害怕做数列题的同志们看过来了——行测数列题做题技巧
公务员考试行政能力测验数列篇解题技巧
公务员考试行政能力测验数列篇解题技巧第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+ 55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=1 6,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。
而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D总结:对幂次数要熟悉第二步思路B:寻找视觉冲击点注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引视觉冲击点1:长数列,项数在6项以上。
数列解题方法与技巧
数列解题方法与技巧
解题方法和技巧有很多种,以下是一些常见的数列解题方法和技巧:
1. 找规律:观察数列中的数字是否有一定的规律或者模式,例如等差数列、等比数列等。
通过找到规律可以推断出数列中的其他数字。
2. 列方程:将数列中的数字用变量表示,然后列出方程,通过求解方程来确定数列中的其他数字。
3. 递推关系:如果数列中的第n个数字可以通过前面的数字推断出来,可以利用递推关系来求解数列。
4. 数列求和公式:如果要求解数列的和,可以利用数列求和公式来计算。
5. 辅助数列:有些数列可以通过构造辅助数列来求解,例如斐波那契数列可以通过构造一个新的辅助数列来求解。
6. 数学工具:利用一些数学工具和技巧,例如数学归纳法、二项式定理等来求解数列。
7. 模拟计算:有时候可以通过模拟计算来求解数列,即通过计算数列中的前几个数字,找到数列中的规律,然后根据规律来计算其他数字。
8. 看题意:有时候可以根据题目中的提示和要求来判断数列的性质和规律,然后进一步求解。
以上是一些常用的数列解题方法和技巧,但具体的解题方法和技
巧还需要根据具体的数列问题来确定。
在解题过程中,还需注意审题、理清思路、细心计算等问题。
行测数列八大技巧
行测数列八大技巧
以下是 7 条关于“行测数列八大技巧”的内容:
1. 等差数列可是基础中的基础呀!就像爬楼梯,一级一级很有规律呢!比如说 1、3、5、7、9 这样的数列,相邻两项的差值始终是 2,是不是很好找规律呀?这就得靠你细心观察啦!
2. 等比数列呢,那简直就是速度与激情!想想看呀,数字像小火箭一样快速变化着!比如 2、4、8、16 这样,相邻两项的比值是固定的,抓住这个特点就好啦!
3. 那周期性数列就像是一首循环播放的歌一样!来来去去就是那几个数字重复出现呢!像 3、2、5、3、2、5,是不是很有趣呀,一旦发现这个规律,哇塞,那可就容易多啦!
4. 幂次数列,哎呀呀,这可是有点挑战性呢,但别怕呀!你看像 1、4、9、16 不就是平方数嘛。
看到数字突然变大好多,就得想想是不是幂次数列在捣鬼呢!
5. 递推数列呢,就像接力跑一样,一个数字接着影响下一个数字!比如有些数列告诉你前面两个数字的和等于后面一个数字,这就得动动脑筋啦,认真分析它们之间的关系哟!
6. 组合数列,嘿,这就像是玩拼图一样呢!把数字分成几组来看,说不定就能看出门道哟!比如某些数列奇数项有规律,偶数项也有规律,多神奇呀!
7. 分数数列有时会让人头疼呢,但是别担心呀!你想想把分数化简或者通分一下,说不定规律就出来了呢!就像在迷雾中找到那一丝亮光,是不是很有成就感呀!
总之啊,掌握这些技巧,行测数列就不再是难题啦!相信自己,一定可以搞定!。
高中数学数列试题的解题方法与技巧分析
高中数学数列试题的解题方法与技巧分析
数列通常用来解决组合现象,广泛应用于数学实际问题中。
高中数学中,常用数列题
来考察学生对求和公式、等差数列、等比数列规律以及相关技巧的掌握程度。
下面讲解一
下高中数学数列试题的解题方法和技巧分析:
1、确定数列类型:当我们遇到一个数列试题时,首先要弄清楚该序列是等差数列还
是等比数列,因为这两种类型的数列的解法是不一样的。
在观察数列时要注意每项与它的
相邻项的差值是否相等,即等差数列;在观察数列时要注意每项与它的相邻项的比值是否
相等,即等比数列。
2、推导公式:既然确定了数列的类型,接下来就要推导出该类型数列的通项公式。
如果是等差数列,就要找出头项、公差和项数之间的关系;如果是等比数列,就要找出头项、公比和项数之间的关系。
3、求出指定项:当推出了相应数列的通项公式后,就可以求出指定项的值了。
如果
是等差数列,就要通过位移法;如果是等比数列,就可以通过乘幂法求出指定项的值。
4、计算总和:如果试题要求求解数列的总和,这时要用到求和公式。
对于等差数列,有Sn=n(a1+an)/2;对于等比数列,有Sn=a1(1-q^n)/(1-q)。
需要特别注意的是,求和公
式在求解数列总和时只有在数列的末项为无穷项时才能使用,否则就要使用暴力求和的方法。
以上就是高中数学数列试题的解题方法和技巧分析,熟练掌握这些方法和技巧,可以
让我们在数学考试中更加容易把握试题,轻松拿下高分。
高中数学数列试题的解题方法与技巧分析
高中数学数列试题的解题方法与技巧分析数列是高中数学中一个重要的概念,也是经常出现的考点。
掌握数列的基本概念和解题技巧对于高中数学的学习和应试都非常重要。
本文将针对数列试题的解题方法与技巧进行分析,帮助同学们更好地掌握数列知识。
一、数列的基本概念数列是指按一定规律排列的一组数。
数列中每一个数叫做项,第一个数叫做首项,第二个数叫做公差,第n个数叫做第n项,数列中相邻两项之间的差值叫做公差。
数列中的规律可以用通项公式或递推公式来表示。
二、数列题的解题方法1. 求首项和公差在解决数列问题的时候,首先要确定数列的首项和公差。
如果已知前几项的值,可以利用数列中相邻两项之间的差值求出公差;如果已知数列的通项公式或递推公式,可以通过代入数值得到首项和公差。
2. 寻找数列的规律数列题的解题关键是要寻找数列的规律。
有些数列的规律比较简单,可以通过观察数列的前几项得出;有些数列的规律比较复杂,需要通过构造新的数列或转化数列来寻找规律。
3. 求和求和是数列题中的一个常见问题。
如果已知数列的通项公式或递推公式,可以通过换元、分离、合并等方法将求和问题转化为求等比数列的和或利用等差数列的求和公式得出求和结果。
4. 求极限当数列的通项公式或递推公式已知,可以通过求通项公式或递推公式的极限来求整个数列的极限。
当数列中的每一项都是正数时,可以利用数列的重要极限定理来求整个数列的极限。
1. 利用差分法寻找规律对于一些比较复杂的数列,可以利用差分法来寻找规律。
差分法是指对数列进行多次求差,得到的数列就是原数列的差分数列,通过观察差分数列的规律可以推出原数列规律。
2. 利用数学归纳法证明结论数学归纳法是一种证明数学命题真实性的基本方法,对于一些需要证明的数列结论,可以采用数学归纳法,证明特殊情况成立,并推广到一般情况,最终得到结论的证明。
3. 利用递推公式解题递推公式是又前面的数推出后面的数的公式,对于一些数列题目,可以利用已知的递推公式求出所需答案。
公务员行政能力测试数字推理答题技巧(非常有用)
公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。
所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。
相减,是否二级等差。
8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。
三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
行测之数列技巧
行测之数列技巧数列是数学中的一个重要概念,也是行政能力测验(行测)中经常涉及的一个知识点。
在行测中,数列相关的考题常常是应用题、逻辑推理题以及判断题的重要组成部分。
掌握数列技巧不仅能帮助我们解答这些题目,还能提升我们的数学思维能力和分析问题能力。
本文将介绍数列的基本概念和常见的解题技巧。
一、数列的基本概念数列是有序的数字的集合,其中每个数字称为数列的项。
数列可以用以下形式表示:{a₁, a₂, a₃, ..., aₙ}。
其中,a₁为首项,aₙ为末项,n为数列的项数。
常见的数列有等差数列和等比数列。
1. 等差数列(Arithmetic Progression,AP)等差数列是一个数列,其中每个项与它的前一项的差是一个常数d。
等差数列可以表示为:{a₁, a₁+d, a₁+2d, ..., a₁+(n-1)d}。
等差数列的常用公式有:- 第n项公式:aₙ = a₁ + (n-1)d- 求和公式:Sₙ = (n/2)(a₁ + aₙ)2. 等比数列(Geometric Progression,GP)等比数列是一个数列,其中每个项与它的前一项的比是一个常数r。
等比数列可以表示为:{a₁, a₁r, a₁r², ..., a₁r^(n-1)}。
等比数列的常用公式有:- 第n项公式:aₙ = a₁r^(n-1)- 求和公式(当|r| < 1):Sₙ = a₁(1 - rⁿ)/(1 - r)二、数列的解题技巧1. 确定数列的类型在解题之前,我们首先要确定给定的数列是等差数列还是等比数列。
可以通过观察数列中的相邻项之间的差或比是否相等来判断。
2. 求解数列的通项公式数列的通项公式是指可以用来表示数列中任意一项的公式。
对于等差数列,可以使用第n项公式求解;对于等比数列,可以使用第n项公式求解。
3. 求解数列的和在行测中,经常会涉及到求解数列的和的问题。
对于等差数列,可以使用求和公式求解;对于等比数列,当|r| < 1时,也可以使用求和公式求解。
【推荐下载】公务员行测数列的解题技巧介绍word版本 (6页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==公务员行测数列的解题技巧介绍行政职业能力测验是目前现行公务员考试的笔试科目之一,考生们想在考试中取得更好的成绩需要掌握更多的行测技巧,以下是小编精心整理的行测数列的解题技巧,希望能帮到大家!行测数列的解题技巧一般的,如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列,常数d为公差。
等差数列通项公式写为。
同时我们还可以得出等差数列的下列性质:(1);(2)m、n、p、q是正整数,且m+n=p+q,则有;(3);(4)若,则。
求和公式:和= ;项数公式:。
根据这些性质和公式,我们看其在公务员考试中的应用。
【例1】【国家201X—48】{ }是一个等差数列,a3+a7-a10=8,a11-a4=4,则数列前13项的和是( )。
A.32B.36C.156D.182解析:根据求和公式和已知项数13,我们只需求出中位数,就可以计算出数列前13项的和。
将题目中两式相加a3+a7-a10+(a11-a4)=8+4=12,,故数列前13项的和=13×12=156,答案为C。
解析:假设小华从1数到n,重复数的数字为x,,则前n项和= ,则他所数的全部数= ,将这些数求平均= ,则全部数= ,肯定是一个整数,则是5的倍数。
若,则,显然不符合条件。
同样的,也不符合题意。
,,故他重复的那个数是6,答案为B。
解析:已知A班15人,根据等差数列的定义和性质及求和公式,我们知K班25人,则A—K班一共人,L班23人,故第244名学生是M班1号,根据项数公式知,所以第256名学生的学号是M13。
下面介绍一大类倒数成等差数列的题型,即调和平均数问题:。
利用调和平均数我们可以解决五类题:(1) 等距离平均速度问题:解析:上山、下山一样的路程,则小王的平均速度我们直接代入公式:,答案为B。
行测数列秒杀
行测数列秒杀在公务员行测考试中,数列题目常常让考生感到头疼。
但实际上,只要掌握了一定的方法和技巧,数列题目是可以实现“秒杀”的。
首先,我们要明确数列的常见类型。
数列大致可以分为等差数列、等比数列、和数列、差数列、积数列、商数列以及组合数列等。
对于等差数列,其特点是相邻两项的差值相等。
比如数列1,3,5,7,9 就是一个典型的等差数列,公差为2 。
在遇到等差数列的题目时,我们通常可以先计算相邻两项的差值,看是否存在固定的差值。
如果差值固定,那么就可以利用等差数列的通项公式 an = a1 +(n 1)d(其中 a1 为首项,d 为公差,n 为项数)来求解。
等比数列则是相邻两项的比值相等。
例如 2,4,8,16,32 就是一个等比数列,公比为 2 。
对于等比数列,要注意其通项公式 an =a1×q^(n 1) (其中 a1 为首项,q 为公比,n 为项数)。
通过计算相邻两项的比值,确定是否为等比数列,然后利用公式求解。
和数列通常是指前两项或前几项的和等于下一项。
比如 1,2,3,5,8 ,其中 1 + 2 = 3,2 + 3 = 5,3 + 5 = 8 。
在处理这类数列时,要善于观察数列中数字之间的和关系。
差数列与和数列类似,只是前两项或前几项的差等于下一项。
积数列是指前两项或前几项的积等于下一项。
例如 2,3,6,18 ,其中 2×3 = 6,3×6 = 18 。
商数列则是前两项或前几项的商等于下一项。
组合数列相对复杂一些,它可能是由两个或多个简单数列组合而成。
这就需要我们将数列进行合理的分段或分组,分别找出其规律。
接下来,我们通过一些具体的例子来看看如何“秒杀”数列题目。
例 1: 2,5,8,11,14,()我们先计算相邻两项的差值:5 2 = 3,8 5 = 3,11 8 = 3,1411 = 3 ,差值都为 3 ,所以这是一个公差为 3 的等差数列。
括号里的数应该是 14 + 3 = 17 。
行测数列推理题技巧
行测数列推理题技巧《行测数列推理题技巧》说起行测数列推理题的技巧,我有一些心得想分享。
我记得我第一次做行测数列推理题的时候,那简直就像在黑暗中摸索,根本找不到方向。
就像一个没有地图的旅行者在迷宫里乱转,看着那些数列就头疼,什么规律都找不出来。
不过做的题多了,我就开始总结出一些技巧来。
首先呢,要先看数列的数字变化幅度。
这就好比我们看一个人的步幅大小,如果数字变化幅度很小,像1、2、3、4、5这种,那很可能是等差数列,差可能就是1嘛。
如果数字变化幅度比较大,像是2、4、8、16之类的,那很可能就是等比数列,公比为2。
这时候就是一个数字乘以一个固定的数得到下一个数字,就像兔子繁殖,一代比一代按照一定的倍数增加。
再一个呢,要注意数列中的特殊数字。
比如说数列中有0或者1。
如果有0,那可能是幂次数列经过了变形,因为很多幂次运算会涉及到0。
要是有1呢,它可能是任何幂次数的0次方,也可能是某个等比数列的起始数字。
还有就是要学会对数字进行拆分。
这就像拆一个复杂的机械零件一样,把数字拆分开来也许就能发现规律。
比如说123,你可以拆成120 + 3,再看120和3分别跟数列中的其他数字有没有联系。
但是呢,我得承认这些技巧也不是万能的。
有时候你按照这些方法看了半天,也找不出规律,这就像你按照惯常的食谱做菜,结果做出来却不是那个味。
比如说有些数列是多重规律组合的,你只按照一个思路去想,就会走进死胡同。
这个时候,我的替代方案就是多试几种常规规律的组合,再花点时间把数列中的数字多运算几次,加加乘乘看,说不定就能找到规律。
对了,还有个事儿要说。
在找数列规律的时候,要沉稳,别着急。
我之前就有过失败经历,因为考试的时候太紧张,有些规律本来能看出来的,结果一慌就乱了阵脚。
就像射箭的时候,心急就射不准。
所以心态很重要啊。
这里再给想提高数列推理能力的朋友一点建议。
平时要多做练习,就像运动员每天都要训练一样。
而且做完题之后,要好好总结规律,把相似的数列整理在一起,这样下次再看到类似的数列就能很快找到规律了。
行测答题技巧:数列的解题技巧
行测答题技巧:数列的解题技巧解题关键:1、培养数字、数列敏感度是应对数字推理的关键。
2、熟练掌握各类基本数列。
3、熟练掌握八大类数列,并深刻理解“变式”的概念。
4、进行大量的习题训练,自己总结,再练习。
下面是八大类数列及变式概念。
例题是帮助大家更好的理解概念,掌握概念。
虽然这些理论概念是从教材里得到,但是希望能帮助那些没有买到教材,那些只做大量习题而不总结的朋友。
最后跟大家说,做再多的题,没有总结,那样是不行的。
只有多做题,多总结,然后把别人的理论转化成自己的理论,那样做任何的题目都不怕了。
一、简单数列自然数列:1,2,3,4,5,6,7,……奇数列:1,3,5,7,9,……偶数列:2,4,6,8,10,……自然数平方数列:1,4,9,16,25,36,……自然数立方数列:1,8,27,64,125,216,……等差数列:1,6,11,16,21,26,……等比数列:1,3,9,27,81,243,……二、等差数列1,等差数列:后一项减去前一项形成一个常数数列。
例题:12,17,22,27,(),37解析:17-12=5,22-17=5,……2,二级等差数列:后一项减去前一项形成一个新的数列是一个等差数列。
例题1: 9,13,18,24,31,()解析:13-9=4,18-13=5,24-18=6,31-24=7,……例题2.:66,83,102,123,()解析:83-66=17,102-83=19,123-102=21,……3,二级等差数列变化:后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1: 0,1,4,13,40,()解析:1-0=1,4-1=3,13-4=9,40-13=27,……公比为3的等比数列例题2: 20,22,25,30,37,()解析:22-20=2,25-22=3,30-25=5,37-30=7,…….二级为质数列4,三级等差数列及变化:后一项减去前一项形成一个新的数列,再在这个新的数列中,后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
国家公务员行测数列题三个解题技巧(必看)
国家公务员行测数列题三个解题技巧[编辑]导言:作为公务员考试行政职业能力测验中阅读量最小的一类题型,数列推理经常让很多考生觉得无从下手,因为每一道题的信息量都非常少。
有没有可能在有限的考试时间内迅速准确的锁定行政能力测试数列题的正确答案,既省时又省力呢?数列三条黄金法则:作者系新东方北斗星公务员考试研究中心贾柱保作为公务员考试行政职业能力测验中阅读量最小的一类题型,数列推理经常让很多考生觉得无从下手,因为每一道题的信息量都非常少。
尽管在公务员考试中可能出现的数列类型相对固定,只要按部就班的对各类数列的可能的性质进行推算,绝大多数的题目都可以得到正确的答案,但这往往耗时较长或者需要考生具备比较扎实的数学基本功。
在考场上,平均每道题的解题时间只有不到一分钟,而若每一道题都按部就班的计算,时间是不容许的。
那么,有没有可能在有限的考试时间内迅速准确的锁定正确答案,既省时又省力呢?答案是:有的。
请先看以下两道例题:2007年国家公务员考试41题2,12,36,80,()A.100B.125C.150D.175本题的正确答案是C,因为前后项两两做差后得到的二级数列是10,24,44,70;再次做差得到的三级数列是14,20,26的等差数列,即原数列是三级等差数列。
这当然是最基础的解法,计算起来也不会出现错误,但耗时较长。
而且由于题干中给出的已知项只有四项,因此需要将选项依次代入才能得到正确答案。
计算能力不是太强或者不太熟练的考生,可能需要花费一分钟以上的时间才能把本题解出。
实际上,这道题在考场上完全可以用三秒钟的时间解决,请看:首先,该数列所有给出的已知项都是偶数,因此空缺的一项也应是一个偶数,可以排除B、D选项;其次,该数列的已知项在依次增大并且越增越快,可以排除A选项,正确答案只能是C,和按部就班计算得到的结果完全一致。
事实上,我们在排除选项的时候只应用到了数列的两个基本性质。
第一,奇偶性。
具备奇偶性质的数列无外乎只有三种情况,全是奇数、全是偶数、奇偶交错。
公务员考试之数列题答题技巧
公务员考试之数列题答题技巧答题技巧:排除选项时用到的是数列的两个基本性质。
第一奇偶性:具备奇偶性的数列有三种情况,全奇数、全偶数、奇偶交错。
当给出的已知项符合其中的任何一个规律,那未知项也符合该规律。
第二增减性:单调变化的数列有四种变化情况:单调递增且越增越快、单调递增且越增越慢、单调递减且越减越慢、单调递减且越减越快。
可根据已知项的变化情况选出未知项。
做题首选:奇偶性、增减性、整除性三大基本性质。
㈠奇偶性:都为奇数:1.3.5.7……都是偶数:2.4.6.8……㈡⑴等差性、等比性:相邻两项的差或商是一个定数⑵隔位等差或等比:奇数项为一个等差或等比数列。
偶数项为一个等差或等比数列。
⑶二级等差、等比:①⒈二级等差数列指数列后一项减去前一项的值为一个等差数列。
二级等差数列形式特点:数列各项依次递增或递减,变化幅度逐渐变大或变小。
但总体上各项数值起伏比较缓和。
⒉二级数列的特殊变式是指后一项减去前一项得到一个新的呈现特定规律变化的数列。
该数列可能为自然数列、等比数列、平方数列、立方数列,或是以上数列+1、-1的形式。
数列形式特点:数列各项变化幅度较大,有时末项会由前项较小的二位数猛然升到较大的三位数。
②⒈二级等比数列是指数列后项除以前项所得的数列为一个新的等比数列。
二级等比数列形式特点:数列各项均为倍数关系数值又构成一个新的等比数列。
⒉二级等比数列特殊变式是指数列后一项除以前一项得带一个呈现规律变化的新数列,该数列可能为自然数列、平方数列、立方数列或是上述数列+1、-1的形式。
㈢和数列及其变式1、和数列是指前两项相加得第三项的数列,即an+an+1=an+2,(n∈N)。
数列形式特点:因前两项之和得第三项,所以各项数值逐渐递增(如递减则从后向前推),变化幅度逐渐增大,但总体变化较平稳。
2、和数列的变式类型:①数列各项为分数或根式,分子、分母或根式内数字构成和数列;②数列前两项相加后再加、减、乘、除某一常数得第三项或第三项+1(第三项-1);③数列前两项相加得一等差数列、等比数列、平方数立方数列或上述数列+1/-1的形式。
数列构造巧解最值问题-2022公务员联考行测解题技巧
数列构造巧解最值问题-2022公务员联考行测解题技巧最值问题是公职类考试中常见的问题,此类题型难度一般较低,解题方法也比较固定,所以是我们做题时应当优先考虑的题型。
国考和近些年的联考当中此类题型均有消失,信任大家在看完本篇内容后,今后再遇到此类问题就会迎刃而解,快速拿分。
一、如何识别数列构造类的最值问题:数列构造类的最值问题一般是描述总数肯定的元素,分成若干组,求其中一组的最值状况。
比如:“将20个苹果分给5个人,每人得到的苹果数量各不相同,那么得到苹果数量最多的人至少能得到多少个苹果?”就是一道典型的数列构造类的最值问题。
二、如何来进行解题:数列构造类最值问题的解题方法分为三步:排序定位:将各个组根据大小挨次排列好,求哪一组的数值,就设哪一组的元素个数为x。
比如上面那个例子,我们应当设得到苹果数量最多的人至少能得到x个苹果。
反向构造:非所求的其他组的数量我们需要对其进行构造,构造时需要进行最值分析。
以刚才的例子为例,总数20个苹果是肯定的,问最多的人“至少”得到多少个苹果,那么其他人就需要尽可能多地得到苹果。
因每个人得到的苹果数量不同,则其次多的人最多可以得到x-1个苹果;第三多的比其次多的还要少,最多可得x-2个苹果;以此类推,第四多的最多可得x-3个苹果,得苹果数最少的人最多可以得到x-4个苹果。
加和求解:上述构造完成后,将各组元素加和等于总数,可以得到一个方程,进行求解即可。
以上题为例,可列出方程20=x+(x-1)+(x-2)+(x-3)+(x-4),解出x=6得出答案。
三、例题讲解:例1:(2022年内蒙古)从某物流园区开出6辆货车,这6辆货车的平均装货量为62吨,已知每辆货车载重量各不相同且均为整数,最重的装载了71吨,最轻的装载了54吨。
问这6辆货车中装货第三重的卡车至少装载了多少吨【思路点拨】本题的正确答案为B选项。
本题的总量为6×62=372吨,分成了6组,问其中第三多的那组至少装载了多少吨。
数列答题技巧
数列答题技巧
1. 嘿,数列答题可别瞎蒙啊!就像走迷宫,得有方法呀!比如等差数列,那咱就找规律呀,1,3,5,7,这不很明显公差是 2 嘛!咱就顺着这个规律往下推呀,是不是很简单?
2. 哎呀呀,做数列题要眼尖心细呀!看到那些数字就像看到宝藏的线索一样。
比如等比数列 2,4,8,16,这倍数关系多明显呀,一下就能抓住关键啦!
3. 喂喂喂,数列答题技巧可重要啦!就好比开锁,找到对的钥匙才能打开呀!像那种既有加法又有乘法的数列,咱得仔细分析呀,可别弄错了哟!
4. 嘿哟,遇到复杂的数列别慌呀!这就跟打仗一样,要沉着应对。
比如有些数列一会儿大一会儿小的,咱得从不同角度去思考呀,肯定能找到突破口的!
5. 哇塞,数列的世界很奇妙呀!就像一个神秘的花园,等你去探索。
比如有些周期数列,找到周期就好办啦,是不是很有趣呀?
6. 哎呀,数列答题可不能马虎哟!这就像拼图,每一块都要放对位置。
像那种给出好几个条件的数列题,要一个一个分析呀,不能漏了啥!
7. 嘿,记住啦,数列答题要灵活呀!不能死脑筋。
比如碰到那种变形的数列,要开动脑筋想想怎么转化,这可很考验咱的智慧呢!
8. 哇哦,数列题有时候就像捉迷藏,得把规律找出来。
比如有些数列相邻两项的差有特点,这就是线索呀,赶紧抓住呀!
9. 哟呵,数列的技巧可得掌握好呀!就像掌握一门武功秘籍。
像那种数字很大的数列,咱别怕,肯定有简单的方法在里面等咱发现呢!
10. 哈哈,数列答题其实也不难嘛!只要用心去感受那些数字的跳动。
比如有些数列的规律隐藏得很深,但只要细心,肯定能找到的呀!
我的观点结论就是:数列答题技巧很关键,掌握了就能在解题中如鱼得水,大家一定要多练习多总结呀!。
高考数学数列问题的答题技巧
高考数学数列问题的答题技巧高中数学中大家都学习了数列这一知识点,而数列在高考中也是经常出现的考点,数列问题有哪些技巧可以又快又准地解答?店铺为您准备了一些高考数列通项、求和的答题技巧,希望对您有所帮助!高考数列通项、求和的答题技巧(1)解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
(2)构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
高考数列问题的易错点1.忽视等递推关系成立的条件,从而忽视检验前几项。
2.忽视n为正整数的默认条件,冒然求导,或利用不等式得到非整数的取等条件。
也会因此心理忽视这一个很好用的条件。
3.裂项相消忘记留下了几项。
可以先写几项验证。
4.通过方程求解的数列可能会漏下情况。
5.等比数列注意公比为1不等同于常数列(如0)。
6.下角标的不规范可能会使“-1”模棱两可,需要注意。
7.累加法或累乘法漏掉第一项。
高考数学数列知识点总结等差数列公式等差数列的`通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每 k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。
快速解答行测数列题的万能套路
快速解答行测数列题的万能套路(真题详解)公务员考试行政能力测验解题心得数列篇第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。
而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D总结:对幂次数要熟悉第二步思路B:寻找视觉冲击点注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引视觉冲击点1:长数列,项数在6项以上。
行测数列问题解题方法和技巧
行测数列问题解题方法和技巧《行测数列问题解题方法和技巧》说起行测数列问题的技巧,我有一些心得想分享。
我在准备公务员行测考试的时候,数列问题就像一个个小怪兽,横在我的面前,可把我给折磨得够呛。
比如说有这么一道数列题:1,3,5,7,(?)。
这就是一个很简单的等差数列,就像小朋友们上楼梯,每个台阶都一样高,这里的公差是2,所以答案很明显就是9。
这就是最基本的识别数列类型来解题,对于这种简单的数列,就看相邻两项的差值或者比值是不是固定的。
如果差值固定那就是等差数列,如果比值固定那就是等比数列。
这就好比你去超市数货物一样,一个个找规律,很直观。
但是呢,有些数列就很狡猾。
就像我之前遇到一个这样的数列:2,5,10,17,(?)。
刚开始我就懵了,差值3、5、7,好像没什么头绪。
老实说,我一开始也不懂,后来研究了一下才发现,其实这是二次等差数列。
这些差值3、5、7是个等差数列,那下一个差值就应该是9,所以括号里的数应该是17+9 = 26。
你可能会问,那要是数列更复杂怎么办呢?这里有个小技巧。
比如说这个数列:1,2,4,7,11,(?)。
你可以先试着做差看看,得到1,2,3,4,这时候就发现又有了等差数列的苗头,下一个差应该是5,那括号里就是11+5 = 16。
这就像我们在森林里找路,如果一条路走不通,换个方向再看看,先求差不行的话,还可以试试求比或者看数字是不是有什么特殊性质,像平方立方关系。
当然了,我的这些技巧也有局限性。
有时候数列非常不规则,像那种混合了多种规律的,用常规方法就很难搞定。
对了,还有个事儿要说,如果遇到这种比较难的数列,还有个替代方案就是代入法。
把答案选项一个一个代入数列,看能不能符合整个数列的规律。
但是这个方法可能会比较耗时,在正式考试的时候,如果时间充裕可以试试。
在总结了这么多经验和教训之后,我发现做行测数列题的关键,就是要冷静,敢于尝试不同的方法。
就像解一个谜题,多试几次就会有思路了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公务员考试行政能力测验解题心得数列篇第一步:整体观察,若有线性趋势则走思路(一),若没有线性趋势或线性趋势不明显则走思路(二)。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路(一):分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。
而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D总结:对幂次数要熟悉第二步思路(二):寻找视觉冲击点注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引视觉冲击点1:长数列,项数在6项以上。
基本解题思路是分组或隔项。
例4:1,2,7,13,49,24,343,()A.35 B。
69 C。
114 D。
238解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。
长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。
明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。
总结:将等差和等比数列隔项杂糅是常见的考法。
视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。
基本解题思路是隔项。
20 5例5:64,24,44,34,39,()10A.20 B。
32 C 36.5 D。
19解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。
视觉冲击点3:双括号。
一定是隔项成规律!例6:1,3,3,5,7,9,13,15,(),()A.19,21 B。
19,23 C。
21,23 D。
27,30解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C例7:0,9,5,29,8,67,17,(),()A.125,3 B。
129,24 C。
84,24 D。
172,83解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。
支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。
直接选B。
回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1.总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计视觉冲击点4:分式。
类型(1):整数和分数混搭,提示做乘除。
例8:1200,200,40,(),10/3A.10 B。
20 C。
30 D。
5解:整数和分数混搭,马上联想做商,很易得出答案为10类型(2):全分数。
解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。
例9:3/15,1/3,3/7,1/2,()A.5/8 B。
4/9 C。
15/27 D。
-3解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27例10:-4/9,10/9,4/3,7/9,1/9A.7/3 B 10/9 C -5/18 D -2解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得14,2,-5,-6,(-3.5),(-0.5)与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)= -2.5。
因此(-2.5)/9= -5/18视觉冲击点5:正负交叠。
基本思路是做商。
例11:8/9, -2/3, 1/2, -3/8,()A 9/32B 5/72C 8/32D 9/23解:正负交叠,立马做商,发现是一个等比数列,易得出A视觉冲击点6:根式。
类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内例12:0 3 1 6 √2 12 ( ) ( ) 2 48A. √3 24 B.√3 36 C.2 24 D.2 36解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2 ()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b)例13:√2-1,1/(√3+1),1/3,()A(√5-1)/4 B 2 C 1/(√5-1) D √3解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。
同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1/(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。
基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。
例14:2,3,13,175,()A.30625 B。
30651 C。
30759 D。
30952解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651 总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。
视觉冲击点8:纯小数数列,即数列各项都是小数。
基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。
例15:1.01,1.02,2.03,3.05,5.08,()A.8.13 B。
8.013 C。
7.12 D 7.012解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。
总结:该题属于整数、小数部分各成独立规律例16:0.1,1.2,3.5,8.13,( )A 21.34B 21.17C 11.34D 11.17解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A总结:该题属于整数和小数部分共同成规律视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。
例17:1,5,11,19,28,(),50A.29 B。
38 C。
47 D。
49解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38.视觉冲击点10:大自然数,数列中出现3位以上的自然数。
因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。
例18:763951,59367,7695,967,()A.5936 B。
69 C。
769 D。
76解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。
例19:1807,2716,3625,()A.5149 B。
4534 C。
4231 D。
5847解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。
第三步:另辟蹊径。
一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。
变形一:约去公因数。
数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。
例20:0,6,24,60,120,()A.186 B。
210 C。
220 D。
226解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。
变形二:因式分解法。
数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。
例21:2,12,36,80,()A.100 B。