第一型曲线积分的计算

合集下载

第一类曲线积分的计算

第一类曲线积分的计算

第一类曲线积分的计算第一类曲线积分的计算1、定义定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i ni 1s max T ,在i L 上任取一点(i ,).n ,,2,1i )(i 若存在极限J s ),(f lim i i n1i i 0T且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为J s ),,(f lim i i i n1i i 0T ,(此处i s 为i L 的弧长,i n i 1s max T ,J 为一常数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义(1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。

现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i)i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和式i n1i i )P (f 当对 的分割越来越细密时,上述和式的极限就应是该物体的质量。

(2)空间曲线L 的重心坐标为(,,)(,,)yz LLx x y z dlM x Mx y z dl,(,,)(,,)zx LLy x y z dlM y Mx y z dl,(,,)(,,)xy LLz x y z dlM z Mx y z dl(3) 曲线L 的绕z 轴(x, y 轴)的转动惯量是22()(,,)z LJ x y x y z dl3、几何意义1) 当被积函数为1时, 积分的值恰为曲线的长度。

第一型曲线积分 第一型曲线积分的定义

第一型曲线积分 第一型曲线积分的定义

n
i
f ( ( i), ( i)) 2 ( i) 2 ( i )t i . (4)
令 t max{t1 , t 2 ,
t 0
, t n }, 则当 T 0 时, 必有
t 0. 现在证明 lim 0.
这里 t i 1 i, i ti . 设
f ( ( i), ( i))[ 2 ( i ) 2 ( i ) 2 ( i) 2 ( i)]ti ,
i 1 n
则有
f ( , )s
i 1 i i n i 1
n ||T || 0
, n). 若有极限
i i i
lim
f ( , )s
i 1
J,
且 J 的值与分割 T 与点 ( i , i ) 的取法无关, 则称此 极限为 f ( x , y ) 在 L 上的第一型曲线积分, 记作

L
f ( x , y )ds .
若 L 为空间可求长曲线段 , f ( x , y , z ) 为定义在 L上 的函数, 则可类似地定义 f ( x , y , z )在空间曲线 L 上
, k ) 都存在, 则 L f ( x , y )ds
也存在, 且

L
L
f ( x , y )ds f ( x , y )ds .
i 1 Li
k
3. 若 f ( x , y )ds 与 g ( x , y )ds都存在, 且在 L 上
L
f ( x , y ) g( x , y ), 则


L
f ( x , y )ds g ( x , y )ds .
L

第一型曲线积分

第一型曲线积分

L xyds


2 0
a cos t b sin t ( a sin t )2 (b cos t )2 dt

ab02 sin t cos t a 2 sin 2 t b 2 cos2 t dt
ab 02 (a 2 b 2 ) sin 2 t b 2 d (sin 2 t ) 2
( x ) 0.
L ( x y )ds
2 ( x 0 ) 1 0 dx 0
2
0 x dx
2
2.
(2) L: x ( y ) 2, 0 y 3.
( x ) 0.
L ( x y )ds
2 ( 2 y ) 1 0 dy 0
x2 y2
x2 y2
ds. 其中曲线 x 2 y 2 a 2 , 直
线 x 0, y x 在第一象限中所围的图 形边界。

Le
ds ds AB e
x2 y2
oA e
x2 y2
ds oB e
x2 y2
ds
oA : x 0, 0 y a .
I xyz ds
0 a 2 cos sin k ( a sin )2 (a cos )2 k 2 d
2 2 2 a k a k 2
2Байду номын сангаас
0 sin 2 d
2
1 ka 2 a 2 k 2 . 2
例5
计算
Le

0
ab(a 2 ab b 2 ) . 3(a b )
y
例2
计算
L ( x y ) ds.

第一型曲线积分的定义

第一型曲线积分的定义

第一型曲线积分的定义第一型曲线积分,是微积分中的一种重要概念与计算方法,它涉及曲线和向量场之间的积分。

本文将介绍第一型曲线积分的定义、性质和计算方法。

一、第一型曲线积分的定义第一型曲线积分,也称为曲线的线积分,是指在曲线上某个有向长度元素$\mathrm{d}s$上的函数值与该长度元素的乘积$d\boldsymbol{s}$在整个曲线上的积分。

设$C$是曲线,其参数方程为$\boldsymbol{r}(t)=(x(t), y(t), z(t)), t\in[a,b]$,则$C$的长度由公式:$$ L(C)=\int_{C}\mathrm{d}s=\int_{a}^{b}\left[\ left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\r ight)^{2}+\left(z^{\prime}(t)\right)^{2}\right]^{\f rac{1}{2}} \mathrm{d}t $$计算曲线$C$上的一个标量函数$f(x,y,z)$在曲线上的第一型曲线积分,即为:$$ \int_{C} f(x, y, z) \mathrm{d}s=\int_{a}^{b}f\left(\boldsymbol{r}(t)\right)\left[\left(x^{\prim e}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}\right]^{\frac{1}{2}}\mathrm{d}t $$若积分路径可以看成向量值函数$\boldsymbol{r}(t)$的积分,第一型曲线积分就可以写作:$$ \int_{\boldsymbol{r}}\boldsymbol{F}(\boldsymbol{r}) \cdot \mathrm{d}\boldsymbol{r}=\int_{a}^{b}\boldsymbol{F}\left(\boldsymbol{r}(t)\right) \cdot \boldsymbol{r}^{\prime}(t) \mathrm{d}t=\int_{a}^{b} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{s} $$其中$\boldsymbol{F}(\boldsymbol{r})$是向量场,$\mathrm{d}\boldsymbol{r}$表示一个有向长度元素,$\cdot$表示向量内积运算,$\mathrm{d}\boldsymbol{s}=\boldsymbol{r}^{\prime}(t ) \mathrm{d} t$表示线元素。

第一类曲线积分的极坐标形式

第一类曲线积分的极坐标形式

第一类曲线积分的极坐标形式曲线积分是微积分中的一个重要概念,它描述了沿着一条曲线的积分过程。

在曲线积分中,第一类曲线积分是最基本的一种类型,它描述了沿着曲线的标量场积分。

而在极坐标系下,第一类曲线积分的计算方法也有其独特的形式。

首先,我们来回顾一下第一类曲线积分的定义。

设曲线L为参数方程r(t)=(x(t),y(t)),其中a≤t≤b,f(x,y)为定义在曲线L上的标量场,则曲线L上f(x,y)的第一类曲线积分为:∫L f(x,y)ds = ∫b_a f(x(t),y(t))√[x'(t)²+y'(t)²]dt其中,ds表示曲线L上的弧长元素,x'(t)和y'(t)分别表示x(t)和y(t)对t 的导数。

接下来,我们来看第一类曲线积分在极坐标系下的形式。

在极坐标系下,曲线L可以表示为r(θ)=(r(θ)cosθ,r(θ)sinθ),其中a≤θ≤b,r(θ)为极径函数。

此时,曲线L上f(x,y)的第一类曲线积分可以表示为:∫L f(x,y)ds = ∫b_a f(r(θ)cosθ,r(θ)sinθ)√[r'(θ)²+r(θ)²]dθ其中,ds表示曲线L上的弧长元素,r'(θ)表示r(θ)对θ的导数。

通过上述公式,我们可以看出,在极坐标系下,第一类曲线积分的计算方法与直角坐标系下有所不同。

在直角坐标系下,我们需要计算曲线L上的弧长元素ds,而在极坐标系下,我们需要计算曲线L上的弧度元素dθ。

此外,由于极坐标系下的曲线L是由极径函数r(θ)和极角θ共同确定的,因此在计算曲线积分时,我们需要将f(x,y)表示为f(r(θ)cosθ,r(θ)sinθ)的形式。

总之,第一类曲线积分是微积分中的一个重要概念,它描述了沿着曲线的标量场积分。

在极坐标系下,第一类曲线积分的计算方法也有其独特的形式,需要注意弧度元素dθ的计算和将f(x,y)表示为f(r(θ)cosθ,r(θ)sinθ)的形式。

§9.6第一型曲线积分的计算

§9.6第一型曲线积分的计算
i =1 n
(4)取极限 令 d = max {∆si } ,则 m = lim ∑ f (ξ i , ηi )∆si 。
1≤ i ≤ n
n
d →0 i =1
2.第一型曲线积分的定义
面内的一条光滑(或分段光滑)曲线弧, 设 L 为 xoy 面内的一条光滑(或分段光滑)曲线弧, 有界。 f ( x , y ) 在 L 上有界。任取点列 M 1 , M 2 ,L M n−1 ,把 L 分 为 n 小 段 ∆si ( i = 1, 2, L, n) , 同时也以 ∆si 表示第 i 小 段的弧长。 段的弧长。任取 (ξ i , ηi ) ∈ ∆si ,作和式 ∑ f (ξ i , ηi )∆si ,
L
+∫
.
4. 当f ( x , y ) ≡ 1时,
∫L ds 等于L的长度.
5. 设在 L 上 f ( x , y ) ≤ g( x , y ), 则
∫L f ( x , y )ds ≤ ∫L g( x , y )ds.
特殊地
∫L f ( x , y )ds ≤ ∫L f ( x , y ) ds.
连续的一阶导数,且 x ′ 2 ( t ) + y′ 2 ( t ) ≠ 0 ,则 连续的一阶导数,
ds = x ′ 2 ( t ) + y′ 2 ( t )dt ,
∫L
f ( x , y )ds = ∫ f [ x ( t ), y( t )] x ′ 2 ( t ) + y′ 2 ( t )dt 。
km µ o y dV
3 ( x2 + y2 + z2 ) 2
km µ o x dV
3 ( x2 + y2 + z2 )2

第一型曲线积分的计算方法

第一型曲线积分的计算方法

第一型曲线积分的计算方法
1. 嘿,你知道直接法吗?就像我们要数清楚一堆糖果有多少颗一样直接!比如计算曲线 y=x^2 从 0 到 1 那一段的第一型曲线积分,咱就直接把函数的值代进去算,简单粗暴有木有!
2. 还有参数法呢!这就像给曲线找到一个特别的密码来解题呀!比如说一个圆的曲线,用参数表示出来再去计算积分,超有意思的咧!
3. 利用对称性来计算也很棒哦!这就好像发现了一个隐藏的小技巧。

像计算关于 x 轴对称的曲线的积分,有些部分咱直接就可以简化啦,多方便呀!
4. 想想看,换元法也不错呀!就如同给问题变个魔法一样。

比如把很难的式子通过换元变得简单易懂,然后轻松算出积分,多牛呀!
5. 哇塞,格林公式也能助力第一型曲线积分的计算哦!这就像是给我们开了一扇快捷之门呀。

特别是在一些复杂图形中,简直是救星呀!
6. 别忘了分块计算呀!这就好比把一个大难题拆分成好多小部分来解决。

遇到复杂的曲线,咱就一块块来,总能搞定的嘛!
总之,第一型曲线积分的计算方法多种多样,每一种都有它独特的魅力和用处,就看你怎么去运用啦!。

高数9-1(第一型曲线积分)

高数9-1(第一型曲线积分)

(3) L : r r( ),
L f ( x, y)ds
f [r ) cos, r( )sin ]
r2 ( ) r2 ( )d
推广 : x (t), y (t), z (t) ( t )
f ( x, y, z)ds
f [(t), (t),(t)] 2(t) 2(t) 2(t)dt ( )
2 f ( x, y)ds,当f ( x, y) 是L上关于x (或y)的偶函数 L1
L1是曲线L落在y (或x)轴一侧的部分.
运用对称性简化对弧长的曲线积分 计算时, 应同时考虑被积函数 f ( x, y)与积 分曲线L的对称性.
6/19
例 计算 ( x y3 )ds. 其中L是圆周 x2 y2 R2. L
(对路径具有可加性)
4/19
5.性质
(1) [ f ( x, y, z) g( x, y, z)]ds
f ( x, y, z)ds g( x, y, z)ds
(2) kf ( x, y, z)ds k f ( x, y, z)ds (k为常数)
(3) 与积分路径的方向无关, 即
(
⌒ f
f ( x, y)ds
b
f [ x, ( x)]
1 2( x)dx (a b)
L
a
ds 1 2( x)dx
(2) L : x ( y), c y d
f ( x, y)ds
d
f [( y), y]
1 2( y)dy (c d )
L
c
ds 1 2( y)dy
10/19
解 对称性,得
y x2 y2 R2
( x y3 )ds xds y3ds 0
L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L

L
2
4
2 2 求圆柱面 x y 1位于平面z 0上方与z y 例 6 下方那部分的侧面积 A.
当f ( x, y ) 0 时, f ( x, y ) ds 表示以 L 为准线,
L
母线平行于z轴, 高为z f ( x, y )的柱面面积。
s i (i 1, 2, , n ) ,同时也以 si
表示第 i 小段弧长。
(2)近似
(i , i )si ,
则 mi f (i ,i )si 。
y
M1 M2
M i1
(3)求和
m f ( i , i )si 。
n i 1
(i ,i )
Mi
L
M n1
2 y 2 R 2 , y 0.
例2
( x y)ds, L : 连接三点 O(0,0), A(1,0), B(0,1)的折线.
L
9 2 2 2 x y z 例 3 计算 ( x 2 y 2 z 2 )ds, 其中L : . 2 L x z 1
§6.4
第一型曲线积分的计算
一、第一型曲线积分的概念
曲线形物体的质量
设曲线形物体在xoy 平面上占有可求长曲线 L, 其线密度为连续函数 f ( x, y) ,求该物体的质量 m。
y
M1
M2
M i1
(i ,i )
Mi
L
M n1
A
B
o
x
(1)分割 在 L上 任取点列 M 1 , M 2 , M n 1 ,把 L 分为 n 小 段
2 2 2 2 x y z R 例 4 计算 (y 2 z )ds, 其中L : . L x yz 0
例 5(1)设L : x 2 y 2 4,则
x3 1 3 ds = x ds=0 L x2 y 2 4 L x2 y 2 (2)设L : 1,其周长为a, 2 4 2 2 x y 则 (xy 2 x 2 y 2 )ds =4 ( )ds=4a
ds x (t ) y (t ) z (t ) dt ,
2 2 2
L
f ( x, y, z )ds f [ x(t ), y (t ), z (t )] x2 (t ) y2 (t ) z 2 (t )dt



注 (1)第一型曲线积分无方向性, 化成定积分时 应上限大于下限。 (2)因被积函数f(x,y)定义在曲线L上,应将 曲线方程代入被积函数。 (3)f(x,y) 1时, ds表示L的弧长。
2 2
f ( x, y)ds
L


2 2 f ( x(t ), y(t )) x (t ) y (t ) dt
(2) 若曲线L的方程为 y y( x ), a x b, 则

L
f ( x, y)ds
b
a
2 f ( x, y( x)) 1 y dx
x () cos ( ) 给出,则 (3).若 L 由 方程 () 或 y () sin
(1)当 f ( x, y) 在光滑曲线 L 上连续时, f ( x, y )ds 存在。
L
(2)将上述定义推广,可得空间曲线 L 上的第一型曲线 积分:
f (i ,i , i )si L f ( x, y, z )ds dlim 0
i1 n

二、第一型曲线积分的计算法
ds (dx) (dy ) x x( t ) (1) 若曲线L的方程为 , t , 则 y y( t ) 弧微分公式 :
2 2 为参数 取 , ds () ()d
L
f ( x, y )ds f [() cos ,()sin ] 2 () 2 () d 。


(4). 若空间光滑曲线L的 参数方程为
x x(t ) , y y (t ) , z z (t ) ( t ) ,则
A
B
(4)取极限
1in
令 d max{si } ,则 m lim f ( i , i )si 。
d 0 i 1
o n
x
f (i ,i )si L f ( x, y)ds dlim 0
i1
n

其中
f ( x, y ) 称为被积函数,L 称为积分弧段。
注:
相关文档
最新文档