江苏省无锡市江阴市华士片中考数学模拟试题

合集下载

2020年江苏省无锡市江阴市华士片中考数学模拟试卷

2020年江苏省无锡市江阴市华士片中考数学模拟试卷

中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-2的倒数是()A. -2B. 2C.D. -2.下列计算结果是x5的为()A. x2•x3B. x6-xC. (x3)2D. x10÷x23.在如图所示的低碳、节水、节能和绿色食品这四个标志中,是轴对称图形的是()A. B. C. D.4.一组数据:2,3,6,4,3,5,这组数据的中位数、众数分别是()A. 3,3B. 3,4C. 3.5,3D. 5,35.函数y=中自变量x的取值范围是()A. x≠2B. x≥2C. x≤2D. x>26.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A. 28°B. 30°C. 31°D. 32°7.已知抛物线经过(-2,n)和(4,n)两点,则n的值为()A. ﹣2B. ﹣4C. 2D. 48.如图,矩形ABCD中,AB=8,BC=4.点G,E分别在边AB,CD上,点F,H在对角线AC上.若四边形EFGH是菱形,则AG的长是()A. 5B. 6C. 2D. 39.如图,平行四边形OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数y=(x>0)的图象经过▱OABC顶点A和BC的中点M,则k的值为()A. 4B. 12C.D. 610.如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A. 6B. 3C. 2D. 1.5二、填空题(本大题共8小题,共16.0分)11.9的平方根是______.12.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为______.13.分解因式:a3-2a2+a=______.14.如图,圆锥母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=,该圆锥的侧面积是______15.一次函数y1=ax+3与y2=kx-1的图象如图所示,则不等式kx-ax<4的解集是______.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=8,点E是AB的中点,以AE为边作等边△ADE(点D与点C分别在AB异侧),连接CD,则△ACD的面积是______.17.在△ABC中,∠A=60°,∠C=75°,AB=8,D、E、F分别在AB、BC、CA上,则△DEF的周长最小值是______.18.如图,在平面直角坐标系中,Rt△ABC的顶点B在原点O,直角边BC在x轴的正半轴上,∠ACB=90°,点A的坐标为(3,),点D是BC边上一个动点(不与点B,C重合),过点D作DE⊥BC交AB边于点E,将∠ABC沿直线DE翻折,点B落在x轴上的点F处当△AEF为直角三角形时,点F的坐标是______.三、计算题(本大题共1小题,共8.0分)19.解方程:(1)x2-4x=1(2)-1=四、解答题(本大题共9小题,共76.0分)20.计算:(1)-12020+(π-3.14)0+()-2;(2)2x4y6-x2•(-2xy3)2.21.如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.22.在一个不透明的盒中有m个黑球和1个白球,这些球除颜色外无其他差别.(1)若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是______;(2)在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.23.某校“心灵信箱”的设立,为师、生之间的沟通开设了一个书面交流的渠道.为了解九年级学生对“心灵信箱”开通两年来的使用情况,某课题组对该校九年级全体学生进行了一次问卷调查,并根据调查结果绘制了如下尚不完整的统计图.根据图表,解答以下问题:(1)该校九年级学生共有______人;(2)学生调查结果扇形统计图中,扇形D的圆心角度数是______;(3)请你补充条形统计图;(4)根据调查结果可以推断:两年来,该校九年级学生通过“心灵信箱”投递出的信件总数至少有______封.24.如图,以△ABC的边AB为直径作⊙O,与BC交于点D,点E是弧BD的中点,连接AE交BC于点F,∠ACB=2∠BAE.(1)求证:AC是⊙O的切线;(2)若sin B=,BD=5,求BF的长.25.某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如售价(元/件)200210220230…月销量(件)200180160140…已知该运动服的进价为每件150元.(1)售价为x元,月销量为y件.①求y关于x的函数关系式:②若销售该运动服的月利润为w元,求w关于x的函数关系式,并求月利润最大时的售价;(2)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则a的值是多少?26.如图,将含30°角的直角三角板ABC(∠A=30°)绕其直角顶点C顺时针旋转α角(0°<α<90°),得到Rt△A′B′C,A′C与AB交于点D,过点D作DE∥A′B′交CB′于点E,连接BE.易知,在旋转过程中,△BDE为直角三角形.设BC=1,AD=x,△BDE的面积为S.(1)当α=30°时,求x的值.(2)求S与x的函数关系式,并写出x的取值范围;(3)以点E为圆心,BE为半径作⊙E,当S=时,判断⊙E与A′C的位置关系,并求相应的tanα值.27.如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).(1)填空:△ABC的面积为______;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.28.如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:-2的倒数是-,故选:D.根据乘积为1的两个数互为倒数,可得一个数的倒数.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】A【解析】解:A.x2•x3=x5,故本选项符合题意;B.x6与-x不是同类项,所以不能合并,故本选项不合题意;C.(x3)2=x6,故本选项不合题意;D.x10÷x2=x8,故本选项不合题意.故选:A.分别根据同底数幂的乘法法则,合并同类项法则,幂的乘法运算法则以及同底数幂的除法法则逐一判断即可.本题主要考查了同底数幂的乘除法、合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.3.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形的概念,关键是正确确定对称轴的位置.4.【答案】C【解析】解:把这组数据从小到大排列:2、3、3、4、5、6,最中间的数是3和4,则这组数据的中位数是(3+4)=3.5;3出现了2次,出现的次数最多,则众数是3;故选:C.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5.【答案】A【解析】解:根据题意得:2-x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选:A.根据分式有意义的条件,分母不等于0,可以求出x的范围.本题考查了求函数自变量取值范围,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【答案】C【解析】解:连接OB,如图,∵AB为切线,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°-∠A=90°-28°=62°,∴∠ACB=∠AOB=31°.故选:C.连接OB,如图,先根据切线的性质得到∠ABO=90°,再利用互余计算出∠AOB=62°,然后根据圆周角定理得到∠ACB的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.7.【答案】B【解析】【分析】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.根据(-2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴是x=即可求解b,最后代入坐标求出n.【解答】解:抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=-x2+2x+4,将点(-2,n)代入函数解析式,可得n=-4;故选B.8.【答案】A【解析】解:连接GE交AC于O,如图:∵四边形EFGH是菱形,∴GE⊥AC,OG=OE,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CEO与△AOG中,,∴△CEO≌△AOG(AAS),∴AO=CO,∵AC===4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOG=∠B=90°,∴△AOG∽△ABC,∴=,即=,∴AG=5;故选:A.连接EG交AC于O,易证得△CEO≌△AOG(AAS),可得OA=OC,由勾股定理求得AC的长,求得OA的长,证△AOG∽△ABC,利用相似三角形的对应边成比例,即可求得答案.此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质等知识.准确作出辅助线是解此题的关键.9.【答案】C【解析】解:设OA=a,OC=b,∵▱OABC的周长为7,∴a+b=,∴b=-a,作AD⊥x轴于D,MN⊥x轴于N,∵∠AOC=60°,∴OD=a,AD=a,∴A(a,a),∵M是BC的中点,∴CN=a,MN=a,∴M(-a+a,a),∴a•a=(-a+a)•a,解得a=2,∴A(1,),∴k=1×=,故选:C.设OA=a,OC=b,根据题意得到b=-a,作AD⊥x轴于D,MN⊥x轴于N,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到a•a=(-a+a)•a,解得a=2,求得A的坐标,即可求得k的值.此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是求出a,b的值.10.【答案】B【解析】解:如图,取BC的中点,连接MG,∵线段BM绕点B逆时针旋转60°得到BN,∴∠MBH+∠HBN=60°,又∵△ABC是等边三角形,∴∠ABC=60°,即∠MBH+∠MBC=60°,∴∠HBN=∠GBM,∵CH是等边三角形的高,∴BH=AB,∴BH=BG,又∵BM旋转到BN,∴BM=BN,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=60°=30°,CG=BC=12=6,∴MG=CG=3,∴HN=3.∴线段HN长度的最小值是3.故选:B.取BC的中点,连接MG,根据等边三角形的性质和旋转可以证明△MBG≌△NBH,可得MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,进而根据30度角所对直角边等于斜边的一半即可求得线段HN长度的最小值.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.11.【答案】±3【解析】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.直接利用平方根的定义计算即可.此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.12.【答案】5.5×104【解析】解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】a(a-1)2【解析】解:a3-2a2+a=a(a2-2a+1)=a(a-1)2.故答案为:a(a-1)2.此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.【答案】12π【解析】解:∵圆锥母线长为6,sinθ=,∴圆锥的底面半径=6×=2,∴圆锥的底面积=4π,∴圆锥的侧面展开图扇形的弧长为4π,∴该圆锥的侧面积=×4π×6=12π,故答案为:12π.根据正弦的定义求出圆锥的底面半径,根据扇形面积公式计算,求出圆锥的侧面积.本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.15.【答案】x<1【解析】解:∵一次函数y1=ax+3与y2=kx-1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx-1<ax+3(kx-ax<4)的解集为x<1.故答案为x<1.结合图象,写出直线y1=ax+3在直线y2=kx-1上方所对应的自变量的范围.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.【答案】4+4【解析】解:连接CE,∵∠ACB=90°,E为AB的中点,∴CE=AE=BE,∵△ADE是等边三角形,∴DE=AE,∴DE=AE=CE=BE,∴D、A、C、B在以点E为圆心的圆上,作⊙E,∴∠ADC=∠ABC=45°,过A作AF⊥CD于F,∴△ADF是等腰直角三角形,∵AD=AE=AB=4,∴AF=DF=2,∵∠CAF=∠DAB+∠BAC-∠DAF=60°+45°-45°=60°,∴∠ACF=30°,∴AC=2AF=4,由勾股定理得:CF===2,∴S△ADC=CD•AF=(2+2)×2=4+4,故答案为:4+4.根据圆的定义,证明D、A、C、B四点共圆,可得∠ADF=45°,作高线AF,构建等腰直角△ADF和30度的直角△AFC,可以求得AF、DF、CF的长,利用三角形面积公式可得结论.本题考查了等腰直角三角形的性质和判定、勾股定理、等边三角形的性质及四点共圆的知识,本题证明D、A、C、B四点共圆是关键.17.【答案】4【解析】解:分别作点E关于AB,AC的对称点P,Q.则DE=PD,EF=FQ.连结AE,AP,AQ,DP,FQ,PQ,则∠PAQ=120°,且AP=AE=AQ,从而∠APQ=30°,故PQ=AP.过点A作AH⊥BC于点H,则AH=AB•sin B=8×sin45°=4,于是△DEF的周长为:DE+DF+EF=PD+DF+FQ≥PQ=AP=AE≥AH=.故答案为:.分别作点E关于AB,AC的对称点P,Q.连结AE,AP,AQ,DP,FQ,PQ,根据两点之间线段最短以及垂线段最短,即可得出△DEF周长的最小值.本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.对“动点”进行两次轴对称变换是解决问题的难点.18.【答案】(2,0)或(4,0)【解析】解:①如图1中,当∠AFE=90°,∵A(3,),∴OC=3,AC=,∴tan∠AOC==,∴∠AOC=30°,∵EO=EF,∴∠EOF=∠EFO=30°,∴∠AEF=∠EOF+∠EFO=60°,∴∠EAF=∠FAC=30°,∴CF=AC•tan30°=1,∴OF=OC-CF=2,∴F(2,0).②如图2中,当∠EAF=90°时,易知∠CAF=30°,CF=AC•tan30°=1,∴OF=OC+CF=4,∴F(4,0),③∠AEF=60°,不可能为90°.故答案为(2,0)或(4,0).分两种情讨论即可①如图1中,当∠AFE=90°,在Rt△ACF中,求出CF即可.如图2中,当∠EAF=90°时,在Rt△ACF中,求出CF即可.本题考查翻折变换、坐标与图形的变化、锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.19.【答案】解:(1)∵x2-4x+4=1+4,∴(x-2)2=5,则x-2=±,∴x1=2+,x2=2-;(2)方程两边同时乘以(x+2)(x-2)得:(x-2)2-(x+2)(x-2)=16,解得:x=-2,检验:当x=-2时,(x+2)(x-2)=0,∴x=-2是原方程的增根,∴原方程无解.【解析】(1)利用配方法求解可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程和一元二次方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【答案】解:(1)原式=-1+1+4=4;(2)原式=2x4y6-x2•4x2y6=2x4y6-4x4y6=-2x4y6.【解析】(1)先根据有理数的乘方,零指数幂,负整数指数幂进行计算,再求出即可;(2)先根据积的乘方和幂的乘方进行计算,再算乘法,最后合并同类项即可.本题考查了有理数的乘方,零指数幂,负整数指数幂,整式的混合运算等知识点,能灵活运用知识点进行计算和化简是解此题的关键.21.【答案】证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD【解析】由“SAS”可证△AFB≌△CED,可得∠A=∠C,可证AB∥CD.本题考查了全等三角形的判定和性质,平行线的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.22.【答案】(1)3;(2)画树状图如下:从树状图可知,“先从盒子中随机取出一个球,再从剩下的球中再随机摸取一个球”共12种等可能的结果,其中“先摸到黑球,再摸到白球”的结果有3种,∴P(先摸到黑球,再摸到白球)==.【解析】解:(1)解:根据题意得=0.75,解得:m=3,经检验:m=3是分式方程的解,故答案为:3;(2)见答案.【分析】(1)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.75左右得到比例关系,列出方程求解即可.(2)列出树状图,利用概率公式求解即可.本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.23.【答案】(1)500;(2)18°;(3)C中的人数为:500×20%=100(人),补充完整的条形统计图如图所示;(4)425.【解析】解:(1)225÷45%=500(人),故答案为:500;(2)学生调查结果扇形统计图中,扇形D的圆心角度数是:360°×(1-45%-30%-20%)=18°,故答案为:18°;(3)见答案;(4)500×30%×1+500×20%×2+500×(1-45%-30%-20%)×3=425(封),故答案为:425.(1)根据A所占的百分比和人数,可以求得该校九年级的人数;(2)根据统计图中的数据可以求得扇形D的圆心角度数;(3)根据统计图中的数据可以求得C的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得投递出的信件总数至少有多少封.本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】(1)证明:连接AD,如图1所示.∵E是弧BD的中点,∴,∴∠1=∠2.∴∠BAD=2∠1.∵∠ACB=2∠1,∴∠C=∠BAD.∵AB为⊙O直径,∴∠ADB=∠ADC=90°.∴∠DAC+∠C=90°.∵∠C=∠BAD,∴∠DAC+∠BAD=90°.∴∠BAC=90°.即AB⊥AC.又∵AC过半径外端,∴AC是⊙O的切线.(2)解:过点F作FG⊥AB于点G.如图2所示:在Rt△ABD中,∠ADB=90°,,设AD=2m,则AB=3m,由勾股定理得:BD==m.∵BD=5,∴m=.∴AD=,AB=.∵∠1=∠2,∠ADB=90°,∴FG=FD.设BF=x,则FG=FD=5-x.在Rt△BGF中,∠BGF=90°,,∴.解得:=3.∴BF=3.【解析】(1)连接AD,由圆周角定理得出∠1=∠2.证出∠C=∠BAD.由圆周角定理证出∠DAC+∠BAD=90°,得出∠BAC=90°,即可得出结论.(2)过点F作FG⊥AB于点G.由三角函数得出,设AD=2m,则AB=3m,由勾股定理求出BD=m.求出m=.得出AD=,AB=.证出FG=FD.设BF=x,则FG=FD=5-x.由三角函数得出方程,解方程即可.本题考查了切线的判定、圆周角定理、勾股定理、三角函数等知识;熟练掌握切线的判定和圆周角定理,由三角函数得出方程是解决问题(2)的关键.25.【答案】解:(1)①设y关于x的函数关系式为y=kx+b,把(200,200),(210,180)代入得:,解得:,∴y关于x的函数关系式为y=-2x+600;②月利润w=(x-150)(-2x+600)=-2x2+900x-90000=-2(x-225)2+11250.∵-2<0,∴w为开口向下的抛物线,∴当x=225时,月最大利润为11250元;∴w关于x的函数关系式为w=-2x2+900x-90000,月利润最大时的售价为225元;(2)设调整后的售价为t元,则调整后的单件利润为(t-150+a)元,销量为(-2t+600)件.月利润w=(t-150+a)(-2t+600)=-2t2+(900-2a)t+600a-90000,∴当t=时,月利润最大,则=210,解得a=30.∴a的值是30元.【解析】(1)①设y关于x的函数关系式为y=kx+b,由待定系数法求解即可;②月利润w=(x-150)(-2x+600),整理并配方,然后根据二次函数的性质可得答案;(2)设调整后的售价为t元,则调整后的单件利润为(t-150+a)元,销量为(-2t+600)件,写出月利润关于x的函数,并根据二次函数的性质得出月利润最大时的t值,从而得出关于a的方程,解出a即可.本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,明确成本利润问题的基本数量关系及二次函数的性质是解题的关键.26.【答案】解:(1)∵∠A=a=30°,又∵∠ACB=90°,∴∠ABC=∠BCD=60°.∴AD=BD=BC=1.∴x=1;(2)∵∠DBE=90°,∠ABC=60°,∴∠A=∠CBE=30°.∴AC=BC=,AB=2BC=2.由旋转性质可知:AC=A′C,BC=B′C,∠ACD=∠BCE,∴△ADC∽△BEC,∴=,∴BE=x.∵BD=2-x,∴s=×x(2-x)=-x2+x.(0<x<2)(3)∵s=s△ABC∴-+=,∴4x2-8x+3=0,∴,.①当x=时,BD=2-=,BE=×=.∴DE==.∵DE∥A′B′,∴∠EDC=∠A′=∠A=30°.∴EC=DE=>BE,∴此时⊙E与A′C相离.过D作DF⊥AC于F,则,.∴.∴.②当时,,.∴,∴,∴此时⊙E与A'C相交.同理可求出.【解析】(1)根据等腰三角形的判定,∠A=∠α=30°,得出x=1;(2)由直角三角形的性质,AB=2,AC=,由旋转性质求得△ADC∽△BCE,根据比例关系式,求出S与x的函数关系式;(3)当S=时,求得x的值,判断⊙E和DE的长度大小,确定⊙E与A′C的位置关系,再求tanα值.本题考查的知识点:等腰三角形的判定,直角三角形的性质,相似三角形的判定以及直线与圆的位置关系的确定,是一道综合性较强的题目,难度大.27.【答案】(1)(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∵∠BAC=90°,∴∠OAB+∠CAE=90°,∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S△ABC==AB2=×5OB2,∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=-x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3,∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得,A'F=m,∴C'F=-m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=,在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM,∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH-FH=∴S=S△A'B'C'-S△C'FG=-××=-(2-m)2,即:S=.【解析】解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S△A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C'=S△ABC=,故答案为,(2)见答案(3)见答案【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB≌△CEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B 纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论.此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键.28.【答案】解:(1)在抛物线y=x2+x+3中,当x=0时,y=3,∴C(0,3),当y=3时,x1=0,x2=2,∴P(2,3),当y=0时,x1=-4,x2=6,B(-4,0),A(6,0),设直线AC的解析式为y=kx+3,将A(6,0)代入,得,k=-,∴y AC=-x+3,∴点P坐标为P(2,3),直线AC的解析式为y AC=-x+3;(2)在OC上取点H(0,),连接HF,AH,则OH=,AH===,∵==,=,且∠HOF=∠FOC,∴△HOF∽△FOC,∴=,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值为;(3)∵正方形OMNG的顶点N恰好落在线段AC上,∴CN=MN,∴设N(a,a),将点N代入直线AC解析式,得,a=-a+3,∴a=2,∴正方形的边长是2,∵平移的距离为t,∴平移后OM的长为t+2,∴AM=6-(t+2)=4-t,∵RM∥OC,∴△ARM∽△ACD,∴=,即=,∴RM=2-t,如图3-1,当∠O'RP=90°时,延长RN交CP的延长线于Q,∵∠PRQ+∠O'RM=90°,∠RO'M+∠O'RM=90°,∴∠PRQ=∠RO'M,又∵∠Q=∠O'MR=90°,∴△PQR∽△RMO',∴=,∵PQ=t,QR=3-RM=1+t,∴=,解得,t1=-3-2(舍去),t2=-3;如图3-2,当∠PO'R=90°时,∵∠PO'E+∠RO'M=90°,∠PO'E+∠EPO'=90°,∴∠RO'M=∠EPO',又∵∠PEO'=∠O'MR=90°,∴△PEO'∽△O'MR,∴=,即=,解得,t=;如图3-3,当∠O'PR=90°时,延长OG交CP于K,延长MN交CP的延长线于点T,∵∠KPO'+∠TPR=90°,∠KO'P+∠KPO'=90°,∴∠KO'P=∠TPR,又∵∠O'KP=∠T=90°,∴△KO'P∽△TPR,∴=,即=,整理,得t2+t+1=0,∵△=b2-4ac=-<0,∴此方程无解,故不存在∠O'PR=90°的情况;综上所述,△O′PR为直角三角形时,t的值为-3或.【解析】(1)由抛物线y=x2+x+3可求出点C,P,A的坐标,再用待定系数法可求出直线AC的解析式;(2)在OC上取点H(0,),连接HF,AH,求出AH的长度,证△HOF∽△FOC,推出HF=CF,由∴AF+CF=AF+HF≥AH=可写出结论;(3)先求出正方形的边长,通过△ARM∽△ACD将相关线段用含t的代数式表示出来,再分三种情况进行讨论:当∠O'RP=90°时,当∠PO'R=90°时,当∠O'PR=90°时,分别构造相似可求出t的值,其中第三种情况不存在,舍去.本题考查了待定系数法求解析式,极值的求法,相似三角形的判定与性质,直角三角形存在性等,解题关键是要注意分类讨论思想在解题过程中的运用.。

江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】

江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题【含答案】

江苏省无锡江阴市华士片2024-2025学年数学九上开学学业质量监测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)将正方形ABCD 与等腰直角三角形EFG 如图摆放,若点M 、N 刚好是AD 的三等分点,下列结论正确的是()①△AMH ≌△NME ;②12AM BF ;③GH ⊥EF ;④S △EMN :S △EFG =1:16A .①②③④B .①②③C .①③④D .①②④2、(4分)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为()A .4cmB .3cmC .2cmD .1cm3、(4分)下列函数①y=5x;②y=﹣2x﹣1;③y=2x ;④y=12x﹣6;⑤y=x 2﹣1其中,是一次函数的有()A .1个B .2个C .3个D .4个4、(4分)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩x 及其方差2S 如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁x 89982S 11 1.2 1.3A .甲B .乙C.丙D .丁5、(4分)甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是()统计量甲乙丙丁方差0.600.620.500.44A .甲B .乙C .丙D .丁6、(4分)如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A .三角形B .菱形C .矩形D .正方形7、(4分)下列各式成立的是()A .2=-B 3=±C x =D .26=8、(4分)一组数据:2,3,4,x 中若中位数与平均数相等,则数x 不可能是()A .1B .2C .3D .5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若关于x 的一次函数y =(m +1)x +2m ﹣3的图象经过第一、三、四象限,则m 的取值范围为_____.10、(4分)一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x 枚,白棋有y 枚.如果从盒中随机取出一枚为黑棋的概率是14,那么y =___.(请用含x 的式子表示y )11、(4分)式子x -2在实数范围内有意义,则x 的取值范围是_____.12、(4分)为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s 甲2=1.5,s 乙2=2.6,s 丙2=3.5,s 丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派__________________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)13、(4分)如图,在平面直角坐标系中,矩形OABC 的边62OA OC ==,,一条动直线l 分别与BC OA 、将于点E F 、,且将矩形OABC 分为面积相等的两部分,则点O 到动直线l 的距离的最大值为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在▱ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG .求证:(1)△BEG ≌△DFH ;(2)四边形GEHF 是平行四边形.15、(8分)我市飞龙商贸城有甲、乙两家商店均出售白板和白板笔,并且标价相同,每块白板50元,每支白板笔4元.某校计划购买白板30块,白板笔若干支(白板笔数不少于90支),恰好甲、乙两商店开展优惠活动,甲商店的优惠方式是白板打9折,白板笔打7折;乙商店的优惠方式是白板及白板笔都不打折,但每买2块白板送白板笔5支.(1)以x (单位:支)表示该班购买的白板笔数量,y (单位:元)表示该班购买白板及白板笔所需金额.分别就这两家商店优惠方式写出y 关于x 的函数解析式;(2)请根据白板笔数量变化为该校设计一种比较省钱的购买方案.16、(8分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离y (千米)和所用的时间x (小时)之间的函数关系如图所示。

无锡市华士片中考模拟数学试题及答案

无锡市华士片中考模拟数学试题及答案

无锡市华士片中考模拟数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.-3的倒数是 ( )A .-13B .13C .±3D .3 2.函数y =2-x 中自变量x 的取值范围是( )A .x >2B .x ≤2C . x ≥2D .x ≠2 3.五多边形的内角和为( )A .180°B .360°C .540°D .720°4.下列汽车标志中,是中心对称图形的是 ( )A .B .C .D .5.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于 ( )A .30°B .35°C .40°D .50°6.若一组数据2、4、6、8、x 的方差比另一组数据5、7、9、11、13的方差大,则 x 的值可以为 ( )A .12B .10C .2D .07.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为 A .2 B .4 C .6 D .8 ( )8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) A .B .C .D .9.对于代数式x 2-10x +24,下列说法:①它是二次三项式; ②该代数式的值可能等于2017;③分解因式的结果是(x -4)(x -6);④该代数式的值可能小于-1.其中正确的有 A . 1个 B .2个 C .3 个 D .4个 ( ) 10.在△ABC 中,∠B =45°,AC =4,则△ABC 面积的最大值为( )A .4 2B .42+4C .8D .82+8二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.4的平方根为 .(第5题)(第15题)12.人体中红细胞的直径约为0.000 0077m ,用科学记数法表示这个数为 m . 13.计算:222222x yx y x y ---= .14.若点A (-1,a )在反比例函数y =-3x的图像上,则a 的值为 .15.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心O .若∠B =25°,则∠C = .16.如图,菱形ABCD 中,对角线AC 交BD 于O , E 是CD 的中点,且OE =2,则菱形 ABCD 的周长等于 .17.一食堂需要购买盒子存放食物,盒子有A 、B 两种型号,单个盒子的容量和价格如表格所示.现有15升食物需要存放且要求每个盒子都要装满,由于A 型号盒子正做促销活动:购买三个及三个以上可一次性每个返还现金1.5元,则该食堂购买盒子所需的最少费用是 . 18.在△ABC 中,AB =42,BC =6,∠B =45°,D 为BC 边上一动点,将△ABC 沿着过点D 的直线折叠使点C 落在AB 边上,则CD 的取值范围是 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)1)21(8|21|-+--; (2)(x ―1)2―(x +1)(x ―3).20.(本题满分8分)(1)解方程:0122=--x x ;(2)解不等式组:⎩⎪⎨⎪⎧x +8<4x +1,12x ≤8-32x .21.(本题满分8分)如图,△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 边上,且∠EBC =∠DCB .求证:BE =CD型号 A B 单个盒子容量(升)2 3 单价(元)56(第16题)ABECDOADOCBDCA PB22.(本题满分8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中,初赛成绩为1.65m 所在扇形图形的圆心角为_ _°; (2)补全条形统计图;(3)这组初赛成绩的中位数是 m ;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?23.(本题满分8分)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若一个三位数的十位上数字为7,且从4、5、6、8中随机选取两数,与7组成“中高数”,那么组成“中高数”的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分8分)如图,菱形ABCD 中,(1)若半径为1的⊙O 经过点A 、B 、D ,且∠A =60°,求此时菱形的边长;(2)若点P 为AB 上一点,把菱形ABCD 沿过点P 的直线a 折叠,使点D 落在BC 边上,利用无刻度的直尺和圆规作出直线a .(保留作图痕迹,不必说明作法和理由)25.(本题满分10分)“夕阳红”养老院共有普通床位和高档床位共500张.已知今年一月份入住普通床位老人300人,入住高档床位老人90人,共计收费51万元;今年二月份入住普通床位老人350人,入住高档床位老人100人,共计收费58万元.(1)求普通床位和高档床位每月收费各多少元?(2)根据国家养老政策规定,为保障普通居民的养老权益,所有实际入住高档床位数不得超过普通床位数的三分之一;另外为扶持养老企业发展国家民政局财政对每张入住的床位平均每年都是给予养老院企业2400元的补贴.经测算,该养老院普通床位的运营成本是每月1200元/张,入住率为90%;高档床位的运营成本是每月2000元/张,入住率为70%.问该养老院应该怎样安排500张床的普通床位和高档床位数量,才能使每月的利润最大,最大为多少元?(月利润=月收费-月成本+月补贴)26.(本题满分8分)如图,已知抛物线))(1(21b x x y -+-=(其中1>b )与x 轴交于点A 、B (点A在点B 的左侧),与y 轴交于点C ,抛物线的对称轴l 与x 轴交于点D ,且点D 恰好在线段BC 的垂直平分线上. (1)求抛物线的关系式;(2)过点()1,0M 的线段MN ∥y 轴,与BC 交于点P ,与抛物线交于点N .若点E 是直线l 上一点,且∠BED =∠MNB -∠ACO 时,求点E 的坐标.27.(本题满分10分)如图,在平面直角坐标系中,直线y =2x +4分别交x 轴,y 轴于点A ,C ,点D (m ,2)在直线AC 上,点B 在x 轴正半轴上,且OB =3OC .点E 是y 轴上任意一点记点E 为(0,n ).(1)求直线BC 的关系式;(2)连结DE ,将线段DE 绕点D 按顺时针旋转90°得线段DG ,作正方形DEFG ,是否存在n 的值,BA C Dy P O M N lx使正方形DEFG 的顶点F 落在△ABC 的边上?若存在,求出所有的n 值并直接写出此时正方形DEFG 与△ABC 重叠部分的面积;若不存在,请说明理由.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C,C 的最优覆盖矩形.(1)已知A (-2,3),B (5,0),C (t ,-2).①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,则t 的值为 ;(2)已知点D (1,1),点E (m ,n ),其中点E 是函数)0(4>=x xy 的图像上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.无锡市华士片中考模拟数学参考答案与评分标准一、选择题:1.A 2.B 3.C 4.C 5.C 6.A 7.D 8.B 9.C 10.B 二、填空题: 11.±212.6107.7-⨯13.yx +214.315.40° 16.16 17.2718.626-≤CD ≤5三、解答题:19.解:(1)原式=22212+-- (3分) (2)原式=x 2-2x +1-(x 2-2x -3) (2分)=21-.(4分)=x 2-2x +1-x 2+2x +3(3分)=4.(4分)20.解:(1)2122=+-x x (2)由①得 37>x …(2分)2)1(2=-x …(2分)由②得x ≤4 …(3分)∴211+=x ,212-=x …(4分)∴37<x ≤4 …(4分) 21.证明:∵ AB =AC ,∴∠DBC =∠ECB .………(2分)在△DBC 和△ECB 中,⎩⎪⎨⎪⎧∠DBC =∠ECB ,BC =CB ,∠DCB =∠EBC .………(5分)∴△DBC ≌△ECB ,………(6分) ∴DC =EB .………(8分)22.(1)54°; ……(2分) (2)图略,柱高为4;……(4分)(3)1.60;……(6分)⑷不一定.因为由高到低的初赛成绩中有4人是1.70m ,有3人是1.65m ,第8人的成绩为1.60m ,但是成绩为1.60m 的有6人,所以杨强不一定进入复赛…(8分)23.略,评分标准:画对树状图……(5分);文字表达…(6分);结论为21…(8分) 24.(1)略,求得边长为3……(5分),中间过程酌情给分,方法不唯一 (2)略,作出D 在BC 上的对应点……(6分);作出直线a ……(8分) 25.解:(1)设普通床位月收费为x 元,高档床位月收费为y 元. 根据题意得:⎩⎨⎧=+=+58000010035051000090300y x y x …………(1分)解之得:⎩⎨⎧==3000800y x …………(2分)答:普通床位月收费为800元,高档床位月收费为3000元.…………(3分) (2)设:应安排普通床位a 张,则高档床位为(500-a )张.由题意:0.7×(500-a )≤0.9×5分) 解之得: a ≥350 …………(6分) 每张床位月平均补贴=2400÷12=200元 设月利润总额为w ,根据题意得:w =90%×800a +70%×3000(500-a )-90%×1200a -70%×2000(500-a )+200a ×90%+200(500-a )×70% = -1020a +420000…………(8分) ∵k =-1020<0 ∴w 随着a 的增大而减小∴当a =350时,w 有最大值= -1020×350+420000=63000…………(9分)答:应该安排普通床位350张、高档床位150张,才能使每月的利润最大,最大为63000元…………(10分) (如果设高档床位,相应安步骤给分) 26.(1)求得点)0,1(-A 、)0,(b B 、)21,0(b C ………(1分) 易得∠ACB =90°,由△AOC ∽△COB 可得舍去)(0,421==b b ……(2分) ∴223212++-=x x y ……(3分) (2)易证∠ACO =∠CBO ,∠MNB =∠MBN ,所以∠BED =∠CBN ……(4分)连结CN , 由勾股定理得CN =2,BC =52,BN =23, 由勾股定理逆定理证得∠CNB =90°…(5分),从而得31tan tan =∠=∠CBN BED …(6分) 然后解Rt △BED 可得DE =215…(7分), ∴点E 坐标为)215,23(或)215,23(-…(8分)27.解:(1)求出直线BC 关系式为431+-=x y …………(2分) (2)当F 在BC 边上时求得417=n ……(4分),421=重叠S ……(6分) 当F 在AB 边上时求得1=n ……(7分),35=重叠S ……(9分) 当F 在AC 边上时显然不合题意,舍去……(10分)28. 解:(1)①35;……………………1分②t =-3或6……………3分(2)如图1,OD 所在的直线交双曲线于点E ,矩形OFEG 是点O ,D ,E 的一个面积最小的最优覆盖矩形,∵点D (1,1),∴OD 所在的直线表达式为y =x , ∴点E 的坐标为(2,2),图1GF DEOyx∴⊙H的半径r =2,…………5分。

江苏省无锡市江阴市华士片中考模拟试题(5科5份)_1

江苏省无锡市江阴市华士片中考模拟试题(5科5份)_1

2015—2016学年度第二学期中考数学模拟试卷一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案.........涂黑.)⒈化简81的结果为(▲)A.投出的篮球会下落B.从装有黑球、白球的袋里摸出红球⒍如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB 的大小为(▲)B.90°C.100°D.无法确定第5题图 第6题图 第7题图 ⒎将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的(▲)⒏下列函数中,y 随x 的增大而减小的函数个数是(▲) (1)82+=x y (2)y=1 (3)822+-=x y (x>1) (4)x y 4-= (5) y=3(x>0) ⒐如图,在直角△BAD中,延长斜边BD 到点C ,使DC =BD ,连接AC ,若tanB =,则tan ∠CAD 的值为(▲)第9题图 第10题图 第13题图 二、填空题(本大题共有8小题,每空2分,共16分)⒒函数y =x 的取值范围是 .⒓在第六次全国人口普查中,无锡常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学计数法表示为 人.⒔如图,△ABC 的三个顶点在正方形网格的格点上,则tan ∠A 的值是________.⒕如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若CE =3BE ,则S △DOE :S △AOC 的值为________.第14题图 第15题图 第16题图 ⒖如图,的正方形ABCD 在直角坐标系中,点B 在x 轴上,点C 在y 轴上,且OB =OC ,反比例函数y A ,则k = .⒗如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2016秒时,点P 的坐标是 .⒘甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ① A ,B 两城相距300千米; ②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后2.5小时追上甲车; ④当甲、乙两车相距50千米时,t =54或154.其中正确结论的序号为 .⒙如图,△ABC 中,∠ACB =90°,BC= 4,AC= 8,△FDE ≌△ABC . △FDE 顶点D 与边AB 的中点重合,DE ,DF 分别交AC 于点P ,Q ,若重叠部分△DPQ 是以DP 为一腰的等腰三角形,则它的面积为 .第17题图第18题图三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本题满分8分,每题4分)⑴计算2-tan603-21-30cos 202-︒++︒)()(π ⑵先化简、再求值:122)121(22++-÷+---x x xx x x x x ,其中x 满足012=--x x20.(本题满分8分)⑴解方程:14143=-+--x x x ⑵ 解不等式组1312215(1)6x x ⎧+<⎪⎨⎪-+≤⎩21.(本题满分8分)在□ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF .⑴求证:四边形BFDE 是矩形;⑵若CF =3,BF =4,DF =5,求证:AF 平分∠DAB . 22.(本题满分8分)如图,已知在△ABC 中,∠A =90°.⑴请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).⑵在⑴的条件下,若∠B =45°,AB =1,⊙P 切BC 于点D ,求劣弧⌒AD 的长.CBA23.(本题满分8分)学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如请根据上述信息,回答下列问题:⑴你认为哪位学生抽取的样本具有代表性? .估计该校全体八年级学生平均每周⑵根据具有代表性的样本,把上图中的频数分布直方图补画完整;周;⑷专家建议每周上网2 h以上(含2 h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?24.(本题满分8分)如图,管中放置同样的绳子AA1、BB1、CC1.⑴小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?⑵小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳子的概率.25.(本题满分8分)京东商场购进一批M型服装,销售时标价为750元/件,按8折销售仍可获利50%,商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=200+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.26.(本题满分8分)如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是3千米.(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP的方向以千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.27.(本题满分10分)如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD丄BC交AB于D,作DE丄AC于E,F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).⑴用含有x的代数式表示CE的长为;点F与点B重合时x的值为 .⑵当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.⑶当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.28.(本题满分10分)如图,抛物线y =ax 2+2ax +c (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B 的直线与抛物线的另一个交点为D ,与抛物线的对称轴交于点E ,与y 轴交于点F ,且DE ∶EF ∶FB = 1∶1∶2,△OBE 的面积为94.⑴① 点F 为OC 的 点;②求抛物线的解析式;⑵设P 为已知抛物线的对称轴上的任意一点,当△ACP 的面积等于△ACB 的面积时,求点P 的坐标;⑶若直线l 过点Q (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.⒚22.(本题满分8分)C BA23⑵⑶在具有代表性的样本中,中位数所在的时间段周;⑷25.(本题满分8分) 26.(本题满分8分)题………………………… ⑴用含有x 的代数式表示CE 的长为 ;点F 与点B 重合时x 的值为 .⑴①点F为OC的点;参考答案⒈D ⒉C ⒊D ⒋B ⒌A ⒍B ⒎A ⒏C ⒐D ⒑B⒒ x ≠2 ⒓ 7.36×105 65 ⒕ 116 ⒖k =―4 ⒗(2016,0) ⒘①② ⒙ 52或2⒚⑴―1 1⒛⑴x=3,检验 ⑵—2≤x<121.⑴4分;⑵ 4分.22⑴作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,AP 为半径作圆.(4分)⑵弧AD 的长为l ⌒AD 23.解:(1(2)如图:(2分)(3)中位数所在的时间段是0~1小时/周; (2分)(4)该校全体初二学生中有320×=64名同学应适当减少上网的时间.(2分)24.⑴13;(2分) ⑵23. (4分) 25.解:(1)设进价为z ,∵销售时标价为750元/件,按8折销售仍可获利50%.则750×0.8=(1+0.5)z .∴z=400;答:M 型服装的进价为400元; (3分)(2)∵销售时标价为750元/件,开展促销活动每件在8折的基础上再降价x 元销售, ∴M 型服装开展促销活动的实际销价为750×0.8﹣x=600﹣x ,销售利润为600﹣x ﹣400=200﹣x .而每天销售数量y (件)与降价x (元)之间的函数关系式为y=200+4x ,∴促销期间每天销售M 型服装所获得的利润:W=(200﹣x )(200+4x )=﹣4x 2+600x+40000=﹣4(x ﹣75)2+62500∴当x=75(元)时,利润W 最大值为62500元. (5分)26.解:(1)如图,过点P 作PD⊥AB 于点D .在Rt△PBD 中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=3千米.在Rt△PAD 中,∠ADP=90°,∠PAD=90°﹣60°=30°, ∴AD=PD=3千米,PA=6千米.∴AB=BD+AD=3+3(千米);(4分)(2)如图,过点B 作BF⊥AC 于点F .根据题意得:∠ABC=105°,在Rt△ABF 中,∠AFB=90°,∠BAF=30°, ∴BF=AB=千米,AF=AB=+3 千米. 在△ABC 中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF 中,∠BFC=90°,∠C=45°,∴CF=BF=千米, ∴PC=AF+CF﹣AP=3千米. 故小船沿途考察的时间为:3÷=3(小时). 209 (4分)27.解:⑴6x , 209 (3分) ⑵当点F 与点P 重合时,4x+9x=20,解得x=, 当0<x <时,∵FP=BC ﹣FC ﹣PB=20﹣9x ﹣4x=20﹣13x ,∵DE=PC=BC ﹣PB=20﹣4x ,∴y=(DE+FP )•DP•0.5=(20﹣4x+20﹣13x )•6x×0.5=3x(40﹣17x )=120x ﹣51x 2; 当<x≤时,矩形DECP 中DP ∥EC ,∴∠DOE=∠FEC ,∴Rt △DOE ∽Rt △CEF ,∴,∴,∴DO=(20﹣4x ), ∴y=DO•DE=×(20﹣4x )(20﹣4x )=(5﹣x )2;209(4分) (4)①如图③,当PD=PF 时,6x=20﹣13x ,解得:x=;△B′DE 为拼成的三角形;②如图④当点F与点P重合时,4x+9x=20,解得:x=;△BDC为拼成的三角形;③如图⑤,当DE=PB,20﹣4x=4x,解得:x=,△DPF为拼成的三角形.(3分)28. ⑴①中点;②y=(3分)⑵抛物线y=的对称轴是直线x=﹣=﹣1,即D点的横坐标是﹣1,S△ACB=AB•OC=9,在Rt△AOC中,AC===5,设△ACD中AC边上的高为h,则有AC•h=9,解得h=.如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=﹣1的两个交点即为所求的点D.设l1交y轴于E,过C作CF⊥l1于F,则CF=h=,∴CE==.设直线AC的解析式为y=kx+b,将A(﹣4,0),C(0,3)坐标代入,得到,解得,∴直线AC解析式为y=x+3.直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,∴直线l1的解析式为y=x+3﹣=x﹣.则D1的纵坐标为×(﹣1)﹣=,∴D1(﹣1,).同理,直线AC向上平移个长度单位得到l2,可求得D2(﹣1,)综上所述,D点坐标为:D1(﹣1,),D2(﹣1,).(4分)(3)如答图2,以AB为直径作⊙F,圆心为F.过E点作⊙F的切线,这样的切线有2条.连接FM,过M作MN⊥x轴于点N.∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半径FM=FB=3.又FE=5,则在Rt△MEF中,ME==4,sin∠MFE=,cos∠MFE=.在Rt△FMN中,MN=MF•sin∠MFE=3×=,FN=MF•cos∠MFE=3×=,则ON=,∴M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3.同理,可以求得另一条切线的解析式为y=x﹣3.综上所述,直线l的解析式为y=x+3或y=x﹣3.(3分)。

江苏省无锡江阴市华士片重点名校2024届中考数学模试卷含解析

江苏省无锡江阴市华士片重点名校2024届中考数学模试卷含解析

江苏省无锡江阴市华士片重点名校2024届中考数学模试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(共10小题,每小题3分,共30分)1.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A.533B.536C.1 D.1722.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补3.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.4.如图,在△ABC中,EF∥BC,AE1EB2=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.135.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧AB的中点,若△POC为直角三角形,则PB 的长度()A.1 B.5 C.1或5 D.2或46.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D7.计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣18.下列计算正确的是()A.x4•x4=x16B.(a+b)2=a2+b2C.=±4 D.(a6)2÷(a4)3=19.下列博物院的标识中不是轴对称图形的是()A.B.C.D.10.如图,取一张长为a 、宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边,a b 应满足的条件是( )A .2a b =B .2a b =C .2a b =D .2a b =二、填空题(本大题共6个小题,每小题3分,共18分)11.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.12.关于x 的一元二次方程220--=x x k 有两个相等的实数根,则k =________.13.在平面直角坐标系xOy 中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x 2+2 .请你写出一种平移方法. 答:________. 14.如图,在平行四边形ABCD 中,E 为边BC 上一点,AC 与DE 相交于点F ,若CE=2EB ,S △AFD =9,则S △EFC 等于_____.15.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC=CD ,∠ACD=120°,CD 是⊙O 的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.16.一组数据7,9,8,7,9,9,8的中位数是__________ 三、解答题(共8题,共72分)17.(8分)在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF=BE ,连接AF ,BF . (1)求证:四边形DEBF 是矩形;(2)若AF 平分∠DAB ,AE=3,BF=4,求▱ABCD 的面积.18.(8分)小强想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.19.(8分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)20.(8分)(1)计算:31|+(2017-π)0-(14)-1-3tan30°38(2)化简:(22369a aa a--++23a-)÷229aa--,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2 ﹣1.4 +0.9 ﹣1.8 +0.5根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?22.(10分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).23.(12分)如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆; (3)计算'''A B C ∆的面积S .24.(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么? (3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?参考答案一、选择题(共10小题,每小题3分,共30分) 1、B 【解题分析】由平行四边形性质得出AB=CD ,AB ∥CD ,证出四边形ABDE 是平行四边形,得出DE=DC=AB ,再由平行线得出∠ECF=∠ABC ,由三角函数求出CF 长,再用勾股定理CE ,即可得出AB 的长. 【题目详解】∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=CD , ∵AE ∥BD ,∴四边形ABDE 是平行四边形, ∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点, ∵EF ⊥BC , ∴∠EFC=90°, ∵AB ∥CD , ∴∠ECF=∠ABC , ∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF =CF =34,∴根据勾股定理得,,∴AB=12, 故选B .【题目点拨】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE是解决问题的关键.2、C【解题分析】分清截线和被截线,根据平行线的性质进行解答即可.【题目详解】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【题目点拨】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.3、D【解题分析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【题目详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【题目点拨】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.4、A【解题分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【题目详解】∵AE1 EB2=,∴AE AE11==AB AE+EB1+23=.又∵EF∥BC,∴△AEF∽△ABC.∴2AEFABCS 11=S39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.5、C【解题分析】由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.【题目详解】∵点C是劣弧AB的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD=22534-=,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴PD CD OD PD=,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5.故选C.【题目点拨】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.6、B【解题分析】3 1.732-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【题目详解】3 1.732-≈-,()1.7323 1.268---≈,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以3表示的点与点B最接近,故选B.7、D【解题分析】根据有理数加法的运算方法,求出算式2577⎛⎫-+-⎪⎝⎭的正确结果是多少即可.【题目详解】原式251.77⎛⎫=-+=-⎪⎝⎭故选:D.【题目点拨】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同1相加,仍得这个数.8、D【解题分析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.9、A【解题分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【题目详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【题目点拨】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误10、B【解题分析】由题图可知:得对折两次后得到的小长方形纸片的长为b,宽为14a,然后根据相似多边形的定义,列出比例式即可求出结论.【题目详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为b,宽为14a,∵小长方形与原长方形相似,,14a b b a ∴= 2a b ∴=故选B .【题目点拨】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【题目详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【题目点拨】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.12、-1.【解题分析】根据根的判别式计算即可.【题目详解】解:依题意得:∵关于x 的一元二次方程220--=x x k 有两个相等的实数根, ∴=24ac b - =4-4⨯1⨯(-k )=4+4k=0解得,k=-1.故答案为:-1.【题目点拨】本题考查了一元二次方程根的判别式,当=24ac b ->0时,方程有两个不相等的实数根;当=24ac b -=0时,方程有两个相等的实数根;当=24ac b -<0时,方程无实数根.13、答案不唯一【解题分析】 分析:把y ()2321x =+-改写成顶点式,进而解答即可.详解:y ()2321x =+-先向右平移2个单位长度,再向上平移3个单位得到抛物线232y x =+. 故答案为y ()2321x =+-先向右平移2个单位长度,再向上平移3个单位得到抛物线232y x =+. 点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为 y=a(x-2b a)²+244ac b a -,然后把抛物线的平移问题转化为顶点的平移问题. 14、1【解题分析】由于四边形ABCD 是平行四边形,所以得到BC ∥AD 、BC=AD ,而CE=2EB ,由此即可得到△AFD ∽△CFE ,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【题目详解】解:∵四边形ABCD 是平行四边形,∴BC ∥AD 、BC=AD ,而CE=2EB ,∴△AFD ∽△CFE ,且它们的相似比为3:2,∴S △AFD :S △EFC =(32)2, 而S △AFD =9,∴S △EFC =1.故答案为1.【题目点拨】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.15、23π- 【解题分析】试题分析:连接OC ,求出∠D 和∠COD ,求出边DC 长,分别求出三角形OCD 的面积和扇形COB 的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S△OCD﹣S扇形COB =12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.16、1【解题分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,据此可得.【题目详解】解:将数据重新排列为7、7、1、1、9、9、9,所以这组数据的中位数为1,故答案为1.【题目点拨】本题主要考查中位数,解题的关键是掌握中位数的定义.三、解答题(共8题,共72分)17、(1)证明见解析(2)3【解题分析】试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.试题解析:(1)∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥EB.又∵DF=BE,∴四边形DEBF是平行四边形.∵DE⊥AB,∴∠EDB=90°.∴四边形DEBF 是矩形.(2)∵四边形DEBF 是矩形,∴DE =BF =4,BD =DF .∵DE ⊥AB ,∴AD =22AE DE +=2234+=1.∵DC ∥AB ,∴∠DFA =∠FAB .∵AF 平分∠DAB ,∴∠DAF =∠FAB .∴∠DAF =∠DFA .∴DF =AD =1.∴BE =1.∴AB =AE +BE =3+1=2.∴S □ABCD =AB ·BF =2×4=3.18、1m【解题分析】连接AN 、BQ ,过B 作BE ⊥AN 于点E .在Rt △AMN 和在Rt △BMQ 中,根据三角函数就可以求得AN ,BQ ,求得NQ ,AE 的长,在直角△ABE 中,依据勾股定理即可求得AB 的长.【题目详解】连接AN 、BQ ,∵点A 在点N 的正北方向,点B 在点Q 的正北方向,∴AN ⊥l ,BQ ⊥l ,在Rt △AMN 中:tan ∠AMN=AN MN, ∴3在Rt△BMQ中:tan∠BMQ=BQ MQ,∴BQ=303,过B作BE⊥AN于点E,则BE=NQ=30,∴AE=AN-BQ=303,在Rt△ABE中,AB2=AE2+BE2,AB2=(303)2+302,∴AB=1.答:湖中两个小亭A、B之间的距离为1米.【题目点拨】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.19、答案见解析【解题分析】连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【题目详解】解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【题目点拨】本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.20、(1)-2(2)a+3,7【解题分析】(1)先根据绝对值、零次方、负整数指数幂、立方根的意义和特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;(2)先根据分式的运算法则把(22369a a a a --++23a -)÷229a a --化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.【题目详解】(1)1+1-4-3×3+2=-2; (2)原式=[()()233a a a ---23a -]÷229a a -- =(3a a --23a -)÷229a a -- =23a a --×()()332a a a +-- =a +3,∵a≠-3,2,3,∴a =4或a =5,取a =4,则原式=7.【题目点拨】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.21、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.【解题分析】试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.试题解析:(1)星期二收盘价为25+2−1.4=25.6(元/股)答:该股票每股25.6元.(2)收盘最高价为25+2=27(元/股)收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)答:收盘最高价为27元/股,收盘最低价为24.7元/股.(3)(25.2-25) ×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益为-51元.22、5.6千米【解题分析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【题目详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【题目点拨】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23、(1)作图见解析;(2,1)B.(2)作图见解析;(3)1.【解题分析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:△A'B'C'即为所求;(3)S △A'B'C '=12×4×8=1. 点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.24、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.【解题分析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.试题解析:(1)设孔明同学测试成绩为x 分,平时成绩为y 分,依题意得:185{80%20%91x y x y +=+=,解之得:90{95x y ==. 答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能. (3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a 分,根据题意可得:20+80%a≥80,解得:a≥1.答:他的测试成绩应该至少为1分.考点:一元一次不等式的应用;二元一次方程组的应用.。

2024届江苏省无锡市江阴市华士片中考数学全真模拟试卷含解析

2024届江苏省无锡市江阴市华士片中考数学全真模拟试卷含解析

2024学年江苏省无锡市江阴市华士片中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.如图所示的几何体的俯视图是()A.B.C.D.2.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()3.如图是某个几何体的展开图,该几何体是()4.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-15.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分6.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm,则这块圆形纸片的直径为( )A.12cm B.20cm C.24cm D.28cm7.cos30°的相反数是()A.33-B.12-C.32-D.22-8.计算2311xx x-+++的结果为()A.2 B.1 C.0 D.﹣19.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠210.如图,已知正五边形 ABCDE 内接于O ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,为了测量河宽AB (假设河的两岸平行),测得∠ACB =30°,∠ADB =60°,CD =60m ,则河宽AB 为 m(结果保留根号).12.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC= ▲度.13.在矩形ABCD 中,AB=4,BC=9,点E 是AD 边上一动点,将边AB 沿BE 折叠,点A 的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE 的长为_____.14.已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、三、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.15.已知(x-ay)(x+ay)22x 16y =-,那么a=_______16.如图,▱ABCD 中,对角线AC ,BD 相交于点O ,且AC ⊥BD ,请你添加一个适当的条件________,使ABCD 成为正方形.三、解答题(共8题,共72分)17.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y 元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.18.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.19.(8分)直线y1=kx+b与反比例函数28 (0)y xx=>的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)根据图象写出不等式kx+b﹣8x≤0的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?21.(8分)先化简,再求值:(m+2﹣52m-)•243mm--,其中m=﹣12.22.(10分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.23.(12分)如图,已知A(﹣4,12),B(﹣1,m)是一次函数y=kx+b与反比例函数y=nx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.24.如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.若∠AOD=45°,求证:CE2ED;(2)若AE=EO,求tan∠AOD的值.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据俯视图是从上往下看得到的图形解答即可.【题目详解】从上往下看得到的图形是:故选B.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线2、D【解题分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【题目详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【题目点拨】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.3、A【解题分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【题目详解】解:观察图形可知,这个几何体是三棱柱.故选A.【题目点拨】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..4、A【解题分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【题目详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.5、C【解题分析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、C【解题分析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB2R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=90π2180R⋅,解得r=24R,然后利用勾股定理得到2R)2=(302+(24R)2,再解方程求出R即可得到这块圆形纸片的直径.【题目详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB2R,根据题意得:2πr=90π2180R⋅,解得:r=24R2R)2=(302+(24R)2,解得:R=12,所以这块圆形纸片的直径为24cm.故选C.【题目点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7、C【解题分析】先将特殊角的三角函数值代入求解,再求出其相反数.【题目详解】∵cos30°∴cos30°的相反数是故选C.【题目点拨】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.8、B【解题分析】按照分式运算规则运算即可,注意结果的化简.【题目详解】解:原式=231111x xx x-++==++,故选择B.【题目点拨】本题考查了分式的运算规则.9、D【解题分析】由1122AE AD BC==,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【题目详解】∴△AEF ∽△CBF , ∴12AE AF BC FC ==, ∵1122AE AD BC ==, ∴12AF FC =,故A 正确,不符合题意; B. 过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形, ∴12BM DE BC ==, ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC ,∴∠DCF =∠DFC ,故B 正确,不符合题意;C. 图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意;D. 设AD =a ,AB =b ,由△BAE ∽△ADC ,有2.ab a b= ∵tan ∠CAD 2,2CD b AD a === 故D 错误,符合题意. 故选:D.【题目点拨】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.10、C【解题分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【题目详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【题目点拨】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m ,在Rt △ABD 中,AB=AD•sin ∠ADB=60×2=故答案是:12、1.【解题分析】由PA 、PB 是圆O 的切线,根据切线长定理得到PA=PB ,即三角形APB 为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP 为圆O 的切线,得到OA 与AP 垂直,根据垂直的定义得到∠OAP 为直角,再由∠OAP-∠PAB 即可求出∠BAC 的度数【题目详解】∵PA ,PB 是⊙O 是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=00018046=672-. 又∵PA 是⊙O 是切线,AO 为半径,∴OA ⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP ﹣∠PAB=90°﹣67°=1°. 故答案为:1【题目点拨】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.13、477或4155【解题分析】由BA G A EF ∠='∠',BGA EFA ∠=∠'',得EA F A BG ∆~'∆',所以EF A F A G BG =''.再以①13A F A G =''和②13A G A F =''两种情况分类讨论即可得出答案.【题目详解】因为翻折,所以4A B AB '==,90BA E ︒∠=',过A '作A F AD '⊥,交AD 于F,交BC 于G ,根据题意,BC AD ∥,A F BC ∴'⊥.若A '点在矩形ABCD 的内部时,如图则GF=AB=4,由90EA B ︒∠='可知90EA F BA G ︒'∠+∠='.又90EA F A EF ︒''∠+∠=.BA G A EF ∴∠='∠'.又BGA EFA ∠=∠''.∴EA F A BG ∆~'∆'.∴EA F A BG ∆~'∆'. ∴EF A F A G BG=''. 若13A F A G ='' 则3A G '=,1A F '=.BG =则3EF =EF ∴=.AE AF EF BG EF ∴=-=-==若13A G A F ='' 则1A G '=,3A F '=.BG ==则1EF = .EF ∴=.55AE AF EF BG EF ∴=-=-==.故答案7或5. 【题目点拨】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.14、y 1<y 1【解题分析】直接利用一次函数的性质分析得出答案.【题目详解】解:∵直线经过第一、三、四象限,∴y 随x 的增大而增大,∵x 1<x 1,∴y 1与y 1的大小关系为:y 1<y 1.故答案为:y 1<y 1.【题目点拨】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.15、±4 【解题分析】根据平方差公式展开左边即可得出答案.【题目详解】∵(x-ay)(x+ay)=()22222x ay x a y -=-又(x-ay)(x+ay)22x 16y =- ∴216a =解得:a=±4 故答案为:±4. 【题目点拨】本题考查的平方差公式:22()()a b a b a b -=+-.16、∠BAD=90°(不唯一) 【解题分析】根据正方形的判定定理添加条件即可.【题目详解】解:∵平行四边形 ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴四边形ABCD 是菱形,当∠BAD=90°时,四边形ABCD为正方形.故答案为:∠BAD=90°.【题目点拨】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.三、解答题(共8题,共72分)17、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解题分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【题目详解】(1)设大货车用x辆,小货车用y辆,根据题意得:15{128152 x yx y+=+=解得:8{7xy==.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.18、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE6,于是得到结论.【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE226,BE BD∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.19、(1) y=﹣x+6;(2) 0<x<2或x>4;(3) 点P的坐标为(2,0)或(﹣3,0).【解题分析】(1)将点A B ,坐标代入双曲线中即可求出m n ,,最后将点A B ,坐标代入直线解析式中即可得出结论; (2)根据点A B ,坐标和图象即可得出结论;(3)先求出点C D ,坐标,进而求出CD AD ,,设出点P 坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.【题目详解】解:(1)∵点A m 4(,)和点B n 2(,)在反比例函数28(0)y x x=>的图象上, 884,2nm ∴==, 解得m 2n 4=,=,即A 24B 42(,),(,)把A 24B 42(,),(,)两点代入y1kx b +=中得2442k b k b +=⎧⎨+=⎩, 解得:k 1b 6=-⎧⎨=⎩, 所以直线AB 的解析式为:y x 6+=﹣;(2)由图象可得,当x 0>时,80kx b x+-≤的解集为0x 2<<或x 4>. (3)由(1)得直线AB 的解析式为y x 6+=﹣,当x 0=时,y =6,C 06∴(,), OC 6∴=,当y 0=时,x 6=,∴D 点坐标为60(,)OD 6∴=,(2,4)CD A AD ∴==∴== .设P 点坐标为a 0(,),由题可以,点P 在点D 左侧,则PD 6a =﹣由CDO ADP ∠∠=可得①当COD APD ∽时,AD PD CD OD=,6a 6-=,解得a 2=, 故点P 坐标为20(,)②当COD PAD ∽时,AD CD OD PD=,=a 3=﹣, 即点P 的坐标为30(﹣,)因此,点P 的坐标为20(,)或30(﹣,)时,COD 与ADP 相似. 【题目点拨】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.20、赚了520元【解题分析】(1)设第一次购书的单价为x 元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x 的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【题目详解】(1)设第一次购书的单价为x 元, 根据题意得:1200x +10=15000(120)0x +, 解得:x =5,经检验,x =5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【题目点拨】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21、-2(m+3),-1.【解题分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【题目详解】解:(m+2-5m-2)•243m m--, =()22245•23m m m m-----, =-()22(3)(3)•23m m m m m -+---, =-2(m+3).把m=-12代入,得, 原式=-2×(-12+3)=-1. 22、(1)98m 且0m ≠;(2)10x =,21x =-. 【解题分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【题目详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+.解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【题目点拨】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.23、(1)m=2;y=12x+52;(2)P 点坐标是(﹣52,54). 【解题分析】(1)利用待定系数法求一次函数和反比例函数的解析式;(2)设点P 的坐标为15,22P x x ⎛⎫+ ⎪⎝⎭,根据面积公式和已知条件列式可求得x 的值,并根据条件取舍,得出点P 的坐标.【题目详解】解:(1)∵反比例函数n y x =的图象过点14,,2⎛⎫- ⎪⎝⎭ ∴1422n =-⨯=-, ∵点B (﹣1,m )也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2;设一次函数的解析式为y=kx+b ,由y=kx+b 的图象过点A 14,,2⎛⎫- ⎪⎝⎭,B (﹣1,2),则 1422,k b k b ⎧-+=⎪⎨⎪-+=⎩ 解得:125,2k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数的解析式为1522y x =+; (2)连接PC 、PD ,如图,设15,22P x x ⎛⎫+ ⎪⎝⎭, ∵△PCA 和△PDB 面积相等,∴()1111541222222x x ⎛⎫⨯⨯+=⨯-⨯-- ⎪⎝⎭, 解得: 5155,,2224x y x =-=+= ∴P 点坐标是55,.24⎛⎫- ⎪⎝⎭【题目点拨】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.24、(1)见解析;(2)tan ∠AOD =34. 【解题分析】(1)作DF ⊥AB 于F ,连接OC ,则△ODF 是等腰直角三角形,得出OC=OD=2DF ,由垂径定理得出∠COE=90°,证明△DEF ∽△CEO 得出22ED OC DF CE DF DF===,即可得出结论; (2)由题意得OE=12OA=12OC ,同(1)得△DEF ∽△CEO ,得出12EF EO DF OC ==,设⊙O 的半径为2a (a >0),则OD=2a ,EO=a ,设EF=x ,则DF=2x ,在Rt △ODF 中,由勾股定理求出x=35a ,得出DF=65a ,OF=EF+EO=85a ,由三角函数定义即可得出结果.【题目详解】(1)证明:作DF ⊥AB 于F ,连接OC ,如图所示:则∠DFE =90°,∵∠AOD =45°,∴△ODF 是等腰直角三角形,∴OC =OD DF ,∵C 是弧AB 的中点,∴OC ⊥AB ,∴∠COE =90°,∵∠DEF =∠CEO ,∴△DEF ∽△CEO ,∴ED OC CE DF DF===∴CE ED ;(2)如图所示:∵AE =EO ,∴OE=12OA=12OC , 同(1)得:,△DEF ∽△CEO , ∴12EF EO DF OC ==, 设⊙O 的半径为2a (a >0),则OD =2a ,EO =a ,设EF =x ,则DF =2x ,在Rt △ODF 中,由勾股定理得:(2x )2+(x+a )2=(2a )2,解得:x =35a ,或x =﹣a (舍去), ∴DF =65a ,OF =EF+EO =85a , ∴DF 3tan AOD OF 4∠==. 【题目点拨】本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键.。

2024届江苏省江阴市华士片重点达标名校中考数学四模试卷含解析

2024届江苏省江阴市华士片重点达标名校中考数学四模试卷含解析

2024届江苏省江阴市华士片重点达标名校中考数学四模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和2.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2 x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.63.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2)21a b+=(,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.64.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.145.平面直角坐标系中的点P(2﹣m,12m)在第一象限,则m的取值范围在数轴上可表示为()A.B.C.D.6.在△ABC中,∠C=90°,tan A=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.1207.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°8.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC 的长为()A.16 B.14 C.12 D.69.正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣110.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°11.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为A.1或−2 B.−或C.D.112.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m>2 D.m<2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.14.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg15.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.16.如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_____________ .17.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.18.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;(1)求证:DE=CF;(2)若∠B=60°,求EF的长.20.(6分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 21.(6分)计算:(﹣2)﹣2﹣22sin45°+(﹣1)2018﹣38 ÷2 22.(8分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.①求证:△ABP ∽△BCP ;②若 PA=3,PC=4,则 PB= .(2)已知锐角△ABC ,分别以 AB 、AC 为边向外作正△ABE 和正△ACD ,CE 和 BD 相交于 P 点.如图(2) ①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.23.(8分)如图,△ABC 是等腰三角形,AB =AC ,点D 是AB 上一点,过点D 作DE ⊥BC 交BC 于点E ,交CA 延长线于点F .证明:△ADF 是等腰三角形;若∠B =60°,BD =4,AD =2,求EC 的长,24.(10分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.(1)图①中,点C在⊙O上;(2)图②中,点C在⊙O内;25.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.26.(12分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.27.(12分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.2、B【解题分析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE AC BD AD AB==,∵OC是△OAB的中线,∴12 CE AE ACBD AD AB===,设CE=x,则BD=2x,∴C的横坐标为2x,B的横坐标为1x,∴OD=1x,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.3、C【解题分析】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.4、A【解题分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH12=AB.【题目详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OH12=AB12=⨯7=3.1.故选A.【题目点拨】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.5、B【解题分析】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征6、D【解题分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.【题目详解】如图所示,由tan A=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【题目点拨】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.7、A【解题分析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【题目详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【题目点拨】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.8、C【解题分析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE 的周长的两倍,由此可求出BC的值.【题目详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=12 AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值. ∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【题目点拨】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.9、D【解题分析】根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.【题目详解】解:∵正比例函数y=(k+1)x中,y的值随自变量x的值增大而减小,∴k+1<0,解得,k<-1;故选D.【题目点拨】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x 的增大而减小.10、A【解题分析】如图,过点C作CD∥a,再由平行线的性质即可得出结论.【题目详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【题目点拨】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.11、D【解题分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【题目详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【题目点拨】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y 取得最大值,即顶点是抛物线的最高点.12、B【解题分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【题目详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、6﹣π【解题分析】过F 作FM ⊥BE 于M ,则∠FME=∠FMB=90°,∵四边形ABCD 是正方形,AB=2,∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,由勾股定理得:2,∵将线段CD 绕点C 顺时针旋转90°得到线段CE ,线段BD 绕点B 顺时针旋转90°得到线段BF ,∴∠DCE=90°,2,∠FBE=90°-45°=45°,∴BM=FM=2,ME=2,∴阴影部分的面积BCD BFE DCE DBF S S S S S =++-扇形扇形=12×2×2+12×4×2+2902360π⨯-2902)360π⨯=6-π. 故答案为:6-π.点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.14、20【解题分析】设函数表达式为y=kx+b 把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg15、6【解题分析】试题分析:设所求正n 边形边数为n ,则120°n=(n ﹣2)•180°,解得n=6; 考点:多边形内角与外角.16、135°【解题分析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.【题目详解】把△PAB绕B点顺时针旋转90°,得△P′BC,则△PAB≌△P′BC,设PA=x,PB=2x,PC=3x,连PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案为135°.【题目点拨】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.17、(3,2).【解题分析】根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.【题目详解】解:如图所示:∵A(0,a),∴点A在y轴上,∵C,D的坐标分别是(b,m),(c,m),∴B,E点关于y轴对称,∵B的坐标是:(﹣3,2),∴点E的坐标是:(3,2).故答案为:(3,2).【题目点拨】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.18、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解题分析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【题目详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵AB AB=,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【题目点拨】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.=19、()1证明见解析;()2EF23【解题分析】()1根据两组对边分别平行的四边形是平行四边形即可证明;()2只要求出CD 即可解决问题.【题目详解】()1证明:D 、E 分别是AB 、AC 的中点 DE //CF ∴, 又EF//DC∴四边形CDEF 为平行四边形DE CF ∴=.()2AB AC 4==,B 60∠= BC AB AC 4∴===, 又D 为AB 中点CD AB ∴⊥,∴在Rt BCD 中,1BD AB 22==,CD ∴==四边形CDEF 是平行四边形,EF CD ∴==【题目点拨】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)213222x x -++;(2)m =3;(3【解题分析】(1)本题需先根据图象过A 点,代入即可求出解析式;(2)由△OAB ∽△PAN 可用m 表示出PN ,且可表示出PM ,由条件可得到关于m 的方程,则可求得m 的值;(3)在y 轴上取一点Q ,使2O 3O 2Q P =,可证的△P 2OB ∽△QOP 2,则可求得Q 点坐标,则可把AP 2+32BP 2转换为AP 2+QP 2,利用三角形三边关系可知当A 、P 2、Q 三点在一条线上时,有最小值,则可求出答案.【题目详解】解:(1)∵A (4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a =﹣12, ∴抛物线的解析式为y =213222x x -++; (2)∵213222y x x =++- ∴令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4﹣m ,∵PM ⊥x 轴,∴△OAB ∽△PAN , ∴OB PN OA PA=, ∴244mPN =-, ∴1PN (4m)2=-, ∵M 在抛物线上,∴PM =21322m m +-+2, ∵PN :MN =1:3,∴PN :PM =1:4, ∴2131m m 24(4m)222-++=⨯⨯-, 解得m =3或m =4(舍去);(3)在y 轴上取一点Q ,使2O 3O 2Q P =,如图,由(2)可知P 1(3,0),且OB =2, ∴22O 32OP Q OP OB ==,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2, ∴22OP 3BP 2=, ∴当Q (0,92)时,QP 2=232BP , ∴AP 2+32BP 2=AP 2+QP 2≥AQ , ∴当A 、P 2、Q 三点在一条线上时,AP 2+QP 2有最小值,∵A (4,0),Q (0,92), ∴AQ 22942⎛⎫+ ⎪⎝⎭1452, 即AP 2+32BP 2的最小值为1452【题目点拨】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.21、74【解题分析】按照实数的运算顺序进行运算即可.【题目详解】解:原式()122122,422=-⨯+--÷ 1111,42=-++ 7.4= 【题目点拨】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.22、(1)①证明见解析;②;(2)①60°;②证明见解析;【解题分析】试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证; ②由三角形ABP 与三角形BCP 相似,得比例,将PA 与PC 的长代入求出PB 的长即可;(2)①根据三角形ABE 与三角形ACD 为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS 得到三角形ACE 与三角形ABD 全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;②由三角形ADF 与三角形CPF 相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP 与三角形CFD 相似,利用相似三角形对应角相等得到∠APF 为60°,由∠APD+∠DPC ,求出∠APC 为120°,进而确定出∠APB 与∠BPC 都为120°,即可得证.试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC ,又∵∠APB=∠BPC=120°,∴△ABP ∽△BCP ,②解:∵△ABP ∽△BCP ,∴, ∴PB 2=PA•PC=12,∴PB=2;(2)解:①∵△ABE 与△ACD 都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB ,AC=AD ,∴∠BAE+∠BAC=∠CAD+∠BAC ,即∠EAC=∠BAD ,在△ACE 和△ABD 中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.考点:相似形综合题23、(1)见解析;(2)EC=1.【解题分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【题目详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【题目点拨】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.24、图形见解析【解题分析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O 于点E ,利用(1)的方法画图即可.试题解析:如图①∠DBC就是所求的角;如图②∠FBE就是所求的角25、(1)50,108°,补图见解析;(2)9.6;(3)13.【解题分析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【题目详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:650×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 .【题目点拨】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.26、(1)14;(2)14【解题分析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【题目详解】解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾, ∴甲投放了一袋是餐厨垃圾的概率是14, 故答案为:14; (2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为416=14. 【题目点拨】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.27、(1)证明见解析(2)6【解题分析】(1)连结AD ,如图,根据圆周角定理,由E 是BD 的中点得到2DAB EAB ∠=∠,由于2ACB EAB ∠=∠,则ACB DAB ∠=∠,,再利用圆周角定理得到90ADB ,∠=︒则90DAC ACB ∠+∠=︒,所以90DAC DAB ∠+∠=︒,于是根据切线的判定定理得到AC 是⊙O 的切线; ()2先求出DF 的长,用勾股定理即可求出.【题目详解】解:(1)证明:连结AD ,如图,∵E 是BD 的中点,∴2DAB EAB ∠=∠,∵2ACB EAB ∠=∠,∴ACB DAB ∠=∠,∵AB 是⊙O 的直径,∴90ADB ,∠=︒∴90DAC ACB ∠+∠=︒,∴90DAC DAB ∠+∠=︒, 即90BAC ∠=︒,∴AC 是⊙O 的切线;(2)∵9090EAC EAB DAE AFD EAD EAB ∠+∠=︒∠+∠=︒∠=∠,,,∴62EAC AFD CF AC DF ,,.∠=∠∴==∴= ∵222226420AD AC CD =-=-=, ∴22220226AF AD DF +=+=【题目点拨】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.。

2024届江苏省华士中学中考数学考试模拟冲刺卷含解析

2024届江苏省华士中学中考数学考试模拟冲刺卷含解析

2024学年江苏省华士中学中考数学考试模拟冲刺卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )A.60B.65C.70D.752.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm3.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°4.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.﹣2B.4 C.﹣4 D.25.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A.10cm B.30cm C.45cm D.300cm6.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()A.180人B.117人C.215人D.257人8.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.69.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线()A.x=1 B.x=49C.x=﹣1 D.x=﹣4910.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()11.计算23(1)x -﹣23(1)x x -的结果为( ) A .31x - B .31x - C .23(1)x - D .23(1)x - 12.在实数225,,0,36,-1.41472π,,有理数有( ) A .1个 B .2个 C .3个 D .4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .14.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.16.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是______.17.因式分解:x 2y-4y 3=________.18.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?20.(6分)如图,在四边形ABCD 中,∠A =∠BCD =90°,210BC CD ==,CE ⊥AD 于点E .(1)求证:AE =CE ;(2)若tan D =3,求AB 的长.21.(6分)已知:如图,一次函数y kx b =+与反比例函数3y x=的图象有两个交点(1,)A m 和B ,过点A 作AD x ⊥轴,垂足为点D ;过点B 作BC y ⊥轴,垂足为点C ,且2BC =,连接CD .求m ,k ,b 的值;求四边形ABCD 的面积.22.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由23.(8分)(1)计算:﹣22+|12﹣4|+(13)-1+2tan60° (2) 求 不 等 式 组620{21x x x -≥->的 解 集 . 24.(10分)26?32-⨯+--(12)-1+3tan60° 25.(10分)如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,交⊙O 于点P ,OA =5,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C .(1)求证:AB=AC ;(2)若25PC =,求⊙O 的半径.26.(12分)先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【题目点拨】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.2、C【解题分析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,故选C.3、A【解题分析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【题目详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【题目点拨】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.4、C【解题分析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.5、A【解题分析】根据已知得出直径是60cm的圆形铁皮,被分成三个圆心角为120︒半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。

2024届江苏省江阴市华士片初中数学毕业考试模拟冲刺卷含解析

2024届江苏省江阴市华士片初中数学毕业考试模拟冲刺卷含解析

2024届江苏省江阴市华士片初中数学毕业考试模拟冲刺卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .2.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm3.下列二次根式,最简二次根式是( )A .B .C .D . 4.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A.B.C.D.5.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°6.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A.36°B.45°C.72°D.90°7.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB 的长为42,则a的值是()A.4 B.32C.2D.338.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+9.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是()A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度10.已知点 A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在反比例函数y=(k <0)的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 3<y 1<y 2二、填空题(本大题共6个小题,每小题3分,共18分)11.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.12.我国自主研发的某型号手机处理器采用10 nm 工艺,已知1 nm=0.000000001 m ,则10 nm 用科学记数法可表示为_____m .13.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ .14.分解因式:2a 4﹣4a 2+2=_____.15.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b 且,a ,b 是0,1,2,3四个数中的其中某一个,若|a ﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.16.对于函数n my x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数). 例如42y x x =+,则342y x x '=+. 已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________. 三、解答题(共8题,共72分)17.(8分)有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为A(1,0),B(x 1,y 1)(点B 在点A 的右侧);②对称轴是x =3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x >x 1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x 轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.18.(8分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.19.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.(8分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.21.(8分)计算:8﹣4cos45°+(12)﹣1+|﹣2|. 22.(10分)如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高(1)△ACD 与△ABC 相似吗?为什么?(2)AC2=AB•AD 成立吗?为什么?23.(12分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?24.直角三角形ABC 中,BAC 90∠=,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE ∠∠=;()2若BAD 45∠=,AF 22=+,过点B 作BG FC ⊥于点G ,连接DG.依题意补全图形,并求四边形ABGD 的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形2、D【解题分析】根据题意列出关系式,去括号合并即可得到结果.【题目详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图②中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故选择:D.【题目点拨】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3、C【解题分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A 、被开方数含开的尽的因数,故A 不符合题意;B 、被开方数含分母,故B 不符合题意;C 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选C .【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、D【解题分析】【分析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【题目详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合,故选D .【题目点拨】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.5、B【解题分析】如图,分别过K 、H 作AB 的平行线MN 和RS ,∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.6、C【解题分析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.故选C.点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.7、B【解题分析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD 为等腰直角三角形,∴△PED 也为等腰直角三角形,∵PE ⊥AB ,∴AE=BE=12AB=12×4, 在Rt △PBE 中,PB=3,∴,∴,∴.故选B .考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.8、C【解题分析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x 千米/小时,则乙甲车的速度为15x +千米/小时∴甲车行驶30千米的时间为30x ,乙车行驶40千米的时间为4015x +, ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C . 9、C【解题分析】Rt △ABC 通过变换得到Rt △ODE,应先旋转然后平移即可【题目详解】∵Rt △ABC 经过变化得到Rt △EDO ,点B 的坐标为(0,1),OD =2,∴DO =BC =2,CO =3,∴将△ABC 绕点C 顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE ;或将△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE ;故选:C .【题目点拨】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化 10、D【解题分析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y 随x 的增大而增大,∵A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)在该函数图象上,且x 1<x 2<0<x 3,,∴y 3<y 1<y 2;故选D.考点:反比例函数的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、5310-⨯【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.005=5×10-1,故答案为:5×10-1. 【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12、1×10﹣1 【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:10nm 用科学记数法可表示为1×10-1m , 故答案为1×10-1. 【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13、3【解题分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【题目详解】正多边形的边数是:360°÷60°=6. 正六边形的边长为2cm ,由于正六边形可分成六个全等的等边三角形, 且等边三角形的边长与正六边形的边长相等,所以正六边形的面积2216sin 6022=⨯⨯︒⨯.故答案是:【题目点拨】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.14、1(a +1)1(a ﹣1)1. 【解题分析】原式提取公因式,再利用完全平方公式分解即可. 【题目详解】解:原式=1(a 4﹣1a 1+1)=1(a 1﹣1)1=1(a +1)1(a ﹣1)1, 故答案为:1(a +1)1(a ﹣1)1 【题目点拨】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式. 15、58【解题分析】 利用P (A )=mn,进行计算概率. 【题目详解】从0,1,2,3四个数中任取两个则|a ﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为105168. 故答案是:58. 【题目点拨】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式. 16、12【解题分析】分析:根据题目中所给定义先求y ',再利用根与系数关系求m 值.详解:由所给定义知,2221y x m x m '=+-+,若22210x m x m +-+=,22414m m =--⨯()=0,解得m =12. 点睛:一元二次方程的根的判别式是()200ax bx c a ++=≠,△=b 2-4ac,a,b,c 分别是一元二次方程中二次项系数、一次项系数和常数项. △>0说明方程有两个不同实数解, △=0说明方程有两个相等实数解, △<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.三、解答题(共8题,共72分)17、(1)y=12(x ﹣3)1﹣1;(1)11<x 3+x 4+x 5<. 【解题分析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x 轴的直线与图象“G”有1个交点、1个交点时x 3+x 4+x 5的取值范围,易得直线与图象“G”要有3个交点时x 3+x 4+x 5的取值范围. 【题目详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1) 设二次函数表达式为:y=a (x ﹣3)1﹣1. ∵该图象过A (1,0) ∴0=a (1﹣3)1﹣1,解得a=12. ∴表达式为y=12(x ﹣3)1﹣1(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11,当直线过y=12(x﹣3)1﹣1的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=﹣12(x﹣3)1+1,∴令12(x﹣3)1+1=﹣1时,解得2x=3﹣2(舍去)∴x3+x4+x5<2.综上所述11<x3+x4+x5<2.【题目点拨】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.18、(1)(2)作图见解析;(3)222.【解题分析】(1)利用平移的性质画图,即对应点都移动相同的距离.(2)利用旋转的性质画图,对应点都旋转相同的角度.(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.【题目详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.(3)∵2211290222222,?1802BB B B ππ⋅⋅=+===,∴点B 所走的路径总长=2222π+. 考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算. 19、(1)60, 90°;(2)补图见解析;(3)300;(4)23. 【解题分析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案. 详解:(1)60;90°. (2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为19003003⨯=. (4)列表法如表所示,所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123P ==. 点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比. 20、 (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解题分析】(1)把点A 坐标代入()my m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可. 【题目详解】(1)把()A 3,1代入()my m 0x=≠得m 3=. ∴反比例函数的表达式为3y x=把()A 3,1和()B 0,2-代入y kx b =+得132k bb =+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >. 【题目点拨】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.21、4【解题分析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=22242242-⨯++=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1ppaa-=(0a p≠,为正整数)”是正确解答本题的关键.22、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.【解题分析】(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可.【题目详解】解:(1)△ACD 与△ABC相似,理由是:∵在Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB•AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB•AD.【题目点拨】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.23、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解题分析】(1)设顾客购买x 元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x 的值说明在什么情况下购物合算 (2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数; (3)设进价为y 元,根据售价-进价=利润,则可得出方程即可. 【题目详解】解:设顾客购买x 元金额的商品时,买卡与不买卡花钱相等. 根据题意,得300+0.8x =x , 解得x =1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等; 当顾客消费少于1500元时,300+0.8x >x 不买卡合算; 当顾客消费大于1500元时,300+0.8x <x 买卡合算; (2)小张买卡合算,3500﹣(300+3500×0.8)=400, 所以,小张能节省400元钱; (3)设进价为y 元,根据题意,得 (300+3500×0.8)﹣y =25%y , 解得 y =2480答:这台冰箱的进价是2480元. 【题目点拨】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24、(1)证明见解析;(2)补图见解析;ABGD S 四边形= 【解题分析】()1根据等腰三角形的性质得到ABD ADB ∠=∠,等量代换得到ABD CDE ∠=∠,根据余角的性质即可得到结论; ()2根据平行线的判定定理得到AD ∥BG ,推出四边形ABGD 是平行四边形,得到平行四边形ABGD 是菱形,设AB=BG=GD=AD=x ,解直角三角形得到BF == ,过点B 作BH AD ⊥ 于H ,根据平行四边形的面积公式即可得到结论. 【题目详解】 解:()1AB AD =,ABD ADB ∠∠∴=,ADB CDE ∠∠=,ABD CDE ∠∠∴=,BAC 90∠=,ABD ACB 90∠∠∴+=,CE AE ⊥,DCE CDE 90∠∠∴+=,ACB DCE ∠∠∴=;()2补全图形,如图所示:BAD 45∠=,BAC 90∠=,BAE CAE 45∠∠∴==,F ACF 45∠∠==,AE CF ⊥,BG CF ⊥, AD //BG ∴,BG CF ⊥,BAC 90∠=,且ACB DCE ∠∠=,AB BG ∴=,AB AD =,BG AD ∴=,∴四边形ABGD 是平行四边形,AB AD =,∴平行四边形ABGD 是菱形,设AB BG GD AD x ====,BF 2BG 2x ∴==,AB BF x 2x 22∴+=+=+ x 2∴=过点B 作BH AD ⊥于H ,BH 1∴==.ABGD S AD BH ∴=⨯=四边形故答案为(1)证明见解析;(2)补图见解析;ABGD S 四边形. 【题目点拨】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015—2016 学年度第二学期中考数学模拟试卷一、选择题(本大题共 10 题,每小题 3 分,共计 30 分.在每小题所给出的四个选项中, 恰有一项是符合题目要求的,请用 2B 铅笔把答.题.卡.上.相.应.的.答.案.涂黑.)⒈化简 81的结果为(▲)A ±9B. ±3C. 3D. 9.⒉国际数学家大会的会标如下面左图所示,.把这个图案沿图中线段剪开后,能拼成如 右图所示的四个图形,则其中是轴对称图形的有(▲)A1个B. 2 个C. 3 个D. 4 个. ⒊下列事件中,属于随机事件的是(▲)A.投出的篮球会下落B.从装有黑球、白球的袋里摸出红球C.367 人中至少有 2 人是同月同日出生D.买 1 张彩票,中 500 万大奖xm⒋关于 x 的分式方程x―3=2―3―x有增根,则 m 的值为(▲)A ―3B. 3C. 2D. 不存在.⒌如图,两个正方形的面积分别为 16、9,两阴影部分的面积分别为 a、b(a>b),则 a—b 等于(▲)A7B. 6C. 5D. 4.⒍如图,经过原点 O 的⊙P 与 x 、y 轴分别交于 A、B 两点,点 C 是劣弧 上一点,则∠ACB的大小为(▲)A 80°B. 90°C. 100°D. 无法确定.1第 5 题图第 6 题图第 7 题图⒎将图 1 围成图 2 的正方体,则图 1 中的红心“ ”标志所在的正方形是正方体中的(▲)A 面 CDHEB. 面 BCEFC. 面 ABFGD. 面 ADHG.⒏下列函数中, y 随 x 的增大而减小的函数个数是(▲)(1)y 2x 8 (2)y= 1 (3)y 2x2 8(x>1) (4) y 4x xA1B. 2C. 3D. 4(5) y= 3 (x>0) x.⒐如图,在直角△BAD 中,延长斜边 BD 到点 C,使 DC= BD,连接 AC,若 tanB= ,则 tan∠CAD的值为(▲)AB.C.D..⒑如图,在正方形 ABCD 中,点 E、F 分别在边 AB、AD 上,连接 CE、CF,分别与对角线 BD 交于点 M、N,∠ECF=45°,若 BM=3,则 AF 的长为(▲)A3A .B. 3 2C. 3 22DCD. 不能确定BFNMDCAEB第 9 题图第 10 题图二、填空题(本大题共有 8 小题,每空 2 分,共 16 分)⒒函数 y=2―1 x中自变量 x 的取值范围是.第 13 题图⒓在第六次全国人口普查中,无锡常住人口约为 800 万人,其中 65 岁及以上人口占 9.2%,则该市 65 岁及以上人口用科学计数法表示为人.⒔如图,△ABC 的三个顶点在正方形网格的格点上,则 tan∠A 的值是________.⒕如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若CE=3BE,则S S : △DOE△AOC的值2为________.第 14 题图第 15 题图第 16 题图⒖如图,面积为 4 的正方形 ABCD 在直角坐标系中,点 B 在 x 轴上,点 C 在 y 轴上,且 OB=OC,反比例函数 y=kx过点 A,则 k=.⒗如图所示,在平面直角坐标系中,半径均为 1 个单位长度的半圆 O1,O2,O3,… 组成一条平滑的曲线,点P从原点Oπ 出发,沿这条曲线向右运动,速度为每秒 2 个单位长度,则第 2016 秒时,点 P 的坐标是.⒘甲、乙两车从 A 城出发匀速行驶至 B 城.在整个行驶过程中,甲、乙两车离开 A 城的距离 y(千米)与甲车行驶的时间 t(小时)之间的函数关系如图所示.则下列结论: ① A,B两城相距 300 千米; ②乙车比甲车晚出发 1 小时,却早到 1 小时; ③乙车出发后 2.5 小5 15 时追上甲车; ④当甲、乙两车相距 50 千米时,t =4或 4 .其中正确结论的序号为.⒙如图,△ABC 中,∠ACB =90°,BC= 4,AC= 8,△FDE≌△ABC. △FDE 顶点 D 与边 AB的中点重合,DE,DF 分别交 AC 于点 P,Q,若重叠部分△DPQ 是以 DP 为一腰的等腰三角形,则它的面积为.FECQPPPADB第 17 题图第 18 题图三、解答题(本大题共 10 小题,共计 84 分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本题满分 8 分,每题 4 分 )3⑴计算 2 cos30(- 1)-2 ( - 3)0 tan60 - 2 2⑵先化简、再求值:(x1 xx 2) x 12x2 x2 2xx 1,其中x满足x2x1020.(本题满分 8 分)⑴解方程: 3 x 1 1 x4 4x⑵解不等式组 1 2x 13 21 5(x 1) 621.(本题满分 8 分)在□ABCD 中,过点 D 作 DE⊥AB 于点 E,点 F 在边 CD 上,DF=BE, 连接 AF,BF.⑴求证:四边形 BFDE 是矩形;⑵若 CF=3,BF=4,DF=5,求证:AF 平分∠DAB.22.(本题满分 8 分) 如图,已知在△ABC 中,∠A=90°. ⑴请用圆规和直尺作出⊙P,使圆心 P 在 AC 边上,且与 AB,BC 两边都相切(保留作图痕 迹,不写作法和证明). ⑵在⑴的条件下,若∠B=45°,AB=1,⊙P 切 BC 于点 D,求劣弧A⌒D的长.ABC23.(本题满分 8 分) 学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查 了八年级信息技术兴趣小组中 40 名学生每周上网的时间,算得这些学生平均每周上网时 间为 2.5h;小华从全体 320 名八年级学生名单中随机抽取了 40 名学生,调查了他们每周 上网的时间,算得这些学生平均每周上网时间为 1.2h.小明与小华整理各自样本数据,如 下表所示.4时间段(h/周) 小明抽样人数 小华抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:⑴你认为哪位学生抽取的样本具有代表性?.估计该校全体八年级学生平均每周上网时间为h;⑵根据具有代表性的样本,把上图中的频数分布直方图补画完整;⑶在具有代表性的样本中,中位数所在的时间段是h/周;⑷专家建议每周上网 2 h 以上(含 2 h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?24.(本题满分 8 分) 如图,管中放置同样的绳子 AA1、BB1、CC1.⑴小明从这三根绳子中随机选一根,恰好选中绳子 AA1 的概率是多少? ⑵小明先从左端 A、B、C 三个绳头中随机选两个打一个结,再从右端 A1、B1、C1 三个绳头 中随机选两个打一个结,求这三根绳子能连接成一根长绳子的概率.25.(本题满分 8 分) 京东商场购进一批 M 型服装,销售时标价为 750 元/件,按 8 折销售仍可获利 50%,商场现 决定对 M 型服装开展促销活动,每件在 8 折的基础上再降价 x 元销售,已知每天销售数量 y(件)与降价 x(元)之间的函数关系式为 y=200+4x(x>0). (1)求 M 型服装的进价; (2)求促销期间每天销售 M 型服装所获得的利润 W 的最大值.526.(本题满分 8 分) 如图,在一笔直的海岸线上有 A,B 两个观测站,A 观测站在 B 观测站的正东方向,有一艘 小船在点 P 处,从 A 处测得小船在北偏西 60°方向,从 B 处测得小船在北偏东 45°的方 向,点 P 到点 B 的距离是 3 千米.(注:结果有根号的保留根号) (1 )求 A,B 两观测站之间的距离; (2)小船从点 P 处沿射线 AP 的方向以 千米/时的速度进行沿途考察,航行一段时间后 到达点 C 处,此时,从 B 测得小船在北偏西 15°方向,求小船沿途考察的时间.27.(本题满分 10 分)如图,∠C=90°,点 A、B 在∠C 的两边上,CA=30,CB=20,连接 AB.点 P 从点 B 出发,以每秒 4 个单位长度的速度沿 BC 方向运动,到点 C 停止.当点 P 与 B、C 两点不重合时,作 PD 丄 BC 交 AB 于 D,作 DE 丄 AC 于 E,F 为射线 CB 上一点,且∠CEF=∠ABC.设点 P 的运动时间为 x(秒).⑴用含有 x 的代数式表示 CE 的长为;点 F 与点 B 重合时 x 的值为.⑵当点 F 在线段 CB 上时,设四边形 DECP 与四边形 DEFB 重叠部分图形的面积为 y(平方单位).求 y 与 x 之间的函数关系式.⑶当 x 为某个值时,沿 PD 将以 D、E、F、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的 x 值.628.(本题满分 10 分) 如图,抛物线 y=ax2+2ax+c(a<0)与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C,过点 B 的直线与抛物线的另一个交点为 D,与抛物线的对称轴交于点 E,与 y 轴交于点 F,且 DE∶EF∶FB=1∶1∶2,△OBE9 的面积为4.⑴① 点 F 为 OC 的点;②求抛物线的解析式;⑵设 P 为已知抛物线的对称轴上的任意一点,当△ACP 的面积等于△ACB 的面积时,求点 P的坐标;⑶若直线 l 过点 Q(4,0),M 为直线 l 上的动点,当以 A、B、M 为顶点所作的直角三角形有且只有三个时,求直线 l 的解析式.7学校________________班级____________姓名____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2016 年初三中考模拟数学答题卡 2016.5 一、选择题(用 2B 铅笔填涂)1 2 3 456 7 8 9 10[A] [A] [A] [A] [A][A] [A] [A] [A] [A][B] [B] [B] [B] [B][B] [B] [B] [B] [B][C] [C] [C] [C] [C][C] [C] [C] [C] [C][D] [D] [D] [D] [D][D] [D] [D] [D] [D]二、填空题(用 0.5 毫米黑色墨水签字笔作答)11.______________; 12.______________; 13.______________;14.______________; 15.______________; 16.______________;17.______________; 18.______________.三、解答题(用 0.5 毫米黑色墨水签字笔作答)⒚ ⑴计算:2cos30(- 1)-2 ( - 3)0 tan60 - 2 2⑵化简求值:(x1 xx 2) x 12x2 x2 2xx 1其中 x 满足 x2 x 1 020.⑴解方程: 3 x 1 1 x4 4x⑵解不等式组 1 2x13 21 5(x 1) 6821.(本题满分 8 分)22.(本题满分 8 分) ABC23.(本题满分 8 分)解:(1);估计该校全体八年级学生平均每周上网时间为h;⑵⑶在具有代表性的样本中,中位数所在的时间段是h/周;⑷24.(本题满分 8 分)925.(本题满分 8 分) 26.(本题满分 8 分)27.(本题满分 10 分)⑴用含有 x 的代数式表示 CE 的长为;点 F 与点 B 重合时 x 的值为.10学校________________班级____________姓名____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………28.(本题满分 10 分)⑴① 点 F 为 OC 的点;11参考答案⒈D ⒉C ⒊D ⒋B ⒌A ⒍B ⒎A ⒏C ⒐D ⒑B6 ⒒ x≠2 ⒓ 7.36×105 ⒔ 51 ⒕ 16 ⒖k=―4⒚⑴―1x+1 ⑵化简得 x2 ,结果为 1⒗(2016,0)⒘①②⒛⑴x=3,检验⑵—2≤x<121.⑴4 分;⑵ 4 分.22⑴作∠ABC 的角平分线交 AC 于点 P,以点 P 为圆心,AP 为半径作圆.(4 分)⑵弧 AD 的长为 l⌒ AD=32―3 4 π(4 分)23.解:(1)小华;1.2.(2 分)(2)如图:5 ⒙ 2或 2(2 分) (3)中位数所在的时间段是 0~1 小时/周; (2 分) (4)该校全体初二学生中有 320× =64 名同学应适当减少上网的时间.(2 分)24.⑴13;(2 分)⑵23. (4 分)25.解:(1)设进价为 z,∵销售时标价为 750 元/件,按 8 折销售仍可获利 50%.则 750×0.8=(1+0.5)z.∴z=400;答:M 型服装的进价为 400 元;(3 分)(2)∵销售时标价为 750 元/件,开展促销活动每件在 8 折的基础上再降价 x 元销售, ∴M 型服装开展促销活动的实际销价为 750×0.8﹣x=600﹣x,销售利润为 600﹣x﹣400=200 ﹣x. 而每天销售数量 y(件)与降价 x(元)之间的函数关系式为 y=200+4x, ∴促销期间每天销售 M 型服装所获得的利润: W=(200﹣x)(200+4x)=﹣4x2+600x+40000=﹣4(x﹣75)2+6250012∴当 x=75(元)时,利润 W 最大值为 62500 元.(5 分)26.解:(1)如图,过点 P 作 PD⊥AB 于点 D. 在 Rt△PBD 中,∠BDP=90°,∠PBD=90°﹣45°=45°, ∴BD=PD=3 千米. 在 Rt△PAD 中,∠ADP=90°,∠PAD=90°﹣60°=30°, ∴AD= PD=3 千米,PA=6 千米. ∴AB=BD+AD=3+3 (千米);(4 分)(2)如图,过点 B 作 BF⊥AC 于点 F. 根据题意得:∠ABC=105°, 在 Rt△ABF 中,∠AFB=90°,∠BAF=30°,∴BF= AB=千米,AF= AB= +3 千米.在△ABC 中,∠C=180°﹣∠BAC﹣∠ABC=45°. 在 Rt△BCF 中,∠BFC=90°,∠C=45°,∴CF=BF=千米,∴PC=AF+CF﹣AP=3 千米. 20故小船沿途考察的时间为:3 ÷ =3(小时). 9 (4 分)27.解:⑴6x,20 9(3 分)⑵当点 F 与点 P 重合时,4x+9x=20,解得 x= ,当 0<x< 时,∵FP=BC﹣FC﹣PB=20﹣9x﹣4x=20﹣13x,∵DE=PC=BC﹣PB=20﹣4x, ∴y=(DE+FP)•DP•0.5=(20﹣4x+20﹣13x)•6x×0.5=3x(40﹣17x)=120x﹣51x2; 当 <x≤ 时,矩形 DECP 中 DP∥EC,∴∠DOE=∠FEC,∴Rt△DOE∽Rt△CEF,∴,∴,∴DO= (20﹣4x),∴y= DO•DE= × (20﹣4x)(20﹣4x)= (5﹣x)2;290(4 分)(4)①如图③,当 PD=PF 时,6x=20﹣1 3x,解得:x= ;△B′DE 为拼成的三角形;②如图④当点 F 与点 P 重合时,4x+9x=20,解得:x= ;△BDC 为拼成的三角形;13③如图⑤,当 DE=PB,20﹣4x=4x,解得:x= ,△DPF 为拼成的三角形. (3 分)28. ⑴①中点;②y=(3 分)⑵抛物线 y= 的对称轴是直线 x=﹣=﹣1,即 D 点的横坐标是﹣1,S△ACB= AB•OC=9,在 Rt△AOC 中,AC===5,设△ACD 中 AC 边上的高为 h,则有 AC•h=9,解得 h= .如答图 1,在坐标平面内作直线平行于 AC,且到 AC 的距离=h= ,这样的直线有 2 条,分 别是 l1 和 l2,则直线与对称轴 x=﹣1 的两个交点即为所 求的点 D. 设 l1 交 y 轴于 E,过 C 作 CF⊥l1 于 F,则 CF=h= ,∴CE==.设直线 AC 的解析式为 y=kx+b,将 A(﹣4,0),C(0,3)坐标代入,得到,解得,∴直线 AC 解析式为 y= x+3. 直线 l1 可以看做直线 AC 向下平移 CE 长度单位( 个长度单位)而形成的,14∴直线 l1 的解析式为 y= x+3﹣ = x﹣ .则 D1 的纵坐标为 ×(﹣1)﹣ = ,∴D1(﹣1, ).同理,直线 AC 向上平移 个长度单位得到 l2,可求得 D2(﹣1, )综上所述,D 点坐标为:D1(﹣1, ),D2(﹣1, ).(4 分)(3)如答图 2,以 AB 为直径作⊙F,圆心为 F.过 E 点作⊙F 的切线,这样的切线有 2 条. 连接 FM,过 M 作 MN⊥x 轴于点 N. ∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F 半径 FM =FB=3. 又 FE=5,则在 Rt△MEF 中,ME==4,sin∠MFE= ,cos∠MFE= .在 Rt△FMN 中,MN=MF•sin∠MFE=3× = ,FN=MF•cos∠MFE=3× = ,则 ON= ,∴M 点坐标为( , )直线 l 过 M( , ),E(4,0), 设直线 l 的解析式为 y=kx+b,则有,解得,所以直线 l 的解析式为 y= x+3. 同理,可以求得另一条切线的解析式为 y= x﹣3.综上所述,直线 l 的解析式为 y= x+3 或 y= x﹣3. (3 分)15。

相关文档
最新文档