)2017﹣tan60°.20.如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O对称的△A2B2C2;(3)点A1的坐标是;点C2的坐标是.21.如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).22.桌面上有5张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4”、“5”.将卡片背面朝上洗匀.(1)小军从中任意抽取一张,抽到偶数的概率是;(2)小红从中同时抽取两张.规定:抽到的两张卡片上的数字之和为奇数,则小军胜,否则小红胜.你认为这个游戏公平吗?请用树状图或表格说明你的理由.23.“小组合作学习”成为我区推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“小组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:请结合图中信息解答下列问题:(1)小组合作学习前学生学习兴趣为“高”的所占的百分比为;(2)补全小组合作学习后学生学习兴趣的统计图;(3)通过“小组合作学习”前后学生学习兴趣的对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?四、解答题(二)本题共5小题,共50分,解答时,应写必要的文字说明,证明过程或验算步骤.24.如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.(1)求反比例函数的解析式;(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.25.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.26.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2013年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.求每年市政府投资的增长率?27.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s 的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.28.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2017年甘肃省张掖市高台县中考数学模拟试卷(5月份)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项的字母填涂在答题卡上.1.在1,﹣2,0,(﹣1)﹣3这四个数中,最小的数是()A.﹣2B.0C.(﹣1)﹣3D.1【分析】直接利用负整数指数幂的性质以及结合有理数大小比较方法分析得出答案.【解答】解:1,﹣2,0,(﹣1)﹣3=﹣1,故﹣2<(﹣1)﹣3<0<1,则在1,﹣2,0,(﹣1)﹣3这四个数中,最小的数是:﹣2.故选:A.【点评】此题主要考查了负整数指数幂的性质以及有理数大小比较,正确化简负整数指数幂是解题关键.2.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20°B.40°C.60°D.80°【分析】先根据平行线的性质求出∠2+∠3的度数,再由∠2=∠3即可得出结论.【解答】解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.4.下列计算正确的是()A.2a+3a=6a B.a2+a3=a5C.a8÷a2=a6D.(a3)4=a7【分析】根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根【分析】求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.【解答】解:x2+2x+2=0,这里a=1,b=2,c=2,∵b2﹣4ac=22﹣4×1×2=﹣4<0,∴方程无实数根,故选:D.【点评】本题考查的知识点是根与系数的关系,当b2﹣4ac>0时,一元二次方程有两个不相等的实数根;当b2﹣4ac=0时,一元二次方程有两个相等的实数根;当b2﹣4ac<0时,一元二次方程无实数根.6.在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()A.﹣1B.0C.1D.2【分析】对于函数来说,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.【解答】解:反比例函数的图象上的每一条曲线上,y随x的增大而增大,∴1﹣k<0,∴k>1.故选:D.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式中k的意义不理解,直接认为k<0,错选A.7.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.3B.4C.5D.6【分析】如图,连接OA,过O作弦AB的垂线OF,设垂足为C,在构造的Rt△OAF中,由垂径定理可得AF的长,圆的半径已知,即可由勾股定理求得OF的值,即圆心O到弦AB的距离.【解答】解:过圆心O作OF⊥AB于点F,则AF=AB=8,Rt△OAF中,AF=8,OA=10,由勾股定理得,OF===6,即点O到弦AB的距离是6,故选:D.【点评】本题考查了勾股定理、垂径定理.此题涉及圆中求弦心距的问题,作出合适的辅助线,利用勾股定理是解答此题的关键.8.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5B.4C.7D.14【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3【分析】将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.【解答】解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选:A.【点评】本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论.10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是()A.乙的速度是4米/秒B.离开起点后,甲、乙两人第一次相遇时,距离起点12米C.甲从起点到终点共用时83秒D.乙到达终点时,甲、乙两人相距68米【分析】通过函数图象可得,甲出发3秒走的路程为12米,乙到达终点所用的时间为80秒,根据行程问题的数量关系可以求出甲、乙的速度,利用数形结合思想及一元一次方程即可解答.【解答】解:由函数图象,得:甲的速度为12÷3=4米/秒,乙的速度为400÷80=5米/秒,故A 错误;设乙离开起点x秒后,甲、乙两人第一次相遇,根据题意得:5x=12+4x,解得:x=12,∴离开起点后,甲、乙两人第一次相遇时,距离起点为:12×5=60(米),故B错误;甲从起点到终点共用时为:400÷4=100(秒),故C错误;∵乙到达终点时,所用时间为80秒,甲先出发3秒,∴此时甲行走的时间为83秒,∴甲走的路程为:83×4=332(米),∴乙到达终点时,甲、乙两人相距:400﹣332=68(米),故D正确;故选:D.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题:本大题共8小题,每小题4分,共32分.11.若分式有意义,则x的取值范围为x≠2.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.12.分解因式:3m2﹣6mn+3n2=3(m﹣n)2.【分析】先提取公因式3,再根据完全平方公式进行二次分解.注意完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.【点评】本题考查了提公因式法,公式法分解因式的知识.注意提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.菱形两条对角线的长为12cm、16cm,则菱形的周长为40.【分析】先根据菱形的对角线的性质求一边的长度,再求周长.【解答】解:如图,菱形ABCD中,AC=16,BD=12.∴OA=8,OB=6.∴AB==10,∴周长=10×4=40.故答案为40.【点评】此题考查菱形的性质,属基础题.14.如图,⊙O的直径CD垂直于弦AB,∠AOC=40°,则∠CDB的度数为20°.【分析】连接OB,先根据⊙O的直径CD垂直于AB得出=,由等弧所对的圆周角相等可知∠BOC=∠AOC,再根据圆周角定理即可得出结论.【解答】解:连接OB,∵⊙O的直径CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°.故答案为:20°.【点评】本题考查的是圆周角定理及垂径定理,根据题意得出=是解答此题的关键.15.某煤厂原计划x天生产120吨煤,由于采用新的技术,每天比原计划多生产3吨,因此提前2天完成任务,根据题意列出方程为.【分析】由原计划x天生产120吨煤,可得原计划每天生产的吨数;采用新技术,提前2天完成,可得实际每天生产的吨数,根据”采用新的技术,每天比原计划多生产3吨”,可列出分式方程.【解答】解:∵原计划x天生产120吨煤∴原计划每天生产吨,采用新技术,提前2天完成,∴实际每天生产的吨数为:根据题意得故答案为:.【点评】本题为分式方程的基础应用题,根据等量关系:每天比原计划多生产3吨,可以列出分式方程.16.如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx+3=0的根是x1=﹣1,x2=3.【分析】利用二次函数图象与x轴交点即为y=0时,x的值,进而得出一元二次方程的根.【解答】解:∵二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),∴一元二次方程ax2+bx+3=0的根是:x1=﹣1,x2=3.故答案为:x1=﹣1,x2=3.【点评】此题主要考查了抛物线与x轴的交点,利用y=0时求出x的值是解题关键.17.在函数y=﹣的图象上有三个点为(x1,y1)、(x2,y2)、(x3,y3),若y1<0<y2<y3,则x1,x2,x3的大小关系是x2<x3<x1.【分析】先根据题意判断出函数图象所在的象限,再根据y1<0<y2<y3即可得出结论.【解答】解:∵函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二四象限,∵y1<0<y2<y3,∴(x1,y1)在第四象限,(x2,y2)、(x3,y3)在第二象限,∴x1>0,x2<x3<0,∴x2<x3<x1(或x2<x3<0<x1)两个答案都正确.故答案为:x2<x3<x1(或x2<x3<0<x1).【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.18.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n为正整数).【分析】观察分母的变化为a的1次幂、2次幂、3次幂…n次幂;分子的变化为:2、5、10、17…n2+1;分式符号的变化为:+、﹣、+、﹣…(﹣1)n+1.【解答】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.三、解答题(一):本共5小题,共38分,解答应写必要的文字说明,证明过程或验算步骤.19.计算:(π﹣)0++(﹣1)2017﹣tan60°.【分析】直接利用零指数幂的性质以及特殊角的三角函数值进而分别化简得出答案.【解答】解:原式=1+2﹣1﹣×=1+2﹣1﹣3=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O对称的△A2B2C2;(3)点A1的坐标是(5,1);点C2的坐标是(1,﹣4).【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分别作出三个顶点关于原点的对称点,再首尾顺次连接即可得;(3)由所作图形即可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)由图知,点A1的坐标是(5,1);点C2的坐标是(1,﹣4),故答案为:(5,1),(1,﹣4).【点评】本题主要考查作图﹣旋转变换和轴对称变换,解题的关键是掌握旋转变换与轴对称变换的定义与性质,并据此得出变换后的对应点.21.如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).【分析】过点A作AE∥BD交DC的延长线于点E.则在图中得到两个直角三角形,利用三角函数定义分别计算出ED和EC,求差即可.【解答】解:过点A作AE∥BD交DC的延长线于点E.则∠AEC=∠BDC=90度.∵∠EAC=45°,AE=BD=20米,∴EC=20米.∵tan∠ADB=tan∠EAD=,∴AB=20•tan60°=20(米),CD=ED﹣EC=AB﹣EC=20﹣20≈14.6(米).答:树高约为14.6米.【点评】本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.22.桌面上有5张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4”、“5”.将卡片背面朝上洗匀.(1)小军从中任意抽取一张,抽到偶数的概率是 ;(2)小红从中同时抽取两张.规定:抽到的两张卡片上的数字之和为奇数,则小军胜,否则小红胜.你认为这个游戏公平吗?请用树状图或表格说明你的理由.【分析】(1)5个数中有2个偶数,则根据概率公式可计算出从中任意抽取一张,抽到偶数的概率;(2)先列表展示所有10种等可能的结果数,再找出和为奇数所占的结果数,然后分别计算抽到的两张卡片上的数字之和为奇数和和为偶数的概率,再根据计算结果判断游戏的公平性.【解答】解:(1)小军从中任意抽取一张,抽到偶数的概率=;故答案为;(2)这个游戏不公平.理由如下:列表为:任意抽取两个数,共有20种不同的抽法,它们是等可能的,其中和为奇数占12种.∴P (和为奇数)==,P (和为偶数)=∴P (和为奇数)>P (和为偶数),∴这个游戏不公平.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23.“小组合作学习”成为我区推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“小组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:请结合图中信息解答下列问题:(1)小组合作学习前学生学习兴趣为“高”的所占的百分比为30%;(2)补全小组合作学习后学生学习兴趣的统计图;(3)通过“小组合作学习”前后学生学习兴趣的对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?【分析】(1)用整体1减去极高、低、中所占的百分比,即可求出小组合作学习前学生学习兴趣为“高”的所占的百分比;(2)用抽查的总人数减去学习兴趣极高、高和低的人数,求出学习兴趣“中”的人数,从而补全统计图;(3)根据题意先分别求出小组合作学习后学习兴趣提高的人数,再用全校的总人数乘以学习兴趣获得提高的学生所占的百分比即可.【解答】解:(1)小组合作学习前学生学习兴趣为“高”的所占的百分比为1﹣25%﹣20%﹣25%=30%;故答案为:30%;(2)“小组合作学习”学习兴趣“中”的人数是100﹣30﹣35﹣5=30(人),补图如下:(3)小组合作学习前学生学习兴趣“中”的有100×25%=25(人),小组合作学习后学习兴趣提高了30﹣25=5(人);小组合作学习前学生学习兴趣“高”的有100×30%=30(人),小组合作学习后学习兴趣提高了35﹣30=5(人);小组合作学习前学生学习兴趣为“极高”的有100×25%=25(人),小组合作学习后学习兴趣提高了30﹣25=5(人),则2000×=300(人).答:全校2000名学生中学习兴趣获得提高的学生有300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(二)本题共5小题,共50分,解答时,应写必要的文字说明,证明过程或验算步骤.24.如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.(1)求反比例函数的解析式;(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)一次函数是完整的函数,把点A的纵坐标代入即可求得M的坐标;然后把A的坐标代入反比例函数解析式,即可求得反比例函数的解析式;(2)根据交点A的坐标,即可得到当x>0时,一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)点A在y=x﹣2上,∴1=x﹣2,解得x=6,把(6,1)代入得m=6×1=6.∴y=;(2)由图象得,当x>6时,一次函数的值大于反比例函数的值.【点评】本题考查用待定系数法求函数解析式;注意:无论是求自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;同时要注意反比例函数的自变量不能取0.25.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【分析】(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.【解答】解:(1)⊙O与BC相切,理由如下连接OD、OB,∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=OC,即r=(r+2).∴r=2.【点评】本题考查了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.26.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2013年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.求每年市政府投资的增长率?【分析】首先设每年市政府投资的增长率为x.根据到2013年底三年共累计投资9.5亿元人民币建设廉租房,列方程求解.【解答】解:设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得:x2+3x﹣1.75=0,解之,得:x=,即x1=0.5,x2=﹣3.5(舍去).答:每年市政府投资的增长率为50%.【点评】此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.27.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s 的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【分析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【解答】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【点评】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键,动点问题是中考的热点,应加强动点问题的训练.28.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.【解答】解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:直线x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是直线x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016中考数学信息试卷一、选择题(每题3分,共24分) 1.6-的绝对值等于( )A .6B .16C .16-D .6-2.下列计算正确的是( )A .2x x x += B.2x x x ⋅= C.235()x x = D.32x x x ÷=3. 一个几何体的主视图和左视图都是正方形,俯视图是一个圆,那么这个几何体是( )A .长方体B .正方体C .圆锥D .圆柱 4.如图,已知⊙O 是△ABC 的内切圆,且∠ABC =50°,∠ACB =80°, 则∠BOC 是( )A. 110°B. 115°C. 120°D. 125°第4题 第7题 第8题5.下列说法正确的是( )A .要了解人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据3、4、5、5、6、7的众数和中位数都是5C .随机事件的概率为50%,必然事件的概率为100%D .若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定6.圆锥的侧面积为8π ,母线长为4,则它的底面半径为( ) A .2 B .1 C .3 D .47.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为( )A . 2cm 2B .22cm 2 C .32cm 2 D . 3cm 2 8.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=x 53B .y=x 43C .y=x 109D .y=x二、填空题(每题3分,共30分)45°CB A9.25的平方根是.10.写出一个大于1且小于2的无理数.11.太阳的半径约是6.97万千米,用科学记数法表示约是千米.12.在函数11+=xy中,自变量x的取值范围是.13.分解因式:32a ab-=.14.某商原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x= .15.若=-=-+aaaa42-2016,03222则若.16.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为.第16题第17题第18题17.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.18.直线y=-2x-4与x轴交于点A,与y轴交于点B,将线段AB绕着平面内的某个点旋转180°后,得到点C、D,恰好落在反比例函数y=xk的图象上,且D、C两点横坐标之比为3∶1,则k=.三、解答题(本大题共10小题,共86分)19.(每题5分,共10分)(1)计算:1182sin45(2)3-⎛⎫-+-π- ⎪⎝⎭o (2)解方程:0322=--xx20.(每题5分,共10分)(1)解不等式组35 151812xx->⎧⎨-≤⎩①②,并写出整数解.(2) 化简后选择一个合适的m 的值代入求值:11)111(2-+÷-++m m m m21.(7分)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率. 22.(7分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.23.(8分)如图,在四边形 中,AB CD BF DE AE BD CF BD ==⊥⊥,,,,垂足分别为E F 、.(1)求证:ABE CDF △≌△;(2)若AC 与BD 交于点O .求证:AO CO =.第23题24.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙0,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙0的切线.(2)如果⊙0的半径为5,sin ∠ADE =54,求AE 的长。
第 第 第24题25.(8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).ABCD26.(8分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x(元)的关系数据如下:x30 32 34 36y40 36 32 28(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?27.(8分)两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x (h)的函数图象.(1)求出图中m,a的值.(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围.(3)当乙车行驶多长时间时,两车恰好相距50km.第27题28.(12分)如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点. (1)求出抛物线的解析式;(2)在直线AC 上方的抛物线上有一点D ,使得⊿DCA 的面积最大,求出点 D 的坐标;(3)P 是直线x=1右侧的抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与⊿OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.九年级数学中考模拟试卷答案一、选择题1.A2.D3. D4.B5.B6.A7. B8.C 二、填空题9.5± 10.3(答案不唯一) 11.46.9710⨯12.1x >-13.()()a a b a b +- 14.20% 15.2016 16. 5 17.6﹣23 18.6三、解答题19.(1)22- (2)121,3x x =-=20.(1)26,3456.x <≤解集是整数解是、、、 (2)1+m m,当322==时,原式m21.(1)从箱子中随机摸出一个球,摸出的球是编号为1的球的概率为:31;(2)画树状图如下:O x y A B C 4 1 2-第28题共有9种可能的结果,两次摸出的球都是编号为3的球的概率为91.22.(1)由题意可得:0.5小时的人数为:100人,所占比例为:20%,∴本次调查共抽样了500名学生; (2)1.5小时的人数为:500×2.4=120(人)如图所示:(3)根据题意得:,即该市中小学生一天中阳光体育运动的平均时间约1小时. 23.(1)因为BF=DE ,所以BE=DF,又因为AE⊥BD,CF⊥BD,所以∠AEB=∠CFD=90°, 因为AB=CD ,所以Rt ⊿ABE ≌Rt ⊿CDF (2)如图所示,连接AC 交BD 于点O ,由(1)得Rt ⊿ABE ≌Rt ⊿CDF , 所以∠ABD=∠CDB ,故AB ∥CD ,又因为AB-CD ,所以四边形ABCD 为平行四边形,所以AO=CO 。
24.(1)如图所示,连接OD因为AB=AC ,所以⊿ABC 是等腰三角形,又因为AB=AC ,AB 为⊙O 的直径,所以AD⊥BC,所以AD平分BC, 又因为O为AB的中点,所以OD∥AC, 因为DE⊥AC,所以DE⊥OD,又因为OD 为⊙O 的半径,所以EF是⊙O 的切线。
(2)因为⊿ABC 是等腰三角形,所以∠C AD=∠BA D, 则∠ADE=∠AB D,在Rt ⊿ABD 中,sin ∠ABD=sin ∠ADE=54AB AD =,所以AD=8, 在Rt ⊿ADE 中,sin ∠ADE=54AD AE =,所以AE=532, 25. 设上月萝卜的单价是x 元/斤,上月排骨的单价是y 元/斤。
根据题意得:,⎩⎨⎧=+++=+45%)201(2%)501(33623y x y x 化简得⎩⎨⎧=+=+454.25.43623y x y x 解得⎩⎨⎧==152y x 这天萝卜的单价为:3%)501(2=+(元/斤),排骨的单价为:18%)201(15=+(元/斤)。
26. (1)设y 与x 的函数关系式为b kx y +=,根据表格可知函数过点(30,40)、(32,36)和点,分别代入可得⎩⎨⎧=+=+36324030b k b k ,解得⎩⎨⎧=-=1002b k ,故y 与x 的函数关系式为1002+-=x y 。
(2)设商店每天获利为w 元,由题意可列w 与x 的函数关系式:,当时,代入函数可得:,化简得,解得,,故每件商品销售价应定为35或45元。
(3)由(2)得,化为顶点式得,故当时,w 取最大值,最大值为200,所以当每件商品销售价定为40元时利润最大。
27. (1)根据题意得:m=1.5-0.5=1;设甲车的速度为a ,则由图象可得,则a=120÷(3.5-0.5)=40。
(2)①当10≤≤x 时,设函数关系式为x k y 1=,因为此时函数图象经过点(1,40),所以得401=k ,故)10(40≤≤=x x y ②当5.11≤x π时, )5.11(40≤=x y π③当5.1φx 时,设函数关系式为b x k y +=2,此时函数图象经过点(1.5,40)和(3.5,120),所以得:⎩⎨⎧=+=+1205.3405.122b k b k ,解得20,402-==b k 故2040-=x y ,当260=y 时,5.6=x ,6.5+0.5=7,故x 的取值范围为75.1≤x π。
215222m m -+-215222PM m m =-+-21542(2)22m m m -=-+-(3)设乙车行驶的路程y 与时间x 的函数关系式为n x k y +=3,因为此时函数图象经过点(2,0)和点(3.5,120),所以得:⎩⎨⎧=+=+1205.30233n k n k ,解得160,803-==n k ,故16080-=x y 。