多种液体混合控制报告

合集下载

5 多种液体混合控制实训报告

5 多种液体混合控制实训报告

多种液体混合控制实训一实训目的1. 掌握多种液体混合PLC控制的基本原理。

2. 掌握置位、复位指令的使用方法。

二实训器材1. 三菱可编程控制器实训装置1台2. 多种液体混合控制实训模块1个3. 计算机1台4. 编程电缆1根5. 连接导线若干三实训要求多种液体混合控制实训模块中C0、C1、C2、C3为液位传感器,分别代表液位C、液位B、液位A和液位底,由PLC控制V0、V1、V2三个液体进口阀门的开启,使A、B、C三种液体达到工艺规定的液面。

随后PLC控制加热器H和搅拌电机M的工作,当到达希望温度(C4代表温度传感器)时,PLC开启出料阀,从而完成一个周期的搅拌工作。

多种液体混合控制演示装置利用LED指示灯模拟各点的工作状态,电磁阀的开闭状态、传感器信号的有和无用LED指示灯的亮和灭状态来表示,搅拌电机工作用LED闪烁来表示,液面的上升和下降过程用定时器来模拟。

多种液体混合控制实训的控制要求:1. 初始状态各阀门关闭;2. 按下启动按钮,液位为底部,阀门V0打开,同时定时器开始计时,开始注入液体A;3. 2S后到达液位A,控制阀V0关闭,同时阀V1打开,注入液体B;4. 3S后达到液位B,控制V1关闭,同时阀V2,注入液体C;5. 3S后达到液面C,加热器和搅拌电机开始工作;6. 3S后温度达到设定值,搅拌和加热结束,阀V3打开,液面下降,C0、C1、C2、C3依次熄灭;7. 7S后液体放空,阀V3关闭,一轮结束,又从控制要求2开始循环。

8. 按下停止按钮,所有操作立即停止,所有指示灯全部熄灭。

四实训组成员名单组长:徐玄;实训组成员:胡建、费子威、王晓攀、郑婷婷;实训操作员:徐玄、郑婷婷;实训监护员:胡建;现象与结果记录员:费子威、王晓攀。

五实训步骤及注意事项1. 理解实训的原理及控制要求,列出I/O分配表。

2. 根据分配表编写实训程序。

3. 将编程电缆一端与PLC的编程接口相连,另一端与计算机串口连接。

多种液体混合控制

多种液体混合控制

河南机电高等专科学校生产过程自动化专业综合实训报告多种液体混合控制系部: 自动控制系专业: 生产过程自动化班级:姓名:学号:成绩:二零一二年十二目录一、引言 (1)二、系统总体方案设计 (2)2.1系统硬件配置及组成原理 (2)2.2系统变量定义及I/O地址分配表 (5)2.3硬件系统接线图设计 (5)三、控制内容及程序设计 (6)3.1控制要求及内容 (7)3.2 PLC与上位监控软件通信 (8)3.3控制程序设计思路 ·························································错误!未定义书签。

四、结束语 (9)参考文献 (10)附录:带功能注释的源程序 (11)一、引言在工艺加工最初,把多种原料在合适的时间和条件下进行加工得到产品,一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是现在随着时代的发展,这些方式已经不能满足工业生产的实际需要,实际生产中需要更精确、更便捷的控制装置。

随着科学技术的日新月异,自动化程度要求越来越高,原来的液体混合装置远远不能满足当前自动化的需要。

可编程控制器液体自动混合系统集成自动控制技术,计量技术,传感器技术等技术与一体的机电一体化装置。

多种液体混合装置的plc控制感悟

多种液体混合装置的plc控制感悟

多种液体混合装置的plc控制感悟一、前言液体混合是工业生产中常见的工艺,而PLC控制则是现代化自动化生产中必不可少的一部分。

在多种液体混合装置中,PLC控制系统的作用尤为重要。

本文将从多种液体混合装置的PLC控制方面进行感悟与总结。

二、多种液体混合装置1. 搅拌桶式液体混合装置搅拌桶式液体混合装置是一种简单的混合设备,其原理是通过搅拌来实现不同液体之间的充分混合。

该设备通常由搅拌桶、电机、减速机等组成。

2. 管道式液体混合装置管道式液体混合装置是一种高效的混合设备,其原理是通过管道内流速较快的流动状态使不同液体之间充分混合。

该设备通常由管道、泵、流量计等组成。

3. 潜水泵式液体混合装置潜水泵式液体混合装置是一种适用于大型水处理厂和污水处理厂等场所的设备,其原理是通过潜水泵将液体抽到混合池中进行混合。

该设备通常由潜水泵、混合池、控制系统等组成。

三、PLC控制在液体混合装置中的应用1. 自动化控制PLC控制可以实现对液体混合装置的自动化控制,无需人工干预。

通过设置不同的程序和参数,可以实现不同液体之间的准确配比和精确计量。

2. 故障检测与报警PLC控制可以监测设备运行状态,一旦发生故障或异常情况,即可及时发出警报并停止设备运行,避免事故的发生。

3. 远程监控与管理PLC控制可以实现对液体混合装置的远程监控和管理。

通过网络连接,可以实时了解设备运行状态和生产情况,并进行远程操作和管理。

四、感悟与总结1. PLC控制是现代化自动化生产中必不可少的一部分。

在多种液体混合装置中,PLC控制系统的作用尤为重要。

2. 不同类型的液体混合装置适用于不同场所和不同工艺要求。

在选择设备时应根据具体情况进行选择。

3. 在液体混合装置的PLC控制方面,应注重设备的自动化控制、故障检测与报警以及远程监控与管理等方面的应用。

4. 在使用液体混合装置时,应遵守操作规程,保证设备正常运行和生产安全。

综上所述,多种液体混合装置的PLC控制在现代化自动化生产中具有非常重要的作用。

西门子S7-1200多液体混合控制系统PLC课程设计报告

西门子S7-1200多液体混合控制系统PLC课程设计报告
院长(主任) (签字)
2017年12月20日
一、设计内容及要求
1基础题
1.1天塔之光
1.2PLC控制电机正反转
2组合题 PLC 实现多液体自动混合控制
2.1总体控制要求:如面板图所示,本装置为三种液体混合模拟装置,由液面传感器SL1、SL2、SL3,液体A、B、C阀门与混合液阀门由电磁阀YV1、YV2、 YV3、YV4,搅匀电机M,加热器H,温度传感器T组成。实现三种液体的混合,搅匀,加热等功能。三相异步电动机与搅拌电机同步运转、停止。
2.2打开“启动”开关,装置投入运行时。首先液体A、B、C阀门关闭,混合液阀门打开10秒将容器放空后关闭。然后液体A阀门打开,液体A流入容器。当液面到达SL3时,SL3接通,关闭液体A阀门,打开液体B阀门。液面到达SL2 时,关闭液体B阀门,打开液体C阀门。液面到达SL1时,关闭液体C阀门。
2.3搅匀电机开始搅匀、加热器开始加热。当混合液体在7秒内达到设定温度,加热器停止加热,搅匀电机工作7秒后停止搅动;当混合液体加热7秒后还没有达到设定温度,加热器继续加热,当混合液达到设定的温度时,加热器停止加热,搅匀电机停止工作。
山东交通学院
电控与PLC课程设计报告
院(部)别信息科学与电气工程学院
班 级电气
学 号
姓 名
指导教师
时 间2017.12.11--2017.12.22
课程设计任务书
题目多液体混合控制系统
学 院信息科学与电气工程学院
专业电气工程及其自动化
班级电气
学生姓名
学号
12月11日至12月22日共2周
指导教师(签字)
2.4搅匀结束以后,混合液体阀门打开,开始放出混合液体。当液面下降到 SL3时, SL3由接通变为断开,再经过N秒,容器放空,混合液阀门关闭,开始下一周期。

液体混合控制实验报告

液体混合控制实验报告

一、实验目的1. 了解液体混合装置的结构和工作原理;2. 掌握PLC控制系统的基本原理和应用;3. 学会使用PLC技术实现对液体混合过程的自动化控制;4. 提高动手能力和实验技能。

二、实验原理液体混合装置主要用于将两种或多种液体按照一定比例进行混合。

实验中,我们采用PLC控制系统实现对液体混合过程的自动化控制。

PLC(可编程逻辑控制器)是一种广泛应用于工业控制领域的电子设备,具有可靠性高、抗干扰能力强、编程灵活等优点。

实验原理如下:1. 通过传感器采集液体混合装置的液位、温度等参数;2. 将传感器采集的信号传输至PLC控制器;3. PLC控制器根据预设的控制程序,对电磁阀、搅拌机等执行机构进行控制,实现对液体混合过程的自动化控制;4. 通过人机界面实时显示液体混合装置的运行状态。

三、实验设备1. PLC控制器(如S7-200系列);2. 传感器(如液位传感器、温度传感器);3. 电磁阀、搅拌机等执行机构;4. 实验装置(含液体混合容器、连接导线等);5. 编程软件(如STEP 7-Micro/WIN);6. 计算机等辅助设备。

四、实验步骤1. 连接实验装置,确保各部件连接正确;2. 在PLC控制器中编写控制程序,实现对液体混合过程的自动化控制;3. 通过编程软件将控制程序下载至PLC控制器;4. 设置PLC控制器的运行参数,如液位、温度等;5. 启动实验装置,观察液体混合过程;6. 调整控制参数,优化液体混合效果;7. 记录实验数据,分析实验结果。

五、实验结果与分析1. 液体混合装置的液位传感器能够准确采集液位信息,并将信号传输至PLC控制器;2. PLC控制器根据预设的控制程序,对电磁阀、搅拌机等执行机构进行控制,实现了液体混合过程的自动化控制;3. 实验过程中,通过调整控制参数,优化了液体混合效果;4. 实验结果表明,PLC控制系统在液体混合过程中具有较好的控制性能。

六、实验总结1. 通过本次实验,我们了解了液体混合装置的结构和工作原理;2. 掌握了PLC控制系统的基本原理和应用;3. 学会了使用PLC技术实现对液体混合过程的自动化控制;4. 提高了动手能力和实验技能。

多种液体自动混合控制系统设计

多种液体自动混合控制系统设计

多种液体自动混合控制系统设计液体自动混合控制系统可以应用于许多领域,例如工业生产,医疗设备,生物科技等。

设计一个多种液体自动混合控制系统时,需要考虑以下几个方面:传感器选择,控制算法设计,执行器选择,系统稳定性和安全性。

首先,传感器选择是系统设计的关键。

液体自动混合控制系统需要能够测量液体的温度、流量、压力和浓度等关键参数。

因此,需要选择适当的传感器来实现这些测量,并将测量结果反馈给控制系统。

其次,控制算法设计是液体自动混合控制系统的核心。

根据具体的应用场景和需求,可以选择不同的控制算法,如PID控制算法,模糊控制算法或模型预测控制算法。

控制算法将根据传感器的反馈信号来调节液体的混合比例或浓度,以达到预期的混合效果。

第三,执行器选择是液体自动混合控制系统中不可忽视的一部分。

根据混合液体的性质和混合要求,可以选择不同类型的执行器,如阀门、泵或搅拌器。

执行器将根据控制算法的指令来调节混合液体的流量和速度,以实现到达目标浓度。

其次,系统稳定性和安全性是一个多种液体自动混合控制系统设计过程中需要非常注意的方面。

稳定性是指系统在长时间运行下的可靠性和一致性,控制算法需要设计得稳定并能够适应不同的工作条件。

安全性是指系统在运行过程中能够避免发生意外,从而保证操作人员和设备的安全。

因此,在系统设计过程中需要考虑到一些防护装置和报警系统。

最后,设计师应该在系统实施前进行充分的测试和验证。

通过测试和验证,可以确保设计满足需求,并且能够在不同情况下保持稳定工作。

总之,多种液体自动混合控制系统的设计需要综合考虑传感器选择、控制算法设计、执行器选择、系统稳定性和安全性等方面。

只有全面考虑这些因素,才能设计出一个稳定可靠、安全高效的液体自动混合控制系统。

毕业设计 多种液体混合PLC控制系统设计报告

毕业设计 多种液体混合PLC控制系统设计报告

(一)课程设计的背景随着科学技术的猛速发展,自动控制技术在人类活动的各个领域中应用越来越广泛。

在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。

设计的多种液体混合装置利用可编程控制器可以实现在混合过程中进行精确控制,提高了液体混合比例的稳定性、运行稳定、自动化程度高,适合工业生产的需要。

(二)课程设计的目的及意义在工艺加工最初,把多种原料在合适的时间和条件下进行所需要的加工以得到产品一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是随着时代的发展,这些方式已经不能满足工业生产的实际需要。

实际生产中需要更精确、更便捷的控制装置。

随着科学技术的日新月异,自动化程度要求越来越高,原来的液体混合装置远远不能满足当前自动化的需要。

可编程控制器液体自动混合系统集成自动控制技术,计量技术,传感器技术与机电一体化装置。

充分吸收了分散式控制系统和集中控制系统的优点。

采用标准化、模块化、系统化设计,配置灵活、组态方便。

PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

他采用可以编制程序的储存器用来在其内部储存执行逻辑运算、顺序运算、计时、计数和算数运算等操作的指令,并能通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。

有以下主要特点:1)使用灵活,通用性强2)可靠性高,抗干扰能力强3)接口简单、维护方便4)体积小、功耗少、性价比高5)编程简单容易掌握6)设计施工调试周期短所以根据多种液体自动混合系统的要求与特点,我们采用PLC作为我们的控制系统。

可编程控制器指令丰富,可以接各种输出、输入扩充设备,有丰富的特殊扩展设备,其中的模拟输入设备和通信设备是系统所必需的,能够方便地联网通信。

本系统就是应用可编程序控制器PLC对多种液体自动混合实现控制。

(三)课程设计的内容实现基于S7-200多种液体混合控制系统设计。

用PLC实现多种液体自动混合控制

用PLC实现多种液体自动混合控制

2012-03百花园地近年来PLC 在处理速度、控制功能、通信能力以及控制领域等方面都不断有新突破,因此当今PLC 是集计算机技术、通信技术和自动控制技术为一体的新型工业控制装置。

PLC 的应用范围很广泛,特别是在教学上运用。

FX2n 系列是FX 系列PLC 家族中最先进的系列;FX2n 系列具备如下特点:小型、高速、高性能,是FX 系列中最先进的超级微型PLC 。

除了具有输入输出16~256点的一般用途,还有模拟量控制、定位控制等特殊控制。

FX2n 系列PLC 结构紧凑、硬件配置齐全、软件功能强大等,适合在轻工行业的中小型企业中推广应用。

本文采用日本三菱公司生产的FX 系列FX2N-32MR (电源电压为AC220V ,输入点数为16点,输出点数为16点,输出类型为继电器输出,FX2N-32MR 为品名)可编程控制器为主控部件,设计了一种对多种液体进行自动混合的控制系统。

一、系统简介及控制要求多种液体混合控制主要是将3种液体分别注入、搅拌、加热,最终达到自动混合的目的,L1、L2、L3为液位传感器,被液面淹没时输出高电平;Y1、Y2、Y3、Y4为电磁阀,通电时打开,失电时关闭;M 为搅拌电机;H 为加热器,如图1所示。

具体控制要求如下:1.初始状态容器是空的,阀门Y1、Y2、Y3、Y4均为OFF,液位传感器L1、L2、L3均为OFF ,搅拌机M 为OFF ,加热器H 为OFF 。

2.混合过程按下启动按钮SB0,液体混合装置按以下规律循环工作:(1)电磁阀Y1开启(Y1=ON ),开始注入液体A ;当液面高度达到L3时,(L3=ON ),停止注入液体A (Y1=OFF ),同时开启液体B 电磁阀Y2(Y2=ON )注入液体B ;当液面升至L2时(L2=ON ),停止注入液体B (Y2=OFF )同时开启液体C 电磁阀Y3(Y3=ON )注入液体C ;当液面升至L1时(L1=ON ),停止注入液体C (Y3=OFF ),同时启动搅拌机M (M=ON ),开始搅拌。

实验3—多种液体混合自动控制(精)

实验3—多种液体混合自动控制(精)

四、注意事项 (1)先将PLC的电源线插进PLC正面的电源孔中, 再将另一端插到220V电源插板。
(2)将电源开关拨到关状态,严格按I/O接线图接线 ,注意24V电源的正负不可短接,电路不要短路,否 则会损坏PLC触点。
五、思考题
增加循环功能,默认状态下可以循环,按 一下复位按钮,可以停止循环。试设计其梯 形图。
多种液体混合自动控制
课程:《激光设备控制技术》 院系:电子工程系 主讲人:蔡文明
多种液体混合自动控制
一、实验目的
1.了解多种液体自动混合控制系统的工作原理 2.掌握编制PLC程序的步骤和方法 3.熟悉PLC控制系统的接线 4.进一步培养解决问题的能力
二、设备及器件
配备FX3U-32MR型PLC的实训装置一套 SC-09电缆1根 电脑1台 GX Developer编程软件一套 多种液体自动混合模块一套
S0
M8002 X4 启动按钮 S20 X2 S21 X1 S22 T0 S23 X3 S22 T1 Y4 T1 K30 Y5 T0 K50 Y4 Y1 Y2 Y3
(2)按下启动按钮,电磁阀Y1、Y2打 开,注入液体A与B,液面高度为L2时 (此时L2和L3均为ON),停止注入 (Y1、Y2为OFF)。同时开启液体C的 电磁阀Y3(Y3为ON),注入液体C, 当液面升至L1时( L1为ON),停止注 入(Y3为OFF)。开启搅拌机M,搅拌 时间为5秒。时间到电磁阀Y4开启,排 出液体,当液面高度降至L3时(L3为 OFF),Y4延时3秒关闭。按启动按钮 可以重新开始工作。
六、结论 包括体会、建议、遇到的问题,如何解决的。
ห้องสมุดไป่ตู้
液体混合I/O分配表
输入口 说明 输出口 说明

第10章多种液体混合装置控制

第10章多种液体混合装置控制
4.搅匀结束以后,混合液体阀门打开,开始放出混合液体。当液 面下降到SL3时,SL3由接通变为断开,再过2秒后,容器放空, 混合液阀门关闭,开始下一周期。
5.关闭“启动”开关,在当前的混合液处理完毕后,停止操作。
三、程序流程图
四、I/O分配
PLC地址(PLC端子) 电气符号(面板端子)
功能说明
多种液体混合装置控制
多种液体混合装置控制
一、工艺要求
二、控制要求
1.总体控制要求:如面板图所示,本装置为三种液体混合 模拟装置,由液面传感器SL1、SL2、SL3,液体A、B、 C阀门与混合液阀门由电磁阀YV1、YV2、YV3、YV4, 搅匀电机M,加热器H,温度传感器T组成。实现三种液 体的混合,搅匀,加热等功能。
X00
SD
启动(SD)
X01
SL1
液位传感器SL1
X02
SL2
液位传感器SL2
X03
SL3
液位传感器SL3
X04
T
温度传感器T
Y00
YV1
进液阀门A
Y01
YV2
进液阀门B
Y02
YV3
进液阀门C
Y03
YV4
排液阀门
Y04
YKM
搅拌电机
Y05
H
加热器
主机COM、面板COM接电源GND
电源地端
主机COM0、COM1、COM2、COM3、COM4、COM5、 接电源GND
七、程序设计
电源地端
面板V+接电源+241.检查实训设备中器材及调试程序。 按照I/O端口分配表或接线图完成PLC与实训模块之间的
接线,认真检查,确保正确无误。 打开示例程序或用户自己编写的控制程序,进行编译,

PLC控制多种液体混合控制系统

PLC控制多种液体混合控制系统

掺混PLC控制系统摘要:可编程序控制器(Programmable controller)简称PLC,是近年来一种极为迅速,应用极为广泛的工业控制装置。

它是一种专为工业环境应用而设计的数字运行的电子系统,它采用可编程程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出完成确定的逻辑顺序、定时、记数、运算和一些确定的功能来控制各种类型的机械或生产过程。

由于PLC的性能优越,兼具计算机的功能完备,灵活性强,通用性好和继电接触器控制简单易懂,维修方便等双重优点,形成以微电脑为核心的电子控制设备。

可编程序控制器技术在世界上己广泛应用,成为自动化系统中的基本电控装置PLC在现代工业生产和实际生活中有着广泛的应用,由于可编程控制器(PLC)具有编程软件采自易学易懂的梯形图语言、控制灵活方便、抗干扰能力强、运行稳定可靠等特点,现在的工业自动化生产控制多采用可编程控制器来实现。

该掺混控制系统,根据实际要求利用PLC的实时控制和顺序处理功能,完成系统控制,。

在本次论文中,给出了控制系统的硬件原理图,主电路图及软件设计。

关键词:可编程序控制器、存储器、计算机技术。

Hybrid Control System Implementedby Programmable Logical controllerAbstract:This design introduced the function and merits of the FX2N PLC,and electrical appliance linearize Control system which digital shouing has high efficiency ,low cost on the core o f FX2N PLC.Programmable controller short for PLC,it’s aspcial digital running electrican system which design for industry circumstances.It adopt programmable controller memory ,used for memory user’s instruction which through digital or analog’s input/ou tput to finish definitely function to control various machines or produce process.Because PLC has outstanding function, also has perfect function competence, plus flexibility better current use of computer’s Form electronic control equipment which core on microcomputer PLC control technology was used wide-ranging in world , become basic electricity control device in the Automation system PLC has extensive use in industry product of contemporary age and practice. Because PLC has so many merits, now industry products mostly adopt PLC to bring about . In fact the self control regular , but yell is random only use sequence control or logical control can’t satisfy the request of control . So this system adopts the control pattern which is of random logical ability .This control system , based on the request of practice adopts the PLC’s merits to finish the control of system; this thesis has the system’s scheme of hardware main circuit diagram and software design.Keywords: Programmable controller 、memory 、computer technology 。

PLC控制实验--多种液体混合装置控制

PLC控制实验--多种液体混合装置控制

实验十多种液体混合装置控制一、实验目的1.掌握上升沿微分/下降沿微分指令的使用及编程。

2.掌握多种液体混合装置控制系统的接线、调试、操作。

二、实验设备序号名称型号与规格数量备注1 网络型可编程控制器高级实验装置THORM-D 12 实验挂箱CM24 13 实验导线3号若干4 通讯电缆USB 15 计算机 1 自备三、控制要求本装置为两种液体混合装置,SL1、SL2、SL3为液面传感器,液体A、B阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅动电机,控制要求如下:1.按下启动按钮SB1,装置投入运行时,液体A、B阀门关闭,混合液阀门打开3秒将容器放空后关闭,液体A阀门打开,液体A流入容器。

2.当液面到达SL2时,SL2接通,关闭液体A阀门,打开液体B阀门。

3.液面到达SL1时,关闭液体B阀门,搅动电机开始搅动。

4.搅动电机工作6秒后停止搅动,混合液体阀门打开,开始放出混合液体。

5.当液面下降到SL3时,SL3由接通变为断开,再过2秒后,容器放空,混合液阀门关闭,开始下一周期。

6.停止操作:在当前的混合液操作处理完毕后.按下停止按钮SB1,停止操作。

四、功能指令使用及程序流程图1.上升沿微分/下降沿微分指令使用上升沿微分指令(DIFU)检测到每一次正跳变(由0到1),让能流接通一个扫描周期。

下降沿微分指令(DIFD)检测到每一次负跳变(由1到0),让能流接通一个扫描周期。

2.程序流程图序号 CM12 (面板端子)CM24 (面板端子)说明 备注1. 00 SB1 启动开关 PLC 输入2. 01 SL1 液位传感器SL13. 02 SL2 液位传感器SL24. 03 SL3 液位传感器SL35. 04 SB2 停止开关6. 00 YV1 进液阀门A PLC 输出7. 01 YV2 进液阀门B8. 02 YV3 排液阀门9. 03YKM搅拌电机10. 主机输入端COM 、CM24面板+24V 接电源24V 电源正端 11.主机输出端COM 、CM24面板COM 接电源COM电源地端 六、操作步骤1.检查实验设备中器材及调试程序。

多种液体自动混合实训报告

多种液体自动混合实训报告

多种液体自动混合实训报告班级:电气1052班姓名:胡永彬学号:杨念峰朱弈蓉一·任务描述容器是空的,Y1,Y2,Y3,Y4电磁阀和搅拌机均为OFF,液面传感器L1,L2,L3均为OFF。

启动操作按下启动按钮,开始下列操作:⑴电磁阀Y1闭合(Y1=ON),开始注入液体A,至液面高度为L3(L3=ON)时,停止注入液体A(Y1=OFF),同时开启液体B电磁阀Y2(Y2=ON)注入液体B,当液面高度为L2(L2=ON)时,停止注入液体B(Y2=OFF),同时开启液体C电磁阀Y3(Y3=ON)注入液体C,当液面高度为L1(L1=ON)时,停止注入液体C(Y3=OFF)。

⑵停止液体C注入时,开启搅拌机M(M=ON),搅拌混合时间为10s。

⑶停止搅拌后加热器H开始加热(H=ON)。

当混合液温度达到某一指定值时,温度传感器T动作(T=ON),加热器H停止加热(H=OFF)。

⑷开始放出混合液体(Y4=ON),至液体高度降为L3后,再经5s停止放出(Y4=OFF)。

停止操作按下停止键后,停止操作,回到初始状态。

二·硬件分析1.任务分析(1).PLC型号:2.液位传感器型号:LSF-2.5型液位传感器其中“L”表示光电的,“S”表示传感器,“F”表示防腐蚀的,2.5为最大工作压力。

相关元件主要技术参数及原理如下:(1)工作压力可达2.5Mpa(2)工作温度上限为125℃(3)触点寿命为100万次(4)触点容量为70w(5)开关电压为24V DC(6)切换电流为0.5A性能指标如下:3.温度传感器型号:KTY81-210A型温度传感器其中“T”表示温度相关元件主要技术参数及原理如下:(1)温度测量范围-50——150℃(2)温度系数TC为0.75%/K(3)精度等级为0.5%(4)公称压力为0.6MPa4.搅拌电机的选择型号;EJ15-3型电动机其中“E”表示电动机,“J”表示交流的,15为设计序号,3为最大工作电流相关元件主要技术参数及原理如下:EJ15系列电动机是一般用途的全封闭自扇冷式鼠笼型三相异步电动机(1)额定电压为220V,额定频率为50Hz,功率为2.5KW,采用三角形接法。

基于PLC的多种液体混合灌装机控制系统设计开题报告

基于PLC的多种液体混合灌装机控制系统设计开题报告

基于PLC的多种液体混合灌装机控制系统设计开题报告本科生毕业论文,设计,开题报告题目名称:基于PLC的多种液体混合灌装机控制系统设计学生姓名专业机电技术教育学号指导教师姓名所学专业机电一体化职称高级实验师完成期限一、选题的目的意义为了提高产品质量~缩短生产周期~适应产品迅速更新换代的要求~产品生产正在向缩短生产周期、降低成本、提高生产质量等方向发展。

在炼油、化工、制药等行业中,多种液体混合是必不可少的工序, 而且也是其生产过程中十分重要的组成部分。

但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质, 以致现场工作环境十分恶劣, 不适合人工现场操作。

另外, 生产要求该系统要具有混合精确、控制可靠等特点, 这也是人工操作和半自动化控制所难以实现的。

所以为了帮助相关行业, 特别是其中的中小型企业实现多种液体混合的自动控制, 从而达到液体混合的目的~液体混合自动配料势必就是摆在我们眼前的一大课题。

多种液体混合搅拌用于灌装各种各样的瓶装饮料, 适用于大中型饮料生产厂家。

早期的灌装机械大多数采用容积泵式、蠕动泵式作为计量方式。

它具有效率高、功能强、加工质量高等特点~是当今世界的前沿课题~但还存在一些问题~例如: 罐装精度和稳定性难以保证、更换灌装规格困难等。

该液体混合系统采用基于PLC的控制系统来取代原来由单片机、继电器等构成的控制系统~采用模块化结构~具有良好的可移植性和可维护性。

对提高企业生产和管理自动水平有很大的帮助~同时又提高了生产线的效率、使用寿命和质量~减少了企业产品质量的波动~因此具有广阔的市场前景。

液体混合自动配料系统就此应运社会工业生产的需要而诞生了。

如何使PLC在饮料灌装中实现控制功能~在相关的研究文献报道中用PLC对灌装机进行控制的研究尚不多见~以致人们难以根据它的具体情况~正确选用参数进行系统控制~也就难以满足提高质量和效率、降低成本的要求~本设计就是基于以上问题进行的一些探索。

二、国内外研究现状PLC在问世以来~经过40多年的发展。

多种液体混合控制系统设计

多种液体混合控制系统设计

多种液体混合控制系统设计
液体混合控制系统可以应用于化工、制药、食品等领域,实现多种液体的混合控制。

下面介绍一种液体混合控制系统的设计。

系统组成:
液体混合控制系统由液体储罐、电动搅拌器、流量计、液位传感器、压力传感器、温度传感器、控制器等组成。

其中,液体储罐用于存放液体原料,电动搅拌器用于混合液体,流量计、液位传感器、压力传感器、温度传感器用于感知液体参数,控制器用于控制液体混合过程。

设计思路:
1. 液体储罐的设计:液体储罐应具备密封性、耐腐蚀性、耐压性等特点。

储罐顶部应设置进料口和出料口,同时应对储罐底部设置排液阀。

2. 电动搅拌器的设计:电动搅拌器应选用高效节能的电动机,并且应具备耐腐蚀性和耐磨损性。

搅拌器应采用切割式或框式搅拌方式,以确保混合效果。

3. 流量计的设计:流量计应根据液体的流量要求选用相应的流量计,同时应具备精度高、可靠性强等特点。

4. 液位传感器的设计:液位传感器应采用超声波传感器或者雷达传感器,以确保液体溢出或液位过低的情况不会发生。

5. 压力传感器的设计:压力传感器应选用可靠性高、精度高的传感器,以确保液体压力的精确监测。

6. 温度传感器的设计:温度传感器应选用高精度、响应速度快的传感器,以监测液体的温度变化。

7. 控制器的设计:控制器应考虑到混合液体的比例、搅拌时间、流量等参数进行控制,同时还应具备自动化控制的功能。

总结:
液体混合控制系统应根据液体的特性,选用合适的设备和传感器,并且结合控制器实现自动化控制,从而确保液体混合过程的精确控制。

多种液体自动混合装置的PLC控制毕业设计论文

多种液体自动混合装置的PLC控制毕业设计论文

多种液体自动混合装置的PLC控制毕业设计论文一、《多种液体自动混合装置的PLC控制毕业设计论文》本论文主要研究和探讨多种液体自动混合装置的PLC控制系统设计。

随着工业自动化的不断发展,液体的精确混合成为了许多工业生产过程中的关键环节。

多种液体自动混合装置作为一个高效、精确的液体混合解决方案,已经在多个领域得到广泛应用。

本文将从系统设计、PLC控制系统构建、程序设计等方面,对多种液体自动混合装置的PLC控制系统进行详细的阐述和探讨。

在现代工业生产过程中,液体的精确混合是一项至关重要的技术。

这不仅关乎产品质量,还涉及到生产效率和成本控制。

开发一种高效、精确的液体自动混合装置具有重要的实际意义。

PLC(可编程逻辑控制器)作为一种先进的工业控制装置,具有高度的灵活性和可靠性,被广泛应用于各种工业控制系统中。

本文将研究如何将PLC控制系统应用于多种液体自动混合装置中,以提高混合精度和效率。

多种液体自动混合装置主要由液体供应系统、混合系统、控制系统等部分组成。

液体供应系统负责提供需要混合的各种液体;混合系统则负责将各种液体进行混合;而控制系统则是整个装置的核心,负责控制液体的供应和混合过程。

在本设计中,我们将采用PLC作为控制系统的核心。

PLC控制系统主要由PLC控制器、触摸屏、传感器、执行器等部分组成。

PLC控制器是系统的核心,负责接收传感器信号,并根据预设的程序输出控制信号;触摸屏则用于显示混合过程的各种参数和状态,以及进行人工操作;传感器用于检测混合液体的各种参数,如液位、温度、浓度等;执行器则负责执行PLC控制器的控制命令,控制液体的供应和混合过程。

PLC控制系统的程序是系统的灵魂,它决定了系统的运行方式和性能。

在程序设计阶段,我们需要根据混合液体的要求和工艺过程,设计合适的控制算法和逻辑。

还需要考虑系统的安全性和稳定性。

在本设计中,我们将采用模块化程序设计方法,将系统划分为多个模块,每个模块负责一部分功能,这样不仅可以提高程序的清晰度,还可以方便后期的维护和修改。

多种液体混合装置控制实验报告

多种液体混合装置控制实验报告

多种液体混合装置控制实验报告1、实验目的(1)结合多种液体自动混合系统,应用PLC技术对化工生产过程实施控制;(2)学会熟练使用PLC解决生产实际问题。

2、实验设备(1)计算机(编程器)1台;(2)实验装置(含S7-200 24点CPU)1台;(3)多种液体自动混合实验模板1块;(4)连接导线若干。

3、液体自动混合系统的控制要求(1)液体自动混合系统的初始状态:在初始状态,容器为空,电磁阀Y1,Y2,Y3,Y4和搅拌机M以及加热元件R均为OFF,液面传感器L1,L2,L3和温度检测T均为OFF。

(2)液体混合操作过程:按动启动按钮,电磁阀Y1闭合(Y1为ON),开始注入液体A,当液面高度达到L3时(L3为ON)关闭电磁阀Y1(Y1为OFF),液体A停止注入,同时,开启电磁阀门Y2(Y2为ON)注入液体B,当液面升至L2时(L2为ON)关闭电磁阀Y2(Y2为OFF),液体B停止注入,同时,开启电磁阀Y3(Y3为ON),注入液体C,当液面升至L1时(L1为ON)关闭电磁阀Y3(Y3为OFF),液体C停止注入,然后开启搅拌电动机M,搅拌10秒停止搅拌,加热(启动电炉R)当温度(检测器T动作)达到设定值时停止加热(R为OFF),并放出混合液体(Y4为ON),至液体高度降为L3后,再经5秒延时,液体可以全部放完停止放出(Y4为OFF)。

液体混合过程结束。

按动停止按钮,液体混合操作停止。

4.实验内容及要求(1)按液体混合要求,设计PLC外部电路(配合使用通用器件板开关元器件);(2)连接PLC外部(输入、输出)电路,编写用户程序;(3)输入、编辑、编译、下载、调试用户程序;(4)运行用户程序,观察程序运行结果。

多种液体混合控制系统设计

多种液体混合控制系统设计

实用文档目录1 题目背景与意义 (1)1.1 课题背景 (1)1.2 课题意义 (1)2 设计题目介绍 (2)2.1 设计目的 (2)2.2 设计内容及要求 (2)3 系统设计方案 (3)3.1 PLC输入输出地址分配 (3)3.2 整体控制流程图 (3)4 系统硬件设计 (5)4.1 S7-300组态 (5)4.1.1 S7-300特点 (5)4.1.2 S7-300工作过程 (5)4.2 S7-300组成部件 (5)4.3 S7-300硬件组态步骤 (6)5 系统软件设计 (7)6 系统仿真调试 (7)6.1 WinCC组态 (8)6.2 触摸屏连接 (8)6.3 变量定义 (8)6.4 显示界面设置 (9)6.5 管理画面设置 (11)6.6 报警画面设置 (11)设置超限报警值为100,具体操作如图6-9。

(11)6.7 配方画面设置 (12)6.8 趋势图画面设置 (13)7 心得体会 (13)8 参考文献 (14)附录 (15)1 题目背景与意义1.1 课题背景在众多生产领域中,经常需要对贮槽、贮罐、水池等容器中的液位进行监控,以往常采用传统的继电器接触控制,这种控制方式自动化程度不高,使用的硬件设备多,不易连接,可靠性差。

目前已有许多企业采用先进控制器对传统控制器进行改造,大大提高了控制系统的可靠性和自控程度,为企业提供了更可靠的生产保障。

1.2 课题意义在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。

但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作。

另外,生产要求该系统要具有配料精确、控制可靠等特点,这也是人工操作和半自动化控制所难以实现的。

所以为了帮助相关行业,特别是其中的中小型企业实现多种液体自动混合的目的,液体自动混合配料的自动控制程序就显得尤为重要。

对于本课题来说,液体混合控制部分是一个较大规模工业控制系统的改造升级,控制装置需要根据企业和设备现况来构成并需尽量用以前系统中的元器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电器控制与PLC实训任务书
班级:
姓名:
学号:
学生: 指导教师:汤平 2012年7月
教师评语
实训成绩:
教师签名:
前言
世界上第一台可编程序控制器产生于1969年,是由当时美国数字设备公司(DEC)为美国通用汽车公司(GM)研制开发并成功应用于汽车生产线上,被人们称为可编程序逻辑控制器(Programmable Logic Controller),简称PLC。

在70年代,随着电子及计算机技术的发展,出现了微处理器和微计算机,并被应用于PLC中,使其具备了逻辑控制、运算、数据分析、处理以及传输等功能。

电气制造商协会NEMA(National Electrical Manufacturers Association)于1980年正式命名其为可编程序控制器(Programmable Controller),简称PC。

为与个人计算机(Personal Computer)相区别,同时也使用其早期名称PLC。

国际电工技术委员会IEC(International Electrotechnical Commission)分别于1982年11月和1985年1月颁布了PLC的第一稿和第二稿标准。

以后PLC开始向小型化、高速度、高性能、高可靠性方面发展,并形成多种系列产品,编程语言也不断丰富,使其在80年代工业控制领域中占据着主导地位。

可编程序控制器是以微处理器为基础,综合了计算机技术与自动控制技术为一体的工业控制产品,是在硬接线逻辑控制技术和计算机技术的基础上发展起来的。

通常把PLC认为是由等效的继电器、定时器、计数器等元件组成的装置。

可编程控制器是将继电器控制器与
计算机控制器两者的长处结合起来的新型通用程序控制器,它具有功能性强,可靠性高,操作灵活,编程简单等一系列有点,随着PLC技术的飞速发展,网络技术的更加善及,它的各种功能将更加完善。

PLC的主要优点有编程简单,可靠性高,通用性好,功能强,易于远程监控,设计,施工和调试周期短。

PLC的应用有逻辑控制,位置控制和运动控制,过程控制,监控系统,集装控制,可以预见,随着PLC性能的不断提高,进一步推广,善及,可编程序控制器的应用领域还将不断扩展。

目录
1.PLC的基本概念
2.可编程控制器特点
3.CP1E主要编程资源
4.分析控制要求
5.分配PLC的输入和输出点(地址分配表)
6.硬件连接的电路图
7.CX-PROGRAMMER编写的梯形图程序
8.总结
9.参考书目
PLC的基本概念
早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller,PLC),它主要用来代替继电器实现逻辑控制。

随着技术的发展,这种采用微型计算机技术的工业控制装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。

但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程序控制器简称PLC,plc自1969年美国数据设备公司(DEC)研制出现,现行美国,日本,德国的可编程序控制器质量优良,功能强大。

可编程控制器特点
(1)编程简单,使用方便
(2)控制灵活,程序可变,具有很好的柔性
(3)控制系统设计及施工的工作量少,维修方便
(4)功能强,扩充方便,性能价格比高
(5)体积小、重量轻、能耗低,是“机电一体化”特有的产品。

(6)可靠性高,抗干扰能力强
CP1E主要编程资源
多种液体混合控制实训
一、实训目的
1、掌握多种液体混合PLC控制的基本原理。

2、掌握置位、复位指令的使用方法。

二、实训仪器
1、欧姆龙可编程控制器实训装置 1台
2、对应实训单元 1个
3、PC机 1台
4、USB连接线 1根
5、连接导线若干
三、实训原理
1、控制对象说明
该实训模块中H0、H1、H2、H3为液位传感器,分别代表液位C、液位B、液位A和液位底,由PLC控制V0、V1、V2三个液体进口阀门的开启,使A、B、C三种液体达到工艺规定的液面。

随后PLC控制加热器(H)和搅拌电机(M)的工作,当到达希望温度(T代表温度传感器)时,PLC开启出料阀,从而完成一个周期的搅拌工作。

本演示装置利用LED指示灯模拟各点的工作状态,电磁阀的开闭状态、传感器信号的有和无用LED指示灯的亮和灭状态来表示,搅拌电机工作用LED闪烁来表示,液面的上升和下降过程用定时器来模拟。

2、控制要求:
1)初始状态各阀门关闭;
2)按下启动按钮,液位为底部,阀门V0打开,同时定时器开始计时,开始注入液体A;
3)2S后到达液位A,控制阀V0关闭,同时阀V1打开,注入液体B;
4)3S后达到液位B,控制V1关闭,同时阀V2,注入液体C;
5)3S后达到液面C,加热器和搅拌电机开始工作;
6)3S后温度达到设定值,搅拌和加热结束,阀V3打开,液面下降,H0、H1、H2、H3依次熄灭;
7)7S后液体放空,阀V3关闭,一轮结束,又从(2)开始循环。

8)按下停止按钮,所有操作立即停止,所有指示灯全部熄灭。

四、实训步骤及注意事项
1、理解实训的原理及控制要求,列出I/O分配表并根据分配表编写实训程序。

2、将USB连接线一端与PLC的编程接口相连,另一端与计算机USB接口连接。

3、按I/O分配表接线,下面给出参考程序的I/O分配表。

4、打开电源,输入编好的实训程序并下载到PLC中。

5、当PLC指示RUN状态时,表明程序开始运行,观察运行的结果。

若结果与控制要求不符,则根据观察到的现象修改程序,重新下载进行调试,直至满足控制要求
分析控制要求
1)初始状态各阀门关闭;
2)按下启动按钮,液位为底部,阀门V0打开,同时定时器开始计时,开始注入液体A;
3)2S后到达液位A,控制阀V0关闭,同时阀V1打开,注入液体B;
4)3S后达到液位B,控制V1关闭,同时阀V2,注入液体C;
5)3S后达到液面C,加热器和搅拌电机开始工作;
6)3S后温度达到设定值,搅拌和加热结束,阀V3打开,液面下降,H0、H1、H2、H3依次熄灭;
7)7S后液体放空,阀V3关闭,一轮结束,又从(2)开始循环。

8)按下停止按钮,所有操作立即停止,所有指示灯全部熄灭。

分配PLC的输入和输出点(地址分配表)
按I/O分配表接线,下面是程序的I/O分配表。

输入输出
启动——0.00 V0——100.00
停止——0.01 V1——100.01
V2——100.02
V3——100.03
H0——100.04
H1——100.05
H2——100.06
H3——100.07
T——101.01
M——101.02
H——101.03
其他接线:PLC主机+ ——输入COM——输出COM1-COM6;
PLC主机- ——挂箱XCOM——挂箱YCOM。

硬件连接的电路图
CX-PROGRAMMER编写的梯形图程序
总结
参考书目
[1] 史国生主编. 电气控制与可编程控制器技术.北京:化学工业出版社.2004
[2] 程周主编. 电气控制与PLC原理及应用. 北京:电子工业出版社.2012。

相关文档
最新文档