Floyd算法Matlab程序
matlab的floyd算法
matlab的floyd算法Floyd算法,是一种图论算法,用于在加权图中求解最短路径。
它是以发明者之一、罗伯特·弗洛伊德的名字命名的。
这个算法同样被用于对于任意两点之间的最长路径(所谓的最短路径问题)进行求解。
算法描述给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。
特别地,当i=j时,dist(i,j)=0。
为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。
则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。
算法思想:建立中间顶点集合算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。
具体来说,设S={1, 2, ⋯, k},其中k是整数。
Floyd算法的基本思想是,依次考察所有可能的中间顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。
最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。
Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。
这一过程可表述为:for k = 1 to nfor i = 1 to nfor j = 1 to nif D(k,i)+D(j,k) < D(k,i,j)D(k,i,j) = D(k,i)+D(j,k)其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。
算法实现function D = Floyd(adjmat)% adjmat为邻接矩阵邻接矩阵adjmat的定义为:- 若两个顶点之间有边相连,则对应位置为该边的边权值;- 若两个顶点之间没有边相连,则对应位置为0。
中国邮递员问题matlab
中国邮递员问题matlab%中国邮递员问题:%step1;%求出奇点之间的距离;%求各个点之间的最短距离;%floyd算法;clear all; clc; A=zeros(9); A(1,2)=3; A(1,4)=1; A(2,4)=7; A(2,5)=4;A(2,6)=9;A(2,3)=2; A(3,6)=2 A(4,7)=2; A(4,8)=3;A(4,5)=5; A(5,6)=8; A(6,9)=1;A(6,8)=6; A(7,8)=2; A(8,9)=2; c=A+A’; c(find(c==0))=inf; m=length(c); Path=zeros(m); for k=1:m for i=1:m for j=1:m if c(i,j)>c(i,k)+c(k,j)c(i,j)=c(i,k)+c(k,j); Path(i,j)=k;end end end end c, Path h1=c(2,4); h2=c(2,6); h3=c(2,5); h4=c(4,6); h5=c(4,5); h6=c(6,5); h=[h1,h2,h3,h4,h5,h6]%step2;%找出以奇点为顶点的完全图的最优匹配;%算法函数Hung_function [Matching,Cost] = Hung_Al(Matrix) Matching = zeros(size(Matrix)); % 找出每行和每列相邻的点数num_y = sum(~isinf(Matrix),1);num_x = sum(~isinf(Matrix),2); % 找出每行和每列的孤立点数x_con = find(num_x~=0);y_con = find(num_y~=0); %将矩阵压缩、重组P_size = max(length(x_con),length(y_con));P_cond = zeros(P_size); P_cond(1:length(x_con),1:length(y_con)) = Matrix(x_con,y_con);if isempty(P_cond)Cost = 0;return end % 确保存在完美匹配,计算矩阵边集Edge = P_cond; Edge(P_cond~=Inf) = 0; cnum = min_line_cover(Edge); Pmax = max(max(P_cond(P_cond~=Inf)));P_size = length(P_cond)+cnum; P_cond = ones(P_size)*Pmax;P_cond(1:length(x_con),1:length(y_con)) = Matrix(x_con,y_con); %主函数程序,此处将每个步骤用switch命令进行控制调用步骤函数exit_flag = 1; stepnum = 1; while exit_flag switch stepnum case 1 [P_cond,stepnum] = step1(P_cond);case 2 [r_cov,c_cov,M,stepnum] = step2(P_cond); case 3 [c_cov,stepnum] = step3(M,P_size);case 4 [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M);case 5 [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov);case 6 [P_cond,stepnum] = step6(P_cond,r_cov,c_cov); case 7 exit_flag = 0;end end Matching(x_con,y_con) = M(1:length(x_con),1:length(y_con)); Cost = sum(sum(Matrix(Matching==1))); %下面是6个步骤函数step1~step6 %步骤1:找到包含0最多的行,从该行减去最小值function [P_cond,stepnum] = step1(P_cond) P_size = length(P_cond); for ii = 1:P_size rmin = min(P_cond(ii,:)); P_cond(ii,:) = P_cond(ii,:)-rmin; end stepnum = 2; %步骤2:在P-cond中找一个0,并找出一个以该数0为星型的覆盖function [r_cov,c_cov,M,stepnum] = step2(P_cond) %定义变量r-cov,c-cov分别表示行或列是否被覆盖P_size = length(P_cond); r_cov = zeros(P_size,1);c_cov = zeros(P_size,1);M = zeros(P_size); for ii = 1:P_size for jj = 1:P_size if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0M(ii,jj) = 1; r_cov(ii) = 1;c_cov(jj) = 1;end end end % 重初始化变量r_cov = zeros(P_size,1);c_cov = zeros(P_size,1);stepnum = 3; %步骤3:每列都用一个0构成的星型覆盖,如果每列都存在这样的覆盖,则M为最大匹配function [c_cov,stepnum] = step3(M,P_size) c_cov = sum(M,1); if sum(c_cov) == P_size stepnum = 7; else stepnum = 4; end %步骤4:找一个未被覆盖的0且从这出发点搜寻星型0覆盖。
matlab计算两个区域的最小距离函数
一、概述MATLAB是一种流行的数学软件,用于进行数值计算和数据可视化。
在许多科学和工程领域,MATLAB都被广泛地应用。
其中一个非常有用的功能就是计算两个区域的最小距离函数。
这个功能在图像处理、计算几何学和机器人学等领域都有着广泛的应用。
二、MATLAB中的最小距离函数在MATLAB中,可以使用内置函数或编写自定义函数来计算两个区域的最小距离。
下面我们将介绍MATLAB中计算最小距离的几种常见方法。
1. 使用内置函数MATLAB提供了一些内置函数来计算两个区域之间的最小距离,比如pdist2函数和bwdist函数。
pdist2函数可以用来计算两个不同数据集之间的距离,而bwdist函数则可以计算二进制图像中每个像素到最近的非零像素的距离。
这两个函数都是非常高效、准确的计算最小距离的工具。
2. 编写自定义函数除了使用内置函数,我们还可以编写自定义函数来计算两个区域的最小距离。
这种方法可以根据具体的问题需求进行灵活的定制,但是需要一定的编程能力。
通常可以使用广度优先搜索、最短路径算法或者动态规划等方法来编写自定义函数。
三、最小距离函数的应用最小距离函数在许多领域都有着重要的应用。
下面将介绍一些常见的应用场景。
1. 图像处理在图像处理中,最小距离函数可以用来计算图像中不同物体或区域之间的距离。
比如在医学图像中,可以用最小距离函数来计算肿瘤与周围组织的距离,以辅助医生进行诊断。
2. 计算几何学在计算几何学中,最小距离函数可以用来计算两个几何体之间的最短距离,比如计算两个多边形之间的最小距离。
这对于设计和制造工程师来说是非常重要的。
3. 机器人学在机器人学中,最小距离函数可以用来规划机器人的路径,以避免障碍物或与其他机器人发生碰撞。
这对于自动驾驶车辆和工业机器人来说有着重要的意义。
四、总结在MATLAB中,计算两个区域的最小距离函数是非常有用的功能,它可以用来解决许多现实生活中的问题。
通过内置函数或编写自定义函数,我们可以轻松地实现这一功能。
matlab数学实验
《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。
(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。
【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。
(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。
(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。
(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。
【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。
0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。
reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。
A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。
节点重要度算法-MATLAB源代码
节点收缩算法:function Z=node(a,dy)%a为邻接矩阵a(a==inf)=0;a(~=0)=1;n=size(a,1);%矩阵维数Z=zeros(n,1);%节点重要度向量%由邻接矩阵a得到直接矩阵H%H表示c(i j)H=zeros(size(a));for i=1:nfor j=1:nif j==iH(i,j)=0;elseif a(I,j)==1H(i,j)=1;elseH(i,j)=inf;endendend%用Floyd法计算节点收缩前的最短就离矩阵D D=H;for k=1:nfor i=1:nfor j=1:nIf D(i,k)+D(k,j)<D(iI,j)D(i,j)=D(i,k)+D(k,j);endendendend%计算节点重要度D2=zeros(size(D));for i=1:n%得到与节点i邻接的节点向量II=zeros(1,0);T=0;for j=1:nif a(i,j)=1T=t+1;I=[i,j];endend%计算收缩后最短距离矩阵D2%D2为d’(pq) D为d(pq)for p=1:nfor q=1:nIf p~=1&q~=iIf D(p,i)+D(i,q)==D(p,q)D2(p,q)=D(p,q)-2;elseif D(p,i)+D(i,q)==D(p,q)+1D2(p,q)=D(p,q)-1;elseif D(p,i)+D(i,q)==D(p,q)+2D2(p,q)=D(p,q);endelseif p==i|q==iD2(p,q)=D(p,q)-1;elseD2(p,q)=0;endendendN3=n-t;%收缩后的节点数n3D3=D2;%计算收缩后的最短距离矩阵D3,D3为D D3(I,:)=[];%删除与节点i邻接的节点对应的行D3(:,I)=[];%删除与节点i邻接的节点对应的列%计算节点收缩后的节点重要度s=0;for p=1:n3for q=p:n3s=s+D3(p,q);endendl=s/(n3*(n3-1)/2);%为nZ(i)=1/(n3*l);end===================================节点介数=========================function B=betweenness_node(A,a)%%求网络节点介数,BY QiCheng%%思想:节点i、j间的距离等于节点i、k间距离与节点k、j间距离时,i、j间的最短路径经过k。
实验三:使用matlab求解最小费用最大流算问题
北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验三:使用matlab求解最小费用最大流算问题一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
二、实验用仪器设备、器材或软件环境计算机,Matlab R2006a三、算法步骤、计算框图、计算程序等1.最小费用最大流问题的概念。
在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA2。
求解原理。
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流.根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链。
为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:新图E(f)中不考虑原网络D中各个弧的容量cij。
为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
1.最小费用流算法的框图描述。
图一2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.mfunction[Mm,mc,Mmr]=mp_mc(a,c)A=a; %各路径最大承载流量矩阵C=c; %各路径花费矩阵Mm=0; %初始可行流设为零mc=0; %最小花费变量mcr=0;mrd=0;n=0;while mrd~=inf %一直叠代到以花费为权值找不到最短路径for i=1:(size(mcr’,1)—1)if a(mcr(i),mcr(i+1))==infta=A(mcr(i+1),mcr(i))—a(mcr(i+1),mcr(i)); elseta=a(mcr(i),mcr(i+1));endn=min(ta,n);%将最短路径上的最小允许流量提取出来endfor i=1:(size(mcr’,1)-1)if a(mcr(i),mcr(i+1))==infa(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;elsea(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))—n;endendMm=Mm+n;%将每次叠代后增加的流量累加,叠代完成时就得到最大流量 for i=1:size(a,1)for j=1:size(a’,1)if i~=j&a(i,j)~=infif a(i,j)==A(i,j) %零流弧c(j,i)=inf;c(i,j)=C(i,j);elseif a(i,j)==0 %饱合弧c(i,j)=inf;c(j,i)=C(j,i);elseif a(i,j)~=0 %非饱合弧c(j,i)=C(j,i);c(i,j)=C(i,j);endendendend[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)n=inf;end%下面是计算最小花费的数值for i=1:size(A,1)for j=1:siz e(A’,1)if A(i,j)==infA(i,j)=0;endif a(i,j)==infa(i,j)=0;endendendMmr=A—a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量for i=1:size(Mmr,1)for j=1:size(Mmr’,1)if Mmr(i,j)~=0mc=mc+Mmr(i,j)*C(i,j);%最小花费为累加各条路径实际流量与其单位流量花费的乘积endendend利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr。
matlab、lingo程序代码1-最短距离
例9 某公司在六个城市c1, c2, …c6 中有分公司,从ici到cj的直接航程票价记在下述矩阵的(I,j)位置上。
(∞表示无直接航路),请帮助该公司设计一张城市c1到其它城市间的票价最便宜的路线图。
clc,cleara=zeros(6);a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;a(2,3)=15;a(2,4)=20;a(2,6)=25;a(3,4)=10;a(3,5)=20;a(4,5)=10;a(4,6)=25;a(5,6)=55;a=a+a';a(find(a==0))=inf;pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));d(1:length(a))=inf;d(1)=0;temp=1;while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];temp2=find(d(index1)==d(temp)-a(temp,index1));index2(temp)=index1(temp2(1));endd, index1, index2编写LINGO 程序如下:model:sets:cities/A,B1,B2,C1,C2,C3,D/;roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatan=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i)));@sum(roads(i,j)|i #eq#1:x(i,j))=1;@sum(roads(i,j)|j #eq#n:x(i,j))=1;endmodel:sets:cities/1..11/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=2;w(1,3)=8;w(1,4)=1;w(2,3)=6;w(2,5)=1;w(3,4)=7;w(3,5)=5;w(3,6)=1;w(3,7)=2;w(4,7)=9;w(5,6)=3;w(5,8)=2;w(5,9)=9;w(6,7)=4;w(6,9)=6;w(7,9)=3;w(7,10)=1;w(8,9)=7;w(8,11)=9;w(9,10)=1;w(9,11)=2;w(10,11)=4;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j))); endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));end例12 用Floyd算法求解例9。
基于Matlab的工程施工关键线路确定
基于Matlab的工程施工关键线路确定作者:芦思文方小杰王惠溧来源:《科技创新与应用》2013年第21期摘要:关键线路法是目前最常用的一种工程项目施工进度计划方法。
文章提出应用matlab确定工程项目施工进度计划网络图中的关键线路及项目总工期,从而有效控制各工作的施工进度。
关键词:双代号网络图;关键线路;总工期;matlab;floyd算法1 确定关键线路的方法关键线路是指网络图中工期最长的线路,位于关键线路上的工作称为关键工作,关键工作的持续时间决定了项目的总工期。
floyd算法是一种求解网络图中任意两点间最短路的方法。
因此,将网络图中的关键线路(即及最长线路)转化为最短线路,应用matlab软件编程实现floyd算法即可求出原施工进度计划图中的关键线路及总工期。
1.1 将网络的关键线路转换为最短线路设G为给定的双代号网络进度计划图,按如下方法将G转换为G′,使G′中的最短线路极为G中的关键线路。
1.1.1 网络图结构不变3 结束语在工程项目管理中,施工过程的进度控制贯穿整个项目过程,及时有效的控制施工进度是项目成功的关键。
本文介绍的方实现了根据项目进度计划图直接输出图中任意两点的关键线路及总工期,为利用关键线路法控制项目进度提供了方便,对于复杂的网络图,该方法更显现出其优势。
通过该程序,项目管理人员可以随时确定项目中的关键工作并对其进行监控,帮助其更有效地进行项目进度管理。
参考文献[1]李海涛,邓樱.MATLAB程序设计教程[M].北京:高等教育出版社,2002.[2]胡运权,郭耀煌.运筹学教程(第三版)[M].北京:清华大学出版社,2007.[3]蒋根谋.建筑施工[D].北京:中国铁道出版,2005.[4]胡小蜂.基于MATA的企业产品研发关键线路分析[J].机电产品开发与创新,2006-6,19(4):73-74.[5]胡桔州.Floyd最短路径算法在配送中心地址中的应用[J].湖南农业大学学报,2004-8,30(4):382-384.[6]杨鹏,罗一新.流程网络图主关键路径确定的MATLAB方法[J].分析与决策,2007,26(3):61-63.。
matlab图论程序算法大全
图论算法matlab实现求最小费用最大流算法的 MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s( i)=j;pd=0;end;end;endif(pd)break;end;end %求最短路的Ford 算法结束if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif(pd)break;end%如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用f %显示最小费用最大流图 6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束__Kruskal 避圈法:Kruskal 避圈法的MATLAB 程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x 记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end %排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x 中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T 中所有的元素赋值为0q=0; %记录加入到树T 中的边数for(s=1:k)if(q==n)break;end %获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if(A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T 中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT 中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end %寻找TT 中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end %砍掉TT 中的树枝if(pd)break;end;end %已砍掉了TT 中所有的树枝pd=0; %判断TT 中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;end if(pd)T(i,j)=0;T(j,i)=0; %假如TT 中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束用Warshall-Floyd 算法求任意两点间的最短路.n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end %赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j )=D(i,k)+D(k,j); %更新dijR(i,j)=k;end;end;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end %存在一条含有顶点vi 的负回路if(pd)break;end %存在一条负回路, 终止程序end %程序结束利用 Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流for(i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图 6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs 标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj 为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi 为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt 得到标号或者无法标号, 终止标号过程if(pd)break;end %vt 未得到标号, f 已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt 表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end %后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end %当t 的标号为vs 时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end %计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束图论程序大全程序一:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f)if f==0m=sum(sum(F))/2;n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);W(a(1),a(2))=1;W(a(2),a(1))=1;endelsefprint('Please imput the right value of f');endW;程序二:可达矩阵算法function P=dgraf(A) n=size(A,1);P=A;for i=2:nP=P+A^i;endP(P~=0)=1;P;程序三:有向图关联矩阵和邻接矩阵互换算法function W=mattransf(F,f)if f==0m=sum(sum(F));n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=-1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);if F(a(1),i)==1W(a(1),a(2))=1;elseW(a(2),a(1))=1;endendelsefprint('Please imput the right value of f');endW;第二讲:最短路问题程序一:Dijkstra算法(计算两点间的最短路)function [l,z]=Dijkstra(W)n = size (W,1); for i = 1 :nl(i)=W(1,i);z(i)=0;endi=1;while i<=nfor j =1 :nif l(i)>l(j)+W(j,i)l(i)=l(j)+W(j,i);z(i)=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法(计算任意两点间的最短距离)function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendr;for k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j)d(i,j)=d(i,k)+d(k,j);r(i,j)=r(i,k);endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short(W,k1,k2)n=length(W);U=W;m=1;while m<=nfor i=1:nfor j=1:nif U(i,j)>U(i,m)+U(m,j)U(i,j)=U(i,m)+U(m,j);endendendm=m+1;endu=U(k1,k2);P1=zeros(1,n);k=1;P1(k)=k2;V=ones(1,n)*inf;kk=k2;while kk~=k1for i=1:nV(1,i)=U(k1,kk)-W(i,kk);if V(1,i)==U(k1,i)P1(k+1)=i;kk=i;k=k+1;endendendk=1;wrow=find(P1~=0);for j=length(wrow):-1:1P(k)=P1(wrow(j));k=k+1;endP;程序四、n1short.m(计算某点到其它所有点的最短距离)function[Pm D]=n1short(W,k)n=size(W,1);D=zeros(1,n);for i=1:n[P d]=n2short(W,k,i);Pm{i}=P;D(i)=d;end程序五:pass2short.m(计算经过某两点的最短距离)function [P d]=pass2short(W,k1,k2,t1,t2)[p1 d1]=n2short(W,k1,t1);[p2 d2]=n2short(W,t1,t2);[p3 d3]=n2short(W,t2,k2);dt1=d1+d2+d3;[p4 d4]=n2short(W,k1,t2);[p5 d5]=n2short(W,t2,t1);[p6 d6]=n2short(W,t1,k2);dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2(2:length(p2)) p3(2:length(p3))];elsed=dt1;p=[p4 p5(2:length(p5)) p6(2:length(p6))];endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf(d,flag)if nargin==1n=size(d,2);m=sum(sum(d~=0))/2;b=zeros(3,m);k=1;for i=1:nfor j=(i+1):nif d(i,j)~=0b(1,k)=i;b(2,k)=j;b(3,k)=d(i,j);k=k+1;endendendelseb=d;endn=max(max(b(1:2,:)));m=size(b,2);[B,i]=sortrows(b',3);B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t(B(1,i))~=t(B(2,i))T(1:2,k)=B(1:2,i);c=c+B(3,i);k=k+1;tmin=min(t(B(1,i)),t(B(2,i)));tmax=max(t(B(1,i)),t(B(2,i)));for j=1:nif t(j)==tmaxt(j)=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf(a)l=length(a);a(a==0)=inf;k=1:l;listV(k)=0;listV(1)=1;e=1;while (e<l)min=inf;for i=1:lif listV(i)==1for j=1:lif listV(j)==0 & min>a(i,j)min=a(i,j);b=a(i,j);s=i;d=j;endendendendlistV(d)=1;distance(e)=b;source(e)=s;destination(e)=d;e=e+1;endT=[source;destination]; for g=1:e-1c(g)=a(T(1,g),T(2,g));endc;另外两种程序最小生成树程序1(prim 算法构造最小生成树)a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;...inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;...inf inf 45 42 inf inf inf];result=[];p=1;tb=2:length(a);while length(result)~=length(a)-1temp=a(p,tb);temp=temp(:);d=min(temp);[jb,kb]=find(a(p,tb)==d);j=p(jb(1));k=tb(kb(1));result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];endresult最小生成树程序2(Kruskal 算法构造最小生成树)clc;clear;a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40;a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70;[i,j,b]=find(a);data=[i';j';b'];index=data(1:2,:);loop=max(size(a))-1;result=[];while length(result)<looptemp=min(data(3,:));flag=find(data(3,:)==temp);flag=flag(1);v1=data(1,flag);v2=data(2,flag);if index(1,flag)~=index(2,flag)result=[result,data(:,flag)];endindex(find(index==v2))=v1;data(:,flag)=[];index(:,flag)=[];endresult第四讲:Euler图和Hamilton图程序一:Fleury算法(在一个Euler图中找出Euler环游)注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1(d)%注:必须保证是Euler环游,否则输出T=0,c=0 n=length(d);b=d;b(b==inf)=0;b(b~=0)=1;m=0;a=sum(b);eds=sum(a)/2;ed=zeros(2,eds);vexs=zeros(1,eds+1);matr=b;for i=1:nif mod(a(i),2)==1m=m+1;endendif m~=0fprintf('there is not exit Euler path.\n')T=0;c=0;endif m==0vet=1;flag=0;t1=find(matr(vet,:)==1);for ii=1:length(t1)ed(:,1)=[vet,t1(ii)];vexs(1,1)=vet;vexs(1,2)=t1(ii);matr(vexs(1,2),vexs(1,1))=0;flagg=1;tem=1;while flagg[flagg ed]=edf(matr,eds,vexs,ed,tem); tem=tem+1;if ed(1,eds)~=0 & ed(2,eds)~=0T=ed;T(2,eds)=1;c=0;for g=1:edsc=c+d(T(1,g),T(2,g));endflagg=0;break;endendendendfunction[flag ed]=edf(matr,eds,vexs,ed,tem)flag=1;for i=2:eds[dvex f]=flecvexf(matr,i,vexs,eds,ed,tem);if f==1flag=0;break;endif dvex~=0ed(:,i)=[vexs(1,i) dvex];vexs(1,i+1)=dvex;matr(vexs(1,i+1),vexs(1,i))=0;elsebreak;endendfunction [dvex f]=flecvexf(matr,i,vexs,eds,ed,temp) f=0;edd=find(matr(vexs(1,i),:)==1);dvex=0;dvex1=[];ded=[];if length(edd)==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length(edd)m1=find(vexs==edd(kk));if sum(m1)==0dvex1(dd)=edd(kk);dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length(edd)tem=vexs(1,i)*ones(1,kkk);edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1(1:2,l1)==ed(1:2,l2)lt=lt+1;endendif lt==0ded(ddd)=edd(l1); ddd=ddd+1;endendendif temp<=length(dvex1)dvex=dvex1(temp);elseif temp>length(dvex1) & temp<=length(ded)dvex=ded(temp);elsef=1;endend程序二:Hamilton改良圈算法(找出比较好的Hamilton路)function [C d1]= hamiltonglf(v)%d表示权值矩阵%C表示算法最终找到的Hamilton圈。
floyd算法matlab代码
function [D,R]=floyd(a)% a=[3 2;4 6];采用floyd算法计算图a中每对顶点最短路% a=[0 4 11;6 0 2;3 inf 0];n=size(a,1);D=a % D是距离矩阵for i=1:nfor j=1:nR(i,j)=j;endendR % R是路由矩阵for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);endendendkDRend••••••••••••••••••【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。
懒洋洋的幸福。
顶 3 收藏 2•【唯美句子】一个人踮着脚尖,在窄窄的跑道白线上走,走到很远的地方又走回来。
阳光很好,温暖,柔和。
漫天的安静。
顶7 收藏7•【唯美句子】清风飘然,秋水缓淌。
一丝云起,一片叶落,剔透生命的空灵。
轻轻用手触摸,就点碎了河面的脸。
落叶舞步婀娜不肯去,是眷恋,是装点?瞬间回眸,点亮了生命精彩。
顶11 收藏9•【唯美句子】几只从南方归来的燕子,轻盈的飞来飞去,“几处早莺争暖树,谁家新燕啄春泥,”其乐融融的山林气息,与世无争的世外桃源,让人心旷神怡。
顶0 收藏 2•【唯美句子】流年清浅,岁月轮转,或许是冬天太过漫长,当一夜春风吹开万里柳时,心情也似乎开朗了许多,在一个风轻云淡的早晨,踏着初春的阳光,漫步在碧柳垂青的小河边,看小河的流水因为解开了冰冻而欢快的流淌,清澈见底的的河水,可以数得清河底的鹅软石,偶尔掠过水面的水鸟,让小河荡起一层层的涟漪。
河岸换上绿色的新装,刚刚睡醒的各种各样的花花草草,悄悄的露出了嫩芽,这儿一丛,那儿一簇,好像是交头接耳的议论着些什么,又好象是在偷偷地说着悄悄话。
顶 3 收藏 4•【唯美句子】喜欢海子写的面朝大海春暖花开,不仅仅是因为我喜欢看海,还喜欢诗人笔下的意境,每当夜深人静时,放一曲纯音乐,品一盏茶,在脑海中搜寻诗中的恬淡闲适。
欧拉法求解一阶微分方程matlab
为了更好地理解欧拉法求解一阶微分方程在Matlab中的应用,我们首先来了解一些背景知识。
一阶微分方程是指只含有一阶导数的方程,通常表示为dy/dx=f(x,y),其中f(x,y)是关于x和y的函数。
欧拉法是一种常见的数值解法,用于求解微分方程的近似数值解。
它是一种基本的显式数值积分方法,通过将微分方程转化为差分方程来进行逼近。
在Matlab中,我们可以利用欧拉法求解一阶微分方程。
我们需要定义微分方程的函数表达式,然后选择合适的步长和初始条件,最后使用循环计算逼近解。
下面我们来具体讨论如何在Matlab中使用欧拉法来求解一阶微分方程。
我们假设要求解的微分方程为dy/dx=-2x+y,初始条件为y(0)=1。
我们可以通过以下步骤来实现:1. 我们需要在Matlab中定义微分方程的函数表达式。
在Matlab中,我们可以使用function关键字来定义函数。
在这个例子中,我们可以定义一个名为diff_eqn的函数,表示微分方程的右侧表达式。
在Matlab中,这个函数可以定义为:```matlabfunction dydx = diff_eqn(x, y)dydx = -2*x + y;end```2. 我们需要选择合适的步长和初始条件。
在欧拉法中,步长的选择对于数值解的精度非常重要。
通常情况下,可以先尝试较小的步长,然后根据需要进行调整。
在这个例子中,我们可以选择步长h=0.1,并设置初始条件x0=0,y0=1。
3. 接下来,我们可以使用循环来逼近微分方程的数值解。
在每一步,根据欧拉法的迭代公式y(i+1) = y(i) + h * f(x(i), y(i)),我们可以按照下面的Matlab代码计算逼近解:```matlabh = 0.1; % 步长x = 0:h:2; % 定义计算区间y = zeros(1, length(x)); % 初始化y的值y(1) = 1; % 设置初始条件for i = 1:(length(x)-1) % 欧拉法迭代y(i+1) = y(i) + h * diff_eqn(x(i), y(i));end```通过上述步骤,在Matlab中就可以用欧拉法求解一阶微分方程。
Floyd算法
定义Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
[编辑本段]核心思路通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0) =A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。
矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是松弛技术,对在i和j之间的所有其他点进行一次松弛。
所以时间复杂度为O(n^3);其状态转移方程如下:map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}map[i,j]表示i到j的最短距离K是穷举i,j的断点map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路[编辑本段]算法过程把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=空值。
定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G [i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。
在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。
根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1) =1,说明V3与V1直接相连。
[编辑本段]时间复杂度O(n^3)[编辑本段]优缺点分析Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法,稠密图效果最佳,边权可正可负。
数学建模--运输问题
运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:1-5-7-6-3-4-8-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
用matlab求解优化问题
§8.1.1 线性规划问题的MATLAB 求解方法与一般线性规划理论一样,在MATLAB 中有线性规划的标准型。
在调用MATLAB 线性规划函数linprog 时,要遵循MATLAB 中对标准性的要求。
线性规划问题的MATLAB 标准形为:⎪⎪⎩⎪⎪⎨⎧≤≤=≤=ub x lb b x A b Ax t s x c f eq eq T .. min 在上述模型中,有一个需要极小化的目标函数f ,以及需要满足的约束条件假设x 为n 维设计变量,且线性规划问题具有不等式约束1m 个,等式约束2m 个,那么:x 、、lb c 、 和ub 均为n 维列向量,b 为1m 维列向量,eq b 为m 2维列向量,A 为n m ⨯1维矩阵,eq A 为n m ⨯2维矩阵需要注意的是:MATLAB 标准型是对目标函数求极小,如果遇到是对目标函数求极大的问题,在使用MATLAB 求解时,需要在函数前面加一个负号转化为对目标函数求极小的问题;MATLAB 标准型中的不等式约束形式为""≤,如果在线性规划问题中出现""≥形式的不等式约束,则我们需要在两边乘以(-1)使其转化为MATLAB 中的""≤形式。
如果在线性规划问题中出现了“<”或者“>”的约束形式,则我们需要通过添加松弛变量使得不等式约束变为等式约束之后,我们只需要将所有的约束(包括不等式约束和等式约束)转化为矩阵形式的即可。
例如,对于如下线性规划模型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+=+-≥-+-≤+-+-=0,,7 32 8228 122 ..24 max 3212131321321321x x x x x x x x x x x x x t s x x x f 要转化为MATLAB 标准形,则要经过:(1)原问题是对目标函数求极大,故添加负号使目标变为:32124 m in x x x f -+-=;(2)原问题中存在“≥”的约束条件,故添加负号使其变为:8228321≤+-x x x用MATLAB 表达则为c=[-4; 2; -1]; %将目标函数转化为求极小A=[2 -1 1; 8 -2 2]; b=[12; -8]; %不等式约束系数矩阵Aeq=[-2 0 1; 1 1 0];beq=[3; 7]; %等式约束系数矩阵lb=[0; 0; 0];ub=[Inf; Inf; Inf] %对设计变量的边界约束MATLAB 优化工具箱中求解线性规划问题的命令为linprog ,其函数调用方法有多种形式如下所示:x = linprog(c,A,b)x = linprog(c,A,b,Aeq,beq)x = linprog(c,A,b,Aeq,beq,lb,ub)x = linprog(c,A,b,Aeq,beq,lb,ub,x0)x = linprog(c,A,b,Aeq,beq,lb,ub,x0,options)x = linprog(problem)[x,fval] = linprog(...)[x,fval,exitflag] = linprog(...)[x,fval,exitflag,output] = linprog(...)[x,fval,exitflag,output,lambda] = linprog(...)输入参数MATLAB工具箱中的linprog函数在求解线性规划问题时,提供的参数为:模型参数、初始解参数和算法控制参数。
基于MATLAB的最短路径算法分析
基于MATLAB的最短路径算法分析周志进(贵阳学院贵州贵阳550005)摘要:随着社会快速发展,人们生活水平提高,很多需求都在向着最优化、最快捷、最高效的方向延伸,而最短路径算法则是图论研究中的典型问题。
该文简要概述MATLAB软件,分析基于MATLAB的4种用于解决最短路径问题的算法,并研究基于MATLAB的最短路径算法的实际应用状况,以期对最短路径算法的应用提供一定借鉴意义。
关键词:MATLAB最优路径Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法中图分类号:TP301.6文献标识码:A文章编号:1672-3791(2022)08(a)-0217-03最短路径算法就是用于计算一个节点到其他节点的最短路径问题,一般是指确定起点的最短路径问题,求起始节点到某一终点的最短路径问题,也常用于已知起点和终点,求解两节点之间的最短路径。
1MATLAB程序概述MATLAB是由美国MathWorks公司出品的数学软件,MATLAB意为矩阵工程,将用于一维、二维与三维数值积分的函数进行了统一,并经过基本数学和内插函数的辅助,提供数值分析、矩阵计算等诸多功能,为应用数学、工程设计和数值计算提供全方位的解决方案,很大程度上摆脱了传统程序设计语言的编辑模式。
其高效的数值及符号计算功能,可以帮助用户快速处理繁杂的数学运算问题,具备的图形处理功能可以实现计算结果和编程的可视化。
MATLAB本身是一个高级的矩阵语言,包括诸多算法、控制语句、函数等面向基本对象或问题的应用程序[1]。
比如:在最短路径计算中可以利用矩阵运算和线性方程组的求解或是数据的统计分析来优化相关问题。
2基于MATLAB的4种最短路径算法2.1Dijkstra算法Dijkstra(迪杰斯特拉)算法是最经典的单源最短路径算法,也就是用于计算一个节点到其他所有节点最短路径的算法。
Dijkstra算法采用贪心算法策略,每次遍历与起点距离最近且未访问过的节点,直至扩展到终点。
Dijkstra、Floyd算法Matlab_Lingo实现
Dijkstra算法Matlab实现。
%求一个点到其他各点的最短路径function [min,path]=dijkstra(w,start,terminal)%W是邻接矩阵%start是起始点Array %terminal是终止点%min是最短路径长度%path是最短路径n=size(w,1);label(start)=0;f(start)=start;for i=1:nif i~=startlabel(i)=inf;endends(1)=start;u=start;while length(s)<nfor i=1:nins=0;forif i==s(j)ins=1;endendif ins==0v=i;if label(v)>(label(u)+w(u,v))label(v)=(label(u)+w(u,v));f(v)=u;endendendv1=0;k=inf;for i=1:nins=0;for j=1:length(s)if i==s(j)ins=1;endend-if ins==0v=i;if k>label(v)k=label(v);v1=v;endendends(length(s)+1)=v1;u=v1;endmin=label(terminal);path(1)=terminal;i=1;while path(i)~=startpath(i+1)=f(path(i));i=i+1 ;endpath(i)=start;L=length(path);path=path(L:-1:1);Floyd算法:matlab程序:%floyd算法,function [D,path,min1,path1]=floyd(a,start,terminal)%a是邻接矩阵%start是起始点%terminal是终止点%D是最小权值表D=a;n=size(D,1);path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;endendendfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)-D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendendif nargin==3min1=D(start,terminal);m(1)=start;i=1;path1=[ ];while path(m(i),terminal)~=terminalk=i+1;m(k)=path(m(i),terminal);i=i+1;endm(i+1)=terminal;path1=m;end1 6 5 5 5 66 2 3 4 4 65 2 3 4 5 45 2 3 4 5 61 4 3 4 5 11 2 4 4 1 6Floyd算法:Lingo程序:!用LINGO11.0编写的FLOYD算法如下;model:sets:nodes/c1..c6/;link(nodes,nodes):w,path; !path标志最短路径上走过的顶点;endsetsdata:path=0;w=0;@text(mydata1.txt)=@writefor(nodes(i):@writefor(nodes(j):-@format(w(i,j),' 10.0f')),@newline(1));@text(mydata1.txt)=@write(@newline(1));@text(mydata1.txt)=@writefor(nodes(i):@writefor(nodes(j):@format(path(i,j),' 10.0f')),@newline(1));enddatacalc:w(1,2)=50;w(1,4)=40;w(1,5)=25;w(1,6)=10;w(2,3)=15;w(2,4)=20;w(2,6)=25;w(3,4)=10;w(3,5)=20;w(4,5)=10;w(4,6)=25;w(5,6)=55;@for(link(i,j):w(i,j)=w(i,j)+w(j,i));@for(link(i,j) |i#ne#j:w(i,j)=@if(w(i,j)#eq#0,10000,w(i,j)));@for(nodes(k):@for(nodes(i):@for(nodes(j):tm=@smin(w(i,j),w(i,k)+w(k,j));path(i,j)=@if(w(i,j)#gt# tm,k,path(i,j));w(i,j)=tm)));endcalcend无向图的最短路问题Lingomodel:sets:cities/1..5/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=41;w(1,3)=59;w(1,4)=189;w(1,5)=81;w(2,3)=27;w(2,4)=238;w(2,5)=94;w(3,4)=212;w(3,5)=89;w(4,5)=171;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j)));endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;-@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));endLingo编的sets:dian/a b1 b2 c1 c2 c3 d/:;link(dian,dian)/a,b1 a,b2 b1,c1 b1,c2 b1,c3 b2,c1 b2,c2 b2,c3 c1,d c2,d c3,d/:x,w;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatamin=@sum(link:w*x);@for(link:@bin(x));n=@size(dian);@sum(link(i,j)|i#eq#1:x(i,j))=1;@sum(link(j,i)|i#eq#n:x(j,i))=1;@for(dian(k)|k#ne#1#and#k#ne#n:@sum(link(i,k):x(i,k))=@sum(link(k,i):x(k,i)));- sets:dian/1..5/:level; !level(i)表示点i的水平,用来防止生产圈;link(dian,dian):d,x;endsetsdata:d=0 41 59 189 8141 0 27 238 9459 27 0 212 89189 238 212 0 17181 94 89 171 0;enddatan=@size(dian);min=@sum(link(i,j)|i#ne#j:d(i,j)*x(i,j));@sum(dian(j)|j#gt#1:x(1,j))>1;@for(dian(i)|i#gt#1:@sum(dian(j)|j#ne#i:x(j,i))=1);@for(dian(i)|i#gt#1:@for(dian(j)|j#ne#i#and#j#gt#1:level(j)>level(i)+x(i,j)-(n-2)*(1-x(i,j))+(n-3)*x(j, i)));@for(dian(i)|i#gt#1:level(i)<n-1-(n-2)*x(1,i));@for(dian(i)|i#gt#1:@bnd(1,level(i),100000));@for(link:@bin(x));。
(图论)matlab模板程序
第一讲:图论模型程序一:可达矩阵算法%根据邻接矩阵A〔有向图〕求可达矩阵P〔有向图〕function P=dgraf<A>n=size<A,1>;P=A;for i=2:nP=P+A^i;endP<P~=0>=1; %将不为0的元素变为1P;程序二:无向图关联矩阵和邻接矩阵互换算法F表示所给出的图的相应矩阵W表示程序运行结束后的结果f=0表示把邻接矩阵转换为关联矩阵f=1表示把关联矩阵转换为邻接矩阵%无向图的关联矩阵和邻接矩阵的相互转换function W=incandadf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>/2; %计算图的边数n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0W<i,k>=1; %给边的始点赋值为1W<j,k>=1; %给边的终点赋值为1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>;W<a<1>,a<2>>=1; %存在边,则邻接矩阵的对应值为1 W<a<2>,a<1>>=1;endelsefprint<'Please imput the right value of f'>;W;程序三:有向图关联矩阵和邻接矩阵互换算法%有向图的关联矩阵和邻接矩阵的转换function W=mattransf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>;n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0 %由i发出的边,有向边的始点W<i,k>=1; %关联矩阵始点值为1W<j,k>=-1; %关联矩阵终点值为-1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>; %有向边的两个顶点if F<a<1>,i>==1W<a<1>,a<2>>=1; %有向边由a<1>指向a<2>elseW<a<2>,a<1>>=1; %有向边由a<2>指向a<1>endendelsefprint<'Please imput the right value of f'>;endW;第二讲:最短路问题程序0:最短距离矩阵W表示图的权值矩阵D表示图的最短距离矩阵%连通图中各项顶点间最短距离的计算function D=shortdf<W>%对于W<i,j>,若两顶点间存在弧,则为弧的权值,否则为inf;当i=j时W<i,j>=0 n=length<W>;m=1;while m<=nfor i=1:nfor j=1:nif D<i,j>>D<i,m>+D<m,j>D<i,j>+D<i,m>+D<m,j>; %距离进行更新 endendendm=m+1;endD;程序一:Dijkstra算法〔计算两点间的最短路〕function [l,z]=Dijkstra<W>n = size <W,1>;for i = 1 :nl<i>=W<1,i>;z<i>=0;endi=1;while i<=nfor j =1 :nif l<i>>l<j>+W<j,i>l<i>=l<j>+W<j,i>;z<i>=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法〔计算任意两点间的最短距离〕function [d,r]=floyd<a>n=size<a,1>;d=a;for i=1:nfor j=1:nr<i,j>=j;endendr;for k=1:nfor i=1:nfor j=1:nif d<i,k>+d<k,j><d<i,j>d<i,j>=d<i,k>+d<k,j>; r<i,j>=r<i,k>;endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short<W,k1,k2>n=length<W>;U=W;m=1;while m<=nfor i=1:nfor j=1:nif U<i,j>>U<i,m>+U<m,j>U<i,j>=U<i,m>+U<m,j>;endendendm=m+1;endu=U<k1,k2>;P1=zeros<1,n>;k=1;P1<k>=k2;V=ones<1,n>*inf;kk=k2;while kk~=k1for i=1:nV<1,i>=U<k1,kk>-W<i,kk>;if V<1,i>==U<k1,i>P1<k+1>=i;kk=i;k=k+1;endendendk=1;wrow=find<P1~=0>;for j=length<wrow>:-1:1P<k>=P1<wrow<j>>;k=k+1;endP;程序四、n1short.m<计算某点到其它所有点的最短距离> function[Pm D]=n1short<W,k>n=size<W,1>;D=zeros<1,n>;for i=1:n[P d]=n2short<W,k,i>;Pm{i}=P;D<i>=d;end程序五:pass2short.m<计算经过某两点的最短距离> function [P d]=pass2short<W,k1,k2,t1,t2>[p1 d1]=n2short<W,k1,t1>;[p2 d2]=n2short<W,t1,t2>;[p3 d3]=n2short<W,t2,k2>;dt1=d1+d2+d3;[p4 d4]=n2short<W,k1,t2>;[p5 d5]=n2short<W,t2,t1>;[p6 d6]=n2short<W,t1,k2>;dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2<2:length<p2>> p3<2:length<p3>>]; elsed=dt1;p=[p4 p5<2:length<p5>> p6<2:length<p6>>]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf<d,flag>if nargin==1n=size<d,2>;m=sum<sum<d~=0>>/2;b=zeros<3,m>;k=1;for i=1:nfor j=<i+1>:nif d<i,j>~=0b<1,k>=i;b<2,k>=j;b<3,k>=d<i,j>;k=k+1;endendendelseb=d;endn=max<max<b<1:2,:>>>;m=size<b,2>;[B,i]=sortrows<b',3>;B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t<B<1,i>>~=t<B<2,i>>T<1:2,k>=B<1:2,i>;c=c+B<3,i>;k=k+1;tmin=min<t<B<1,i>>,t<B<2,i>>>; tmax=max<t<B<1,i>>,t<B<2,i>>>; for j=1:nif t<j>==tmaxt<j>=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf<a>l=length<a>;a<a==0>=inf;k=1:l;listV<k>=0;listV<1>=1;e=1;while <e<l>min=inf;for i=1:lif listV<i>==1for j=1:lif listV<j>==0 & min>a<i,j>min=a<i,j>;b=a<i,j>;s=i;d=j;endendendendlistV<d>=1;distance<e>=b;source<e>=s;destination<e>=d;e=e+1;endT=[source;destination];for g=1:e-1c<g>=a<T<1,g>,T<2,g>>;endc;第四讲:Euler图和Hamilton图程序一:Fleury算法〔在一个Euler图中找出Euler环游〕注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1<d>%注:必须保证是Euler环游,否则输出T=0,c=0n=length<d>;b=d;b<b==inf>=0;b<b~=0>=1;m=0;a=sum<b>;eds=sum<a>/2;ed=zeros<2,eds>;vexs=zeros<1,eds+1>;matr=b;for i=1:nif mod<a<i>,2>==1m=m+1;endendif m~=0fprintf<'there is not exit Euler path.\n'>T=0;c=0;endif m==0vet=1;flag=0;t1=find<matr<vet,:>==1>;for ii=1:length<t1>ed<:,1>=[vet,t1<ii>];vexs<1,1>=vet;vexs<1,2>=t1<ii>;matr<vexs<1,2>,vexs<1,1>>=0;flagg=1;tem=1;while flagg[flagg ed]=edf<matr,eds,vexs,ed,tem>;tem=tem+1;if ed<1,eds>~=0 & ed<2,eds>~=0T=ed;T<2,eds>=1;c=0;for g=1:edsc=c+d<T<1,g>,T<2,g>>;endflagg=0;break;endendendendfunction[flag ed]=edf<matr,eds,vexs,ed,tem>flag=1;for i=2:eds[dvex f]=flecvexf<matr,i,vexs,eds,ed,tem>;if f==1flag=0;break;endif dvex~=0ed<:,i>=[vexs<1,i> dvex];vexs<1,i+1>=dvex;matr<vexs<1,i+1>,vexs<1,i>>=0;elsebreak;endendfunction [dvex f]=flecvexf<matr,i,vexs,eds,ed,temp> f=0;edd=find<matr<vexs<1,i>,:>==1>;dvex=0;dvex1=[];ded=[];if length<edd>==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length<edd>m1=find<vexs==edd<kk>>;if sum<m1>==0dvex1<dd>=edd<kk>;dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length<edd>tem=vexs<1,i>*ones<1,kkk>;edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1<1:2,l1>==ed<1:2,l2>lt=lt+1;endendif lt==0ded<ddd>=edd<l1>;ddd=ddd+1;endendendif temp<=length<dvex1>dvex=dvex1<temp>;elseif temp>length<dvex1> & temp<=length<ded>dvex=ded<temp>;elsef=1;endend程序二:Hamilton改良圈算法〔找出比较好的Hamilton路〕function [C d1]= hamiltonglf<v>%d表示权值矩阵%C表示算法最终找到的Hamilton圈.%v =[ 51 67;37 84;41 94;2 99;18 54;4 50;24 42;25 38;13 40;7 64;22 60;25 62;18 40;41 26];n=size<v,1>;subplot<1,2,1>hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endplot <v<:,1>,v<:,2>>;%连线plot<[v<n,1>,v<1,1>],[v<n,2>,v<1,2>]>;for i =1:nfor j=1:nd<i,j>=sqrt<<v<i,1>-v<j,1>>^2+<v<i,2>-v<j,2>>^2>;endendd2=0;for i=1:nif i<nd2=d2+d<i,i+1>;elsed2=d2+d<n,1>;endendtext<10,30,num2str<d2>>;n=size<d,2>;C=[linspace<1,n,n> 1];for nnn=1:20C1=C;if n>3for m=4:n+1for i=1:<m-3>for j=<i+2>:<m-1>if<d<C<i>,C<j>>+d<C<i+1>,C<j+1>><d<C<i>,C<i+1>>+d<C<j>,C<j+1>>>C1<1:i>=C<1:i>;for k=<i+1>:jC1<k>=C<j+i+1-k>;endC1<<j+1>:m>=C<<j+1>:m>;endendendendelseif n<=3if n<=2fprint<'It does not exist Hamilton circle.'>; elsefprint<'Any cirlce is the right answer.'>;endendC=C1;d1=0;for i=1:nd1=d1+d<C<i>,C<i+1>>;endd1;endsubplot<1,2,2>;hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endv2=[v;v<1,1>,v<1,2>];plot<v<C<:>,1>,v<C<:>,2>,'r'>;text<10,30,num2str<d1>>;第五讲:匹配问题与算法程序一:较大基础匹配算法function J=matgraf<W>n=size<W,1>;J=zeros<n,n>;while sum<sum<W>>~=0a=find<W~=0>;t1=mod<a<1>,n>;if t1==0t1=n;endif a<1>/n>floor<a<1>/n>t2=floor<a<1>/n>+1;elset2=floor<a<1>/n>;endJ<t1,t2>=1,J<t2,t1>=1;W<t1,:>=0;W<t2,:>=0;W<:,t1>=0;W<:,t2>=0;endJ;程序二:匈牙利算法〔完美匹配算法,包括三个文件fc01,fc02,fc03〕function [e,s]=fc01<a,flag>if nargin==1flag=0;endb=a;if flag==0cmax=max<max<b>'>;b=cmax-b;endm=size<b>;for i =1:m<1>b<i,:>=b<i,:>-min<b<i,:>>;endfor j=1:m<2>b<:,j>=b<:,j>-min<b<:,j>>;endd=<b==0>;[e,total]=fc02<d>;while total~=m<1>b=fc03<b,e>;d=<b==0>;[e,total]=fc02<d>;endinx=sub2ind<size<a>,e<:,1>,e<:,2>>;e=[e,a<inx>];s=sum<a<inx>>;function [e,total]=fc02<d>total=0;m=size<d>;e=zeros<m<1>,2>;t=sum<sum<d>'>;nump=sum<d'>;while t~=0[s,inp]=sort<nump>;inq=find<s>;ep=inp<inq<1>>;inp=find<d<ep,:>>;numq=sum<d<:,inp>>;[s,inq]=sort<numq>;eq=inp<inq<1>>;total=total+1;e<total,:>=[ep,eq];inp=find<d<:,eq>>;nump<inp>=nump<inp>-1;nump<ep>=0;t=t-sum<d<ep,:>>-sum<d<:,eq>>+1;d<ep,:>=0*d<ep,:>;d<:,eq>=0*d<:,eq>;endfunction b=fc03<b,e>m=size<b>;t=1;p=ones<m<1>,1>;q=zeros<m<1>,1>;inp=find<e<:,1>~=0>;p<e<inp,1>>=0;while t~=0tp=sum<p+q>;inp=find<p==1>;n=size<inp>;for i=1:n<1>inq=find<b<inp<i>,:>==0>;q<inq>=1;endinp=find<q==1>;n=size<inp>;for i=1:n<1>if all<e<:,2>-inp<i>>==0inq=find<<e<:,2>-inp<i>>==0>;p<e<inq>>=1;endendtq=sum<p+q>;t=tq-tp;endinp=find<p==1>;inq=find<q==0>;cmin=min<min<b<inp,inq>>'>;inq=find<q==1>;b<inp,:>=b<inp,:>-cmin;b<:,inq>=b<:,inq>+cmin;第六讲:最大流最小费用问题程序一:2F算法<Ford-Fulkerson算法>,求最大流%C=[0 5 4 3 0 0 0 0;0 0 0 0 5 3 0 0;0 0 0 0 0 3 2 0;0 0 0 0 0 0 2 0; %0 0 0 0 0 0 0 4;0 0 0 0 0 0 0 3;0 0 0 0 0 0 0 5;0 0 0 0 0 0 0 0 ] function [f wf]=fulkersonf<C,f1>%C表示容量%f1表示当前流量,默认为0%f表示最大流±íʾ×î´óÁ÷%wf表示最大流的流量n=length<C>;if nargin==1;f=zeros<n,n>;elsef=f1;endNo=zeros<1,n>;d=zeros<1,n>;while <1>No<1>=n+1;d<1>=Inf;while <1>pd=1;for <i=1:n>if <No<i>>for <j=1:n>if <No<j>==0 & f<i,j><C<i,j>>No<j>=i;d<j>=C<i,j>-f<i,j>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endelseif <No<j>==0 & f<j,i>>0>No<j>=-i;d<j>=f<j,i>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endendendendendif <No<n>|pd>break;endendif <pd>break;enddvt=d<n>;t=n;while <1>if<No<t>>0>f<No<t>,t>=f<No<t>,t>+dvt;elseif <No<t><0>f<No<t>,t>=f<No<t>,t>-dvt;endif <No<t>==1>for <i=1:n>No<i>=0;d<i>=0;endbreakendt=No<t>;endendwf=0;for <j=1:n>wf=wf+f<1,j>;endf;wf;程序二:Busacker-Gowan算法<求最大流最小费用>%C=[0 15 16 0 0;0 0 0 13 14;0 11 0 17 0;0 0 0 0 8;0 0 0 0 0] %b=[0 4 1 0 0;0 0 0 6 1;0 2 0 3 0;0 0 0 0 2;0 0 0 0 0]%function [f wf zwf]=BGf<C,b>%C表示弧容量矩阵%b表示弧上单位流量的费用%f表示最大流最小费用矩阵%wf最大流量%zwf表示最小费用n=size<C,2>;wf=0;wf0=inf;f=zeros<n,n>;while <1>a=ones<n,n>*inf;for <i=1:n>a<i,i>=0;endfor <i=1:n>for <j=1:n>if<C<i,j>>0 & f<i,j>==0>a<i,j>=b<i,j>;elseif <C<i,j>>0 & f<i,j>==C<i,j>>a<j,i>=-b<i,j>;elseif <C<i,j>>0>a<i,j>=b<i,j>;a<j,i>=-b<i,j>;endendendfor <i=2:n>p<i>=inf;s<i>=i;endfor <k=1:n>pd=1;for <i=2:n>for <j=1:n>if <p<i>>p<j>+a<j,i>>p<i>=p<j>+a<j,i>;s<i>=j;pd=0; endendendif <pd>break;endendif <p<n>==inf>break;enddvt=inf;t=n;while <1>if <a<s<t>,t>>0>dvtt=C<s<t>,t>-f<s<t>,t>;elseif <a<s<t>,t><0>dvtt=f<t,s<t>>;endif <dvt>dvtt>dvt=dvtt;endif <s<t>==1>break;endt=s<t>;endpd=0;if <wf+dvt>=wf0>dvt=wf0-wf;pd=1;endt=n;while <1>if <a<s<t>,t>>0>f<s<t>,t>=f<s<t>,t>+dvt; elseif <a<s<t>,t><0>f<<t>,s<t>>=f<t,s<t>>-dvt; endif <s<t>==1>break;endt=s<t>;endif <pd>break;endwf=0;for <j=1:n>wf=wf+f<1,j>;endendzwf=0;for <i=1:n>for <j=1:n>zwf=zwf+b<i,j>*f<i,j>;endendf;。
网络计划流程图运用MATLAB确定关键线路的方法
运用Floyd 算法及MATLAB 编程确定网络计划图关键线路的方法古雨鑫(西南科技大学 四川 绵阳 621000)摘要:关键线路的确定对工程有着重要的意义,同时也是目前常用的一种工程项目进度控制的计划方法,本文通过运用Floyd 算法,以及MATL AB 编程对矩阵的处理能力,本文给出了两种确定关键线路的方法,可以简单方便的确定网络图中的关键线路。
关键词:MATLA B,网络流程图,Fl oyd 算法,关键线路ﻩ1 基本理论1.1基本概念工程中一项工作从开始到完成需要的时间和资源,在网络图中一般用箭线表示,箭尾表示工作的开始,而箭头表示工作的结束,工作的代号(或名称)一般写在箭线的上方,工作的所需要消耗的时间(资源)一般写在箭线的下方,除此以外,还有不消耗资源和时间的虚工作(一般用虚线表示,只与工作有逻辑关系),紧接着前一项的工作称为紧前工作,紧接着后一项的工作称为紧后工作。
节点指紧前工作和紧后工作的交点,并附有数码(工程中箭头的数码必须大于箭尾的数码).关键线路指的是工程中从起始节点到最后节点的所要经过的最长线路。
1。
2 确定关键线路的意义现代工程的特点是规模巨大,对时间,资源,资源都有严格的要求,而关键线路更是直接决定工程的总工期,对工程的控制起到了重要的作用,找出关键线路在工程中有着重要的实际意义,对工程的控制有着决定的影响。
ﻩ2 确定工程项目的M ATLAB 算法方法2.1采用Floyd 算法对关键线路的确定Floy d算法的基本思想是递推产生一个矩阵序列1k ,,,,n A A A , 其中矩阵k A 的第i 行第j 列元素k (,)A i j 表示是从顶点i V 到顶点j V 的路径上所经过的顶点序号不大于k的最短路径长度。
计算时用的迭代公式111(,)min((,),(,),(,)),K k k k A i j A i j A i k A k j ---=K 是迭代次数,,,1,2,,i k j n =。
最小费用最大流问题matlab程序
最小费用最大流问题m a t l a b程序下面的最小费用最大流算法采用的是“基于Floyd最短路算法的Ford和Fulkerson迭加算法”,其基本思路为:把各条弧上单位流量的费用看成某种长度,用Floyd求最短路的方法确定一条自V1至Vn的最短路;再将这条最短路作为可扩充路,用求解最大流问题的方法将其上的流量增至最大可能值;而这条最短路上的流量增加后,其上各条弧的单位流量的费用要重新确定,如此多次迭代,最终得到最小费用最大流。
本源码由GreenSim团队原创,转载请注明function [f,MinCost,MaxFlow]=MinimumCostFlow(a,c,V,s,t)%%MinimumCostFlow.m% 最小费用最大流算法通用Matlab函数%% 基于Floyd最短路算法的Ford和Fulkerson迭加算法% GreenSim团队原创作品,转载请注明%% 输入参数列表% a 单位流量的费用矩阵% c 链路容量矩阵% V 最大流的预设值,可为无穷大% s 源节点% t 目的节点%% 输出参数列表% f 链路流量矩阵% MinCost 最小费用% MaxFlow 最大流量%% 第一步:初始化N=size(a,1);%节点数目f=zeros(N,N);%流量矩阵,初始时为零流MaxFlow=sum(f(s,:));%最大流量,初始时也为零flag=zeros(N,N);%真实的前向边应该被记住for i=1:Nfor j=1:Nif i~=j&&c(i,j)~=0flag(i,j)=1;%前向边标记flag(j,i)=-1;%反向边标记endif a(i,j)==infa(i,j)=BV;w(i,j)=BV;%为提高程序的稳健性,以一个有限大数取代无穷大endendendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在elseRE=0;end%% 第二步:迭代过程while RE==1&&MaxFlow<=V%停止条件为达到最大流的预设值或者没有从s到t的最短路%以下为更新网络结构MinCost1=sum(sum(f.*a));MaxFlow1=sum(f(s,:));f1=f;TS=length(R)-1;%路径经过的跳数LY=zeros(1,TS);%流量裕度for i=1:TSLY(i)=c(R(i),R(i+1));endmaxLY=min(LY);%流量裕度的最小值,也即最大能够增加的流量for i=1:TSu=R(i);v=R(i+1);if flag(u,v)==1&&maxLY<c(u,v)%当这条边为前向边且是非饱和边时f(u,v)=f(u,v)+maxLY;%记录流量值w(u,v)=a(u,v);%更新权重值c(v,u)=c(v,u)+maxLY;%反向链路的流量裕度更新elseif flag(u,v)==1&&maxLY==c(u,v)%当这条边为前向边且是饱和边时w(u,v)=BV;%更新权重值c(u,v)=c(u,v)-maxLY;%更新流量裕度值w(v,u)=-a(u,v);%反向链路权重更新elseif flag(u,v)==-1&&maxLY<c(u,v)%当这条边为反向边且是非饱和边时w(v,u)=a(v,u);c(v,u)=c(v,u)+maxLY;w(u,v)=-a(v,u);elseif flag(u,v)==-1&&maxLY==c(u,v)%当这条边为反向边且是饱和边时w(v,u)=a(v,u);c(u,v)=c(u,v)-maxLY;w(u,v)=BV;elseendendMaxFlow2=sum(f(s,:));MinCost2=sum(sum(f.*a));if MaxFlow2<=VMaxFlow=MaxFlow2;MinCost=MinCost2;[L,R]=FLOYD(w,s,t);elsef=f1+prop*(f-f1);MaxFlow=V;MinCost=MinCost1+prop*(MinCost2-MinCost1);returnendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在 elseRE=0;endendfunction [L,R]=FLOYD(w,s,t)n=size(w,1);D=w;path=zeros(n,n);%以下是标准floyd算法for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;endendendfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendendL=zeros(0,0);R=s;while 1if s==tL=fliplr(L);L=[0,L];returnendL=[L,D(s,t)];R=[R,path(s,t)];s=path(s,t);end。