蒸汽锅炉PID温度控制系统设计

合集下载

基于PLC的加热炉温控制系统设计

基于PLC的加热炉温控制系统设计

毕业设计(论文)题目:基于PLC的加热炉温控制系统设计学院:电子信息学院专业班级:06自动化(2)指导教师:康涛职称:讲师学生姓名:雷颖倩学号:40604010225摘要在现代工业生产过程中,一些温度等作为被控参数的过程,往往其容量滞后较大,控制要求又较高,若采用单回路控制系统,其控制质量无法满足生产要求。

本文针对锅炉的结构特点以及船机控制能够有效的改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等,提出了锅炉温度串级控制的解决方案。

本系统以电加热锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为福被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度控制系统;完成了系统的硬件设计和PLC程序设计。

经过调试,PLC程序实现了数据采集、A/D转换、PID运算和D/A转换等,达到了设计要求。

关键词:锅炉,温度,串级控制,PLC,PIDABSTRACTIn modern industrial production,some course's capacity often lags behind relatively largely,control also expect relatively much regarding temperature,etc,if adopt the controlsystem of single circuit,its quality of control is unable to meet the production requirement.Because the bunches of control can improve the dynamic characteristic of the course effectively,improve operating frequency,reducing the time constant of the equivalent course and accelerating the response speed,etc.This text have proposed one bunch of solutions of control of boiler temperature.This system leaves target of accusing of on boiler with electricity,export water temperature.With boiler for accuse of parameter mainly,regard the burner hearth water temperature as one pair of parameters of accusing of,regard voltage of resistance wire of the heating furnace as the control parameter,regard PLC as the controller, form one bunch of control systems of boiler temperature;Finish the designing of systematic hardware and the program with PLC.Through debugging,PLC procedure has realized the data gathering,A/D changing,PID operation and D/A changing,etc,has reached the designing requirement.KEYWORDS:boiler,temperature,bunches of control,plc,pid前言随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。

基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文 精品

基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文 精品

基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。

锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。

工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。

作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。

而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。

1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。

这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。

因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。

(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。

在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。

在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。

蒸汽温度自动控制系统

蒸汽温度自动控制系统

WT1S
1
1
时,1
21K
1
2.21K
;Ti1
T1K 1.2
WT1S
1
1
1
1 Ti1S
时,
(3)主、副回路投入后再作适当调整。
能源与动力工程学院 (二)衰减曲线法
步骤与临界曲线法略同,不同之处要注意!
串级控制系统产生共振效应的条件是:
1.副回路的工作频率ω2接近于共振频率ω; 2.主回路的工作频率ω1接近于副回路的工作频率ω2,即 T1P≈3T2P 。
实际生产中,通常把两种过热器结合使用,对流方式下吸收 的热量比辐射方式下吸收的热量要多,因此综合而言,过热器出 口汽温是随流量D的增加而升高的。
能源与动力工程学院
(2)动态特性 影响汽温变化的扰动因素很多,例如蒸汽负荷,烟气温度和
流速,给水温度,炉膛热负荷,送风量,给水母管压力和减温 水量。
归纳: 蒸汽流量,烟气传热量和减温水三个方面的扰动。 1)蒸汽流量扰动
能源与动力工程学院
(二)现场试验整定法
1、边界稳定法(临界曲线法) (1)先决定副调节器的比例带
主、副回路全部投入闭环,主调节器的参数设置:δ1置于较大位 置,Ti1=∞,Td1=0,副调节器的δ2 置于较大位置,且Ti2=∞,Td2=0, 而后便将副调节器的比例带由大往小调,使副回路产生不衰减振荡 (同时观察2),并记下此时的δ2K(临界比例带),T2K(振荡周 期),则副调节器的参数设置为:
2、锅炉过热汽温串级控制系统原理图
温度定值
主P调I1
副P调I2 执行器
内扰 阀门
θ2
减 导温前器区
过惰热性器区
θ1
变送器
变送器

锅炉过热蒸汽温度控制系统设计研究毕业设计开题报告

锅炉过热蒸汽温度控制系统设计研究毕业设计开题报告
本课题的主要内容、
重点解决的问题
主要内容:
1、建立被控对象数学模型。
2、基于单片机设计总体方案,进行PID控制规律的选用与数字化。
3、硬件设计,包括单片机输入信号接口电路、外围电路等。
4、软件设计,包括初始化及主程序、控制程序、A/D和D/A转换程序及其他处理程序。
5利用PROTUES仿真。
重点解决的问题:
锅炉是我国工业生产和生活上应用面最广、数量最多的热力设备,是石油化工、发电等工业过程必不可少的重要动力设备,其产物蒸汽不但可以作为蒸馏、干燥、反应、加热等过程的热源,而且还可以作为驱动设备的动力源。
过热蒸汽温度控制是锅炉控制系统不可缺少的重要组成部分,其性能和可靠性已成为保证锅炉安全性和经济性的重要因素。由于锅炉往往负荷变化大,起停频繁,依靠人工操作很难保证其安全、稳定地在经济工况下长期运行。温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,影响了生产安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸,从而造成重大事故。因此,工业过程对锅炉控制系统都有很高的要求,在锅炉运行中,保证过热蒸汽的温度在正常的范围内具有非常重要的意义。
完成论文的初稿;
修改、完善毕业设计并送指导老师审阅;
完成论文的PPT文件,准备毕业答辩。






***同学查阅了大量与课题相关的文献资料,对设计意图和课题意义清
楚明确,设计了初步的研究方案,预见了难点和关键问题,并拟定了工作计划,
为开题做了充分准备。目前已达到开题要求,同意开题。
指导教师签名:
年 月 日
1、了解锅炉过热蒸汽的工艺过程,对被控对象进行分析,设计控制方案。

锅炉过热蒸汽温度控制系统的设计与仿真

锅炉过热蒸汽温度控制系统的设计与仿真

低(5~IO) ̄C,效率就降低约 1%,因此严格 控制过热汽温在给定值 间 r约为 20s,具有较 良好的动态特性。但实际运行 中,蒸汽负荷
附近是大型火电机组运行 的重要任务之一[1J。
是变化的,因此不宜用来控制过热汽温 。
过热蒸汽温度控制 中,被控对象具 有非 线性 、时变性 、滞后 2-2 烟气传 热量扰 动的动态 特性
monitored control system is developed by Kingview.Th e results show that t he FUZZY-PID con troller not only improves the
system of nonlinear,time variability and ce , 桫 processing capacity,but also has better se L adaptive ca pa city a nd
第 4期 2016年 4月
机 械 设 计 与 制 造
Machinery Design & Manufacture
265
锅 炉过 热 蒸 汽 温度控 制 系统 的设 计 与仿 真
刘丽桑 ,张锦 枫
(福建工程学院 福建省数字化装备重点实验室 ,福建 福州 350118)
摘 要 :过热蒸汽温度 的高低直接影响着火电机组的安全性和经济性 。由于过 热蒸汽温度对象具有非线性 、时变等复杂 特 性 ,设 计了一种采用模糊 PID控制策略 的串级控制方案 ,分析 了锅炉过热蒸汽温度在 不同扰动作 用下的动 态特 性 ,设 计 了 FUZZY—PID控制 器,对 PID控制器参数进行 了整定,并对 FUZZY-PID控制器和常规控制器的控制效果进行 了仿真 比较 ,最后利用组态王 Kingview开发 了相应的过热蒸汽温度监控 系统。结果表明 ,FUZZY—PID自适应能力强 ,提高 了系 统对非线性、时变性和不确定性等的处理能力,改善 了控 制效果 ,具有更好的动态特性。 关键词 :过热蒸汽 ;温度控制;FUZZY-PID;串级控制 ;Kingview 中图分类号 :TH16;TP368.1;TK3 文献标识码 :A 文章编 号:1001—3997(2016)04—0265—03

PLC:余热蒸汽锅炉智能控制方案

PLC:余热蒸汽锅炉智能控制方案
7)电器元件选用优质品牌产品电器元件,柜体采用标准GGD柜体;
8)除氧控制系统集成到其中一套余热锅炉的控制系统中;
9) 2台锅炉水位和除氧器液位及脱盐水箱水位采用工业闭路电视监控。
在此基础上,通过西门子PLC通讯接口,实现锅炉控制系统与人机界面-触摸屏之间的数据通讯,PLC并预留RS232/485(modus)协议实现锅炉控制系统之间以及与上位监控系统的数据交互。上位管理计算机完成对所有锅炉控制系统的数据通讯与处理,并负责完成所有锅炉系统重要运行参数的历史记录、存储、和生产报表打印以及各锅炉运行负荷的统一调配,充分体现了控制分散,信息管理集中的现代工业设备控制思想的发展理念。具有投资合理,可靠性高、便于扩展,技术先进等优点。
4)检查护板炉墙、顶部密封及人孔是否完好,其严密性是否良好。
5)对锅炉上所有汽、水仪表、热工及电气仪表,都要检查并确认其精度灵敏性。
6)对主要安全附件,如安全阀、水位表等都要进行检查,凡不合要求立即修复或更新。
7)向锅炉上水,至最低水位。
8)上水结束后,注意观察锅筒水位一段时间,静止观察水位是否维持不变。若有下降应查明原因。如锅筒、集箱及各部阀门有无泄漏并予以消除。如果水位增高,表示给水阀关闭不严,漏流量太大,应予以修复或更换。
3)启动时必须严密监视锅筒水位,正常运行水位为±50mm,极限水位为±100mm,当锅筒水位上升超限时,应立即打开汽包的紧急电动放水阀进行放水调节汽包水位,保证正常水位的同时,应使汽温、汽压均衡地上升,并使锅炉各部分温度均匀上升。
4)检查确认汽包压力升至0.1MPa时关闭汽包排汽阀;
5)在升压过程中,检查确认各承压部件的受热膨胀情况,如有异常,应立即查明情况及时处理;
带尘烟气余热蒸汽锅炉智能控制器

基于PLC控制的电锅炉控制系统

基于PLC控制的电锅炉控制系统

基于PLC控制的电锅炉控制系统电锅炉控制系统是现代工业制造中常见的一种设备,它通过PLC(可编程逻辑控制器)来实现对电锅炉的精确控制。

PLC控制技术具有灵活、方便、可靠等优点,能够实现复杂的逻辑控制和自动化控制功能。

本文将从PLC控制系统的原理、功能及特点入手,结合电锅炉的工作原理,详细介绍基于PLC控制的电锅炉控制系统的设计与实现。

1. PLC控制系统原理PLC控制系统是一种专门设计用于工业自动化控制的设备,其核心是一个可编程的CPU,通过不同的输入/输出模块和通信模块,与外部传感器、执行器等设备连接,实现对生产过程的控制。

PLC控制系统通过预先编写好的程序,根据不同的输入信号执行相应的逻辑控制,以达到自动化控制的目的。

2. 电锅炉工作原理电锅炉是一种利用电能进行加热的设备,通常由加热元件、控制系统、水泵等部件组成。

在工作过程中,电能被加热元件转换为热能,将水加热至设定的温度,为生产或生活提供热水或蒸汽。

电锅炉的控制系统通常包括温度传感器、压力传感器、水位传感器等,用于监测和控制锅炉的工作状态。

3. 基于PLC控制的电锅炉控制系统设计基于PLC控制的电锅炉控制系统主要由PLC控制器、传感器、执行器、人机界面等部件组成。

在设计过程中,首先需要根据电锅炉的工作原理和需求确定系统的功能要求和控制策略,然后编写PLC程序实现相应的逻辑控制。

通过合理的硬件布局和接线连接,将各部件连接到PLC控制器上,实现信号的采集和输出。

4. 控制系统功能与特点基于PLC控制的电锅炉控制系统具有如下功能与特点:1)灵活性:PLC控制系统可根据需要进行程序修改,实现不同的控制策略;2)可靠性:PLC控制器具有较高的稳定性和可靠性,可以长时间稳定运行;3)精确性:通过PLC控制系统可以实现对电锅炉的精确控制,提高生产效率和产品质量;4)扩展性:PLC控制系统可根据需要扩展输入/输出模块和功能模块,实现系统的功能扩展。

5. 控制系统优化与应用为了进一步优化电锅炉控制系统的性能,可以采用PID控制算法、模糊控制算法等先进的控制技术,提高系统的响应速度和稳定性。

蒸汽锅炉汽包液位模糊PID控制

蒸汽锅炉汽包液位模糊PID控制


为控制信号 , 控制汽包水位。在负荷 比较稳定、 燃烧 比 较平 稳 的条 件下 , 由常 规 PD控 制器构 成 的串级三 冲 I 量控 制系统 对于虚假水 位和给水量 的波动有较强 的处 理 能力 ; 是 当负荷 发生较大变化 时 , 但 常规的 串级 三冲 量系统的控制效果会明显下降, 出现超调量增大、 振荡 加剧等现象 , 不利于锅炉的安全、 经济运行 。针对这一 问题 ,将模糊 自整定 PD算法应用于三冲量控制系 I 统, 以实现 对锅炉汽包 水位控制 品质的改善 。
运行 中的应 用, 主要是将模糊控制理念引入到汽包三冲量 PD运算中, I 以此更好的 实现汽包水位的控制。在文章 中详细介 绍 了模糊控制器的应用和模糊规则的建立, 并通过 MA L B进行仿真 , TA 得到引入模糊控制后的汽包水位仿真曲线。
关 键 词 : 包液 位 ; 糊 控 制 ; I 三 冲 量 汽 模 PD;
偏差和偏差变化率 e e 和 c的论域选得越大 , 控
其模糊子集为ee = B N N ,0P ,M,B , N ,M,SZ ,SP P 。 c

应 取较大 的 和较小 的 K , d 同时为 了避 免 系统 出现 根据锅炉对汽包水位 的控制要求 , 设水位误差 e 较大的超调量, 应对积分作用加以限制 , 通常取 K= 。 iO 在(1 l,0 m 之间, 位误差变化 率 e 的基本 一0mn 1 ) m 水 C ( ) e和 e 大小适 中时 , 2当 C 为了使 系统 的超 调
论域为(3 i,3 m 。因此 , 一0ml+ 0 ) l m 误差 的量化 因子为 量产生的小 , 的选取应 尽量小 , 幻 d得大小将 影响
23 2
E u p n Ma u a t n e h oo y N . 201 q i me t n f cr g T c n l g o 3 i 2

锅炉主蒸汽温度模糊PID控制系统的研究

锅炉主蒸汽温度模糊PID控制系统的研究
导 前 区 :.1(+ 6 ) 20/1 1S ; 惯 性 区 : .9(+ 23 ) 20 / 2 . 1 s。
图1 模糊控制 的基本原理 图 模 糊控制基本 原理如 图 1 示 , 所 虚线 内为模糊 控制器 , 其控制 规律 由计 算机程 序实现 。当变送器 测到系统 的被 调量值后 , 与给定值进 行 比较得 到偏差信 号 E E , 是一 个精确 的模拟量 , A D 经 / 转换 后作用 到模 糊 控制器 的输入 。进入模糊控 制器后 , 先经过量化 处理将基本论 域 首 中的 偏差值 E变 成模糊 集论 域中 的值然后 进行 模糊化 处理 变成模 糊 量, 可用相应 的模糊 语言来描述 。这 样 , 就得到 了误差 E的模糊语 言集 合 的一个子集 旦 。再 由 £和模糊控制规 则 墨 根据推理 的合 成规 则进 行模糊决 策 , 然后 得到模糊 控制量 旦 , : =旦 ・ , 即 旦 笪 而施加在 被控 对象上的量需要 的是精确量 , 以还需要将模糊控制量 旦 转换 成精确 所 量, 即进行非模糊 化处理得到实 际的精确控制数字量 , DA转换 后通 经 / 过执行 机构施加在被控对象上 。 三 、 糊 PI 制 系 统 结构 原 理 模 D控 模 糊 PD控制 器 以传统 PD控制 器 为基础 , I I 引入模 糊 集合 论 , 将 P D参数根据偏差 和偏 差变化值 的大小而动态变化 , I 这样显然更符合被 控对象真实 的控制 规律 。模糊 控制器将主汽温偏差 和偏差 变化率转换 为模 糊量, 经过模糊控制规则 的处理得到模糊输 出量 , 最后将模糊 变量 去模糊化 处理得 到精确值 , 作为副调节 器 PD 的参考 输入信号 。模 糊 I 控制系统 的结构 主要由模糊控 制器和被控 制对象两部分 组成 , 结构 其 如图 2 所示 。经过主蒸汽流量修 正的输 人 r 为系统设定值( 确量) = 精 。e rY _ 为系统误差, C d/ 为误差变化率( e- e t d 精确量) Y , 为系统的输 出量 ( 精 确量) 。误差 e 和误 差变化率 e 作 为输入信号进入模 糊控制器 。u c 作为 模糊 控制器的输 出, 经过反模糊化去控制被控对象 。

工业锅炉温度控制系统设计与实现

工业锅炉温度控制系统设计与实现

工业锅炉温度控制系统设计与实现摘要:工业锅炉是工业生产中利用率非常高的设备之一,它对一次能源的消耗非常大,特别是煤炭资源,但是目前仍然存在煤质不均一、控制操作不及时等问题,使得燃煤时热效率低、但煤耗率却居高不下,所以如何提高工业锅炉的工作效率是一项亟待解决的问题,这其中,热蒸汽温度是一个十分重要的参数,如何控制工业锅炉的热蒸汽温度保持在既能安全运行又能保证较高利用率的一定范围内,是工业锅炉是否安全经济运行的一项重要任务。

关键词:工业锅炉;温度控制;系统设计1 前言温度控制系统很多是通过PWM方式控制执行器件、调功的方式调节来控制温度、利用直接数字控制中的最小拍控制、或者基于单片机和PC机设计的温度控制系统,还有的以MCGS组态运行系统作为上位机监控系统。

本文根据工业锅炉的运行特点及环境条件,采用最简单最基本的单回路控制,并结合西门子下位机和智能仪表的应用,既能实现数据的实时传输处理,又能跟踪到系统的状态对其进行智能调节。

2 系统方案设计2.1 系统方案设计过程控制系统通常是指工业生产中具有连续生产过程自动控制、由过程检测和控制仪表组成、被控过程多样这些特点的自动控制系统。

过程控制的设计方案十分丰富,单回路控制就是其中之一,如图1所示。

图1中,W为调节器传函,W为调节阀传函,W为被控过程传函,W为测量变送器传函。

从图1可见,该系统只有一个闭环回路,一般是一个对象对另一个对象的调节控制过程,为了防止被控量的参数值不断变化或者该参数值在一个小范围内波动,中间利用传感器对被控量进行调节控制。

这种控制系统得结构简洁明了、易于调节,且成本较低方便投入运行,并能满足大部分工业生产的需求,特别适用于纯滞后和惯性小的系统,本系统就采用这种控制方式。

综合上述原理和控制方式,可获得本系统设计的控制流程如图2所示。

如果测量的实时热蒸汽温度值在设定温度范围内,那么系统处于一种动态平衡状态,水泵的电动阀门就不动。

等到过了一段时间炉膛燃料的燃烧温度发生变化,那时工业锅炉的热蒸汽温度也会随之变化,造成了它的实时测量值与设定范围之间产生了一定的偏差,偏差信号送回给智能仪表,经过它的计算、判断后,产生信号,使水泵的电动阀门适当调节开合程度,减少或加大水泵的水流量,直到再次检测到热蒸汽温度值恢复于设定范围中,那么系统就再次回到了特定的平衡状态,水泵电动阀门再次暂停工作。

锅炉蒸汽温度自动控制系统——模糊控制

锅炉蒸汽温度自动控制系统——模糊控制

锅炉蒸汽温度自动控制系统摘要:电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。

锅炉是火力发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。

在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。

在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。

本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。

考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。

在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。

关键词:锅炉蒸汽温度模糊控制随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。

同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。

这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。

为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。

火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。

基于PLC的工业蒸汽锅炉控制系统设计

基于PLC的工业蒸汽锅炉控制系统设计

控制要求
蒸汽锅炉控制系统的主要控制要求包括:
1、控制目标:通过控制燃料供应和空气供应,达到对蒸汽压力和蒸汽温度的 稳定控制。
2、被控对象:蒸汽锅炉的燃料系统和空气系统,以及相应的阀门和传感器。
3、控制算法:采用PID控制算法,通过比较实际值与设定值的差异,调整燃料 和空气的供应量。
3、控制算法:采用PID控制算法
对于蒸汽锅炉的控制,需要的参数包括压力、温度、液位等。因此,控制算法 的设计重点在于如何通过对这些参数的监测和控制,保证蒸汽锅炉的正常运行。 常见的控制算法有PID(比例-积分-微分)控制、模糊控制等,可根据实际情 况选择合适的控制算法。
2、输入输出接口
输入输出接口的设计是PLC控制系统的重要环节。输入接口负责采集蒸汽锅炉 的各种运行参数,如压力、温度、液位等;输出接口则将控制信号传递给相应 的执行机构,如调节阀、泵、风机等。在设计时,需要充分考虑蒸汽锅炉的工 艺流程、设备选型等因素,保证接口的合理配置。
关键词
PLC、工业蒸汽锅炉、控制系统、 设计
内容概述
本次演示主要介绍如何将PLC应用于工业蒸汽锅炉的控制系统,包括控制算法 的选择、输入输出接口的设计以及设备的选型等方面的内容。通过PLC的控制, 可以实现蒸汽锅炉的自动化运行,提高生产效率,降低能源消耗,保证生产安 全。
设计思路
1、控制算法
1、品牌选择:选用某知名品牌的PLC,具有较高的可靠性和稳定性。 2、型号选择:根据蒸汽锅炉控制系统的规模和复杂度,选择中高端型号的PLC。
3、内存容量:选用具有较大内存容量的PLC,以支持复杂的控制算法和数据处 理。
4、输入输出点数:根据控制系统的需求,选择适当的输入输出点数。
4、输入输出点数:根据控制系 统的需求,选择适当的输入输出 点数。

锅炉过热蒸汽温度控制系统课程设计

锅炉过热蒸汽温度控制系统课程设计

锅炉过热蒸汽温度控制系统课程设计过程控制课程设计说明书——锅炉过热蒸汽温度控制系统院系:化工学院化工机械系班级:10自动化(1)姓名:李正智学号:1 0 2 0 3 0 1 0 1 6日期:2013/12/2-2013/12/15指导老师:王淑钦老师引言蒸汽温度是锅炉安全、高效、经济运行的主要参数,因此对蒸汽温度控制要求严格。

过高的蒸汽温度会造成过热器、蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低,影响经济运行。

锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,并且可靠性也不高。

本次课程设计的主要目的是锅炉蒸汽温度控制系统的设计。

蒸汽过热系统包括一级过热器、减温器、二级过热器。

锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。

主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。

过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。

过热蒸汽温度是锅炉汽水系统中的温度最高点,过热蒸汽温度过高或过低,对锅炉运行及蒸汽设备是不利的。

蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。

一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃【1】。

如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。

据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。

一般规定过热汽温下限不低于其额定值10℃。

通常,高参数电厂都要求保持过热汽温在540℃的范围内。

由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下三个方面:(1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。

电厂锅炉蒸汽温度串级控制系统设计

电厂锅炉蒸汽温度串级控制系统设计

本科毕业设计论文题目电厂锅炉蒸汽温度串级控制系统设计专业名称学生姓名指导教师毕业时间毕业设计任务书一、题目电厂锅炉蒸汽温度串级控制系统设计二、指导思想和目的要求通过毕业设计使学生对所学自动化基本知识和专业理论加深理解,掌握工业生产过程控制系统设计和仿真的基本方法,培养独立开展设计工作的能力。

要求在毕业设计中:1.分析研究火力发电厂锅炉蒸汽温度控制要求,特点及控制系统设计方法,设计电厂锅炉蒸汽温度串级控制系统,达到要求的主要技术指标;2.开展控制系统方案论证,建立系统数学模型,进行温度控制系统分析;3.设计串级控制系统控制规律,进行参数整定;4.进行数学仿真,验证设计;5.撰写毕业设计论文。

三、主要技术指标1.350MW机组锅炉过热蒸汽温度保持在00C±;5505在减温水流量变化时,锅炉过热蒸汽温度控制系统能稳定运行,衰减系数9.0ϕ;=75~.02.过程动态性能指标为:1)温度波动最大偏差不超过04C;2)过渡过程时间不大于min2;3. 锅炉稳定运行时,过热蒸汽温度应在给定值的02C范围内四、进度和要求1.1-3周:收集查阅资料;2.4-6周:完成总体方案设计和建模;3.7-8周:完成系统分析和控制规律设计;4.9-11周:完成仿真验证及修改;5.12-13周:完成毕业设计论文.五、主要参考书及参考资料⑴金以慧等,《过程控制》,清华大学出版社,2000年;⑵张栾英,孙万云,《火电厂过程控制》,中国电力出版社,2004年;⑶于希宁,刘红军,《火电场自动控制理论》,中国电力出版社,2004年.学生指导教师系主任电厂锅炉温度串级控制系统设计摘要本文是针对锅炉蒸汽温度控制系统进行的分析和设计,而对锅炉蒸汽的良好控制是保证系统输出蒸汽温度稳定的前提,所以本系统采用串级控制系统,这样可以极大的消除控制系统工作中的各种干扰因素,是系统能在一个较为良好的状态下工作,同时锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器管壁温度不超过允许的工作温度。

基于MCGS的锅炉温度控制系统设计_毕业设计1 精品

基于MCGS的锅炉温度控制系统设计_毕业设计1 精品

西南科技大学专业方向设计报告课程名称:自动化专业方向设计设计名称:基于MCGS的锅炉温度控制系统设计姓名:赵XX学号: 2010XX班级:自动10XX班指导教师:王顺利起止日期: 2013.10.20——2013.11.15 西南科技大学信息工程学院制方向设计任务书学生班级:自动10XX班学生姓名:赵XX 学号:2010XXXX 设计名称:基于MCGS的锅炉温度控制系统设计起止日期:2013.10.20——2013.11.15 指导教师:王顺利方向设计学生日志基于MCGS的锅炉温度控制系统设计摘要:锅炉是工业生产中主要的供热设备。

电力、机械、冶金、化工、民用都需要锅炉提供热量,但是根据行业的不同,对锅炉的大小规模不尽相同。

作为重要的工业设备,在保证其安全和稳定运行的情况下则应考虑其自动生产,提高自动运行能力及工作效率。

本设计基于AE2000B实验设备上模拟现场锅炉温度控制系统,通过西门子S7-200 PLC作为控制器,MCGS 作为上位机,通过通信链接对锅炉温度进行实时监控,同时设计系列联锁,保证系统安全运行。

关键词: 锅炉温度 AE2000B PLC MCGSBased on the MCGS boiler temperature control system design Abstract:The boiler is the main heating equipment in the industrial manufacture.The electric power, the machinery, the metallurgical industry ,the chemical industry and the civil all need the heat the boiler offers. However, according to different industries, The size of the boiler varies from one to another. As an important industrial equipment, if we could ensure its safe and stable operation ,we should consider its automatic production and improve the automatic ability and its working efficiency. This design is based on AE2000B experimental device to simulate the spot boiler temperature control system by using the Siemens S7-200 PLC as the controller and the MCGS as upper machine. Meanwhile, the communication link will supervise the boiler temperature timely and the interlocking series will guarantee the safe operation of the system.Keywords: boiler temperature AE2000B PLC MCGS1 设计目的和意义锅炉生产在国民是工业中占据着重要的地位,早期的锅炉自动化程度很低,监控系统不完善,导致系统故障不断,但是锅炉因为适合各种行业仍然被广泛使用,锅炉的广泛使用使锅炉现代化成为必然。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃烧工况 温度设定值 控制信号 喷水流量
控制器
执行器
过热器
温度变送器
被控对象建模

根据在减温水量扰动时,过热蒸汽温度有较大的容积迟延, 而减温器出口蒸汽温度却有明显的导前作用,完全可以构成 以减温器出口蒸汽温度为副参数,过热蒸汽温度为主参数的 串级控制系统
温度设定值


温度主调节器

副调节器

阀 门
控制系统参数的整定





(1)先整定副调节器(p) 当副回路受到阶跃扰动时,在较短时间内副回路控制过程就告结束。在此 期间,主回路基本上不参加动作,可按单回路系统的整定方法整定副调节 器 采用逐次逼近法 副回路属于二阶模型采用Ziegler-Nichols,主回路采用临界比例法整定 首先对副回路:
控制系统参数的整定

按照S曲线大致可以求出延时时间L=0.65、放 大系数K=0.53和时间常数T=51.114
控制系统参数的整定

控制器类型 P PI PID 比例度 T/(K*L) 0.9T/(K*L) 1.2T/(K*L) 无穷 L/0.3 2.2L
采用Ziegler-Nichols法,根据下表得到:


减温水流量 扰动
减温器
2
蒸汽流量或者烟 气热量扰动
过热器
1 过热蒸汽温度
温度变送器
温度变送器
传递函数的模型建立

汽温控制对象的数学模型建立,采用工程整定的方法,即给喷水阀一个阶 跃扰动信号,然后多次记录减温器出口温度 和过热蒸汽出口温度 ,得到 两条阶跃响应曲线。
仿真分析
WT 1( S ) 为 PID 调节器,其传递函数为: WT 1( S ) KP1
控制系统参数的整定

根据临界比例法计算:(此时Kp=3.23、Tk=205.882)
调节器参数 调节器名称 P PI PID δ(%)s 2δs 2.26δs 1.7δs Ts/1.2 0.5Ts 0.125Ts T1(S) TD(S)
求出PID的Kp=1.9 Ti=102.54 Td=25.73 在系统中将配置求得参数得到阶跃响应:
控制系统参数的整定

再次循环以上做法:副回路的p参数Kp=200,求出主回路PID的Kp=1.9 Ti=100 Td=60得到下图阶跃响应:

性能分析

可以得到性能指标:
减温器处加入阶跃扰动后的系统响应

超调量增加,但是调节时间减少
过热器处加入阶跃扰动后的系统响应

超调量减少,调节时间也比单扰动下减少为244
蒸汽锅炉工艺流程及控制要求

蒸汽锅炉工艺流程及控制要求
锅炉是一个具有多输入、多输出且变量之间相互关联 的被控对象。 过热蒸汽温度控制系统:主要使过热器出口温度保持 在允许范围内,并保证管壁温度不超过工艺允许范围;
过热蒸汽温度控制对象的动态特性

过热汽温调节对象 的扰动主要来自三 个方面:①蒸汽流 量变化(负荷变化); ②加热烟气的热量 变化;③减温水流 量变化(过热器入口 汽温变化)。通过对 过热汽温调节对象 作阶跃扰动试验, 可得到在不同扰动 作用下的对象动态 特性。
蒸汽锅炉PID温度控制系统设计
目的:


对锅炉过热蒸汽温度控制系统进行分析和设计,而对 锅炉过热蒸汽的良好控制是保证系统输出蒸汽温度稳 定的前提。所以本设计采用串级控制系统,这样可以 极大地消除控制系统工作中的各种干扰因素,使系统 能在一个较为良好的状态下工作,同时锅炉过热器出 口蒸汽温度在允许的范围内变化,并保护过热器管壁 温度不超过允许的工作温度。 在本设计用到串级控制系统中,主对象为送入负荷设 备的出口温度,副对象为减温器和过热器之间的蒸汽 温度,通过控制减温水的流量来实现控制过热蒸汽温 度的目的。
被控对象建模
在单回路控制系统中,控制减温水流量,实际上是改变过热器 出口蒸汽的热能,也就控制了出口蒸汽温度 调节器接受过热器出口蒸汽温度t变化后,调节器才开始动作, 去控制减温水流量W ,W的变化又要经过一段时间才能影响到蒸 汽温度t,这样既不能及早发现扰动,又不能及时反映控制的效 果,将使蒸汽温度t发生很大的动态偏差,影响锅炉生产的安全 和经济运行。
1 S TdS ; Ti
WT 2( S ) 为 P 调节器,其传递函数为: WT 2(S ) KP 2 ;
调节阀以及温度测量变换单元的传递函数: Kf =1; Wm1(S ) Wm2(S ) 1 ;
f (t )、g(t ) 分别为减温水流量扰动以及蒸汽流量扰动;
ห้องสมุดไป่ตู้
仿真分析

Simulink仿真图
积分时间 微分时间 0 0 0.5L
求得:Kp=148.37,将副回路的p参数置为148.37,副回路就作为随动作用再接着 调主回路,主回路采用临界比例法求PID参数。下图为副回路整定( Kp=148.37 ) 阶跃响应图
控制系统参数的整定

此时副回路就作为随动作用再接着调主回路,主回路采用临界比例法求PID 参数,副回路整定不变,先调P得到等幅震荡,测得Tk=205.882
相关文档
最新文档