2015-2016学年北京市海淀区七年级第一学期期末数学试卷(含答案)

合集下载

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。

11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。

北师大七年级(上)期末数学试卷(含解析) (12)

北师大七年级(上)期末数学试卷(含解析) (12)

2015-2016学年重庆市巴蜀中学七年级(上)期末数学试卷一、选择题(每题4分,共48分)1.在﹣2,﹣1,0,2这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.22.对于单项式5πR2,下列说法正确的是()A.系数为5 B.系数为5πC.次数为3 D.次数为4 3.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.4.下列说法正确的是()A.一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩B.事件发生的频率就是它的概率C.质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%D.成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件5.如图,AB=12cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.4cm B.6cm C.8cm D.10cm6.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°7.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.28.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y 9.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A.12人,15人B.14人,13人C.15人,12人D.13人,14人10.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=311.已知方程组的解也是方程3x﹣2y=0的解,则k的值是()A.k=﹣5 B.k=5 C.k=﹣10 D.k=1012.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有()个.A.145 B.146 C.180 D.181二、填空题(每空3分,共30分)13.5的相反数是.14.计算2a﹣(﹣1+2a)=.15.如果收入50元记作+50元,那么支出20元记作.16.每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为人.17.如图,数轴上点A、B所表示的两个数的和的绝对值是.18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.19.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是度.20.一块手表上午10:45时针和分针所夹锐角的度数是.21.圣诞节到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省28元,那么妈妈购买这件衣服实际花费了元.22.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是.三、解答题(共27题)23.计算:(1)18﹣6÷(﹣2)×(﹣);(2)(﹣﹣)×24+(1﹣0.5)+3×.24.解方程(组):(1)7﹣3(x+1)=2(4﹣x)(2).25.先化简,再求值:3(x2﹣2xy)﹣4[xy﹣1+(﹣xy+x2)],其中x=﹣4,y=.26.巴蜀中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有人;扇形统计图中a=;(2)补全条形统计图;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?27.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.28.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.29.张老师周末到某家居建材市场购买沙发、橱窗和地板三样物品,碰巧该市场推出“迎圣诞元旦双节”优惠活动,具体优惠情况如下:(1)若购买三样物品原价8000元,请求出张老师实际的付款金额?(2)若购买三样物品实际花费了6820元.①请求出三件物品的原价总共是多少钱?②几天后,张老师发现地板的样式不适合需要退货,该市场规定:消费者需支付优惠差额(即退货商品在购买时所享受的优惠),并且还要支付商品原价5%的手续费,最终该市场退还了张老师2345元,请问地板原价是多少钱?2015-2016学年重庆市巴蜀中学七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.在﹣2,﹣1,0,2这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.2【考点】有理数大小比较.【分析】因为正数大于一切负数,0大于负数,所以负数最小,﹣2<﹣1,所以﹣2最小.【解答】解:﹣2<﹣1<0<2,故选A.2.对于单项式5πR2,下列说法正确的是()A.系数为5 B.系数为5πC.次数为3 D.次数为4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式5πR2的系数是5π,次数是2,故选:B.3.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.4.下列说法正确的是()A.一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩B.事件发生的频率就是它的概率C.质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%D.成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件【考点】用样本估计总体;随机事件;概率的意义.【分析】正确理解频率和概率的概念,掌握随机事件的概念,分析即可.【解答】解:A、第二胎可能是男孩,也可能是女孩,是随机事件,错误;B、事件发生的频率就是它的概率,概率并不等同于频率,概念混淆,错误;C、符合用样本估计总体的统计思想,正确;D、混淆了频率与概率的概念,错误.故选C.5.如图,AB=12cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.4cm B.6cm C.8cm D.10cm【考点】两点间的距离.【分析】根据中点的定义求出AC、BC的长,根据题意求出AD,结合图形计算即可.【解答】解:∵AB=12cm,C为AB的中点,∴AC=BC=AB=6cm,∵AD:CB=1:3,∴AD=2cm,∴DC=AC﹣AD=4cm,∴DB=DC+BC=10cm,故选:D.6.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【考点】角的计算.【分析】由图示可得,∠2与∠BOC互补,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.7.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.2【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.8.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y【考点】整式的加减.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选:A.9.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A.12人,15人B.14人,13人C.15人,12人D.13人,14人【考点】二元一次方程组的应用.【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.本题中有2个定量:工程队的人数,沙的吨数,可根据定量找到两个等量关系:挖沙人数+运沙人数=27,4×挖沙人数=5×运沙人数.根据这两个等量关系可列出方程组.【解答】解:设分配挖沙x人,运沙y人,则,解得,∴应分配挖沙15人,运沙12人.故选C.10.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3【考点】合并同类项.【分析】根据同类项的概念,列出方程求解.【解答】解:由题意得,,解得:.故选C.11.已知方程组的解也是方程3x﹣2y=0的解,则k的值是()A.k=﹣5 B.k=5 C.k=﹣10 D.k=10【考点】解三元一次方程组.【分析】根据三元一次方程组的概念,先解方程组,得到x,y的值后,代入4x﹣3y+k=0求得k的值.【解答】解:解方程组,得:,把x,y代入4x﹣3y+k=0得:﹣40+45+k=0解得:k=﹣5.故选A.12.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有()个.A.145 B.146 C.180 D.181【考点】规律型:图形的变化类.【分析】根据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10﹣1)2=181个.【解答】解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10﹣1)2=181个.故选D.二、填空题(每空3分,共30分)13.5的相反数是﹣5.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故答案为﹣5.14.计算2a﹣(﹣1+2a)=1.【考点】整式的加减.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=2a+1﹣2a=1.故答案为:1.15.如果收入50元记作+50元,那么支出20元记作﹣20元.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,收入记为正,可得支出的表示方法.【解答】解:如果收入50元记作+50元,那么支出20元记作﹣20元,故答案为:﹣20元.16.每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为 5.4×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将5400000用科学记数法表示为:5.4×106.故答案为:5.4×106.17.如图,数轴上点A、B所表示的两个数的和的绝对值是1.【考点】数轴;绝对值;有理数的加法.【分析】首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可.【解答】解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,则﹣3+2=﹣1,|﹣1|=1,故答案为:1.18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【考点】简单组合体的三视图.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.19.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是135度.【考点】角平分线的定义.【分析】本题是有公共定点的两个直角三角形问题,通过图形可知∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,同时∠AOC+∠BOC+∠BOD+∠BOC=180°,可以通过角平分线性质求解.【解答】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故答案为:135.20.一块手表上午10:45时针和分针所夹锐角的度数是52.5°.【考点】钟面角.【分析】首先根据题意画出草图,再根据钟表表盘的特征:表面上每一格30°,进行解答.【解答】解:10:45,时针和分针中间相差1个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午10:45时针和分针所夹锐角的度数是1×30°=52.5°.故答案为:52.5°.21.圣诞节到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省28元,那么妈妈购买这件衣服实际花费了112元.【考点】一元一次方程的应用.【分析】设这件运动服的标价为x元,则妈妈购买这件衣服实际花费了0.8x元,由题意可得出关于x的一元一次方程,解之即可求出x的值,故妈妈购买这件衣服实际花费的钱数即可得出.【解答】解:设这件运动服的标价为x元,则妈妈购买这件衣服实际花费了0.8x元,根据题意得,x﹣0.8x=28,解得:x=140,0.8x=112,故妈妈购买这件衣服实际花费了112元.故答案为112.22.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是45%.【考点】分式方程的应用.【分析】可设甲、乙的进价,甲种款式售出的件数为未知数,根据售出的乙种款式比售出的甲种款式的件数少40%时,这个老板得到的总利润率为40%得到甲、乙进价之间的关系,进而求得当售出的乙种款式的件数比甲种款式的件数多80%时,这个老板的总利润率即可.【解答】解:设甲种款式进价为a元,则售出价为1.3a元;乙种款式的进价为b元,则售出价为1.5b元;若售出甲种款式x件,则售出乙种款式0.6x件,依题意有=40%,解得:a=0.6b,当售出的乙种款式的件数比甲种款式的件数多80%时,设甲种款式的件数为y件,则乙种款式的件数1.8y件,则==45%.答:这个老板得到的总利润率是45%.故答案为:45%.三、解答题(共27题)23.计算:(1)18﹣6÷(﹣2)×(﹣);(2)(﹣﹣)×24+(1﹣0.5)+3×.【考点】有理数的混合运算.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式利用乘法分配律及乘法法则计算即可得到结果.【解答】解:(1)原式=18﹣1=17;(2)原式=21﹣4﹣18++2=1.24.解方程(组):(1)7﹣3(x+1)=2(4﹣x)(2).【考点】解二元一次方程组;解一元一次方程.【分析】(1)根据一元一次方程的解法即可解答;(2)利用加减消元法即可解答.【解答】解:(1)7﹣3(x+1)=2(4﹣x)7﹣3x﹣3=8﹣2x﹣3x+2x=8﹣7﹣x=1x=﹣1.(2)整理方程组得:①×2得:12x﹣4y=10③③﹣②得:9x=4,解得:x=,把x=代入①得:﹣2y=5,解得:y=﹣.所以方程组的解为:.25.先化简,再求值:3(x2﹣2xy)﹣4[xy﹣1+(﹣xy+x2)],其中x=﹣4,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣6xy﹣xy+4+6xy﹣6x2=﹣3x2﹣xy+4,当x=﹣4,y=时,原式=﹣48+2+4=﹣42.26.巴蜀中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有300人;扇形统计图中a=12;(2)补全条形统计图;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)男生人数为20+40+60+180=300;8分对应百分数用8分的总人数÷500;(2)8分以下总人数=500×10%=50,其中女生=50﹣20,10分总人数=500×62%=310,其中女生人数=310﹣180=130,进而补全直方图;(3)可利用样本的百分数去估计总体的概率,即可求出答案.【解答】解(1)如图,男生人数为20+40+60+180=300,8分对应百分数为(40+20)÷500=12%,故答案为:300,12;(2)补图如图所示:(3)500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是=.27.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.【考点】角平分线的定义.(1)根据题意可知,∠AOC=120°,由OM平分∠AOC,ON平分∠BOC;推出∠MOC=【分析】∠AOC=60°,∠CON=∠BOC=15°,由图形可知,∠MON=∠MOC﹣∠CON,即∠MON=45°;(2)同理可得,∠MOC=(α+β),∠CON=β,根据图形便可推出∠MON=∠MOC﹣∠CON=(α+β)﹣β=α.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°;故答案为:45°;(2)同理可得,∠MOC=(α+β),∠CON=β,则∠MON=∠MOC﹣∠CON=(α+β)﹣β=α.28.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.【考点】二元一次方程的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)根据:“A型汽车价格上涨的部分+B型汽车价格上涨的部分=同时购买A、B型汽车比原价高的部分”列方程求解可得.【解答】解:(1)设每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)根据题意,得:18×m%+26×3m%=(18+26)×12%,解得:m=5.5,答:m的值为5.5.29.张老师周末到某家居建材市场购买沙发、橱窗和地板三样物品,碰巧该市场推出“迎圣诞元旦双节”优惠活动,具体优惠情况如下:(1)若购买三样物品原价8000元,请求出张老师实际的付款金额?(2)若购买三样物品实际花费了6820元.①请求出三件物品的原价总共是多少钱?②几天后,张老师发现地板的样式不适合需要退货,该市场规定:消费者需支付优惠差额(即退货商品在购买时所享受的优惠),并且还要支付商品原价5%的手续费,最终该市场退还了张老师2345元,请问地板原价是多少钱?【考点】一元一次方程的应用.【分析】(1)设三件物品的原价总共是x元,由花费的钱数可知,商品的原价应在5000元﹣10000元之间,根据原价﹣优惠的钱数=花费的钱数列出方程解答即可;(2)设地板的原价为a元,由退回的钱数可知,商品的原价应在5000元之内,根据原价﹣优惠的钱数﹣支付原价的手续费=2345,列出方程解答即可.【解答】解:(1)购买三样物品原价8000元,张老师实际的付款金额为8000×80%=6400元;(2)设三件家电的原价总共是x元,由题意得,x﹣5000×10%﹣(x﹣5000)×20%=6820,解得:x=7900.答:三件家电的原价总共是7900元.(2)设地板的原价为a元,由题意得a﹣10%a﹣20%a=2345,解得:a=3350.答:地板的原价为3350元.2017年2月15日。

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)2018年11月6日上午,在上海召开的首届中国国际进口博览会北京主题活动上,北京市交易团重点发布了2022北京冬奥会、北京大兴国际机场等北京未来发展的重要规划及采购需求,现场签约金额总计超过50000000000元人民币,将50000000000科学记数法表示应为()A.0.5×1010B.5×1010C.5×1011D.50×1092.(3分)下列计算正确的是()A.b﹣5b=﹣4B.2m+n=2mn C.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b 3.(3分)如果x=3是关于x的方程2x+m=7的解,那么m的值为()A.1B.2C.﹣1D.﹣24.(3分)用四舍五入法将3.694精确到0.01,所得到的近似数为()A.3.6B.3.69C.3.7D.3.705.(2分)如果2x2﹣x﹣2=0,那么6x2﹣3x﹣1的值等于()A.5B.3C.﹣7D.﹣96.(2分)如图1,南非曾发行过一个可折叠邮政包装箱的邮票小全张,将其中包装箱的展开图截下,并按图1中左下角所示方法进行折叠,使画面朝外,那么与图2中图案所在的面相对的面上的图案是()A .B .C .D .7.(2分)以下说法正确的是()A.两点之间直线最短B.延长直线AB到点E,使BE=ABC.钝角的一半一定不会小于45°D.连接两点间的线段就是这两点的距离8.(2分)下列解方程的步骤正确的是()A.由2x+4=3x+1,得2x+3x=1+4B.由0.5x﹣0.7x=5﹣1.3x,得5x﹣7=5﹣13xC.由3(x﹣2)=2(x+3),得3x﹣6=2x+6D .由=2,得2x﹣2﹣x+2=129.(2分)如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④10.(2分)南水北调工程中线自2014年12月正式通水以来,沿线多座大中城市受益,河南、河北、北京及天津四个省(市)的水资源紧张态势得到缓解,有效促进了地下水资源的涵养和恢复,若与上年同期相比,北京地下水的水位下降记为负,回升记为正,记录从2013年底以来,北京地下水水位的变化得到下表:以下关于2013年以来北京地下水水位的说法不正确的是()A.从2014年底开始,北京地下水水位的下降趋势得到缓解B.从2015年底到2016年底,北京地下水水位首次回升C.2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年D.2018年9月底的地下水水位低于2012年底的地下水水位二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.(2分)﹣6的相反数等于.12.(3分)如果|m+3|+(n﹣2)2=0,那么m=,n=,m n=.13.(2分)45°25′的余角等于°′.14.(2分)写出一个次数为4的单项式,要求其中所含字母只有x,y:.15.(3分)如图,在以下建筑物的图片上做标记得到三个角α,β,γ,将这三个角按从大到小的顺序排列:,,.16.(2分)一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.17.(2分)线段AB=6,在直线AB上截取线段BC=3AB,D为线段AB的中点,E为线段BC的中点,那么线段DE的长为.18.(4分)我国现行的二代身份证号码是18位数字,由前17位数字本体码和最后1位校验码组成.校验码通过前17位数字根据一定规则计算得出,如果校验码不符合这个规则,那么该号码肯定是假号码,现将前17位数字本体码记为A1A2A3…A16A17,其中A i(i=1,…,17)表示第i位置上的身份证号码数字值,按下表中的规定分别给出每个位置上的一个对应的值W i.现以号码N=440524************为例,先将该号码N的前17位数字本体码填入表中(现已填好),依照以下操作步骤计算相应的校验码进行校验:(1)对前17位数字本体码,按下列方式求和,并将和记为S:S=A1×W1+A2×W2+……+A17×W17.现经计算,已得出A1×W1+A2×W2+…+A13×W13=189,继续求得S=;(2)计算S÷11,所得的余数记为Y,那么Y=;(3)查阅下表得到对应的校验码(其中X为罗马数字,用来代替10):所得到的校验码为,与号码N中的最后一位进行对比,由此判断号码N是(填“真”或“假”)身份证号.三、解答题(本题共56分)19.(8分)计算:(1)﹣8+12﹣25+6(2)﹣9×(﹣)220.(8分)计算:(1)[﹣(﹣)+2]÷(﹣).(2)﹣4+(﹣2)4÷4﹣(﹣0.28)×.21.(5分)先化简,再求值:3(x2﹣xy﹣2y)﹣2(x2﹣3y),其中x=﹣1,y=2.22.(5分)解方程:﹣=223.(5分)解方程组:.24.(5分)已知:如图,点A,点B,点D在射线OM上,点C在射线ON上,∠O+∠OCA =90°,∠O+∠OBC=90°,CA平分∠OCD.求证:∠ACD=∠OBC.请将下面的证明过程补充完整:证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠.(理由:)∵CA平分∠OCD∴∠ACD=.(理由:)∴∠ACD=∠OBC.(理由:).25.(4分)任务画图已知:如图,在正方形网格中,∠AOB=α.任务:在网格中画出一个顶点为O且等于180°﹣2α的角.要求:画图并标记符合要求的角,写出简要的画图步骤.(说明:可以借助网格、量角器)26.(5分)阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M =;(2)若乙同学最后得到的数M=57,则卡片A上的数字为,卡片B上的数字为.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.27.(5分)列方程(组)解决问题某校初一年级组织了数学嘉年华活动,同学们踊跃参加,活动共评出三个奖项,年级购买了一些奖品进行表彰,为此组织活动的老师设计了如下表格进行统计.已知获得二等奖的人数比一等奖的人数多5人.问:获得三种奖项的同学各多少人?28.(6分)如图,数轴上A,B两点对应的有理数分别为x A=﹣5和x B=6,动点P从点A 出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A之间往返运动.设运动时间为t秒.(1)当t=2时,点P对应的有理数x P=,PQ=;(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.参考答案与试题解析一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.【解答】解:50000000000=5×1010,故选:B.2.【解答】解:A、b﹣5b=﹣4b,错误;B、2m与n不是同类项,不能合并,错误;C、2a4与4a2不是同类项,不能合并,错误;D、﹣2a2b+5a2b=3a2b,正确;故选:D.3.【解答】解:把x=3代入方程2x+m=7得:6+m=7,解得:m=1,故选:A.4.【解答】解:3.694≈3.69(精确到0.01).故选:B.5.【解答】解:∵2x2﹣x﹣2=0,∴2x2﹣x=2,则6x2﹣3x﹣1=3(2x2﹣x)﹣1=3×2﹣1=6﹣1=5,故选:A.6.【解答】解:根据正方体的展开图,可得与图2中图案所在的面相对的面上的图案为:故选:A.7.【解答】解:A、两点之间线段最短,故原来的说法错误,不符合题意;B、延长线段AB到点E,使BE=AB,故原来的说法错误,不符合题意;C、说法正确,符合题意;D、连接两点间的线段的长度,叫作这两点间的距离,故说法错误,不符合题意.故选:C.8.【解答】解:A、2x+4=3x+1,2x﹣3x=1﹣4,故本选项错误;B、0.5x﹣0.7x=5﹣1.3x,5x﹣7x=50﹣13x,故本选项错误;C、3(x﹣2)=2(x+3),3x﹣6=2x+6,故本选项正确;D、=2,3x﹣3﹣x﹣2=12,故本选项错误;故选:C.9.【解答】解:根据图示,可得b<﹣3,0<a<3,①2a﹣b>0;②a+b<0;③|b|﹣|a|>0;④<0.故其中值为负数的是②④.故选:D.10.【解答】解:A、从2014年底开始,北京地下水水位的下降趋势得到缓解,正确;B、从2015年底到2016年底,北京地下水水位首次回升,正确;C、2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年,正确;D、∵2018年9月底的地下水水位与2012年底的地下水水位无法比较,∴2018年9月底的地下水水位低于2012年底的地下水水位错误.故选:D.二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.【解答】解:﹣6的相反数等于:6.故答案为:6.12.【解答】解:∵|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得:m=﹣3,n=2,故m n=(﹣3)2=9.故答案为:﹣3,2,9.13.【解答】解:45°25′的余角等于90°﹣45°25′=44°35'.故答案为:44,35.14.【解答】解:由题意得,答案不唯一:如x2y2等.故答案为:如x2y2等.15.【解答】解:由图可得,β>γ>α.∴三个角按从大到小的顺序排列为:β,γ,α.故答案为:β,γ,α.16.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:17.【解答】解:C在线段AB的延长线上,如图1:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9﹣3=6;C在线段AB的反向延长线上,如图2:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9+3=12.故线段DE的长为6或12.故答案为:6或12.18.【解答】解:(1)根据求和规律可得到A14×W14=5,A15×W15=0,A16×W16=0,A17×W17=2,从而得到S=189+5+0+0+2=196;(2)S÷11=196÷11=17……9;(3)查表得,所得到的校验码为3,再与原身份证的最后一位是6比较,判断号码N是假身份证号.三、解答题(本题共56分)19.【解答】解:(1)原式=4+6﹣25=10﹣25=﹣15;(2)原式=﹣9××=﹣.20.【解答】解:(1)原式=(++)×(﹣)=×(﹣)+×(﹣)+×(﹣)=﹣2﹣﹣6=﹣8;(2)原式=﹣4+16÷4+0.07=﹣4+4+0.07=0.07.21.【解答】解:原式=3x2﹣3xy﹣6y﹣2x2+6y=x2﹣3xy,把x=﹣1,y=2代入x2﹣3xy=(﹣1)2﹣3×(﹣1)×2=7.22.【解答】解:去分母得:4(2x﹣1)﹣3(3x﹣5)=24,8x﹣4﹣9x+15=24,8x﹣9x=24+4﹣15,﹣x=13,x=﹣13.23.【解答】解:,①+②×3得:11x=33,解得:x=3,把x=3代入②得:y=﹣1,则方程组的解为.24.【解答】证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠OBC.(理由:同角的余角相等)∵CA平分∠OCD∴∠ACD=∠OCA.(理由:角平分线的定义)∴∠ACD=∠OBC.(理由:等量代换).故答案为:OBC,同角的余角相等,∠OCA,角平分线的定义,等量代换.25.【解答】解:如图所示,①利用OB边上的格点C,在网格中画出∠AOB关于直线OA的对称的∠AOD,则∠AOD=∠AOB=α,∠COD=2α;②画平角∠DOE,那么∠BOE=180°﹣2α.26.【解答】解:(1)M=(2×5+7)×2+5=39,故答案为:39;(2)设卡片A上的数字为x,卡片B上的数字为y,则(5x+7)×2+y=57,10x+14+y=57,10x+y=43,∵x、y都是1至9这9个数字,∴x=4,y=3,故答案为:4,3;解密:设卡片A上的数字为x,卡片B上的数字为y(其中x、y为1,2,…,9这9个数字),则M=2(5x+7)+y=(10x+y)+14,得:M﹣14=10x+y,其中十位数字是x,个位数字是y,所以由给出的M的值减去14,所得两位数十位上的数字为卡片A上的数字x,个位数上的数字为卡片B上的数字y.27.【解答】解:设一等奖的人数有x人,根据题意得:4x+3(x+5)+2(35﹣2x)=100,解得:x=5,则二等奖的人数有x+5=5+5=10人,三等奖的人数有35﹣2x=35﹣2×5=25人,答:一等奖的人数有5人,二等奖的人数有10人,三等奖的人数有25人;故答案为:x,x+5,40﹣x﹣(x+5),4x,3(x+5),2(35﹣2x).28.【解答】解:(1)当t=2时,点P对应的有理数x P=﹣5+1×2=﹣3,点Q对应的有理数x Q=6﹣2×2=2,∴PQ=2﹣(﹣3)=5.故答案为﹣3,5;(2)∵x A=﹣5,x B=6,∴OA=5,OB=6.由题意可知,当0<t≤11时,点P运动的最远路径为数轴上从点A到点B,点Q运动的最远路径为数轴上从点B到点A并且折返回到点B.对于点P,因为它的运动速度v P=1,点P从点A运动到点O需要5秒,运动到点B需要11秒.对于点Q,因为它的运动速度v Q=2,点Q从点B运动到点O需要3秒,运动到点A需要5.5秒,返回到点B需要11秒.要使原点O恰好是线段PQ的中点,需要P,Q两点分别在原点O的两侧,且OP=OQ,此时t≠5.5.①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.此时OP=|5﹣t|,OQ=|6﹣2t|.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴|5﹣t|=|6﹣2t|,解得t=1或t=.检验:当t=时,P,Q两点重合,且都在原点O左侧,不合题意舍去;t=1符合题意.∴t=1;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧,此时P,Q两点的大致位置如下图所示.此时,OP=AP﹣OA=t﹣5,OQ=OA﹣AQ=5﹣2(t﹣5.5)=16﹣2t.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴t﹣5=16﹣2t,解得t=7.检验:当t=7时符合题意.∴t=7.综上可知,t=1或7;(3)①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇,此时需要的时间为:秒,相遇点对应的数为﹣5+=﹣,不是整点,不合题意舍去;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP,2(t﹣5.5)=t,解得t=11,追击点对应的数为﹣5+11=6.故当P,Q两点第一次在整点处重合时,此整点对应的数为6.。

北京市海淀区七级上期末数学试卷含答案解析

北京市海淀区七级上期末数学试卷含答案解析

2015-2016学年北京市海淀区七年级(上)期末数学试卷一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣22.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.30000003.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|4.下列计算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b5.用四舍五入法对0.02015(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.02026.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.47.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+289.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<010.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T 均在PB上)四个点中,它最有可能经过的点是()A.M B.N C.S D.T二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为°.13.计算:180°﹣20°40′=.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是;若|x|=2,则x的值是.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为.17.如图所示,AB+CD AC+BD.(填“<”,“>”或“=”)18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=;②若|x+x1+x2+x3+…+x20|的值最小,则x3=.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是;对于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是.21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五.解答题(本大题共12分,第25题6分,第26题各6分)25.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.2015-2016学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.2.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.3000000【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300万用科学记数法表示为3×106.故选C.3.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|【考点】正数和负数.【分析】根据小于零的数是负数,可得答案.【解答】解:A、﹣(﹣1)=1是正数,故A错误;B、(﹣1)4=1是正数,故B错误;C、﹣|﹣1|=﹣1是负数,故C正确;D、|1﹣2|=1,故D错误;故选:C.4.下列计算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项是解题关键,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.用四舍五入法对0.02015(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.0202【考点】近似数和有效数字.【分析】把万分位上的数字1进行四舍五入即可.【解答】解:0.02015≈0.020(精确到千分位).故选B.6.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.4【考点】余角和补角.【分析】根据图形和余角的概念解答即可.【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵∠CDB=90°,∴∠A+∠ACD=90°,∴∠A互余的角的个数是2.故选:B.7.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣【考点】同解方程.【分析】根据解方程,可得x的值,根据同解方程,可得关于a的方程,根据解方程,可得答案.【解答】解:解2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+28【考点】由实际问题抽象出一元一次方程.【分析】设这件夹克衫的成本价是x元,根据题意可得,利润=标价×80%﹣成本价,据此列出方程.【解答】解:设这件夹克衫的成本价是x元,由题意得,0.8(1+50%)x﹣x=28,即0.8(1+0.5)x=28+x.故选A.9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<0【考点】数轴.【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.10.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T 均在PB上)四个点中,它最有可能经过的点是()A.M B.N C.S D.T【考点】线段的性质:两点之间线段最短;几何体的展开图;平面展开-最短路径问题.【分析】根据圆锥画出侧面展开图,根据两点之间线段最短可得它最有可能经过的点是N.【解答】解:如图所示:根据圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB 上)四个点中,它最有可能经过的点是N,,故选B.二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是1,+,0.(写出所有符合题意的数)【考点】有理数.【分析】根据大于或等于零的有理数是非负有理数,可得答案.【解答】解:非负有理数是1,+,0.故答案为:1,+,0.12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为120°.【考点】余角和补角.【分析】先根据图形得出∠AOB=60°,再根据和为180度的两个角互为补角即可求解.【解答】解:由题意,可得∠AOB=60°,则∠AOB的补角的大小为:180°﹣∠AOB=120°.故答案为120.13.计算:180°﹣20°40′=159°20′.【考点】度分秒的换算.【分析】先变形得出179°60′﹣20°40′,再度、分分别相减即可.【解答】解:180°﹣20°40′=179°60′﹣20°40′=159°20°.故答案为:159°20′.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)【考点】列代数式.【分析】根据4名工人3月份完成的总工作量比此月人均定额的4倍多15件得到总工作量是(4x+15)件,再把总工作量除以4可得这4名工人此月实际人均工作量.【解答】解:(4x+15)÷4=(件).答:这4名工人此月实际人均工作量为件.故答案为:.15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是数轴上表示﹣2的点与原点的距离;若|x|=2,则x的值是±2.【考点】绝对值;数轴.【分析】直接利用绝对值的定义得出|﹣2|的含义以及求出x的值.【解答】解:|﹣2|的含义是数轴上表示﹣2的点与原点的距离;|x|=2,则x的值是:±2.故答案为:数轴上表示﹣2的点与原点的距离;±2.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为+=1.【考点】由实际问题抽象出一元一次方程.【分析】设该小组共有x名同学,根据题意可得,全体同学整理8小时完成的任务+(x﹣2)名同学整理4小时完成的任务=1,据此列方程.【解答】解:设该小组共有x名同学,由题意得,+=1.故答案为:+=1.17.如图所示,AB+CD<AC+BD.(填“<”,“>”或“=”)【考点】线段的性质:两点之间线段最短.【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE>DC,从而得到AB+CD <AC+BD.【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=7;②若|x+x1+x2+x3+…+x20|的值最小,则x3=﹣3.【考点】规律型:图形的变化类.【分析】(1)按照规律写出x14即可.(2)当x=﹣6时,|x+x1+x2+x3+…+x20|的值最小,由此可以解决问题.【解答】解:①由题意:x1=2,x2=3,x3=4,x4=5,x5=6,x6=7,x7=4,x8=,5,x9=6,x10=7,x11=4,x12=5,x13=6,x14=7.故答案为x14=7.②由题意当x=﹣6时,x1=﹣5,x2=﹣4,x3=﹣3,x4=﹣2,x5=﹣1,x6=0,x7=1,x8=2,x9=3,x10=4,x11=5,x12=6,x13=7,x14=4,x15=5,x16=6,x17=7,x18=4,x19=5,x20=6,|x+x1+x2+x3+…+x20|=50最小,∴x3=﹣3.故答案为﹣3.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法进行计算即可;(2)根据有理数的乘方、除法、乘法和减法进行计算即可.【解答】解:(1)3﹣6×=3﹣6×=3﹣1=2;(2)﹣42÷(﹣2)3﹣×=﹣16÷(﹣8)﹣=2﹣1=1.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为90°(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是BC=AC;对于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是BC′=AC′.【考点】作图—复杂作图.【分析】(1)利用线段垂直平分线的作法得出D点位置,进而得出答案;(2)利用量角器得出∠ADC的大小;(3)利用线段垂直平分线的性质得出线段BC,AC的大小关系以及线段BC′与AC′的大小关系.【解答】解:(1)如图所示:直线DC即为所求;(2)90°(只要相差不大都给分).故答案为:90°;(3)BC=AC,BC′=AC′,(若(2)中测得的角不等于90°,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.)21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:3x+6﹣2=x+2,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:2(7﹣5y)=12﹣3(3y﹣1),去括号得:14﹣10y=12﹣9y+3,移项合并得:﹣y=1,解得:y=﹣1.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.【考点】两点间的距离.【分析】根据点A在线段CB上,AC=,点D是线段BC的中点,CD=3,可以求得BC的长,从而可以求得CA的长,从而得到AD的长.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?【考点】一元一次方程的应用.【分析】设②号小球运动了x米,根据图中的造型和“②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒”列出方程并解答.【解答】解:设②号小球运动了x米,由题意可得方程:=,解方程得:x=2答:从造型一到造型二,②号小球运动了2米.五.解答题(本大题共12分,第25题6分,第26题各6分)25.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【考点】整式的加减;代数式求值.【分析】(1)利用“相伴数对”的定义化简,计算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入计算即可求出值.【解答】解:(1)∵(1,b)是“相伴数对”,∴+=,解得:b=﹣;(2)(2,﹣)(答案不唯一);(3)由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是45°;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是,,,.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【考点】角的计算.【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.【解答】解:(1)解:如图所示.aφ=45°,(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2+=4α,解得:.(3),,(4)对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止.2016年6月9日。

2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一卷二)含解析

2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一卷二)含解析

2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一)一、选一选(本大题共10小题,每小题4分,共40分.)1. 值等于7的数是( ).A. 7B.C.D. 0和77-7±2. 两个非零有理数的和为零,则它们的商是( )A. B. C. D. 没有能确01-1定3. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1 D. 多项式的次数是423abc-29517m mn --4. 下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是( )A. 0个B. 1个C. 2个D. 3个5. 已知有理数a ,b在数轴上表示的点如图所示,则下列式子中没有正确的是( )A. B. a b >0 C. a+b >0 D. ab <0a b <6. 中国的领水面积约为370000km 2,将数370000用科学记数法表示为( )A. 37×104B. 3.7×104C. 0.37×106D. 3.7×1057. 一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( )A . x 1=(26 x )+2 B. x 1=(13 x )+2C. x+1=(26 x ) 2D. x+1=(13 x ) 28. 已知某商店有两个进价没有同的计算器都卖了80元,其中一个盈利,另一个亏损60%,在这次买卖中,这家商店( ).20%A. 没有盈没有亏 B. 盈利10元 C. 亏损10元 D. 盈利50元9. 如果|a+b+1|+(b 1)2=0,则(a+b )2017的值是( )A. 0B. 1C. 1D. ±110. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )A. 114B. 104C. 85D. 76二、填 空 题(本题共6小题,每小题3分,共18分)11. 平方等于16的数是______.12. 比较大小:___(小“>“,“<”或“=“).12-13-13. 当x=_____时,式子与的值互为相反数.256x +114x x ++14. 当x=1时,代数式px 3+qx+1的值为2016,则代数式2p+2q+1的值为_____.15. 轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.16. 规定一种新运算“*”:a *b =a -b ,则方程x *2=1*x 的解为________.1314三、解 答 题(本题9小题,共92分.)17. (1)将下列各数填在相应的集合里.﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0,,﹣1.5;122正数集合{…}分数集合{ …}(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接.18. 计算:(1); (2).()2718732-+--()2411236⎡⎤--⨯--⎣⎦19. 解下列方程:(1) 2(x 2)=12(2).13124x x -+=-20. 先化简再求值:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3),其中x= 3,y= 2.21. (8分)一项工程,甲单独完成要20天,乙单独完成要25天,现由甲先做2天,然后甲、乙合做余下的部分还要多少天才能完成这项工程.22. 10袋小麦以每袋150千克为准,超过的千克数记为正数,没有足的千克数记为负数,分别记为:-6,-3,0,-3,+7,+3,+4,-3,-2,+1.(1)与标准重量相比较,10袋小麦总计超过或没有足多少千克?(2)10袋小麦中哪一个记数重量最接近标准重量?(3)每袋小麦的平均重量是多少千克?23. 若关于x 的方程2x 3=1和有相同的解,求k 的值.32x k k x -=-24. 某商场用元购进,两种新型节能台灯共盏,这两种台灯的进价,标价如下表2750A B 50所示:类型型 A 型B 进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)若型台灯按标价的折出售,型台灯按标价的折出售,那么这批台灯全部售出后,A 9B 8商场共获利多少元?25. 如图1是一个长为、宽为的长方形(其中,均为正数,且),沿图中虚线2a 2b a b a b >用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.图1图2(1)图2中大正方形的边长为 ;小正方形(阴影部分)的边长为 .(用含、a 的代数式表示)b (2)仔细观察图2,请你写出下列三个代数式:所表示的图形面积之间22(),(),a b a b ab +-的相等关系,并选取适合,的数值加以验证.a b (3)已知.则代数式的值为 .7,6a b ab +==()-a b2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一)一、选一选(本大题共10小题,每小题4分,共40分.)1. 值等于7的数是( ).A. 7B. C. D. 0和77-7±【正确答案】C 【详解】值等于7的数是,故选C.7±2. 两个非零有理数的和为零,则它们的商是()A. B. C. D. 没有能确1-1定【正确答案】B 【分析】首先根据条件判断这两个数是一对非零的相反数,由相反数的性质,可知它们符号相反,值相等,再根据有理数的除法法则得出结果.【详解】∵ 两个非零有理数的和为零,∴ 这两个数是一对相反数,∴ 它们符号没有同,值相等,∴ 它们的商是.1-故选.B 本题考查了相反数的定义、性质及有理数的除法运算法则:两数相除,同号得正,异号得负,并把值相除.3. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1D. 多项式的次数是423abc -29517m mn --【正确答案】A【详解】选项A . a 是单项式,正确.选项 B . 的系数是,错误.22r π2π选项C . 的次数是,错误.23abc-3选项 D .多项式的次数是2,错误.29517m mn --故选:A .4. 下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是( )A . 0个 B. 1个 C. 2个 D. 3个【正确答案】D【详解】①如果两个数的积为1,则这两个数互为倒数,故本项错误;②相如果两个数积为0,则至少有一个数为0,正确;③值等于其本身的有理数是零和正数,故本项错误;④倒数等于其本身的有理数是1和−1,故本项错误;错误的有①③④,共3个.故选D.点睛:本题考查了倒数的定义,有理数的乘法,相反数的定义,值的性质,是基础概念题,熟记概念是解题的关键.5. 已知有理数a ,b在数轴上表示的点如图所示,则下列式子中没有正确的是( )A.B. a b >0C. a+b >0D. ab <00a b <【正确答案】C 【详解】选项C ,b 的值大于a,所以a+b <0,故选C.6. 中国的领水面积约为370000km 2,将数370000用科学记数法表示为( )A. 37×104B. 3.7×104C. 0.37×106D. 3.7×105【正确答案】D 【分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.【详解】解:370000=3.7×105.故选D .本题考查科学记数法—表示较大的数7. 一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( )A. x 1=(26 x )+2B. x 1=(13 x )+2C. x+1=(26 x ) 2D. x+1=(13 x ) 2【正确答案】B 【详解】根据题意可得:长方形的宽为(13-x)cm ,根据题意可得:x -1=(13-x)+2.故选B.考点:一元方程的应用8. 已知某商店有两个进价没有同的计算器都卖了80元,其中一个盈利,另一个亏损60%,在这次买卖中,这家商店( ).20%A. 没有盈没有亏B. 盈利10元C. 亏损10元D. 盈利50元【正确答案】B 【分析】设盈利的计算器的进价为,则,亏损的计算器的进价为,则x (160%)80x +=y ,用售价减去进价即可.(120%)80y -=【详解】设个计算器的进价为x 元,第二个计算器的进价为y 元,则,(160%)80x +=,解得,.(120%)80y -=50x =100y =因为(元),8025010010⨯--=所以盈利了10元.故选:B .本题考查了一元方程的应用,找准等量关系列出方程是解题的关键.9. 如果|a+b+1|+(b 1)2=0,则(a+b )2017的值是( )A. 0B. 1C. 1D. ±1【正确答案】C【详解】由题意得,,1010a b b ++=⎧⎨-=⎩解得,a=−2,b=1,则=−1,2017()a b +故选C.10. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )A. 114B. 104C. 85D. 76【正确答案】A 【详解】解:第1个图形中小圆的个数为6;124=⨯+第2个图形中小圆的个数为10;234=⨯+第3个图形中小圆的个数为16;344=⨯+第4个图形中小圆的个数为24;454=⨯+······则知第n 个图形中小圆的个数为n (n +1)+4.故第10个图形中小圆的个数为10×11+4=114个.故选A二、填 空 题(本题共6小题,每小题3分,共18分)11. 平方等于16的数是______.【正确答案】4±【分析】根据平方运算的概念,即可求解.【详解】∵,∴平方等于16的数是.22416,(4)16=-=4±掌握平方运算的反则,是解题的关键.12. 比较大小:___(小“>“,“<”或“=“).12-13-【正确答案】<【分析】根据“两个负数比较大小,值大的其值反而小”进行比较.【详解】因为,1111||||2233-=>-=所以<.12-13-故<.考查了有理数的比较大小,解题关键关键是掌握有理数的比较大小的法则(两个负数比较大小,值大的其值反而小).13. 当x=_____时,式子与的值互为相反数.256x +114x x ++【正确答案】4319-【分析】式子与的值互为相反数就是已知这两个式子的和是0,就可以得到256x +114x x++一个关于x 的方程,解方程就可以求出x 的值.【详解】由题意得:,2511064x x x ++++=去分母得:2(2x+5)+3(x+11)+12x=0,去括号得:4x+10+3x+33+12x=0,移项、合并同类项得:19x=﹣43,系数化1得:x=.4319-故答案为.4319-14. 当x=1时,代数式px 3+qx+1的值为2016,则代数式2p+2q+1的值为_____.【正确答案】4031【详解】时,代数式的值为2016,1x =31px qx ++p+q +1=2016, p+q=2015,2.()22121p q p q ++=++=201514031⨯+=故答案为4031.点睛:整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.15. 轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.【正确答案】504【分析】根据时间关系列方程求解.此题考查了学生对顺水速度,逆水速度的理解,这与顺风逆风类似.【详解】解:设A 港和B 港相距x 千米,根据题意得: ,3262262x x +=+-解得:x =504.答:A 港和B 港相距504千米.此题考查一元方程的应用,解题关键是理解顺流与逆流的关系,顺水速度=水流速度+静水速度,逆水速度=静水速度−水流速度.16. 规定一种新运算“*”:a *b =a -b ,则方程x *2=1*x 的解为________.1314【正确答案】107【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:x -×2=×1-,13141314xx =,71256解得:x =,107故答案为x =.107此题的关键是掌握新运算规则,转化成一元方程,再解这个一元方程即可.三、解 答 题(本题9小题,共92分.)17. (1)将下列各数填在相应的集合里.﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0,,﹣1.5;122正数集合{ …}分数集合{…}(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接.【正确答案】(1) {﹣(﹣2.5),(﹣1)2, ,…}, {﹣(﹣2.5),,﹣1.5 …};(2)见解122122析【分析】(1)按有理数的分类标准进行分类即可;(2)先在数轴上表示各个数字,然后再进行比较即可.【详解】(1)正数集合{﹣(﹣2.5),(﹣1)2,…};122分数集合{﹣(﹣2.5),,﹣1.5…};122(2)如图所示:用“<“号把这些数连接为:﹣22<﹣|﹣2|<﹣1.5<0<(﹣1)2<=﹣(﹣2.5).12218. 计算:(1);(2).()2718732-+--()2411236⎡⎤--⨯--⎣⎦【正确答案】(1)-30;(2)16【详解】试题分析:(1)直接计算.(2)按照有理数混合运算法则计算.试题解析:(1)原式=27+(-18)+(-7)+(-32)= -30.(2)原式=()11296--⨯-=()1176--⨯-=716-+=.1619. 解下列方程:(1) 2(x 2)=12(2).13124x x -+=-【正确答案】(1)x= 4;(2)x=1.【详解】试题分析:(1)按去括号、移项、合并同类项、系数化为1的步骤进行求解即可;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.试题解析:(1)去括号得:﹣2x+4=12,移项得:﹣2x=12 4,合并同类项得:﹣2x=8,系数化为1得:x= 4;(2)去分母得:2(x 1)=4 (x+3),去括号得:2x 2=4 x 3,移项得:2x+x=4 3+2,合并同类项得:3x=3,系数化为1得:x=1.20. 先化简再求值:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3),其中x= 3,y= 2.【正确答案】 y 2 2x+2y ,-2【详解】试题分析:先去括号,然后合并同类项,代入数值进行计算即可.试题解析:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3)=2x 3 4y 2 x+2y x+3y 2 2x 3= y 2 2x+2y ,当x= 3,y= 2时,原式= ( 2)2 2×( 3)+2×( 2)= 4+6 4= 2.21. (8分)一项工程,甲单独完成要20天,乙单独完成要25天,现由甲先做2天,然后甲、乙合做余下的部分还要多少天才能完成这项工程.【正确答案】10【详解】分析:设甲、乙合做余下的部分还要x 天才能完成这项工程,根据总工程=甲单独完成的部分+甲、乙合作完成的部分即可得出关于x 的一元方程,解之即可得出结论.本题解析:解:设甲、乙合做余下的部分还要x 天才能完成这项工程,根据题意得: +(+)x=1,220120125解得:x=10.答:甲、乙合做余下的部分还要10天才能完成这项工程.22. 10袋小麦以每袋150千克为准,超过的千克数记为正数,没有足的千克数记为负数,分别记为:-6,-3,0,-3,+7,+3,+4,-3,-2,+1.(1)与标准重量相比较,10袋小麦总计超过或没有足多少千克? (2)10袋小麦中哪一个记数重量最接近标准重量? (3)每袋小麦的平均重量是多少千克?【正确答案】(1)没有足2千克;(2)第三个;(3)149.8千克【分析】(1)先求﹣6,﹣3,0,﹣3,+7,+3,+4,﹣3,﹣2,+1的和,是正数,则超过,是负数,则没有足;(2)根据值即可进行判断,值最小的接近标准重量;(3)求得10袋小麦以每袋150千克为准时的总量,再加上(1)中的结果,然后用总量除以10,即可求得每袋小麦的平均重量.【详解】试题解析:(1)﹣6+(﹣3)+0+(﹣3)+7+3+4+(﹣3)+(﹣2)+1=﹣2<0,所以,10袋小麦总计没有足2千克;(2)因为|0|=0,所以第三个记数重量最接近标准重量;(3)(150×10-2)÷10=149.8,所以,每袋小麦的平均重量是149.8千克.本题考查了正数与负数的意义,有理数的加法运算,值等,弄清题意是解题的关键.23. 若关于x 的方程2x 3=1和有相同的解,求k 的值.32x kk x-=-【正确答案】k=143【详解】方程2x-3=1的解是x=2,把x=2代入=k-3x ,得解得2x k -26,2kk -=-143k =24. 某商场用元购进,两种新型节能台灯共盏,这两种台灯的进价,标价如下表2750A B 50所示:类型型 A 型B 进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)若型台灯按标价的折出售,型台灯按标价的折出售,那么这批台灯全部售出后,A 9B 8商场共获利多少元?【正确答案】(1)购进型台灯盏,则购进型台灯盏;(2)元.A 20B 30730【分析】(1)设购进型台灯盏,则购进型台灯盏,根据购买型台灯的钱数A xB ()50x -A 购买型台灯的钱数总钱数,列出方程求解即可;+B =2750(2)根据型台灯总售价型台灯总售价总进价利润,代入数据求解即可.A +B -=【详解】解:(1)设购进型台灯盏,则购进型台灯盏.A xB ()50x -根据题意列方程得:,()4065502750x x +-=解得:,20x =所以(盏)502030-=答:设购进型台灯盏,则购进型台灯盏.A 20B 30(2)(元),6090%2010080%302750730⨯⨯+⨯⨯-=答:这批台灯全部售出后,商场共获利730元.本题考查了一元方程的应用,解题的关键是找准等量关系列出方程求解即可.25. 如图1是一个长为、宽为的长方形(其中,均为正数,且),沿图中虚线2a 2b a b a b >用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.图1图2(1)图2中大正方形的边长为;小正方形(阴影部分)的边长为.(用含、a 的代数式表示)b (2)仔细观察图2,请你写出下列三个代数式:所表示的图形面积之间22(),(),a b a b ab +-的相等关系,并选取适合,的数值加以验证.a b (3)已知.则代数式的值为.7,6a b ab +==()-a b 【正确答案】(1),;(2)+,验证见解析;(3).a b +-a b ()()22a b a b +=-4ab 5【分析】(1)观察图形即可得出大正方形边长为小长方形的长与宽的和,而小正方形边长为小长方形的长与宽的差,据此求解即可;(2)观察图形可得大正方形面积等于小正方形面积加上原长方形面积,()2a b +()2a b -4ab 据此即可列出代数式,然后进一步代入合适的数字检验即可;(3)由(2)中的关系式进一步变形计算即可.【详解】(1)由图形可得:大正方形的边长为;小正方形(阴影部分)的边长为a b +a b -,故,;a b +a b -(2)由图可得:大正方形面积等于小正方形面积加上原长方形面积,()2a b +()2a b -4ab 即:+;()()22a b a b +=-4ab 当,时,=49,+=49,5a =2b =()2a b +()2a b -4ab ∴+成立;()()22a b a b +=-4ab (3)由(2)得:+,()()22a b a b +=-4ab ∴当时,+,7,6a b ab +==()227a b =-46⨯即:,()2492425a b -=-=∴或,5a b -=5a b -=-∵,a b >∴.5a b -=本题主要考查了代数式的探究类问题,准确地找出题中三者面积之间的关系是解题关键.2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷二)一、选一选(共10个小题,每小题3分,共30分。

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。

1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。

9.如果将盈利2万元记作2万元,那么-4万元表示_________________。

10. 绝对值等于6的数是___________。

11. 2ab+b 2+( )=3ab-b 2。

12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

北京市海淀区初一年级第一学期期末数学试卷图片版含答案

北京市海淀区初一年级第一学期期末数学试卷图片版含答案

七年级第一学期期末调研数学参考答案 2019.1一、选择题(本大题共30分,每小题3分)二、填空题(本大题共16分,每小题2分) 11. <12. 2, 58 (答56,57,59,60均算正确)13. 答案不唯一,如:32x ﻩﻩ 14. 42b a - 15. COD ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)5900x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分=53+=8………………………………………………………………………………4分(2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分 =2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分) 解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-=解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分91x = ……………………………………………………………………………3分 19x = ……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分EA C22.(本小题4分)(1)-(3)如图所示:正确画出OD ,O E……………………1分正确画出点F …………………………2分正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分)23.(本小题6分)(1)解:方法一:∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点, ∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分 或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下:方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分∴3DM MC ==,∴由图可知,点M 是线段CD 的中点. ……………………………………………6分方法二:∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分∵点M 为线段AB 的中点,∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-,∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分 解得:5x =. ……………………………………………………………………5分(注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分(3)方法一:依题意:40k b +=, …………………………………………………………3分∵0k ≠, ∴4b k =-. ………………………………………………………………………4分解关于y 的方程:32b y k+=, ∴324y +=-. …………………………………………………………………5分 解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分 ∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,∵0k ≠,∴360y +=. …………………………………………………………5分 解得:2y =-. …………………………………………………………6分 ﻬ62.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下: 此时,45AON ︒∠=,…………………………………………………………………5分 90+2COD α︒∠=,依题意可得:B AB A45902180α︒︒++=︒解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵aa=a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有:()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形.*:例如考虑12*=.情形一:121*=,若满足交换律,则211*可知:再次计算12*=**=*=,矛盾;12(21)2222*=情形二:122*=,由(2)可知, 211*≠*,不满足交换律,矛盾;1221*=情形三:123*=,若满足交换律,即213*可知:再次计算22*=**=*=**=*=,22(21)232(12)2123*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。

2021-2022学年北京市海淀区清华附中七年级(上)期末数学试卷

2021-2022学年北京市海淀区清华附中七年级(上)期末数学试卷

2021-2022学年北京市海淀区清华附中七年级(上)期末数学试卷1.(单选题,3分)下列图形中,不属于立体图形的是()A.B.C.D.2.(单选题,3分)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75000万个,将数据75000用科学记数法表示是()A.7.5×103B.7.5×104C.7.5×105D.7.5×1063.(单选题,3分)单项式-3x2y的系数和次数分别是()A.3,2B.-3,2C.3,3D.-3,34.(单选题,3分)在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.(单选题,3分)下列各组式子中,是同类项的为()A.2a与2bB.2ab与-3baC.a2b与2ab2D.3a2b与a2bc6.(单选题,3分)如果3(x-2)与2(3-x)互为相反数,那么x的值是()A.0B.1C.2D.37.(单选题,3分)下列等式变形正确的是()A.若2x=1,则x=2B.若2(x-2)=5(x+1),则2x-4=5x+5C.若4x-1=2-3x,则4x+3x=2-1D.若3x+12−1−2x3=1,则3(3x+1)-2(1-2x)=18.(单选题,3分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.-a>cB.a>bC.ab>0D.a>-39.(单选题,3分)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,设该分派站有x名快递员,则可列方程为()A.10x-6=12x+6B.10x+6=12x-6C. x−610=x+612D. x+610=x−61210.(单选题,3分)如图,直线AB,CD相交于点O,OE平分∠AOD,OF平分∠BOD.当直线CD绕点O顺时针旋转α°(0<α<180)时,下列各角的度数与∠BOD度数变化无关的角是()A.∠AODB.∠AOCC.∠EOFD.∠DOF11.(填空题,2分)用四舍五入法将3.1415精确到百分位约等于___ .12.(填空题,2分)已知关于x的方程x+2m=15的解是x=1,则m=___ .13.(填空题,2分)若关于x的多项式x3+(2m+2)x2-(m-3)x-1不含二次项,则m=___ .14.(填空题,2分)如图,点C在线段AB上,若AB=10,BC=2,M是线段AB的中点,则MC的长为___ .15.(填空题,2分)已知关于x的方程(m+1)x|m|=6是一元一次方程,则m的值是 ___ .16.(填空题,2分)比较大小:36°25'___ 36.25°(填“>”,“<”或“=”).17.(填空题,2分)已知代数式m+2n=1,则代数式3m+6n+5的值为___ .18.(填空题,2分)甲、乙两商场在做促销,如下所示,已知两家商场相同商品的标价都一样.甲商场:全场均打八五折;乙商场:购物不超过200元,不给予优惠;超过了200元而不超过500元,一律打八八折;超过500元时,其中的500元打八八折,超过500元的部分打八折.(1)某顾客要购买商品的总标价为600元,该顾客选择 ___ (填“甲”或“乙”)商场更划算;(2)当购物总额是 ___ 元时,甲、乙两商场实付款相同.19.(问答题,8分)计算:(1)(-3)2-23÷(-2);(2)(14 + 12- 23)×12.20.(问答题,8分)解下列方程: (1)2x-15=5-3x ; (2)5x−73 = 3x−32.21.(问答题,5分)先化简,再求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy ),其中x=1,y=-2.22.(问答题,5分)如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形: (1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是:___ .23.(问答题,5分)定义一种新运算“※”,其规则为x ※y=xy-x+y .例如2※3=2×3-2+3=7,(2a )※3=(2a )×3-2a+3=4a+3. (1)计算3※2值为 ___ ;(2)已知(2m )※3=2※m ,求m 的值;(3)有理数的加法和乘法运算都满足交换律,即a+b=b+a ,ab=ba ,那么“※”运算是否满足交换律?若满足,请说明理由;若不满足,请举例说明.24.(问答题,5分)下表是某次篮球联赛积分榜的一部分:球队 比赛场次 胜场 负场 积分 前进1410424光明14 9 5 23远大14 7 7 21钢铁14 14 14备注:积分=胜场积分+负场积分(1)观察积分榜,胜一场积 ___ 分,负一场积 ___ 分;(2)设某队胜x场,则胜场总积分为 ___ 分,负场总积分为 ___ 分(用含x的整式填空);(3)若某队的负场总积分是胜场总积分的n倍,其中n为正整数,请直接写出n的值.25.(问答题,5分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①② ③ ④ 四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第 ___ 部分;(2)若AC=5,BC=3,b=-1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.26.(问答题,7分)已知∠AOB=100°,∠COD=40°,OE,OF分别平分∠AOD,∠BOD.(1)如图1,当OA,OC重合时,∠EOF=___ 度;(2)若将∠COD从图1的位置绕点O顺时针旋转,旋转角∠AOC=α,满足0°<α<90°且α≠40°.① 如图2,用等式表示∠BOF与∠COE之间的数量关系,并说明理由;② 在∠COD旋转过程中,请用等式表示∠BOE与∠COF之间的数量关系,并直接写出答案.27.(问答题,6分)给定一列数,我们把这列数中的第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,依此类推,第n 个数记为a n (n 为正整数),如下面这列数2,4,6,8,10中,a 1=2,a 2=4,a 3=6,a 4=8,a 5=10,规定运算 ∑a i n i=1 =a 1+a 2+a 3+…+a n .即从这列数的第一个数开始依次加到第n 个数,如在上面的一列数中, ∑a i 3i=1 =a 1+a 2+a 3=2+4+6=12. (1)已知一列数1,-2,3,-4,5,-6,7,-8,9,-10,那么a 5=___ , ∑a i 5i=1 =___ ; (2)已知这列数1,-2,3,-4,5,-6,7,-8,9,-10,…,按照规律可以无限写下去,那么a 2020=___ , ∑a i 2022i=1 =___ ;(3)在(2)的条件下,若存在正整数n 使等式| ∑a i n i=1 |=2022成立,直接写出n 的值.28.(填空题,3分)若实数x ,y ,满足|x+2|+(x+y )2=0,则x y 的值等于 ___ . 29.(填空题,3分)一个角的补角比它的余角的3倍少20°,这个角的度数是 ___ 30.(填空题,3分)若a+9=b+8=c+7,则(a-b )2+(b-c )2-(c-a )2=___ .31.(填空题,4分)对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=−1+2+33 = 43,min{-1,2,3}=-1,如果M{3,2x+1,x-1}=min{3,-x+7,2x+5},那么x=___ .32.(问答题,7分)对于数轴上的点A 和正数r ,给出如下定义:点A 在数轴上移动,沿负方向移动r 个单位长度后所在位置点表示的数是x ,沿正方向移动r 个单位长度后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的r 对称数”,记作D (A ,r )={x ,y},其中x <y . 例如:原点O 表示0,原点O 的1对称数是D (O ,1)={-1,1}.(1)若点A 表示2,则点A 的4对称数D (A ,4)={x ,y},则x=___ ,y=___ ; (2)若D (A ,r )={-3,11},求点A 表示的数及r 的值;(3)已知D (A ,5)={x ,y},D (B ,3)={m ,n},若点A 、点B 从原点同时出发,沿数轴反向运动,且点A 的速度是点B 速度的2倍,当2(y-n )=3(x-m )时,请直接写出点A 表示的数.。

初中数学七年级上册 北京海淀区2021-2022期末试卷真题含答案

初中数学七年级上册 北京海淀区2021-2022期末试卷真题含答案

2022年海淀区初一第一学期末数学试卷及答案解析数学2022.01学校姓名准考证号在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.2022年北京冬奥会计划于2月4日开幕.作为2022年北京冬奥会雪上项目的主要举办地,张家口市崇礼区建成7家大型滑雪场,拥有169条雪道,共162 000米.数字162 000用科学记数法表示为A.316210⨯B.416.210⨯C.51.6210⨯D.60.16210⨯2.如果a的相反数是1,则2a的值为A.1B.2C.1-D.2-3.下列等式变形正确的是A.若27x=,则27x=B.若10x-=,则1x=C.若322x x+=,则322x x+=D.若132x-=,则13x-=4.关于x的整式2ax bx c++(a,b,c均为常数)的常数项为1,则A.1a=B.1b=C.1c=D.1a b c++=5. 某地居民生活用水收费标准:每月用水量不超过20立方米,每立方米a 元;超过部分每立方米(2)a +元.该地区某家庭上月用水量为25立方米,则应缴水费 A .25a 元 B .(2510)a +元 C .(2550)a +元D .(2010)a +元6. 已知点A ,B ,C ,D 在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位长度.若点A ,B ,C ,D 分别表示数a ,b ,c ,d ,且满足0a d +=,则b 的值为A .1-B .12-C .12D .17. 中国有悠久的金石文化,印信是金石文化的代表之一. 南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印. 它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体. 从正面看该几何体得到的平面图形是8. 几个人一起去购买物品,如果每人出8元,那么剩余3元;如果每人出7元,那么差4元.若设有x 人,则下列方程中,符合题意的是 A .8374x x -=+ B .8374x x +=- C .3487x x -+=D .3487x x ++=9. 关于x 的方程32kx x -=的解是整数,则整数k 的可能值有 A .1个B .2个C .3个DBCA图1图2A B CDD .4个10. 如图,三角尺COD 的顶点O 在直线AB 上,90COD ∠=︒.现将三角尺COD 绕点O 旋转,若旋转过程中顶点C 始终在直线AB 的上方,设AOC α∠=,BOD β∠=,则下列说法中,正确的是A .若10α=︒,则70β=B .α与β一定互余C .α与β有可能互补D .若α增大,则β一定减小二、填空题(本题共16分,每小题2分)11. 计算:1(1)3---= .12. 关于x 的方程2ax =的解是2x =,则a 的值是 . 13. 如图,网格为正方形网格,则∠ABC ∠DEF . (填“>”,“=”或“<”)14. 已知32x y =-,则整式2+45x y -的值为 .15. 某有理数满足它的绝对值等于它的相反数,写出一个符合该条件的数 .16. 如图,已知点C 是线段AB 的中点,点D 是线段AB 上的一点,若1AD =,2CD =,则AB 的长度为 .17. 如图,一艘货轮B 在沿某小岛O 北偏东60︒方向航行中,发现了一座灯塔A .某一时刻,灯塔A 与货轮B 分别到小岛O 的距离恰好相等,用量角器度量得到此时ABO ∠的度数是 °(精确到度).ABCDFEA D C B东 西南北 AOA BCDO18. 如图,若一个表格的行数代表关于x 的整式的次数,列数代表关于x 的整式的项数(规定单项式的项数为1),那么每个关于x 的整式均会对应表格中的某个小方格.若关于x 的整式A 是三次二项式,则A 对应表格中标的小方格.已知B 也是关于x 的整式,下列说法正确的有 .(写出所有正确的序号)①若B 对应的小方格行数是4,则A B +对应的小方格行数一定是4; ②若A B +对应的小方格列数是5,则B 对应的小方格列数一定是3; ③若B 对应的小方格列数是3,且A B +对应的小方格列数是5,则B 对应的小方格行数不可能是3.三、解答题(本题共54 分,第19 题6 分,第20 题8 分,第21 题6 分,第22-23 题,每小题5 分,第24 题6 分,第25 题5 分,第26 题6 分,第27 题7 分) 19. 计算:(1)212525()32÷-⨯-;(2)215(3)()|4|26-⨯-+-.20. 解方程:(1)5(1)333x x -+=-; (2)1=152x x-+.21. 如图,已知平面上四个点A ,B ,C ,D ,请按要求完成下列问题: (1)画直线AB ,射线BD ,连接AC ;(2)在线段AC 上求作点P ,使得CP AC AB =-;(保留作图痕迹)11223344……(3)请在直线AB 上确定一点Q ,使点Q 到点P 与点D 的距离之和最短,并写出画图的依据.22. 先化简,再求值:222232(2)mn m n mn m n +--,其中1m =,2n =-.23. 如图,点O 在直线AB 上,90COD ∠=︒,BOC α∠=,OE 是BOD ∠的平分线.(1)若20α=︒,求AOD ∠的度数; (2)若OC 为BOE ∠的平分线,求α的值.24. 某校初一(3)班组织生活小常识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了其中4个参赛者的得分情况.(1)参赛者E 说他错了10个题,得50分,请你判断可能吗?并说明理由; (2)补全表格,并写出你的研究过程. 参赛者答对题数答错题数得分 A 20100B288 C64ABDCOEDCBAD10 4025. 如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程20x -=是方程10x -=的后移方程.(1)判断方程210x +=是否为方程230x +=的后移方程 (填“是”或“否”);(2)若关于x 的方程30x m n ++=是关于x 的方程30x m +=的后移方程,求n 的值.(3)当0a ≠时,如果方程0ax b +=是方程0ax c +=的后移方程,用等式表达a ,b ,c 满足的数量关系 .26. 在科幻世界里有各种造型奇特的小山.如图1是一座三棱锥小山,侧面展开图如图2所示,每个侧面完全相同. 一只小狐狸在半山腰点M 处(MD MA =)想饱览四周风景,它沿路径“M -N -K -A ”绕小山一周最终以最短路径....到达山脚A 处.当小狐狸沿侧面的路径运动时,若MA NB ≤,则称MN 这段路为“上坡路”;若MA NB >,则称MN 这段路为“下坡路”;若NB KC ≤,则称NK 这段路为“上坡路”;若NB KC >,则称NK 这段路为“下坡路”.(1)当ADB ∠=45︒时,在图2中画出从点M 沿侧面环绕一周到达山脚点A 处的最短路径,并判断在侧面DAB 、侧面DBC 上走的是上坡路还是下坡路? (2)如果改变小山侧面顶角的大小,(1)中的结论是否发生变化呢?请利用量角器,刻度尺等工具画图1图2KN MD C B A (A )MDCB A图探究,并把你的结论填入下表; 情形 ADB ∠度数侧面DAB侧面DBC115︒230︒(3)记ADB α∠=(060α︒<<︒),随着α逐渐增大,在侧面DAB 、侧面DBC 上走的这两段路上下坡变化的情况为 .27. 在数轴上,把原点记作点O ,表示数1的点记作点A .对于数轴上任意一点P (不与点O ,点A 重合),将线段PO 与线段PA 的长度之比定义为点P 的特征值,记作P ,即POP PA=.例如:当点P 是线段OA 的中点时,因为PO PA =,所以1P =.(1)如图,点1P ,2P ,3P 为数轴上三个点,点1P 表示的数是14-,点2P 与1P 关于原点对称.① 2P = ;② 比较1P ,2P ,3P 的大小 (用“<”连接);(2)数轴上的点M 满足13OM OA =,求M ;12–1OA P 3P 2P 1A O012–1备用图1备用图2 MDB A MDA B(3)数轴上的点P表示有理数p,已知100P<且P为整数,则所有满足条件的p的倒数之和为.参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)11.23;12.1;13.> ;14.1 ;15.-1等,答案不唯一,非正有理数即可;16.6 ;17.55(551±均可给分);18.①③对一个给1分,有错误答案不得分三、解答题(本题共54 分,第19 题6 分,第20 题8 分,第21 题6 分,第22-23 题,每小题5 分,第24 题6 分,第25 题5 分,第26 题6 分,第27 题7 分)19.(1)法1:21 2525()32÷-⨯-3252522=⨯+3125()22=⨯+……………………………2分50=……………………………3分法2:21 2525()32÷-⨯-3252522=⨯+752522=+……………………………2分50=……………………………3分(2)215(3)()|4|26-⨯-+-=19()43⨯-+=34-+……………………………2分=1 (3)分20. (1)()51333x x-+=-解:55333x x-+=-……………………………1分5233x x-=-5332x x-=-+……………………………2分21x=-……………………………3分12x=-……………………………4分(2)1=1 52x x-+解:2(1)5=10x x-+ (1)分225=10x x-+……………………………2分7=12x……………………………3分12=7x……………………………4分21. 解:(1)(2)(3)作图如图:(3)两点之间,线段最短. ……………………………6分 22. 解:222232(2)mn m n mn m n +--=2222342mn m n mn m n +-+ ……………………………1分=223mn m n -+ ……………………………3分∵1m =,2n =-,∴原式=221231(2)-⨯-+⨯⨯-()=10-. ……………………………5分23. 解:(1)∵点O 在直线AB 上, ∴∠AOD +∠COD +∠BOC=180°. ……………………………1分∵90COD ∠=︒,20BOC ∠=︒, ∴∠AOD=70°. ……………………………2分(2)∵OC 为BOE ∠的平分线,∴∠COE =∠BOC =α,∠BOE = 2∠BOC =2α. …………………3分 ∵∠DOC =∠DOE +∠COE ,∴∠DOE = 90°-α. ……………………4分 ∵OE 是BOD ∠的平分线, ∴∠BOE =∠DOE . ∴2α = 90°-α. ∴α =OEDCBA30°.……………………………5分24. 解:(1)根据参赛者A可知,每答对一题得5分;-根据参赛者D可知,每答错一题得1分. ……………………………1分若参赛者错了10个题,则答对10个题,共得分10510140⨯-⨯=分.所以,不可能. ……………………………2分(也可以直接看参赛者D)(2)补全表格:…………4分共有20道选择题,参赛者B答错题数为2,所以B答对题数为18道;参赛者D答对题数为10,所以D答对题数为10;设参赛者C答对题数为x道,则答错题数为(20)x-道.由题意可得,5(20)64--=.x x解得x=14.经检验,x=14是原方程的解且符合题意.所以,参赛者C答对题数是14道,答错题数为6道. ……………………………6分25.(1)是……………………………2分(2)解30x m +=,得3m x =-;则30x m n ++=的解为13m x =-+;代入得30m m n -+++=; 解得3n =-. ……………………………4分(3)c b a =+. ……………………………5分 26. (1)……………………………1分在侧面DAB 上走的是上坡路、侧面DBC 上走的是下坡路 ……………………3分(2)…………………………5分(3)随着α逐渐增大,在侧面DBC 始终是下坡路,侧面DAB 先下坡,在某一位置平缓,然后再上坡. ………………………6分 27. 解: (1)①13; …………………………1分②1P <2P <3P . …………………………2分 (2)∵OA =1,13OM OA =,∴13OM =.若点M 在线段OA 上,则AM = OA –OM =23,此时M =12. 若点M 在AO 的延长线上,则AM = OA + OM =43,此时M =14. ……………5分 (3)198. ……………………7分。

2015-2016学年北京市朝阳区七年级(上)期末数学试卷及答案解析

2015-2016学年北京市朝阳区七年级(上)期末数学试卷及答案解析

2015-2016学年北京市朝阳区七年级(上)期末数学试卷一、单项选择题(本题共24分,每小题3分)1.(3分)京津冀一体化协同发展是党中央的一项重大战略决策,它涉及到的国土面积约为120 000平方公里,人口总数约为90 000 000人.将90 000 000用科学记数法表示结果为()A.9×106B.90×106C.9×107D.0.9×108 2.(3分)有理数m,n,e,f在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.m B.n C.e D.f3.(3分)计算的正确结果是()A.B.C.1D.﹣14.(3分)若a,b互为倒数,则的值为()A.﹣1B.0C.D.15.(3分)若x=2是关于x的方程ax+6=2ax的解,则a的值为()A.3B.2C.1D.6.(3分)如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.7.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数共有()A.4个B.3个C.2个D.1个8.(3分)用火柴棍按如图所示的方式摆大小不同的“H”,依此规律,摆出第n 个“H”需要火柴棍的根数是()A.2n+3B.3n+2C.3n+5D.4n+1二、填空题(本题共24分,每小题3分)9.(3分)每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.10.(3分)计算=.11.(3分)写出a2b的一个同类项:.12.(3分)尺规作图:如图,已知线段a,b.(1)用直尺画直线l;(2)用圆规在直线l上顺次截取线段AB=a,线段BC=b.则线段AC=(用含a,b的式子表示).13.(3分)若一个多项式与2m﹣3n的和等于n,则这个多项式是.14.(3分)下面的框图表示了解这个方程的流程:其中,“移项”这一步骤的依据是.15.(3分)若式子与的值相等,则x=.16.(3分)阅读下面材料:在数学课上,教师出示了一个如图1所示的六角星,并给出了得到与之形状完全相同(大小忽略不计)的六角星的两种方法.方法一:如图2,任意画一个圆,并以圆心为顶点,连续画相等的角,与圆相交于6点,连接每隔一点的两个点,擦去多余的线即可得到符合要求的六角星.方法二:按照图3所示折一个六角星.请回答:∠α与∠β之间的数量关系为.三、解答题(本题共52分,第17-21题每小题4分,第22-25题每小题4分,第26-27题每小题4分)17.(4分)计算.18.(4分)计算2xy+1﹣(3xy+1).19.(4分)解方程2+x=2x+5.20.(4分)解方程:.21.(4分)如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:.22.(5分)已知a2﹣1=b,求的值.23.(5分)一个角的补角比它的余角的2倍大20゜,求这个角的度数.24.(5分)填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=.所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°.(2)由(1)可知∠BOE=∠COE=﹣∠COD=°.所以∠AOE=﹣∠BOE=°.25.(5分)列方程解应用题.在一次假期公益活动的5天中,小明和小洁共植树110棵,小明平均每天比小洁多种20%,求小明和小洁平均每天各种树多少棵?26.(6分)一家游泳馆的游泳收费标准为40元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类10030B类20025C类50015(1)若购买A类会员年卡,一年内游泳11次,则共消费元;(2)一年内游泳的次数为多少时,购买B类会员年卡最划算?通过计算验证你的说法.27.(6分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC 的面积为12,OC边长为3.(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.2015-2016学年北京市朝阳区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)1.(3分)京津冀一体化协同发展是党中央的一项重大战略决策,它涉及到的国土面积约为120 000平方公里,人口总数约为90 000 000人.将90 000 000用科学记数法表示结果为()A.9×106B.90×106C.9×107D.0.9×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将90 000 000用科学记数法表示结果为9×107,故选:C.2.(3分)有理数m,n,e,f在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.m B.n C.e D.f【分析】根据有理数m,n,e,f在数轴上的对应点的位置,哪个数离原点的位置越近,则这个数的绝对值越小.【解答】解:∵m,n,e,f中e对应的点离原点最近,∴这四个数中,绝对值最小的是e.故选:C.3.(3分)计算的正确结果是()A.B.C.1D.﹣1【分析】根据有理数加法的运算方法,求出算式的正确结果是多少即可.【解答】解:=﹣()=﹣1.故选:D.4.(3分)若a,b互为倒数,则的值为()A.﹣1B.0C.D.1【分析】直接利用倒数:乘积是1的两数互为倒数,进而得出答案.【解答】解:∵a,b互为倒数,∴ab=1,则的值为:1.故选:D.【点评】此题主要考查了倒数的定义,正确掌握倒数的定义是解题关键.5.(3分)若x=2是关于x的方程ax+6=2ax的解,则a的值为()A.3B.2C.1D.【分析】把x=2代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=2代入方程ax+6=2ax得:2a+6=4a,解得:a=3,故选:A.6.(3分)如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:梯形绕下底边旋转是圆锥加圆柱,故C正确;故选:C.7.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数共有()A.4个B.3个C.2个D.1个【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第三个图形中∠α=∠β,第四个图形∠α和∠β互补.【解答】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据同角的补角相等可得第三个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:B.8.(3分)用火柴棍按如图所示的方式摆大小不同的“H”,依此规律,摆出第n 个“H”需要火柴棍的根数是()A.2n+3B.3n+2C.3n+5D.4n+1【分析】通过观察图形易得每个“H”需要火柴棍的根数都比前面的“H”需要火柴棍的根数多3根,从而得到一个等差数列,利用图形序号n来表示出规律即可.【解答】解:由图可知第1个图中:需要火柴棍的根数是5=2+3×1;第2个图中:需要火柴棍的根数是5+3=2+3+3=2+3×2;第3个图中:需要火柴棍的根数是5+3+3=2+3+3+3=2+3×3;…第n个图中:需要火柴棍的根数是2+3n.故选:B.二、填空题(本题共24分,每小题3分)9.(3分)每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是49.3kg.【分析】根据有理数的加法,可得答案.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.10.(3分)计算=﹣5.【分析】首先应用乘法分配律,把展开;然后根据有理数的乘法法则,求出算式的值是多少即可.【解答】解:=×(﹣12)﹣×(﹣12)+×(﹣12)=﹣3+6﹣8=﹣5.故答案为:﹣5.11.(3分)写出a2b的一个同类项:a2b(答案不唯一).【分析】根据同类项的定义可知,写出的同类项只要符合只含有a,b两个未知数,并且a的指数是2,b的指数是1即可.【解答】解:a2b的一个同类项为:a2b(答案不唯一).故答案为:a2b(答案不唯一).12.(3分)尺规作图:如图,已知线段a,b.(1)用直尺画直线l;(2)用圆规在直线l上顺次截取线段AB=a,线段BC=b.则线段AC=a+b(用含a,b的式子表示).【分析】根据线段的和差关系可得AC=AB+BC=a+b.【解答】解:∵AB=a,BC=b,∴AC=a+b.故答案为:a+b.13.(3分)若一个多项式与2m﹣3n的和等于n,则这个多项式是4n﹣2m.【分析】根据和减去一个加数,得到另一个加数,计算即可得到结果.【解答】解:根据题意得:n﹣(2m﹣3n)=n﹣2m+3n=4n﹣2m.故答案为:4n﹣2m.14.(3分)下面的框图表示了解这个方程的流程:其中,“移项”这一步骤的依据是等式的性质1.【分析】利用等式的性质判断即可.【解答】解:下面的框图表示了解这个方程的流程:其中,“移项”这一步骤的依据是等式的性质1.故答案为:等式的性质115.(3分)若式子与的值相等,则x=4.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:8x﹣2=5x+10,移项合并得:3x=12,解得:x=4.故答案为:4.16.(3分)阅读下面材料:在数学课上,教师出示了一个如图1所示的六角星,并给出了得到与之形状完全相同(大小忽略不计)的六角星的两种方法.方法一:如图2,任意画一个圆,并以圆心为顶点,连续画相等的角,与圆相交于6点,连接每隔一点的两个点,擦去多余的线即可得到符合要求的六角星.方法二:按照图3所示折一个六角星.请回答:∠α与∠β之间的数量关系为∠α=2∠β.【分析】根据图2中的线把圆心角360°平分即可求得∠α的度数,根据三角形的外角定理求得∠β的度数,则两个角的关系即可求解.【解答】解:∠α==60°,∠β==30°,则∠α和∠β之间的关系是∠α=2∠β.故答案是:∠α=2∠β.三、解答题(本题共52分,第17-21题每小题4分,第22-25题每小题4分,第26-27题每小题4分)17.(4分)计算.【分析】原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8×﹣(﹣3)=﹣6+3=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(4分)计算2xy+1﹣(3xy+1).【分析】原式去括号合并即可得到结果.【解答】解:原式=2xy+1﹣3xy﹣1=﹣xy.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(4分)解方程2+x=2x+5.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:6+7x=6x+15,移项合并得:x=9.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.(4分)解方程:.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:6+3(x﹣1)=x+2,去括号得:6+3x﹣3=x+2,移项合并得:2x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(4分)如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:∠AON,∠BOD.【分析】(1)根据方向角的定义即可作出;(2)根据方向角定义即可作出;(3)作线段AB,AB和OE的交点就是D;(4)根据余角的定义即可解答.【解答】解:(1)如图;(2)如图;(3)如图;(4)∠AOD的所有余角是:∠AON,∠BOD.故答案是:∠AON,∠BOD.【点评】本题考查了方向角的定义,理解定义是本题的关键.22.(5分)已知a2﹣1=b,求的值.【分析】原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=3a2﹣3b+a2﹣2a2+b=2a2﹣2b,∵a2﹣1=b,∴a2﹣b=1,则原式=2(a2﹣b)=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(5分)一个角的补角比它的余角的2倍大20゜,求这个角的度数.【分析】设出所求的角为x,则它的补角为180°﹣x,余角为90°﹣x,根据题意列出方程,再解方程即可,【解答】解:设这个角的度数是x,则它的补角为:180°﹣x,余角为90°﹣x;由题意,得:(180°﹣x)﹣2(90°﹣x)=20°.解得:x=20°.答:这个角的度数是20°.【点评】本题考查了余角和补角的定义;根据角之间的互余和互补关系列出方程是解决问题的关键.24.(5分)填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+ ∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°.所以∠AOE=∠AOB﹣∠BOE=155°.【分析】(1)由已知条件和观察图形,再利用角平分线的性质就可求出角的度数;(2)由已知条件和观察图形,再利用角平分线的性质就可求出角的度数.【解答】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°,所以∠AOE=∠AOB﹣∠BOE=155°.故答案为(1)∠COE;∠COE;90;(2)∠DOE(或者90°);25;∠AOB(或者180°);155.【点评】此题主要考查了垂线和角平分线的定义,要注意领会由两角和为90°得互余这一要点.25.(5分)列方程解应用题.在一次假期公益活动的5天中,小明和小洁共植树110棵,小明平均每天比小洁多种20%,求小明和小洁平均每天各种树多少棵?【分析】设小洁平均每天种树x棵,根据题意列出方程解答即可.【解答】解:设小洁平均每天种树x棵,由题意,得5[x+(1+20%)x]=110,x=10,则(1+20%)x=12.答:小明平均每天种树12棵,小洁平均每天种树10棵.【点评】此题主要考查了一元一次方程的应用,利用小明平均每天小洁比小明多种20%得出等式是解题关键.26.(6分)一家游泳馆的游泳收费标准为40元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类10030B类20025C类50015(1)若购买A类会员年卡,一年内游泳11次,则共消费430元;(2)一年内游泳的次数为多少时,购买B类会员年卡最划算?通过计算验证你的说法.【分析】(1)根据购买A类会员年卡的消费列出代数式解答即可;(2)设一年内游泳x次,列出方程解答即可.【解答】解:(1)购买A类会员年卡,一年内游泳11次,则共消费=100+11×30=430元,故答案为:430;(2)设一年内游泳x次,则有购买A类会员年卡,一年游泳共消费(100+30x)元,购买B类会员年卡,一年游泳共消费(200+25x)元,购买C类会员年卡,一年游泳共消费(500+15x)元,因为当200+25x=100+30x 时,解得x=20;当200+25x=500+15x 时,解得x=30,所以一年的游泳次数大于20次且小于30次时,购买B类会员年卡最划算.【点评】本题考查了一元一次方程的应用,解决本题的关键是根据题意,列出方程解答.27.(6分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC 的面积为12,OC边长为3.(1)数轴上点A表示的数为4.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为6或2.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.【分析】(1)利用面积÷OC可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;②i、首先根据面积可得OA′的长度,再用OA长减去OA′长可得x的值;ii、此题分两种情况:当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,再根据题意列出方程;当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4﹣2=6,∴A′表示的数为6,故答案为:6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=,∴x=4﹣=,同法可得:右移时,x=故答案为:;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,由题意可得方程:4﹣x﹣x=0,解得:x=,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.为大家整理的资料供大家学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。

2016-2017学年北京市海淀区七年级(上)期末数学试卷及答案解析

2016-2017学年北京市海淀区七年级(上)期末数学试卷及答案解析

2016-2017学年北京市海淀区七年级(上)期末数学试卷一、单项选择题(本题共36分,每小题3分)1.(3分)根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是()A.4822×108B.4.822×1011C.48.22×1010D.0.4822×10122.(3分)从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.3.(3分)若a+3=0,则a的相反数是()A.3B.C.﹣D.﹣34.(3分)将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.5.(3分)下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣4b+b=﹣3b D.a2b﹣ab2=06.(3分)西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4km.隧道贯通后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点7.(3分)已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A.12 cm B.8 cmC.12 cm或8 cm D.以上均不对8.(3分)若关于x的方程2x+a﹣4=0的解是x=2,则a的值等于()A.﹣8B.0C.2D.89.(3分)如表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为()日期摘要币种存/取款金额余额操作员备注151101北京水费RMB钞﹣125.45874.55010005B25折160101北京水费RMB钞﹣136.02738.53010005Y03折160301北京水费RMB钞﹣132.36606.17010005D05折160501北京水费RMB钞﹣128.59477.5801000K19折A.738.53元B.125.45元C.136.02元D.477.58元10.(3分)如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0B.a+b>0C.|a|﹣|b|<0D.a﹣b<0 11.(3分)已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余12.(3分)小博表演扑克牌游戏,她将两副牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:a.在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b.从第2堆拿出4张牌放到第1堆里;c.从第3堆牌中拿出8张牌放在第1堆里;d.数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e.从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A说5张,观众B说8张,小博猜两人最初每一堆里放的牌数分别为()A.14,17B.14,18C.13,16D.12,16二、填空题(本题共24分,每小题3分)13.(3分)用四舍五入法,精确到百分位,对2.017取近似数是.14.(3分)请写出一个只含有字母m、n,且次数为3的单项式.15.(3分)已知|x+1|+(2﹣y)2=0,则x y的值是.16.(3分)已知a﹣b=2,则多项式3a﹣3b﹣2的值是.17.(3分)若一个角比它的补角大36°48′,则这个角为°′.18.(3分)下面的框图表示解方程3x+20=4x﹣25的流程.第1步的依据是.19.(3分)如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为°.20.(3分)下面是一道尚未编完的应用题,请你补充完整,使列出的方程为2x+4(35﹣x)=94.七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题8分,第27题7分)21.(8分)计算:(1)(+﹣)×12.(2)(﹣1)10÷2+(﹣)3×16.22.(5分)解方程:﹣3=.23.(5分)设A=﹣x﹣4(x﹣y)+(﹣x+y).(1)当x=﹣,y=1时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的x、y的条件还可以是.24.(5分)如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③在线段DC的延长线上取一点F,使CF=BC,连接EF.(2)图中以E为顶点的角中,小于平角的角共有个.25.(5分)以下两个问题,任选其一作答.如图,OD是∠AOC的平分线,OE是∠BOC的平分线.问题一:若∠AOC=36°,∠BOC=136°,求∠DOE的度数.问题二:若∠AOB=100°,求∠DOE的度数.26.(5分)如图1,由于保管不善,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标EF符合要求.27.(7分)在数轴上,把表示数1的点称为基准点,记作点.对于两个不同的点M和N,若点M、点N到点的距离相等,则称点M与点N互为基准变换点.例如:图1中,点M表示数﹣1,点N表示数3,它们与基准点的距离都是2个单位长度,点M与点N互为基准变换点.(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换点,则点A表示的数是;(3)点P在点Q的左边,点P与点Q之间的距离为8个单位长度.对P、Q两点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的基准变换点,…,依此顺序不断地重复,得到P5,P6,…,P n.Q1为Q的基准变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的基准变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q5,Q6,…,Q n.若无论k为何值,P n与Q n两点间的距离都是4,则n=.2016-2017学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)1.(3分)根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是()A.4822×108B.4.822×1011C.48.22×1010D.0.4822×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 822亿元,用科学记数法表示4.822×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.属于基础题。

2015-2016七年级上学期数学期中考试试卷

2015-2016七年级上学期数学期中考试试卷

2015~2016学年度第一学期期中考试七年级数学试题考试时间:120分钟 试卷总分:150分第I 卷(本卷满分100分)一、选择题(共8小题,每小题3分,共24分)下列各题中均有四个备选答案,其中有且只有一个正确,请将正确答案的代号填在答卷的指定位置.1.如果80米表示向东走80米,那么﹣60米表示A .向东60米B . 向西60米C .向南60米D . 向北60米2.﹣3的绝对值是A . 3B . ﹣3C . 13-D .3.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,16800用科学记数法表示为A . 1.68×104B . 16.8×103C . 0.168×104D . 1.68×1034.下列计算正确的是A . 326=B . 2416-=-C . 880--=D . 523--=-5.在式子x x 3252-,2πx 2y ,x1,﹣5,a 中,单项式的个数是 A . 2个 B . 3个 C . 4个 D . 5个6.与﹣3ab 是同类项的是A . a 2bB . ﹣3ab 2C . abD . a 2b 27.下列各对数中,互为相反数的是A . ﹣(+3)与+(﹣3)B . ﹣(﹣4)与|﹣4|C . ﹣32与(﹣3)2D . ﹣23与(﹣2)38.下列各式计算正确的是A . 6a +a =6a 2B . ﹣2a +5b =3abC . 4m 2n ﹣2mn 2=2mnD . 3ab 2﹣5b 2a =﹣2ab 2二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.9.若a =2,那么a= .10.比较两数大小:﹣1 2 (填“>”或“<”或“=”).11.(﹣)×(﹣12)= .12. 化简分数:1245--= . 13.用四舍五入法把数1.703精确到0.01约等于 .14.多项式 中次数最高的项是 .15.合并同类项:y y y 23221+-= . 16.若2232+m b a 与﹣0.5a n -1b 4的和是单项式,则m ﹣n = . 三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分) 下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.计算:(每小题5分,共10分)(1)(20)(3)(5)(7)-++---+; (2)(﹣23)×0×34+3)2(-﹣32;18.化简:(每小题5分,共10分)(1))(3)35(2b a b a ---; (2)32(b a 23﹣26ab )﹣2(b a 2﹣252ab ).19.(本题满分10分)先化简,再求值:3x 2y ﹣[2xy 2﹣(2xy ﹣3x 2y )]﹣2xy ,其中x =3,.3225x x y --32x 20.(本题满分10分)如图:边长为x 米的正方形花坛,中间有横,竖两条长方形小路(图中阴影部分),宽度分别为2米和3米,(1)直接写出阴影部分的周长(2)求出空白部分的面积?21.(本题满分12分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)4,-3,13,-5,-6,12,-10.(1)守门员最后是否回到了球门线的位置?说明理由.(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)假设守门员每跑1米消耗0.1卡路里的能量,守门员全部练习结束后,他共消耗了多少卡路里的能量?第II 卷(本卷满分50分)四、选择题(共2小题,每小题4分,共8分)下列各题中均有四个备选答案,其中有且只有一个正确,请将正确答案的代号填在答卷的指定位置.22.下列各式正确的是A . 22)(a a -=-B .33)(a a -=-C .22a a -=-D .33a a =- 23.有理数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是A . a +b >0B . a ﹣b <0C . ab >-1D .1a b >-五、填空题(共2小题,每小题4分,共8分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置. 24.若a ,b 互为相反数,m ,n 互为倒数,且22)2(-=x ,则x mnb a ---+20152014)1()(= . 25.计算:10987654322222222222+--------= .六、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分) 下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.26.(本题满分10分)已知:ab a B A 7722-=-,且7642++-=ab a B .(1)求A 等于多少?(2)若0)2(12=-++b a ,求A 的值.27.计算(每小题6分,共12分)(1))41283()3()2(31232+-÷---⨯+- (2)观察下列三行数:根据观察得到的规律填空: 第①行数的第n 个数是___________;第②行数的第n 个数是___________;第③行数的第10个数是___________.28.(本题满分12分)数轴上点A 对应的数是-1,B 点对应的数是1,一只小虫甲从点B 出发沿着数轴的正方向以每秒4个单位的速度爬行至C 点,再以同样速度立即返回到A 点,共用了4秒钟.(1)求点C 对应的数;(2)若小虫甲返回到A 点后再作如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位, 第3次向右爬行7个单位,第4次向左爬行9个单位,……依次规律爬下去,求它第10次爬行后停在点所对应的数.(3)①若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点B 出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t 秒后,甲、乙两只小虫的距离为: .(用含t 的式子表示)②若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B 和点C 出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位。

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.下列各式计算正确的是()A.5a+a=5a2B.5a+b=5abC.5a2b﹣3ab2=2a2b D.2ab2﹣5b2a=﹣3ab23.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.下列图形经过折叠不能围成棱柱的是()A.B.C.D.5.有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.﹣2b C.﹣2a D.2b6.如图,直线AB、CD相交于点O,OD平分∠BOE,则∠AOD的补角的个数为()A.1个B.2个C.3个D.4个7.下列说法错误的是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点有且只有一条直线与已知直线平行D.若两条直线相交所成的角是直角,则这两条直线互相垂直8.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣83二、填空题(本大题共有10小题,每小题3分,共30分)9.一个数的绝对值是5,这个数是.10.若方程3x m﹣2﹣2=0是关于x的一元一次方程,则m的值为.11.已知∠β=48°30′,则∠β的余角是.12.下午2点时,时针与分针的夹角的度数是.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠FEC=56°,则∠AED=.14.已知整式x2﹣2x+6的值为9,则﹣2x2+4x+6的值为.15.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.16.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD 度数为.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是km.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为cm.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).20.解方程:(1)3(x﹣5)=﹣12;(2).21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有条线段;(2)求线段AN的长;(3)求线段MN的长.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 …2号探测气球所在位置的海拔/米30 …(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.2015-2016学年江苏省扬州中学教育集团树人学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.B.2.D.3.B.4.B.5.A 6.C.7.C.8.B.二、填空题(本大题共有10小题,每小题3分,共30分)9.±510.3 11.41°30″12.60°13.62°14.0 15.7 16.30°或50°.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是5km.【考点】一元一次方程的应用.【分析】设甲、乙两村之间的距离为xkm,根据已知两人的速度结合行驶的路程相等,时间差为15分钟得出方程,再求出答案即可.【解答】解:设甲、乙两村之间的距离为xkm.根据题意可得:﹣=,解得:x=5,答:甲、乙两村之间的距离为5km;故答案为:5.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为10cm.【考点】翻折变换(折叠问题).【分析】将折叠纸条展开,分析其中的三角形,梯形的特点,再进行计算.【解答】解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即2cm,下底等于纸条宽的2倍,即4cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即4cm,故超出点P的长度为(26﹣10)÷2=8,AM=8+2=10cm,故答案为:10.【点评】本题考查了折叠的性质.关键是将折叠图形展开,分析每个图形形状及与纸条宽的关系.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣2﹣=﹣3;(2)原式=﹣1+4﹣3+2=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)3(x﹣5)=﹣12;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣15=﹣12,移项合并得:3x=3,解得:x=1;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.【点评】此题主要考查了偶次方、绝对值的性质以及整式加减运算法则,正确求出a,b的值是解题关键.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.【考点】同解方程.【分析】先求出方程=3x﹣2的解,再代入方程3(x﹣m)=6+2m,即可解答.【解答】解:方程=3x﹣2的解为:x=1,把x=1代入方程3(x﹣m)=6+2m得:3(1﹣m)=6+2m,解得:m=﹣0.6.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解得含义.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;由三视图判断几何体.【分析】(1)主视图有3列,每列小正方数形数目分别为2,1,1,俯视图有3列,每列小正方形数目分别为1,2,1,左视图有2列,每列小正方形数目分别为2,1.据此可画出图形;(2)保持这个几何体的俯视图和左视图不变的情况下添加小正方体即可.【解答】解:(1)如图所示:;(2)可以在①和②的位置上各添加一个小正方体,这个几何体的俯视图和左视图都不变,最多添加2个,故答案为:2.【点评】此题主要考查了画三视图,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)先设小客车租了x辆,根据如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位,列出方程,求出x的值,即可得出答案;(2)先设至少要租用大客车x辆,根据同时租用大、小客车共6辆,且确保每个师生均有座位,列出不等式,求出解集即可.【解答】解:(1)设小客车租了x辆,根据题意得:30x=45(x﹣2)﹣30,解得:x=8,则这次准备外出采风的师生共有30×8=240(人),答:这次准备外出采风的师生共240人;(2)至少要租用大客车x辆,根据题意得:45x+30(6﹣x)≥240,解得:x≥4,答:至少要租用大客车4辆.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,根据题目中的数量关系,列出方程和不等式.26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有10条线段;(2)求线段AN的长;(3)求线段MN的长.【考点】两点间的距离.【分析】(1)根据线段有两个端点,写出所有线段后计算个数;(2)由N是AC中点知AN=AC,而AC=AB﹣BC,根据AB、BC的长度可得;(3)由图可知,MN=AM﹣AN,由M是AB中点且AB=10cm可得AM长度,由(2)知AN的长度,可得MN长.【解答】解:(1)图中的线段有AN、AC、AM、AB、NC、NM、NB、CM、CB、MB这10条;(2)∵AB=10cm,BC=6cm,∴AC=AB﹣BC=4cm,又∵N是AC的中点,∴AN=AC=2cm;(3)∵AB=10cm,M是AB的中点,∴AM=AB=5cm,由(1)知,AN=2cm,∴MN=AM﹣AN=3cm;故答案为:(1)10.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35…x+52号探测气球所在位置的海拔/米2030 …0.5x+15(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?【考点】一元一次方程的应用.【分析】(1)根据“1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(2)两个气球能位于同一高度,根据题意列出方程,即可解答;(3)两个气球所在位置的海拔相差7.5米,分两种情况:①2号探测气球比1号探测气球海拔高7.5米;②1号探测气球比2号探测气球海拔高7.5米;分别列出方程求解即可.【解答】解:(1)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20.填表如下:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35 …x+52号探测气球所在位置的海拔/米20 30 …0.5x+15故答案为:35,x+5,20,0.5x+15;(2)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度;(3)分两种情况:①2号探测气球比1号探测气球海拔高7.5米,根据题意得(0.5x+15)﹣(x+5)=7.5,解得x=5;②1号探测气球比2号探测气球海拔高7.5米,根据题意得(x+5)﹣(0.5x+15)=7.5,解得x=35.答:当两个气球所在位置的海拔相差7.5米时,这时气球上升了5分或35分.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,列出函数解析式.28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=60°;若∠AOC=140°,则∠DOE=70°;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)首先利用补角的定义可得出∠BOC,再利用角平分线的定义可得出∠COE,易得∠DOE;(2)同理由(1)可得;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)若∠AOC=120°,则∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;若∠AOC=140°,则∠BOC=180°﹣140°=40°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣20°=70°;故答案为:60°;70°;(2);∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90)=,故答案为:;(3)∠DOE﹣∠AOF=45°.理由:设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海 淀 区 七 年 级 第 一 学 期 期末 练 习数 学2016.1班级 姓名 成绩一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1.21的相反数是 A . 2 B .21- C . 21D .-22. 石墨烯(Graphene )是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体. 石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯. 300万用科学记数法表示为A . 430010⨯B . 5310⨯C . 6310⨯ D . 30000003.下列各式结果为负数的是A .1--()B .41-() C .1-- D .12-4.下列计算正确的是A . 2a a a =+B . 3265a a a-=C .532523a a a =+D . b a ba b a 22243-=-5.用四舍五入法对0.02015(精确到千分位)取近似数是A .0.02B .0.020 C .0.0201 D .0.0202 6.如图所示,在三角形ABC 中,点D 是边AB 上的一点. 已知90ACB ∠=︒,90CDB ∠=︒,则图中与A ∠互余的角的个数是A .1B .2C .3D .4DCBA7.若方程211x +=-的解是关于x 的方程12()2x a --=的解,则a 的值为A .1-B .1C .32-D .12- 8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是 A .0.8(10.5)28x x +=+B .0.8(10.5)28x x +=-C .0.8(10.5)28x x +=-D .0.8(10.5)28x x +=+9.在数轴上表示有理数a ,b ,c 的点如图所示,若ac <0,b +a <0,则A . 0b c +<B . <b cC . >a bD . 0abc <10.已知AB 是圆锥(如图1)底面的直径,P 是圆锥的顶点,此圆锥的侧面展开图如图2所示. 一只蚂蚁从A 点出发,沿着圆锥侧面经过PB 上一点,最后回到A 点. 若此蚂蚁所走的路线最短,那么,,,M N S T (,,,M N S T 均在PB 上)四个点中,它最有可能经过的点是TS N M PBA图1 图2A . MB . NC . SD . T二.填空题(本大题共24分,每小题3分)abc11.在“11,0.3,,0, 3.33⋅-+-”这五个数中,非负..有理数是 .(写出所有符合题意的数)12.AOB ∠的大小可由量角器测得(如图所示),则AOB ∠的补角的大小为 ︒.13.计算:1802040'︒-= .14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x 件,那么这4名工人此月实际人均..工作量为 件.(用含x 的式子表示) 15.a 的含义是:数轴上表示数a 的点与原点的距离.则2-的含义是_ ____________;若2x =,则x 的值是_ ___.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h 完成. 现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h ,正好完成这项工作. 假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为 .17.如图所示,AB CD +______AC BD +.(填“<”,“>”或“=”)18.已知数轴上动点A 从表示整数x 的点的位置开始移动,每次移动的规则如下:当点A 所BOA180180170170160160150140150140130130120120110110100100908080707060605050404030302020101000ACBD在位置表示的数是7的整数倍时,点A 向左移动3个单位,否则,点A 向右移动1个单位.按此规则,点A 移动n 次后所在位置表示的数记做n x .例如:当1x =时,34x =,67x =,74x =,85x =.①若1x =,则14x = ;②若12320x x x x x +++++ 的值最小,则3x = .三.解答题(本大题共21分,第19题7分, 第20题4分,第21题10分) 19. 计算: (1)1136()23-⨯-; (2)232434(2)()92-÷--⨯-.20. 如图,已知三个点,,A B C . 按要求完成下列问题: (1)取线段AB 的中点D ,作直线DC ;(2)用量角器度量得ADC ∠的大小为_________(精确到度);(3)连接,BC AC ,则线段,BC AC 的大小关系是 ;对于直线DC 上的任意一点'C ,请你做一做实验,猜想线段'BC 与'AC 的大小关系是 .21. 解方程:BAC(1)()3+22+2x x -=; (2)7531164y y --=-.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22. 先化简,再求值:.2,1)2(2)3(22222-==---+-b a b a ab b a ab b a ,其中23. 如图所示,点A 在线段CB 上,12AC AB =,点D 是线段BC 的中点. 若3CD =,求线段AD 的长.24.列方程解应用题:DC BA为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力. 来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1)。

白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制. 图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a . 为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动. 已知⑦号小球比②号小球晚34秒到达相应位置,问②号小球运动了多少米?图2 图3五.解答题(本大题共12分,第25题6分,第26题各6分)图134567892134567892125. 一般情况下2323a b a b++=+不成立,但有些数可以使得它成立,例如:0a b ==. 我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(,)a b .(1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(,)a b ,其中0a ≠,且1a ≠; (3)若(,)m n 是“相伴数对”,求代数式22[42(31)]3m n m n ----的值.26.如图1,点O 是弹力墙MN 上一点,魔法棒从OM 的位置开始绕点O 向ON 的位置顺时针旋转,当转到ON 位置时,则从ON 位置弹回,继续向OM 位置旋转;当转到OM 位置时,再从OM 的位置弹回,继续转向ON 位置,…,如此反复. 按照这种方式将魔法棒进行如下步骤的旋转:第1步,从0OA (0OA 在OM 上)开始旋转α至1OA ;第2步,从1OA 开始继续旋转2α至2OA ;第3步,从2OA 开始继续旋转3α至3OA ,….图1 图2例如:当30α=︒时,1OA ,2OA ,3OA ,4OA 的位置如图2所示,其中3OA 恰好落在ON 上,34120A OA ∠=︒; 当20α=︒时,1OA ,2OA ,3OA ,4OA ,5OA 的位置如图3所示,其中第4步旋转到ON 后弹回,即3480A ON NOA ∠+∠=︒,而5OA 恰好与2OA 重合.图3 图4 解决如下问题:(1)若35α=︒,在图4中借助量角器画出2OA ,3OA ,其中32A OA ∠的度数是_____________; (2)若30α<︒,且4OA 所在的射线平分23A OA ∠,在下图中画出1OA ,2OA ,3OA ,4OA 并求出α的值;(3)若36α<︒,且2420A OA ∠=︒,则对应的α值是 .(4)(选做题)当i OA 所在的射线是j k A OA ∠(,,i j k 是正整数,且j OA 与k OA 不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且180α<︒),旋转是否可以停止?写出你的探究思路.A 0O N M A 4A 3A 2A 1M NOA 0(A 5)A 1A 2A 3A 4M N OA 0A 1M NO A 0A 0O NM海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案 2016.1一、选择题(本题共30分,每题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案BCCDBBDACB二、填空题(本题共24分,每题3分) 11.11,,03+(若答案不全,对一个给1分;若有错,则得0分) 12.120 13.15920'︒ 14.4154x + 15.数轴上表示2-的点与原点的距离;2或 2- 16.84(2)14040x x -+=(形式不唯一) 17.< 18.7;-1 (第一空1分,第2空2分)三、解答题(本大题共21分,第19题7分, 第20题4分,第21题10分) 19.(1)解:原式332=-+ 2=.----------------------3分 (2)解:原式4916(8)94=-÷--⨯21=-1=.---------------------- 7分20.(1)如图所示. ---------------------- 1分 (2)90︒(只要相差不大都给分).---------------------- 2分(3)BC AC =;''BC AC =DABC(若(2)中测得的角不等于90︒,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.) -------- 4分 21.(1)解:()2+22x =+21x =1x =-. ---------------------- 5分(2)解:14101293y y -=-+10912314y y -+=+- 1y -=1y =-.--10分四、解答题(本大题共13分,第22、23题各4分,第24题5分) 22.解:22222(3)2(2)a b ab a b ab a b -+---22222342a b ab a b ab a b =-+--+ 2ab =-当1,2a b ==-时,24ab -=-,即原式的值是4-. ----------------------4分23. 解:因为 D 是BC 的中点,3CD =,所以 26BC CD ==.因为 12AC AB =, 所以 111()(6)222AC AB CB AC AC ==-=-,即2AC =.所以 321AD CD AC =-=-=. ----------4分24. 解:设②号小球运动了x 米,由题意可得方程:24233x x -=. 解方程得:2x =答:从造型一到造型二,②号小球运动了2米. -----5分五、解答题(本大题共12分,第25题6分,第26题各6分)25.解:(1)因为 (1,)b 是“相伴数对”,所以 112323b b ++=+. 解得:94b =- -----2分 (2)9(2,)2- (答案不唯一) -----3分 (3)由(,)m n 是“相伴数对”可得:2323mnm n++=+.3265m nm n++=.即:940m n +=.所以 22[42(31)]3m n m n ----22(462)3m n m n =---+224623m n m n =--+-4323n m =---49223n m+=--=---6分 26.解:(1)解:如图所示. 45α=︒.1分 O NM A 3A 2A 1A 0(2)解:如图所示. O NM A 4A 3A 2A 1A 0因为 30α<︒,所以 03180A OA ∠<︒,4180α<︒.因为 4OA 平分23A OA ∠,所以 32(1806)42ααα︒-+=. 解得 720()29α=︒. 3分 (3)20()7︒或340()13︒或380()13︒ --6分 (4)对于角120α=︒,操作不能停止.(根据学生的回答,只要探索的思路有道理即可)注:选做题5分. 全卷总分不超过100分.。

相关文档
最新文档