(完整版)医学影像学复习重点(2)

合集下载

医学影像学重点总结【完整版】

医学影像学重点总结【完整版】

医学影像学经典资料名词解释1、骨龄:在骨的发育过程中,骨的原始骨化中心和继发骨化中心的出现时间,骨骺与干骺端骨性愈合的时间及其形态的变化都有一定的规律性,这种规律以时间(年和月)来表示即骨龄。

2、骨质软化:指一定单位体积骨组织有机成分正常,而矿物质含量减少,尤其是骨的钙盐含量降低,骨组织会发生软化。

3、骨膜三角:恶性骨肿瘤的骨膜新生骨引起骨膜增生的病变进展,已形成的骨膜新生骨可被破坏,破坏区两侧的残留骨膜新生骨呈三角形,称为骨膜三角。

4、假肿瘤征:绞窄性肠梗阻或闭袢样肠梗阻时,引起肠腔充满液体,在腹平片上表现为软组织密度的肿块。

5、龛影:胃壁局限性溃疡形成的凹陷为钡剂充盈,故在切线位时呈现局限性向胃轮廓外突出的钡影,称为龛影6、天然对比:由于人体组织、器官的密度和X线照射方向上厚度的不同,在X线片上或透视电视屏上形成有对比的图像,这种自然存在的对比称为天然对比,即组织结构和器官的密度和厚度的差异7、IVP :静脉肾盂照影,根据有机碘在静脉注射后,几乎全部经肾小球滤过而进入肾小管,最后排入肾盂,肾盏,输尿管,膀胱,使尿路显影。

8、脑膜尾征:见于脑膜瘤,在CT及MRI增强检查上邻近肿瘤的硬脑膜可见明显的强化9、模糊效应:脑梗死后2-3周,梗塞区因脑水肿消失和吞噬细胞浸润,CT上密度相对增高而成为等密度。

10、介入放射学:在影像诊断基础上,利用导管等器械,在影像设备导向下,对疾病进行非手术治疗或取得组织学、细菌学、生化和生理等资料以明确病变性质的技术。

11、肾自截:肾结核、病变波及全肾形成肾大部分或全肾钙化,肾功能消失。

填空题1、影像诊断的主要依据或信息来源是影像的图像;2、影像的图像是黑到白不同灰度的影像,形如黑白照片一样;X线、CT图像反应人体相邻组织间的密度差别;MR图像反应组织间MR信号差别;超声图像反应组织间超声回声差别;3、观察分析病灶时需注意:病变的位置、病变的分布、病变的数目、病变的形态、病变的大小、病变的边缘、病变的密度、信号或回声、病变的周围或邻近情况;4、影像诊断原则:合理检查、熟悉正常、辨别异常、结合临床、作出诊断5、x线本质为电磁波,特性:穿透性、感光效应、荧光效应、电离效应。

(完整版)医学影像学考试重点总结,推荐文档

(完整版)医学影像学考试重点总结,推荐文档

2 ° 溶骨型成骨肉瘤:肿瘤常起自骨松质,以溶骨性破坏为主。
X 线表现:大片状溶骨性骨质破坏区,界限不清,有三角形骨膜反应,瘤骨少或无。
3 ° 混合型成骨肉瘤:介于以上两者之间。
四、骨巨细胞瘤:
常见,好发于青壮年,因其具有复发、恶变和转移倾向,故将其分为良、恶性之间的一种特殊类
型。
X
线表现:
1、好发于长骨骨端,表现为密度减低的溶骨性改变,偏心性膨胀性生长,也可呈多房性透光区,
医学影像学总结 总论
一、X 线特点:
①X 线成像的电磁波 0.031~0.008nm,γ 线<X线<紫外线
②穿透性:电压越高穿透力越强;物体(组织)的密度和♘度越大,X 线透过越少(被组织吸收
越多),是成像基础
③荧光效应:激发某些荧光物质,形成透视
④感光效应:感光溴化银离子,形
成胶片
⑤电离效应:(生物效应):治疗作用与辐射防护 二、X 线成像的特点:
二、骨折 及线形骨折 5 种
b 原因:外伤性、病理性
c 数目:单发、多发、粉碎性
d 有无伤口:闭合性、开放性
e 常见类型:嵌入、青枝、线形、凹陷、撕脱、压缩、粉碎、多发、骨骺分离、病理骨折、应力
性骨折等
青枝骨折:儿童骨骼柔韧性较大→外力不易使骨质
①X 线穿过人体时的吸收衰减(组织密度和♘度有关); 表现为越白
②组织密度越高,在图像上
③通常人体组织被分为四个密度层次(从高到低):骨、软组织、脂肪、气体
④重叠平面成像(前后或左右重叠)
⑤锥形束投射成像(伴影失
真)
三、CT 的优缺点:
1°优点: ①反映器管和组织对 X 线的吸收程度;
间分辨力高
②像素越小,数目越多,构成的图像越细致,空

(完整)医学影像学复习重点最新版

(完整)医学影像学复习重点最新版

医学影像学第一章医学影像学总论一。

X线成像1。

X线成像三个基本条件1)。

X线具有一定的穿透力2).被穿透的组织有密度和厚度的差异3).(荧光或摄影)显示2。

普通X线检查透视(照光)电视透视普通摄影(照片,平片,素片)特殊检查:体层摄影,记波摄影,高仟伏摄影,放大摄影,软X线摄影(钼靶)3。

X线的特性电磁波,波长短(肉眼不可见)穿透性;荧光效应;感光效应;电离效应(生物效应)人体正常组织结构的密度不同:二.计算机体层成像1。

CT图像特点CT值即代表CT图像象素内组织结构线性衰减系数相对值的数值单位:Hu。

骨=1000软组织=20—50 水=0 脂肪—90———70 空气=-1窗宽是指荧屏图像上包括16个灰阶的CT值范围.窗位是指观察某一组织结构细节时,以该组织CT值为中心观察。

加大窗宽,图像层次增多,组织对比降低;提高窗位,图像变黑降低窗位,图像变白2。

C T检查方法1)平扫2)增强扫描 3)造影扫描3*CT检查不足X线剂量(X线摄影相比)较大软组织分辨力低(与MRI相比)碘过敏患者不能做CT增强检查一般以横断面直接扫描,不能任意直接扫描三、磁共振成像M R I增强扫描,常用Gd-DTPA 0。

1mmol/kg磁共振血管(MRA),时间飞跃(TOF)法*MRI临床应用:MRI检查对中枢神经系统及软组织疾病诊断有重要价值*MRI 绝对禁忌症:心脏起搏器,眼球内金属异物,外科手术夹、动脉夹,高烧患者*相对禁忌症:体内的金属异物,危重患者要有医师监护,怀孕3个月内,幽闭恐惧症四。

DSA:数字减影血管造影。

血管造影时,光学减影技术,消除骨骼和软组织影对血管显示的重迭干扰*自然对比:人体组织结构密度上有差别,可产生X线对比,这种自然存在的密度差别称自然对比.第二章骨骼肌肉系统影像诊断第一节骨与软组织一.常用检查方法X线检查方法:1。

透视:用于寻找异物与定位或骨折、脱位时复位2.照片:1)一般包括正侧位,有些需斜位、切线位、轴位2) 包括周围软组织,四肢应包括邻近一个关节3)表现轻微或诊断困难时需加照对侧3。

医学影像学重点(自己整理的)

医学影像学重点(自己整理的)

5、骨龄:是指骨的原始骨化中心和继发骨化中心的出现及骨骺和干骺端骨性愈合的年龄。

(对诊断内分泌疾病和一些先天性畸形综合征有一定价值)6、骨质破坏:是局部骨质为病理组织所代替而造成的骨组织消失。

(见于炎症、肿瘤、肉芽肿) X线:骨质局限性密度下降,骨小梁消失,骨皮质边缘模糊。

1、骨质疏松:指一定体积单位内正常钙化的骨组织减少。

即骨组织的有机成分和钙盐都减少,但故内的有机成分和钙盐含量比例仍正常。

X线:骨质局限性密度下降,骨小梁变细,间隙变宽。

2 骨质软化:骨质软化――指一定单位体积内骨组织的有机成分正常,而矿物质含量减少。

X线表现为骨密度减低,骨小梁和骨皮质边缘模糊7、骨质坏死:是骨组织局部代谢停止,坏死的骨质称为死骨。

形成死骨的原因主要是血液供应中断(多见于慢性化脓性骨髓炎,也见于骨缺血性坏死和外伤骨折后)。

3、骨膜增生:骨膜反应是因骨膜受刺激,骨膜内层成骨细胞活动增加形成骨膜新生骨。

通常有病变存在。

X线:骨骼密度上升,骨皮质、小梁增厚。

8、骨膜三角(Codman三角):恶性肿瘤累及骨膜及骨外软组织,刺激骨膜成骨,肿瘤继而破坏骨膜所形成的骨质,其边缘残存骨质呈三角形高密度病灶,称为骨膜三角。

是恶性骨肿瘤的重要征象。

9、Colles骨折:又称伸展型桡骨远端骨折,为桡骨远端2~3㎝以内的横行或粉碎骨折,骨折远端向背侧移动,断端向掌侧成角畸形,可伴尺骨茎突骨折。

Colles’骨折的临床和影像学特点答:Colles’骨折为桡骨远端3cm范围内横行或粉碎性骨折,常见于中老年人,跌倒时,前臂旋前,手掌着地,引起伸展型桡骨远端骨折。

观察患肢呈银叉畸形、刺枪刀样畸形。

X线表现为:桡骨骨折远端向桡侧、背侧移位,掌侧成角,可见骨折线。

常合并下尺桡关节脱位和尺骨茎突骨折。

10、青枝骨折:在儿童,骨骼柔韧性大,外力不易使骨质完全断裂而形成不完全性骨折,仅表现为骨小梁和骨皮质的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆突。

医学影像学重点笔记

医学影像学重点笔记

医学影像学重点笔记导言:医学影像学是一门重要的医学专业,通过利用不同的影像技术,如X光、CT、MRI等,可以帮助医生准确诊断疾病并制定相应的治疗方案。

本文将重点介绍一些医学影像学的基本概念、技术和应用。

一、影像学的发展历程自从X光的发现,医学影像学就逐渐成为医学领域中一颗夺目的明星。

随着技术的进步,医学影像学在帮助医生发现疾病、评估治疗效果等方面发挥着重要作用。

从最早的X光成像到如今的高分辨率CT、MRI等专业设备,人类对于疾病的诊断能力已经突飞猛进。

二、常用的医学影像技术1. X光摄影技术:X光是最早被应用于医学影像学的技术之一。

通过利用X光穿透物体的原理,可以得到不同组织密度的影像图像。

然而,由于X光的辐射对人体健康有一定的影响,所以在使用X光技术时应注意控制辐射剂量。

2. CT技术:CT(计算机断层扫描)是一种通过获取多个不同角度的X光图像,并利用计算机将这些图像合成三维图像的技术。

CT可以提供高分辨率的骨骼和软组织图像,广泛用于头部、胸部和腹部等部位的影像检查。

3. MRI技术:MRI(磁共振成像)利用磁场和无线电波来生成人体内部组织的图像。

与X光和CT不同,MRI不使用任何辐射,因此更安全。

MRI可以提供详细的软组织解剖图像,对于检测肿瘤、神经系统和心脏疾病等方面有着很高的诊断价值。

4. 超声技术:超声技术是一种通过使用高频声波来生成人体内部图像的技术。

超声波穿透力较弱,因此广泛用于产科、内窥镜检查等需要较小创伤的检查。

三、医学影像学的应用领域1. 诊断疾病:医学影像学作为一种无创的检查手段,在疾病的早期诊断中起着至关重要的作用。

通过对影像的评估,医生能够快速准确地发现异常,如肿瘤、骨折等,并及时制定治疗计划。

2. 治疗引导:医学影像学不仅可以用于诊断疾病,还可以在治疗过程中起到重要的引导作用。

例如,在手术前使用影像检查可以帮助医生确定手术位置和路径,提高手术的准确性和安全性。

3. 疾病研究:医学影像学还广泛应用于疾病的研究领域。

医学影像学考试复习重点知识总结

医学影像学考试复习重点知识总结

医学影像学考试复习重点知识总结概述:医学影像学是现代医学中不可或缺的一环,它通过不同的成像技术,如X射线、CT扫描、核磁共振等,帮助医生进行疾病的诊断和治疗。

本文将总结医学影像学考试中的重点知识,帮助考生更好地复习和备战考试。

一、医学影像学基础知识1. 影像学的起源和发展:了解影像学的起源和发展历程,包括X射线的发现、超声波和CT技术的出现等。

2. 影像学的分类:了解影像学的分类,包括放射学、超声学、磁共振和核医学等。

3. 影像学的原理:掌握各种成像技术的原理和机制,如X射线的吸收、超声波的回声和磁共振的共振现象等。

二、常见影像学检查技术1. X射线检查:了解X射线的特点、适应症和禁忌症,熟悉X射线片的解读和常见的病变表现。

2. CT扫描:掌握CT扫描的原理和应用,了解不同部位的CT扫描常见疾病的表现和诊断要点。

3. 核磁共振:熟悉核磁共振的原理、安全性和应用范围,了解不同组织在MRI中的信号强度和常见病变的表现。

4. 超声检查:了解超声的应用和优点,掌握超声图像的解读和对常见病变的鉴别诊断。

三、常见疾病的影像表现1. 肿瘤:了解肿瘤在不同影像学检查中的表现,包括肿块的形态、边缘、内部结构和周围组织的受累情况等。

2. 感染性疾病:熟悉感染性疾病在影像学上的特点,如肺炎的X射线表现、骨髓炎的核磁共振示踪和肝脓肿的超声引导穿刺等。

3. 心血管疾病:了解心血管疾病的影像学表现,包括冠脉疾病的CT冠脉造影、心脏瓣膜病的超声检查和主动脉夹层的MRI诊断等。

4. 神经系统疾病:掌握神经系统疾病在影像学上的表现,如脑卒中的CT灌注成像、脑肿瘤的MRI显示和脊柱骨折的X射线诊断等。

四、医学影像学临床应用1. 临床诊断:了解医学影像学在疾病诊断和鉴别诊断中的作用,如CT在肺结节诊断和鉴别诊断中的应用、MRI在脊柱骨折和关节退行性病变的诊断中的应用等。

2. 术前评估:熟悉医学影像学在手术前的评估中的作用,如手术前CT扫描在骨折复位和肿瘤切除手术中的应用、MRI在脑肿瘤手术前的定位和评估中的应用等。

医学影像学重点笔记

医学影像学重点笔记

医学影像学重点笔记1. 介绍医学影像学是一门研究利用不同成像技术观察人体内部结构和功能的学科。

它在临床诊断、治疗计划和疾病监测中起着至关重要的作用。

本篇文章将介绍医学影像学的重点内容,包括不同成像技术、常见影像解剖结构及其疾病特征。

2. 放射学影像学放射学影像学是医学影像学的重要分支,主要包括X线摄影、计算机断层扫描(CT)、磁共振成像(MRI)和超声波成像等技术。

2.1 X线摄影X线摄影是一种常用的成像技术,通过将X射线穿过人体后记录在感光片上,用于检查骨骼、胸部和腹部等区域。

2.2 计算机断层扫描(CT)CT是一种可以提供横断面图像的成像技术,利用多个不同角度的X射线图像来构建三维结构。

CT可以检查器官、血管和肿瘤等病变。

2.3 磁共振成像(MRI)MRI利用强大的磁场和无害的无线电波来生成高分辨率的图像。

MRI适用于检查脑部和脊柱、关节和软组织等。

2.4 超声波成像超声波成像是一种无辐射的成像技术,利用声波来生成图像。

超声波成像适用于检查胎儿、腹部器官和血流等。

3. 影像解剖结构与疾病特征医学影像学的目标是准确识别正常解剖结构和疾病特征。

以下是常见影像解剖结构以及相关疾病特征的简要介绍。

3.1 骨骼系统骨骼系统的影像学表现包括骨折、关节炎、骨肿瘤等。

3.2 呼吸系统呼吸系统的影像学表现包括肺部炎症、结节、肿瘤等。

3.3 心血管系统心血管系统的影像学表现包括冠状动脉狭窄、动脉瘤、心肌梗塞等。

3.4 消化系统消化系统的影像学表现包括胃肠道炎症、肿瘤、结石等。

3.5 泌尿系统泌尿系统的影像学表现包括肾结石、肿瘤、膀胱炎症等。

3.6 神经系统神经系统的影像学表现包括脑卒中、脑肿瘤、神经退行性疾病等。

4. 影像学报告医学影像学的结果通常由放射科医生书写,并以影像学报告的形式提供给其他临床医生。

影像学报告应包括详细的影像描述、疾病诊断和建议进一步检查等内容。

5. 结论医学影像学是现代医学不可或缺的一部分,对于疾病的诊断和治疗起着重要的指导作用。

医学影像学重点复习完整版

医学影像学重点复习完整版

医学影像学重点复习完整版医学影像学是一门集医学、物理学和工程学于一体的学科,通过将放射线、超声波、磁共振等物理现象应用于人体,以获得和诊断疾病的技术。

在临床医学中,医学影像学是不可或缺的重要工具。

本文将为您提供医学影像学的重点复习内容,帮助您回顾和巩固相关知识。

一、放射学1. 放射照影学:放射照影学包括常规放射学和特殊放射学。

常规放射学是指应用X线对人体进行影像学检查,如X线拍片、造影、CT等;特殊放射学是指应用其他放射线或荧光物质进行影像学检查,如核素显像和血管造影。

2. 放射学诊断:放射学诊断是通过观察影像学表现,对疾病进行诊断。

常见的放射学诊断方法有:X线诊断、CT诊断、核磁共振诊断等。

放射学诊断需要医生具备良好的解剖学基础知识和对不同疾病影像学表现的了解。

二、超声影像学1. 超声影像学原理:超声波在人体组织中传播时会发生不同组织间质量、密度和声阻抗的反射、折射和衰减,通过接收反射回来的超声波信号生成图像。

2. 超声影像学应用:超声影像学广泛应用于妇产科、心脏病学、肾脏学、肝胆胰脾疾病等领域。

它具有无创、无辐射、实时性强等优点,能够对人体内脏器官进行形态学和功能学的检查。

三、核医学1. 核医学原理:核医学是通过给患者体内注射放射性同位素,利用放射性同位素的放射性衰变进行疾病的诊断和治疗。

核医学主要包括核素显像和放射性治疗两个方面。

2. 核素显像:核素显像是通过给患者体内注射放射性同位素,利用放射性同位素的放射性衰变进行疾病的诊断。

常见的核素显像检查有骨显像、甲状腺显像、心肌灌注显像等。

四、磁共振成像(MRI)1. MRI原理:磁共振成像利用人体内核磁共振现象,通过患者处于强磁场中,获得患者体内不同组织的信号,再通过计算机重建成影像。

2. MRI应用:MRI广泛应用于脑部、脊柱、关节和盆腔等器官的检查。

它在形态学、功能学和病变定位等方面有着非常高的分辨率和诊断准确性。

五、计算机断层扫描(CT)1. CT原理:CT利用X线束通过人体不同部位的吸收和散射来获取影像。

医学影像学考试复习重点知识总结

医学影像学考试复习重点知识总结

医学影像学考试复习重点知识总结在医学领域中,影像学在疾病诊断、治疗和监测过程中扮演着至关重要的角色。

医学影像学考试是医学生及相关专业学生必须面对的一项重要考试。

有充分准备和理解考试重点知识是取得好成绩的关键。

本文将为您提供医学影像学考试复习的重点知识总结。

I. 放射学基础知识1. 放射线的基本概念与物理学原理:- 放射线的种类和属性- 放射线的生成机制和特性- 放射线的剂量及安全性- 放射线的相互作用与影响2. 医学影像学技术:- X射线检查:常用检查方法、适应症和注意事项- CT扫描:扫描原理、影像重建和临床应用- MRI检查:工作原理、图像形成和应用范围- 超声检查:声波技术、图像生成和适应症- 核医学检查:同位素应用、图像观察和安全措施3. 影像学质量控制与安全:- 影像质量评估:影像解剖学、鉴别和评估- 辐射防护:辐射剂量、辐射防护设备和防护措施 - 医学伦理与法规:患者隐私、知情同意和法律责任II. 解剖学与疾病影像学1. 骨骼系统影像学:- 解剖学结构与常见骨折类型- 骨肿瘤与骨关节疾病的影像学特征- 骨科手术术前评估与术后影像学评估2. 胸部影像学:- 常见肺部疾病及其影像学表现- 胸部CT扫描与肺结节评估- 胸部外伤和气胸的影像学诊断3. 腹部影像学:- 腹部CT扫描与腹腔器官疾病的诊断- 肝脏和胆道系统疾病的影像学表现- 肾脏和泌尿系影像学评估4. 神经影像学:- 脑部CT与MRI扫描:解剖学结构和脑卒中的影像学特征- 脊髓和脊柱疾病的影像学评估- 神经影像学检查在神经外科手术中的应用III. 影像学与临床应用1. 影像学在诊断中的价值:- 影像学与临床症状的对应- 影像学在疾病诊断中的优势和局限性2. 影像学引导下的介入治疗:- 经导管介入治疗的原理和方法- 影像学引导下的肿瘤射频消融和介入治疗3. 影像学与疾病预后评估:- 影像学评估疾病进展和治疗效果- 影像学在肿瘤预后评估中的应用总之,医学影像学考试的复习重点知识包括放射学基础知识、解剖学与疾病影像学、影像学与临床应用等内容。

医学影像学考试复习重点知识总结

医学影像学考试复习重点知识总结

医学影像学考试复习重点知识总结医学影像学一、名词解释1、医学影像学:以影像方式显示人体内部结构的形态与功能信息及实施介入性治疗的科学。

2、介入放射学:以影像诊断学为基础,在影像设备的引导下,利用穿刺针、导管、导丝及其他介入器材,对疾病进行治疗或取得组织学、细胞学、细菌学及生理、生化资料进行诊断的学科。

3、造影检查:将对比剂引入器官内或其周围间隙,产生人工对比,借以成像。

4、核磁共振成像:利用人体中的氢原子核(质子)在磁场中受到射频脉冲的激励而发生核磁共振现象,产生磁共振信号,经过信号采集和计算机处理而获得重建断层图像的成像技术。

5、骨龄:在骨的发育过程中,骨的原始骨化中心和继发骨化中心的出现时间,骨骺与干骺端愈合的时间及其形态的变化都有一定的规律性,这种规律以时间来表示,即骨龄。

6、骨质疏松:一定单位体积内正常钙化的骨组织减少,骨组织的有机成分和钙盐都减少,但骨的有机成分和钙盐含量比例仍正常。

骨皮质变薄,哈氏管扩大和骨小梁减少。

7、骨质破坏:局部骨质为病理组织所代替而造成骨组织的消失。

8、骨膜三角:如果引起骨膜增生的疾病进展,已形成的骨膜新生骨可被破坏,破坏区两侧残留的骨膜新生骨呈三角形,叫骨膜三角或Codman三角。

9、骨质坏死:骨组织局部代谢的停止,坏死的骨质叫死骨。

10、青枝骨折:儿童骨骼柔韧性较大,外力不易使骨质完全断裂而形成不完全性骨折,仅表现为局部骨皮质和骨小梁的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆起,即青枝骨折。

11、阻塞性肺不张:支气管阻塞后,肺部分或完全无气不能膨胀而导致的体积缩小。

12、肺实变:终末支气管以远的含气腔隙内的空气被病理性液体、组织或细胞所代替。

13、空洞:肺组织发生坏死、液化后,坏死物质经支气管排出而形成的病变状况。

14、空腔:肺内生理性腔隙的病理性扩大。

15、钙化:属于变质性病变,受到破坏的组织发生分解而引起局部酸碱度变化时,钙离子以磷酸盐或碳酸盐的形式沉积下来,多发生在退行性变或坏死组织内。

医学影像学重点

医学影像学重点

医学影像学重点医学影像学是一门通过运用各种成像技术来观察人体内部结构和功能的学科。

它在医学诊断和治疗中起着重要的作用。

本文将介绍医学影像学的重点内容,包括放射学成像、超声波成像、核医学成像和磁共振成像。

一、放射学成像放射学成像是一种通过使用X射线或其他辐射形式来获取图像的技术。

常见的放射学成像方法包括X射线摄影、计算机断层扫描(CT)和正电子发射断层扫描(PET-CT)等。

1. X射线摄影X射线摄影是最常用的放射学成像技术之一。

它通过使用X射线束通过人体,然后记录X射线在人体内部的吸收情况来生成影像。

X射线摄影可用于检查骨骼、胸部、腹部等不同部位的病变。

2. 计算机断层扫描(CT)CT是一种通过连续扫描和重建形成横断面图像的成像技术。

它利用X射线在不同角度上的多次扫描来获取人体断层图像,可提供更详细的解剖信息。

CT广泛应用于头颅、胸部、腹部、盆腔等部位的疾病诊断。

3. 正电子发射断层扫描(PET-CT)PET-CT结合了正电子发射断层扫描和计算机断层扫描的技术,可提供代谢信息和解剖信息的结合。

它广泛应用于肿瘤学领域,可以帮助确定肿瘤的位置和病变程度。

二、超声波成像超声波成像是一种利用超声波在人体内部产生回声并生成图像的技术。

它无辐射、无创伤,对患者无任何负面影响。

1. B超B超是超声波成像的一种常见形式。

它通过不同组织对超声波的反射和散射来生成图像。

B超在妇产科、肝脏疾病、泌尿系统疾病等方面具有广泛的应用。

2. 彩色多普勒超声彩色多普勒超声是在B超的基础上加入了血流速度的测量。

它可以显示血流的方向和速度,并能检测血流异常。

彩色多普勒超声在心脏病学和血管病学中具有重要作用。

三、核医学成像核医学成像是利用放射性同位素标记的药物来观察人体内部器官组织功能和代谢的技术。

1. 单光子发射计算机断层扫描(SPECT)SPECT是核医学成像中常用的技术之一。

它通过测量放射性同位素的γ射线来生成图像,可提供有关器官功能和代谢的信息。

《医学影像学》背诵重点

《医学影像学》背诵重点

《医学影像学》背诵重点医学影像学是医学领域中的一个重要分支,通过各种影像技术来观察和诊断人体疾病。

在学习医学影像学的过程中,有一些重点知识需要进行背诵和记忆。

本文将介绍一些医学影像学的背诵重点,帮助读者更好地理解和掌握这一学科。

一、医学影像学概述医学影像学是一门研究利用不同影像技术观察和诊断人体疾病的学科。

它包括放射学和超声学两个主要分支,其中放射学又可分为X线摄影学、断层摄影学和核医学。

二、放射学背诵重点1. X线摄影学:X线平片是最常用的影像学检查方法之一,通过吸收不同程度的X射线来观察人体内部结构。

在胸部X线摄影学中,我们要掌握不同肺纹理的表现,如纵隔纹理、膈肌韧带和肺门阴影等。

此外,在骨骼系统的X线摄影学中,了解骨骼的解剖结构和不同骨折类型的特征也是重点。

2. 断层摄影学:断层摄影学主要包括计算机断层摄影(CT)和磁共振成像(MRI)。

在CT影像学中,我们需要学习和背诵不同组织的CT值范围,以及常见疾病在CT上的特征表现。

在MRI影像学中,了解各种脉序的影像特点,以及脑部、脊柱和关节等部位疾病的MRI表现也是必备。

3. 核医学:核医学主要利用放射性同位素来观察和诊断人体疾病。

在核医学中,我们需要掌握各种核素的生物分布和摄取机制,以及不同疾病在核医学图像上的表现特点。

三、超声学背诵重点超声学是以声波作为检查手段的影像学技术,它可以观察和评估人体内部各种组织与器官的形态和功能。

在超声学中,我们需要熟悉不同组织和器官的超声特征,如肝脏的回声模式、甲状腺的结构和血流动力学参数等。

此外,了解不同超声检查方法的适应症和操作技巧也是重要的。

四、其他影像学技术背诵重点除了放射学和超声学,还有一些其他影像学技术也有其特定的背诵重点。

例如,核磁共振波谱学(MRS)可用于检测脑部肿瘤和神经代谢异常,正电子发射计算机断层摄影(PET-CT)可用于评估肿瘤的代谢活性和淋巴结转移等。

五、注意事项在学习医学影像学的过程中,需要注意以下几点:1. 注重理论和实践结合,多进行实际影像学图像的观察和分析。

医学影像学整理考试复习重点知识总结

医学影像学整理考试复习重点知识总结

医学影像学第一章、影像诊断学总论1、医学影像诊断学:是应用医学成像技术对人体疾病进行诊断和在医学成像技术引导下应用介入器材对人体疾病进行微创性诊断机治疗的医学学科。

内容:x线诊断(CR、DR、DSA诊断)、超声诊断、CT诊断及MRI诊断(简答回名解+内容)2、数字减影血管造影(DSA):进行血管造影时,通过计算机处理数字影像信息,消除骨骼和软组织影像,使血管清晰显示的成像技术。

3、辐射防护的基本原则(填空):屏蔽保护、距离保护、时间保护4、图像存档与传输系统(PACS);是一种科技含量高,实际应用价值极大的复杂系统,其将数字化成像设备、高速计算机网络、海量存储设备和具备后处理功能的影像诊断工作站结合起来,完成对医学影像信息的采集、传输、存储后处理及显示等功能,使得图像资料得以有效管理和充分利用。

第二章、中枢神经系统1、星形细胞瘤:属于神经上皮组织起源的肿瘤,为中枢神经系统最常见的肿瘤,成人多发生于大脑,儿童多见于小脑。

影像一般规律:密度逐渐不均,边界逐渐不清,水肿逐渐明显,强化逐渐明显。

2、脑膜瘤:最常见的颅内脑实质外肿瘤。

多发于中年女性。

好发于脑表面有蛛网膜颗粒的部位,幕上多见,大脑凸面和矢状窦旁最多见,其次为蝶骨嵴、嗅沟及前颅窝底、鞍结节、小脑桥脑角等。

组织学分:为脑膜皮行、纤维型、砂粒体型、过度型型、血管瘤型等15型CT表现:等或高密度,边界清楚,球形或分叶形,与大脑廉小脑幕颅骨相连,常有钙化,明显均一强化。

MR表现:等T1等T2信号,边界清,有包膜,强化明显,有“硬膜尾征”。

3、垂体瘤:鞍内最常见的肿瘤,绝大多数为垂体腺瘤。

>为大腺瘤,<为小腺瘤。

大腺瘤CT表现:蝶鞍扩大,葫芦状等或高密度占位,邻近组织受压或侵及,强化明显,常有出血。

大腺瘤MR表现:等T1等T2信号,其它表现同CT。

垂体微腺瘤MR表现:增强早期呈不强化的低信号区。

间接征象为垂体高度>8mm,上缘隆突,垂体柄偏移,鞍底下陷。

医学影像学重点总结

医学影像学重点总结

医学影像学重点总结医学影像学是一门研究人体结构和病理生理变化的学科,通过各种成像技术可以对人体进行无创的检查和诊断。

医学影像学主要包括X线摄影、超声影像学、CT(计算机断层扫描)、核磁共振成像和放射治疗等多个学科。

本文将重点总结医学影像学的基本概念、主要技术和临床应用。

1.基本概念:2.主要技术:(1)X线摄影:X线摄影是医学影像学最早、也是最常用的成像技术之一、它通过向人体放射离子辐射,使被检查部位的组织吸收该辐射并生成X射线影像。

(2)超声影像学:超声波是一种机械波,通过超声检查仪向人体内部发射超声波,并记录其回波,通过对回波进行处理和解释,生成图像。

(3)CT:CT是一种通过多个方向的X射线成像来重建人体断层图像的技术。

它使用旋转的X射线源和探测器,通过多次成像生成一系列图像,然后利用计算机对这些图像进行处理和重建,得到人体内部的断层图像。

(4)核磁共振成像(MRI):MRI通过在强磁场中,利用人体组织中的水和脂肪分子的旋转特性,引入无创激发和检测的放射信号,然后通过计算机分析和生成图像。

(5)放射治疗:放射治疗是利用高能射线(如X射线、γ射线)对肿瘤进行治疗的一种方法。

它可以通过控制放射线的剂量和方向来杀死癌细胞或抑制其生长。

3.临床应用:(1)疾病诊断:医学影像学可以对各种内外科疾病进行无创检查,提供疾病的影像学表现,帮助医生做出准确的诊断。

如通过X线摄影可以检查肺部病变,超声可以检查器官肿块,MRI可以检查脑部病变等。

(2)疾病评估:医学影像学可以评估疾病的严重程度和预后情况。

如通过CT可以评估肿瘤的大小和侵犯范围,MRI可以评估椎间盘的退变程度。

(3)导向治疗:医学影像学可以用于导引手术或放射治疗。

如放射治疗时使用CT来确定肿瘤的形态和位置,帮助医生制定合理的放疗计划。

(4)随访观察:医学影像学可以对疾病的治疗效果进行随访观察,如通过CT或MRI来判断肿瘤的缩小情况,或复查X线片来判断骨折的愈合情况。

医学影像学重点复习完整版

医学影像学重点复习完整版

医学影像学重点复习完整版医学影像学是现代医学领域的重要学科之一,它利用各种成像技术来获取人体内部组织和器官的影像信息,以辅助医生进行疾病诊断和治疗。

在医学影像学的学习中,我们需要掌握一定的理论知识和实践技巧。

本文将通过介绍医学影像学的基本概念、常用设备和各种成像技术,来帮助大家进行全面的复习。

一、医学影像学的基本概念医学影像学是以临床需求为导向,通过各种成像技术对人体进行非侵入性检查和研究的学科。

它广泛应用于多个医学领域,如放射学、超声学、磁共振成像等。

医学影像学的主要目标是通过影像信息来确定疾病的类型、位置和程度,以辅助医生制定合理的治疗方案。

二、常用的医学影像设备常用的医学影像设备包括X射线机、CT机、MRI机、超声仪等。

X射线机通过发射高能X射线,使人体内部的组织和器官形成透明影像。

CT机通过旋转扫描和计算机处理,可以获得人体的横断面图像。

MRI机则利用强磁场和无线电波来获取人体的断层图像。

超声仪则利用超声波的回声来生成内部器官的图像。

三、常见的医学影像技术1. X射线成像:包括静态X射线摄影和动态X射线摄影。

前者通过投射X射线到患者体内,然后捕捉射线通过后的图像。

后者则是在患者身上注射一定剂量的造影剂,然后通过连续摄像的方式观察造影剂在体内的流动变化。

2. CT成像:CT成像是通过X射线旋转扫描来获得人体不同层面的图像。

它可以提供比传统X射线更丰富的信息,对于复杂疾病的诊断和治疗有着重要的作用。

3. MRI成像:MRI成像通过利用磁场和无线电波来获取人体内部的详细图像。

相比于X射线或CT扫描,MRI成像具有更高的分辨率和对软组织的更好显示能力。

4. 超声成像:超声成像利用高频声波对人体进行探测,然后将声波的回声转换成影像。

超声成像可以提供实时的图像,并且不会产生辐射,因此在妇科、儿科等领域有着广泛应用。

四、医学影像学的临床应用医学影像学广泛应用于多个临床领域,如神经学、心血管学、骨科等。

医学影像学重点笔记

医学影像学重点笔记

欢迎阅读医学影像学复习重点总论重点:X 线的特性:X 线成像是利用了X 线的穿透性、荧光效应、感光效应和电离效应的特性。

X 线防护:时间防护、屏蔽防护、距离防护CT 值:X 线通过穿透人体组织后,可计算出每一单位体积的X 线衰减系数,即u 值,u 值可转变为CT 值,代表同一单位的组织密度。

窗宽窗位:窗宽代表CT 值的范围,窗位是窗宽的中心位置。

部分容积效应:如果在同一扫描层面内含有两种以上不同密度物质,则测得的CT 值代表它们的平均值而不能如实反映其中任何一种物质的CT 值,这种现象即为部分容积效应。

X X 为X 别。

X 线含量最丰富,而且只有质子而没有中子,成为人体组织成的基本物质,MR 的信号主要是靠核子内带正电的质子的旋进(Spine)产生,故称质子成像。

骨骼系统重点:骨与软组织基本病变:骨质疏松、骨质软化、骨质破坏、骨质增生硬化、骨膜增生、骨内与软骨内钙化、骨质坏死、矿物质沉积、骨骼变形、周围软组织病变。

骨质疏松是指一定单位体积内正常钙化的骨组织减少,即骨组织的有机成分和钙盐都减少,但骨内有机成分和钙盐含量比例仍正常,X 线表现主要为骨密度减低,骨小梁变细、减少、间隙增宽,骨皮质出现分层和变薄现象。

疏松的骨骼易发生骨折。

骨质软化是指一定单位体积内骨组织有机成分正常,而矿物质含量减少,X 线表现也是骨密度减低,与骨质疏松不同的是骨小梁和骨皮质边缘模糊。

承重骨骼常发生变形,可有假骨折线形成。

骨质破坏是局部骨质为病理组织所代替而造成的骨组织消失,X 线表现为骨质局限性密度减低,骨小梁稀疏消失而形成骨质缺损,其中全无骨质结构。

骨质增生硬化是一定单位体积内骨量的增多,X线表现为骨质密度增高。

伴或不伴有骨骼的增大,骨小梁增粗、增多、密集、骨皮质增厚、致密。

骨膜增生是因骨膜受刺激,骨膜内层成骨细胞活动增加所引起的骨质增生,X线表现早期是一段长短不定,与骨皮质平行的细线状致密影,同骨皮质间可见1~2mm宽的透亮间隙。

医学影像学复习重点

医学影像学复习重点

医学影像学复习重点医学影像学复习重点总论人体组织密度CT值:水的CT值为0HU;人体中密度最高的骨皮质为+1000HU;空气为—1000HU;软组织为20~50HU;脂肪<—70HU。

自然对比:人体组织自然存在的密度差别称自然对比。

造影检查:将造影剂引入器官内或其周围,以产生明显对比显示其形态与功能的方法。

CT:CT不是X线摄影,而是用X线对人体进行扫描,取得信息,经电子计算机处理而获得的重建图像。

X线的特性:穿透性、荧光效应、感光效应(摄影效应)、电离效应核磁共振(MRI)成像原理:利用人体中的氢原子核在磁场中受到射频脉冲的激励而发生核磁共振现象,产生强度不同的磁共振信号,经信号采集和计算机处理而获得重建断层图像的成像技术。

MRCP:即MR胆胰管造影,无创伤,无造影剂,可见胆囊及胆管显影并扩张,胆囊及胆总管下端结石呈低信号充盈缺损。

医学影像学:一门应用医学影像学设备,观察病人体内器官形态和功能,并对疾病进行诊断和治疗的学科。

DSA:数字减影血管造影,是利用计算机处理数字影像信息,消除骨骼和软组织的影像,使血管显影清晰的成像技术。

人工对比:人工导入某种物质,使原本缺乏天然对比的组织、结构间形成明显密度差,从而提高显示率的方法就称为人工对比,导入的物质叫做对比剂或造影剂。

流空效应:存在于磁共振成像中,由于信号采集需要一定的时间,快速流动的血液不产生或只产生极低信号,与周围组织、结构间形成鲜明的对比,这种现象就叫做“流空效应”。

如心血管内快速流动的血液。

X线1、数字X线成像(DR)依其结构可分为计算机X线成像(CR)数字X线荧光成像(DF)平板探测器数字X线成像。

2、CR与普通X线成像比较,重要的改进实现了数字X线成像。

优点是提高了图像密度分辨力和显示能力。

11、物质的密度与其本身的比重成正比,物质的密度高,比重大,吸收X线量多,影像在图像上呈白影18、胸部的肋骨密度高,对X线的吸收多,照片上呈白影19、肺部含气,密度低,对X线吸收少,照片上呈黑影。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学影像学复习重点总论人体组织密度值:CT水的CT值为0HU;人体中密度最高的骨皮质为+1000HU;空气为—1000HU;软组织为20~50HU;脂肪<—70HU。

自然对比:人体组织自然存在的密度差别称自然对比。

造影检查:将造影剂引入器官内或其周围,以产生明显对比显示其形态与功能的方法。

CT:CT不是X线摄影,而是用X线对人体进行扫描,取得信息,经电子计算机处理而获得的重建图像。

线的特性:穿透性、荧光效应、感光效应(摄影效应)、电离效应X核磁共振()成像原理:利用人体中的氢原子核在磁场中受到射频脉冲的激励而发生核磁共振现象,产生强度MRI不同的磁共振信号,经信号采集和计算机处理而获得重建断层图像的成像技术。

MRCP:即MR胆胰管造影,无创伤,无造影剂,可见胆囊及胆管显影并扩张,胆囊及胆总管下端结石呈低信号充盈缺损。

医学影像学:一门应用医学影像学设备,观察病人体内器官形态和功能,并对疾病进行诊断和治疗的学科。

DSA:数字减影血管造影,是利用计算机处理数字影像信息,消除骨骼和软组织的影像,使血管显影清晰的成像技术。

人工对比:人工导入某种物质,使原本缺乏天然对比的组织、结构间形成明显密度差,从而提高显示率的方法就称为人工对比,导入的物质叫做对比剂或造影剂。

流空效应:存在于磁共振成像中,由于信号采集需要一定的时间,快速流动的血液不产生或只产生极低信号,与周围组织、结构间形成鲜明的对比,这种现象就叫做“流空效应”。

如心血管内快速流动的血液。

线 X1、数字X线成像(DR)依其结构可分为计算机X线成像(CR)数字X线荧光成像(DF)平板探测器数字X线成像。

2、CR与普通X线成像比较,重要的改进实现了数字X线成像。

优点是提高了图像密度分辨力和显示能力。

11、物质的密度与其本身的比重成正比,物质的密度高,比重大,吸收X线量多,影像在图像上呈白影18、胸部的肋骨密度高,对X线的吸收多,照片上呈白影19、肺部含气,密度低,对X线吸收少,照片上呈黑影。

20、纵膈为软组织,密度中等,对X线吸收中等,照片呈灰影。

21、人体组织结构和器官形态不同,厚度也不同,厚的部分吸收X线多,透过的X线少,薄的部分相反,于是在X线片上和荧屏上显示出黑白对比和明暗差异的影像。

CT4、CT不同于X线成像,它是用X线束对人体层面进行扫面,取得信息,经计算机处理获得的重建图像,是数字成像而不是模拟成像。

5、CT图像是由一定数目从黑到白不同灰度的像素按矩阵排列所构成的灰阶图像。

这些像素反映的是相9、CT图像还可用组织对X线的吸收系数说明密度高低的程度。

但在实际工作中,不用吸收系数,而换算成CT值,用CT值说明密度,单位为HU。

10、CT检查分为平扫、对比增强扫描、造影扫描。

MRI6、磁共振成像MRI是利用原子核在磁场内所产生的信号经重建成像的一种影像技术。

7、磁共振血管造影MRA是对血管和血流信号特征显示的一种技术。

8、MRI是有软组织高分辨特点及血管流空效应。

对比剂按影像的密度高度分为高密度对比剂和低密度对比剂两类。

高密度对比剂有钡剂和碘剂。

水溶性对比剂分两型:离子型和非离子型。

非离子型对比剂具有:低溶性、低粘度、低毒性等优点,减少了毒副作用。

适用于血管造影和CT增强扫描。

用碘对比剂注意:了解患者有无用碘禁忌症;做好解释工作,争取患者合作碘剂过敏试验,如阳性,不宜造影检查;喉头水肿和哮喘发作等,应立即终止造影并进行抗休克、抗过敏严重反应包括周围循环衰竭、心脏停搏、惊厥、.和对症治疗。

线图像的形成三个基本条件:首先X线具有一定的穿透力,能穿透人体的组织结构;第二,被穿透的组织结构存X在着密度和厚度的差异,X线在穿透的过程中被吸收的量不同,以致剩余下来的X线量有差别。

第三,这个有差别的剩余X线是不可见的,经过显像过程,例如用X线片显示,就能获得具有黑白对比、层次差异的X线图像。

人体组织结构根据密度不同可归纳为三类:属于高密度的有骨组织和钙化灶等;中等密度的有软骨、肌肉、神经、实质脏器、结缔组织以及体液等;低密度的有脂肪组织以及有气体存在的呼吸道、胃肠道、鼻窦和乳突气房等。

对比增强CT是经静脉注入水溶性有机碘对比剂后再行扫描的方法,经常使用。

注入碘对比剂后,器官与病变内碘的浓度可产生差别,形成密度差,能是平扫未显示或显示不清的病变显影。

通过病变有无强化及强化方式,有助于定性诊断。

常用的方法为团注法,即在若干秒内将全部对比剂迅速注入。

依扫描方法分为常规增强扫描、动态增强扫描,延迟增强扫描和多期增强扫描等。

血管介入技术的主要内容及临床应用主要内容:在影像设备的引导下,利用穿刺针、导管、导丝及其他介入器材经血管途径进行诊断与治疗的操作技术。

其基础为:经导管动脉栓塞术、经皮腔内血管成形术和经导管动脉内药物灌注术三大技术。

医用X线特性X线是一种电磁波,具有穿透性;荧光效应;摄影效应和生物效应。

其穿透性与物质密度,厚度和X线波长有关,荧光效应是透视检查的基础;摄影效应是X线摄影的基础;电离效应涉及人体生物学方面的改变,是放射防护学和放射治疗的基础。

X线成像的基本原理一方面基于X线的穿透性,荧光效应和摄影效应,另一方面是基于人体组织有密度和厚度的差别。

当X线透过人体各种不同组织结构时,它被吸收的程度不同所以达到荧光屏或X线片上的X线量有差异。

这样可在荧光屏或X线片上形成黑白对比不同的影象。

骨、关节系统临床应用:止血、治疗血管性疾病、治疗肿瘤、器官灭火等介入放射学:以影像诊断学为基础,并在影像设备的导向下,利用经皮穿刺和导管技术等对一些疾病进行手术治疗或者有以取得组织学、细菌学、生理和生化材料,以明确病变性质。

骨与肌肉系统关节强直:骨性强直:X线表现为关节间隙明显变窄或消失,并有骨小梁连接两侧骨端;纤维性强直:X线上仍可见狭窄的关节间隙,且无骨小梁贯穿。

骨质疏松:指一定单位体积内正常钙化的骨组织减少,即骨组织的有机成分和钙盐都减少,但比例仍正常。

X线主要表现是骨密度减低。

长骨可见骨小梁变细、渐少、间隙增宽,骨皮质分层变薄;在脊椎,椎体变薄,椎间隙增宽。

广泛性骨质疏松主要由于成骨减少,老年、绝经期后妇女、营养不良、代谢或内分泌障碍均可见;局限性骨质疏松多见于失用,如骨折后、感染、恶性骨肿瘤。

骨质增生硬化:指一定单位体积内骨量增多。

X线表现是骨质密度增高,伴或不伴骨骼增大。

骨小梁增多、增粗、密集,骨皮质增厚、致密;长骨可见骨干粗大,骨髓腔变窄或消失。

多数是局限性骨质增生,见于慢性炎症、外伤和某些原发性骨肿瘤。

少数为普遍性骨质增生,骨皮质与骨松质多同时受累,见于某些代谢或内分泌障碍或中毒性疾病。

骨质破坏:局部骨质为病理组织所代替而造成骨组织的消失。

X线表现是骨质局限性密度减低,骨小梁稀疏消失而形成骨质缺损,见于炎症、肉芽肿、肿瘤或瘤样病变。

骨膜反应:骨膜受刺激,骨膜水肿、增厚,内层成骨细胞活动增加,最终形成骨膜新生骨。

X线和CT见骨膜新生骨呈与骨皮质表面平行排列的线状、层状或花边状表现,一般发生于长骨骨干的明显,炎症者较广泛,肿瘤者较局限。

已形成的骨膜新生骨可被破坏,破坏区两侧的残留骨膜新生骨呈三角形,称骨膜三角或Codman三角。

骨膜增生多见于炎症、肿瘤、外伤、骨膜下出血等。

脊椎结核:以腰椎多见,病变好累及相邻的两个椎体。

椎体塌陷变扁或呈楔检查可进一步显示骨破坏区细节、死骨和冷性脓肿。

CT形;椎间隙变窄甚至消失;周围软组织中形成冷性脓肿。

.骨肉瘤的好发部位及影像学表现:好发于股骨下端、胫骨上端和肱骨上端,干骺端为好发部位,青少年多见。

X线平片:局限性骨质破坏、骨膜新生骨生成破坏、骨膜三角、肿瘤骨形成(云絮状、针状和斑块状致密影)和软组织肿块是诊断要点。

骨巨细胞瘤的影像学表现:好发于骨骺已闭合的四肢长骨骨端,以股骨下端、胫骨上端和桡骨下端最为常见。

X线CT表现以膨胀性骨破坏为特征,病变常侵犯骨端,直达骨性关节面下。

骨转移瘤分型:溶骨型:发生在长骨者多在骨干或邻近的干骺端及骨端,表现为骨松质中多发或单发小的虫蚀状骨质破坏,一般无骨膜反应;发生在脊椎则见椎体骨质破坏,因承重而被压变扁,椎间隙多正常,椎弓根多受侵蚀破坏。

成骨型:病变为高密度影,居骨松质内,呈斑片状或结节状,密度均匀,骨皮质多完整,多发生在腰椎和骨盆,常多发,境界不清,椎体不压缩变扁。

混合型小儿长骨的主要特点是有骺软骨,且未完全骨化,可分为骨干,干骺端和骺(骺,骺板)等部分。

骨的基本病变表现骨质疏松,骨质软化,骨质破坏,骨质增生硬化,骨膜异常,骨内和软骨内钙化,骨质坏死,矿物质沉积,骨骼变形,周围软组织病变。

骨折根据碎片情况可分为撕脱性,嵌入性和粉碎性骨折。

常见部位的骨折①colle‘s骨折②肱骨髁上骨折③股骨颈骨折。

骨膜异常X线表现:与骨皮质面平行排列的呈线状、层状或花边状致密影,早期同骨皮质间有一透亮间隙,痊愈期可与骨皮质融合,表现骨皮质增厚;骨膜三角。

儿童骨折的特点1骺离骨折:小儿长骨由于骨骺尚未与干骺端结合,外力引起骨骺分离。

表现骺线增宽,骺与干骺端对位异常2青枝骨折:儿童骨骼韧性较大,外力不易使骨质完全断裂,仅表现为局部骨皮质和骨小梁的扭曲、皱折、凹陷或隆起而不见骨折线。

骨龄:是指骨的原始骨化中心和继发骨化中心的出现及骨骺和干骺端骨性愈合的年龄。

(对诊断内分泌疾病和一些先天性畸形综合征有一定价值)骨质坏死:是骨组织局部代谢停止,坏死的骨质称为死骨。

形成死骨的原因主要是血液供应中断(多见于慢性化脓性骨髓炎,也见于骨缺血性坏死和外伤骨折后)骨膜三角(三角):恶性肿瘤累及骨膜及骨外软组织,刺激骨膜成骨,肿瘤继而破坏骨膜所形成的骨质,其Codman边缘残存骨质呈三角形高密度病灶,称为骨膜三角。

是恶性骨肿瘤的重要征象。

骨折:又称伸展型桡骨远端骨折,为桡骨远端2~Colles3㎝以内的横行或粉碎骨折,骨折远端向背侧移动,断端向掌侧成角畸形,可伴尺骨茎突骨折。

青枝骨折:在儿童,骨骼柔韧性大,外力不易使骨质完全断裂而形成不完全性骨折,仅表现为骨小梁和骨皮质的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆突。

骨“气鼓”(骨囊样结核):骨干结核初期为骨质疏松,继而在骨内形成囊性破坏,骨皮质变薄,骨干膨胀,故称为骨“气鼓”或骨囊样结核。

骺离骨折:发生在儿童长骨骨折时,由于骨骺尚未与干骺端愈合,外力可经过骺板达干骺端而引起骨骺分离,即骺离骨折。

长骨结核、脊椎结核影像学表现X线平片:长骨结核——松质骨中出现局限性类圆形、边缘较清楚的骨质破坏区,邻近无明显骨质增生现象;骨膜反应少见;在骨质破坏区有时可见“泥沙状”死骨。

脊椎结核——溶骨性骨松质破坏,以腰椎多见,椎体塌陷变扁或呈楔形;椎间隙变窄或消失,椎体融合;脊椎曲度改变(后突);椎旁脓肿形成(冷性脓肿)。

CT检查:长骨结核——低密度的骨质破坏区,其内常见多数小斑片状高密度影为死骨;病变周围软组织肿胀;结核性脓肿密度低于肌肉,增强后可有边缘化。

相关文档
最新文档