爱因斯坦提出狭义相对论的论文
狭义相对论的研究及其影响
狭义相对论的研究及其影响狭义相对论是20世纪初由爱因斯坦提出的一种理论,它对现代物理学的发展和科学技术的进步产生了重要影响。
本文将从三个方面探讨狭义相对论的历史、原理和应用。
一、历史狭义相对论最初由爱因斯坦在1905年提出,它与牛顿力学和经典电磁学形成了鲜明对比。
牛顿力学和经典电磁学假定时间和空间是绝对不变的,而狭义相对论则认为时间和空间是相对的,取决于观察者的运动状态。
狭义相对论的形成离不开许多前人的贡献。
19世纪末,麦克斯韦的电磁理论和赫兹的实验都表明,电磁波在真空中传播速度不变,这启示爱因斯坦思考运动系统的相对性。
同时,洛伦兹变换和洛伦兹收缩也为狭义相对论的发展提供了理论基础。
二、原理狭义相对论的核心原理是光速不变原理和相对性原理。
光速不变原理指光速在任何参考系下都是恒定不变的,而相对性原理指物理定律在所有惯性参照系中都应该具备相同的表达式。
在狭义相对论中,时间和空间是相对的,取决于观测者的运动状态。
这就导致了一些反直觉的结论。
例如,当两个运动状态不同的观测者测量同一枚钟表的时间时,会得到不同的结果。
此外,杆缩效应和时间膨胀效应也是狭义相对论的重要预测。
狭义相对论与牛顿力学形成了鲜明对比,它为我们提供了一种更加深入的理解物理世界的方式。
虽然狭义相对论的原理对于大多数人来说有些抽象和难以理解,但它的实用价值却无可置疑。
三、应用狭义相对论广泛应用于现代物理学和工程技术。
狭义相对论的正确性已经经过了无数次实验和验证。
经典物理学无法解释的一些现象在狭义相对论中得到了合理的解释。
在宏观物理学中,狭义相对论可以解释远程遥控和导航的原理,同时也可以用来研究宇宙的起源和演化。
在微观物理学中,狭义相对论可以解释电荷运动和粒子物理现象,例如康普顿散射、正反粒子产生和核裂变等。
除此之外,射线治疗、核磁共振成像、精密计时和卫星导航等现代技术都需要考虑到狭义相对论的影响。
总结狭义相对论的研究,不仅改变了人们对于时间和空间的理解,也为现代物理学、工程技术和科技进步提供了强有力的理论支持。
爱因斯坦的相对论原文(中文版)
狭义相对论就是狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。
在数学上有各种多维空间,但目前为止,我们认识的物 理世界只是四维,即三维空间加一维时间。
现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。
一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。
四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。
在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。
在四维时空里,动量和能量实现了统一,称为能量动量四矢。
另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。
值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。
四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。
可以说至少它比牛顿力学要完美的多。
至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。
这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。
在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。
物理小论文--爱因斯坦的相对论
爱因斯坦的相对论12021024 郝文涛摘要:20世纪初的迈克尔逊——莫雷实验中的“以太危机”孕育出了现代物理学的两大基本支柱之一—相对论。
它给出了高速运动物体满足的物理规律,揭示了质量和能量的内在联系,阐述了光速不变的原理,开始了万有引力和大尺度空间本质关系的探索。
现在,相对论已经成为研究物质相互作用、宇宙起源等方面的理论基础。
关键词:质能公式;光速不变原理正文:爱因斯坦相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论和广义相对论。
相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。
狭义相对论讨论的是匀速直线运动的惯性参照系之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。
相对论颠覆了人类对宇宙和自然的常识性观念,提出了“时间和空间的相对性”,“四维时空”,“弯曲空间”等全新的概念。
狭义相对论提出于1905年,广义相对论提出于1915年。
下面主要从相对论中的质能公式和光速不变原理来进行探讨。
一、质能公式学过大学物理的人都应该知道,质点被加速的过程,相对论和牛顿力学的图像是不相同的。
在牛顿力学中,随着外力做功,质点速度不断增大,可以直至无穷;在相对论中,不仅速度要增大,质量也要增大,所以不能用传统的牛顿力学中的公式来来求高速运动物体的能量。
质能方程式的推导首先要认可狭义相对论的两个假设:1、任一光源所发之球状光在一切惯性参照系中的速度都各向同性总为c 2、所有惯性参考系内的物理定律都是相同的。
如果你的行走速度是v,你在一辆以速度u行驶的公车上,那么你当你与车同向走时,你对地的速度为u+v,反向时为u-v,你在车上过了1分钟,别人在地上也过了1分钟——这就是我们脑袋里的常识。
也是物理学中著名的伽利略变换,整个经典力学的支柱。
该理论认为空间是独立的,与在其中运动的各种物体无关,而时间是均匀流逝的,线性的,在任何观察者来看都是相同的。
相对论的作文范文
相对论是一门重要的物理学科,由爱因斯坦于20世纪初提出,其产生对经典物理学的颠覆性影响,被认为是现代科学的标志之一。
相对论分为狭义相对论和广义相对论两种形式,其中狭义相对论主要探讨了在参照系变换下时间和空间都会发生变化的现象,广义相对论则将引力视为空间时间弯曲而非力的形式,并提出了弯曲众多现象的预测,如黑洞、引力透镜和引力波等。
相对论对人类历史的影响是巨大的。
它与牛顿的引力学不同,它认为空间和时间是不可分割的整体,即为时空;而引力是由物质使空间时间弯曲引起的。
相对论的贡献超出了当时的物理学范畴,对原子核的物理、天体物理、宇宙学发展有重要影响。
例如,狭义相对论是量子力学和场论的基础,它的公式在肯定不确定性原理、时间助跑效应等方面起到了重要的作用;同时广义相对论提供的引力像是现代宇宙学发展的重要基础。
这时,人们不得不对相对论的弯曲原理和黑洞的特性感到疑惑。
广义相对论的核心假设是空间时间弯曲,而黑洞则是一类由引力到极限产生的物体。
黑洞更像是一个时间和空间的漩涡,一旦物体掉入就再也无法逃脱,其真正的本质是一个精细的物理学问题。
我们是怎么知道这个漩涡的存在呢?答案就在相对论里。
相对论是基础理论,可用于经验校验,由它得出黑洞的理论性质,然后用望远镜、探测器等直接探查,进而证实黑洞的存在性。
就像宇宙对物理学家没有秘密一样,黑洞在理论上已经解决,相对论的预测在实践中得到了证明,这就是其价值所在。
总结来说,相对论的重要性不言而喻。
它引领了整个物理学领域的发展,并且在研究最复杂的天体物理大系统时起到了很重要的作用。
未来相对论的发展方向之一可能会涉及其与量子力学的结合,这个问题可谓物理学中的圆桌骑士,其答案解决后代表着更广阔的科学格局。
我们要学会提高自己的科学素养,运用相对论对世界进行分析,理解科学理论概念的深层含义,从而提高我们的科普工作水平。
狭义相对论创始
狭义相对论是由爱因斯坦于 1905 年创立的一种物理学理论,它描述了高速运动物体的运动规律和时空结构。
在狭义相对论中,爱因斯坦提出了两个基本假设:相对性原理和光速不变原理。
相对性原理指出,物理规律在所有惯性参考系中都是相同的,即物理学定律的形式在不同的惯性参考系中是不变的。
光速不变原理则表明,真空中的光速在任何惯性参考系中都是恒定不变的,与观察者的运动状态无关。
基于这两个假设,狭义相对论推导出了一系列奇特的结论,如时间膨胀、长度收缩、质能关系式(E=mc²)等。
这些结论颠覆了牛顿力学中的绝对时间和空间观念,揭示了时空的相对性和统一性。
狭义相对论的创立不仅深刻地改变了人们对自然界的认识,也为现代物理学的发展奠定了基础。
它不仅在理论物理中得到了广泛应用,如高能物理、宇宙学等领域,而且在现代科技中也有重要的应用,如全球定位系统(GPS)等。
爱因斯坦的狭义相对论是 20 世纪物理学的一项重大成就,它不仅推动了物理学的发展,也对人类认识自然界的方式产生了深远的影响。
爱因斯坦的狭义相对论
爱因斯坦的狭义相对论
爱因斯坦的狭义相对论是当今物理学研究的基础,为物理学的快速发展奠定了
不可磨灭的基础。
爱因斯坦的狭义相对论——也称为狭义相对论——是爱因斯坦提出的一种物
理学理论,是20世纪里最具影响力的物理学理论之一,它纠正了“牛顿运动定律”,认为光线也是一种波,扩能定律并非客观存在。
因此,爱因斯坦拒绝了“牛顿运动定律”的作用,提出了新的“广义相对论”,即minkowski时空的由来。
狭义相对论认为,时间和空间是一个统一的、可变的4
维时空,观测者间发生相对运动,物体由于空间和时间都是可变的,就在不同的参考系下显示出不同性质。
狭义相对论的发展也标志着物理学从研究简单的物体运动转向研究物理现象,
从定义物理实体转向定义物理学抽象,催生了很多新的物理概念,如量子力学、联动理论、空间时空变换、引力波等。
从物理角度看,爱因斯坦的狭义相对论深深影响了物理学的发展方向,为研究质量、能量、时间等提供了新的视角,开创了今天的科技发展创新活动。
爱因斯坦的狭义相对论不仅改变了物理学的思维方式,而且也改变了人们对宇
宙的认识。
它常常被称为“空间时空弯曲”、“宇宙相对物理学”等,强调宇宙万事万物都没有“固定不变”和“万物同源”的本质,映射出一幅宇宙存在的复杂性。
因此,爱因斯坦狭义相对论对整个社会、科学文化乃至世界具有深远的影响。
爱因斯坦的狭义相对论作为现代物理学及其深层次理论的基础,以其独特的观
点和特殊的方法改变了人们的认识,它被称为20世纪最具影响力的物理学理论之一,影响着宇宙万物的发展方向,奠定了现代物理学发展的基础,对科技发展有着不可估量的积极作用。
狭义相对论的诞生
狭义相对论的诞生1905年9月,阿尔伯特·爱因斯坦在德国权威性的《物理学杂志》上发表了题为“论动体的电动力学”的划时代论文,这篇把哲学的深奥、物理学的直观和数学的技艺令人惊叹地结合在一起的伟大杰作,被人们称之为狭义相对论,正是它全面地拉开了现代物理学革命的序幕。
狭义相对论使力学和电动力学相互协调,并对时间、空间和运动等传统的基本概念进行了新的认识,它把动量守恒定律和能量守恒定律联系起来,揭示了质量和能量的统一。
狭义相对论是现代物理学和科学技术的重要理论基础之一,它不仅大大推动了自然科学和技术的发展,而且在哲学世界观方面具有非常重大的意义。
1、马赫对牛顿绝对时空观的批判最早提出运动的相对性问题的是近代科学之父伽利略。
在中世纪的欧洲,托勒密的地球中心说长期以来占据着统治地位。
而伽利略则拥护哥白尼的太阳中心说。
当时的学者们强烈反对伽利略关于“地球在运动”的观点,其理由如下:(1)我们感觉不到地球在运动。
(2)如果地球既有公转也有自转,那么地球上的物体岂不是都会被向后抛吗?(3)如果地球在自西向东自转的话,那么从高处由静止落下的石头,将不会落到正下方,而必然会落到偏西的位置。
对于这些批评,伽利略分别进行了如下反驳:第一,我们感觉不到地球在运动,与我们乘坐以匀速运动的船时感觉不到船在运动是一样的。
这种想法与相对性原理以及作为相对论的基础的惯性系的概念相联系。
第二点和第三点,因为地球上的物体与地球一起运动着,下落的石头在水平方向与地球以同样的速度运动,所以仍然会落到正下方,这个观点与惯性定律相联系。
惯性定律可以表述为:“如果物体完全不受外力作用,它将保持匀速直线运动状态(静止的物体将保持静止)。
”我们把满足惯性定律成立的条件的地方称为惯性系。
理想的惯性系大概是独自漂游在远离星星的宇宙空间的宇宙飞船中的坐标系。
由于相对于这艘宇宙飞船作匀速运动的其他宇宙飞船都是惯性系,所以惯性系还是有无穷多个。
正如伽利略所说,在一切惯性系中,物体遵循相同的运动规律。
爱因斯坦对质量的定义
爱因斯坦对质量的定义
爱因斯坦在其著名的狭义相对论论文中指出:物体的质量是它所含能量的度量;如果能量改变ΔE,则质量就要改变,这就是著名的质能关系式:ΔE=Δmc或E=mc²,其中E 是物质的能量,m是物质的质量,с是真空中的光速,ΔE是能量的变化量,Δm是质量的变化量。
质能等价关系:
质量和能量的等效(等价)性。
质量和能量的关系由物理学家爱因斯坦于1905年最先提出。
在牛顿力学中,物体的质量被看成是不变的,即与物体运动速度的大小无关。
在不变外力的连续作用下,原来静止质点的速度增量与力的施加时间成正比;因此,如力的作用时间足够长,质点的速度就会超过光速,这就与光速是极限速度的事实不符。
实际上,当质点速度很大时,速度的增量就不再与外力作用的时间成正比,而是要慢一些。
当接近光速时,速度增加得越来越慢,因而不会超过光速;同时,由于外力不变,加速度的减小必然导致质量随速度的增加而增大。
爱因斯坦的狭义相对论和广义相对论
爱因斯坦的狭义相对论和广义相对论一、引言爱因斯坦是20世纪最伟大的科学家之一,他的相对论被认为是现代物理学的里程碑。
其中,狭义相对论和广义相对论是他最为著名的两个理论,本文将详细介绍这两个理论。
二、狭义相对论1. 狭义相对论的背景在19世纪末,麦克斯韦等人发现了电磁波,并提出了电磁波在真空中传播速度为光速。
然而,在牛顿力学中,时间和空间是绝对不变的,这与电磁波速度恒定的事实不符。
因此,爱因斯坦在1905年提出了狭义相对论来解决这个问题。
2. 狭义相对论的基本原理(1)光速不变原理:无论观察者是否运动,光速都是恒定不变的。
(2)时空相对性原理:物理定律在所有惯性参考系中都具有相同形式。
(3)等效原理:惯性质量和重力质量是等价的。
3. 狭义相对论的影响(1)引入了新概念:时空、事件、间隔等。
(2)解决了电磁波速度恒定的问题,为后来的量子力学和相对论物理学提供了基础。
(3)改变了人们对时间和空间的观念,推动了科学哲学的发展。
三、广义相对论1. 广义相对论的背景狭义相对论只适用于惯性参考系,无法解释重力现象。
因此,爱因斯坦在1915年提出了广义相对论来解决这个问题。
2. 广义相对论的基本原理(1)等效原理:惯性质量和重力质量是等价的。
(2)时空曲率:物质会弯曲时空,形成引力场。
(3)测地线方程:物体运动轨迹遵循最短路径原则。
3. 广义相对论的影响(1)解释了引力现象,如黑洞、星系结构等。
(2)推动了宇宙学研究的发展。
(3)改变了人们对时间和空间结构的认识。
四、总结爱因斯坦的狭义相对论和广义相对论是现代物理学中最为重要的两个理论之一。
狭义相对论解决了电磁波速度恒定的问题,推动了相对论物理学的发展;广义相对论解释了引力现象,推动了宇宙学研究的发展。
这两个理论不仅改变了人们对时间和空间的认识,也推动了科学哲学的发展。
狭义相对论与时间的相对性
狭义相对论与时间的相对性相对论是现代物理学的一大重要理论体系,包括了狭义相对论和广义相对论两个部分。
本文将重点探讨狭义相对论与时间的相对性。
狭义相对论是阿尔伯特·爱因斯坦于1905年提出的一种描述物理事实的理论。
它对时空的观念进行了一系列的颠覆与创新,最引人注目的就是时间的相对性。
根据狭义相对论,时间并不是一个普遍一致的量,而是依赖于观察者的运动状态和观测位置。
首先,狭义相对论引入了相对性原理,即物理定律在所有惯性参考系中都具有相同的形式。
这一原理击破了牛顿力学的绝对性观念,显示出时间和空间的相对性。
在狭义相对论中,时间和空间被统一为时空,构成了一个四维时空的概念。
与牛顿时空观念不同的是,狭义相对论中的时空是弯曲的。
这导致了物理学的一些奇异现象,其中之一就是时间的相对性。
根据狭义相对论的理论,当观察者以接近光速的速度运动时,时间会变得缓慢。
这就是著名的时间膨胀效应。
在相对论中,运动的观察者会感觉时间比静止的观察者慢下来。
这可以从两个观察者之间的相对速度来解释。
在相对论中,光速是一个绝对不可逾越的极限,任何物体都无法以光速以上的速度运动。
当一个观察者以接近光速的速度运动时,光速不会相对他而言变慢,但其他速度相对于他而言就会变慢。
因此,对于运动的观察者而言,时间就会变慢。
这种时间的相对性在实际应用中得到了证实。
例如,卫星导航系统中的卫星由于高速运动,其时间会比地面观测者的时间略微慢,因此在导航定位中需要进行时间校正。
同样,粒子加速器中的实验也验证了时间的相对性。
除了时间膨胀效应外,狭义相对论还带来了另一个奇特的现象,即双胞胎佯谬。
双胞胎佯谬是指当一个孪生兄弟乘坐飞船以接近光速的速度航行一段时间后返回地球,他与地球上的孪生兄弟相比,会发现自己的时间过得更慢,看起来年龄变得更年轻。
这说明时间的流逝取决于观察者的运动状态。
总结起来,狭义相对论引入了相对性原理和时空的弯曲概念,揭示了时间的相对性。
时间简史探索宇宙奥秘的科学之旅
时间简史探索宇宙奥秘的科学之旅尊敬的读者:欢迎踏上这场探索宇宙奥秘的科学之旅。
本文将带领您进入时间简史的世界,探寻宇宙的起源与发展,以及人类对于时间、空间和物质本质的认识。
一、时空交错的命题现代物理学中最基本的理论之一就是相对论。
爱因斯坦对于时间和空间有着与众不同的看法,他提出了狭义相对论和广义相对论,给出了一种重新理解时间和空间的方式。
通过这两个理论,我们可以更好地理解宇宙的奥秘。
1. 相对论的诞生与发展1905年,爱因斯坦发表了狭义相对论的论文,其中最重要的就是对于光速不变性的研究。
他认为,光速对于任何观察者都是恒定不变的,无论观察者的运动状态如何。
这一认识打破了牛顿的力学观念,为后来建立广义相对论奠定了基础。
2. 狭义相对论对时间的理解根据狭义相对论的观点,时间与空间是相互联系的,构成了四维时空的统一。
在高速运动的物体中,时间会发生变化,即时间的流逝速度会减慢。
这一概念被称为时间的相对性,揭示了时间这一基本要素的复杂性。
3. 广义相对论与引力场理论广义相对论对引力场进行了全新的解释。
爱因斯坦认为,物质和能量会使时空发生弯曲,形成引力场。
这样,物体在引力场中运动时,会沿着时空的弯曲轨迹运行。
广义相对论成功地解释了水星近日点进动和光线的弯曲,证实了其优秀的理论预言。
二、宇宙的起源与演化宇宙的起源一直是人类关注的焦点。
科学家们通过观测、实验和理论推导,提出了一些关于宇宙起源的假设和模型,其中最著名的就是大爆炸理论。
1. 大爆炸的提出20世纪初期,根据爱因斯坦的广义相对论,贝尔纳·勃朗宁和亚历山大·弗里德曼分别提出了宇宙在膨胀和收缩状态之间不断循环的理论模型。
然而,这些模型都具有稳定性问题。
而真正有突破性意义的是1927年,贝尔纳德·鲁梅特和乔治·勒梅特尔提出了宇宙的膨胀模型,也就是大爆炸理论。
2. 大爆炸的证据随着科技的进步,科学家们通过宇宙微波背景辐射、宇宙元素丰度、星系的红移等观测数据,找到了大量证据支持了大爆炸理论。
爱因斯坦相对论论文
爱因斯坦相对论论文引言爱因斯坦相对论可以说是现代物理学的里程碑之一,它对于我们理解时间、空间和引力的本质产生了深远的影响。
本论文旨在介绍爱因斯坦相对论的基本原理、发展历程以及其对物理学领域所带来的重要影响。
相对论的基本原理爱因斯坦相对论最重要的基本原理是“光速不变原理”和“等效原理”。
光速不变原理指出,在任何参考系中,光在真空中的速度都是恒定不变的,不受观察者运动状态的影响。
等效原理则表明,惯性系中的物理规律在所有相对于该惯性系匀速运动的惯性系中都是相同的。
特殊相对论特殊相对论是爱因斯坦相对论的第一个版本,它主要探讨了高速运动下的时间和空间的相对性。
在特殊相对论中,爱因斯坦引入了狭义相对论,通过洛伦兹变换来描述时间和空间的变换关系。
特殊相对论的核心结论是,物体的质量随速度的增加而增加,同时时间和空间也会发生相对变化。
广义相对论广义相对论是爱因斯坦相对论的进一步发展,它考虑了重力对时间和空间的影响。
在广义相对论中,爱因斯坦提出了引力是由物体所产生的扭曲空间引起的观点。
他运用了几何学的方法,将引力表述为时空的弯曲。
这一理论通过爱因斯坦场方程,精确描述了引力的起源和作用。
爱因斯坦相对论的影响爱因斯坦相对论对物理学领域产生了广泛的影响。
首先,在天体物理学中,广义相对论的引力理论提供了解释和预测天体运动的基础。
通过测量引力波和黑洞,验证了相对论的正确性。
其次,在核物理学领域,相对论的质能方程改变了我们对能量转化和产生的理解。
此外,相对论也对时间测量和导航系统等应用产生了实际影响。
结论爱因斯坦相对论是现代物理学的重要理论之一,它对我们对时间、空间和引力的认识产生了深远的影响。
通过特殊相对论和广义相对论的研究,我们理解了高速运动下时间和空间的相对性以及引力的本质。
爱因斯坦相对论也为天体物理学和核物理学等领域提供了重要的理论基础。
相对论的研究对于推动现代物理学的发展产生了重要的影响。
更多详细信息和数学推导内容,请参考相关物理学教材和专业论文。
爱因斯坦发现相对论的故事
爱因斯坦发现相对论的故事在科学史上,爱因斯坦是一位不可忽视的天才。
他的相对论不仅影响了物理学,而且深远影响了社会科学和哲学。
然而,在这个科学成果背后的故事中,隐藏着一段关于爱因斯坦的追求和坚持的精彩历程。
1905年,爱因斯坦在一家专业期刊上发表了题为“关于电动力学的几点意见”的论文,其中提出了著名的“狭义相对论”。
相对论是一整套关于时空和物质的理论,其中最为突出的是弥补了牛顿力学和电磁学之间的矛盾,并正确描述了光速的不变性。
但是,在当时,没有人能够理解和接受他的观点,甚至被认为是错的。
尽管面对着重重的质疑,爱因斯坦并没有退缩,他花费了近十年的艰辛努力,不断深化和拓展自己的相对论理论。
1921年,他的成果得到了Nobel评审委员会的认可,其中有一项是针对电子光子做出的研究。
这个时候,大学教授和科学家们已开始广泛接受相对论。
与此同时,爱因斯坦的相对论引起了越来越多的关注。
新的实验数据支持他的理论,证明了他预测的物理现象的存在,并揭示了新的问题和现象。
然而,他的相对论并不完美。
二十世纪初,量子理论的发展成果与相对论之间的矛盾逐渐暴露。
爱因斯坦和量子物理学家之间的争论成为了一段有名的历史。
追溯相对论的历史,不难看出,爱因斯坦的思想和做法是其成功的关键。
他不是靠灵感发明理论,而是一步步探索、推导和验证。
在科学研究中,不断的探索和验证是必不可少的。
同时,爱因斯坦也深知,即使是伟大的理论也有其局限性,需要随时调整和完善。
他对相对论的思考,也为科学方法的发展提供了重要的参照和启示。
科学的进步并不是一成不变的,而是在不断修正、更新、和发展中实现。
最后,爱因斯坦的相对论也激发了人们对宏观世界和微观世界的兴趣和探索,推动了现代物理学的发展。
我们有必要认真学习和研究这一世界级的科学成果,不断深入对它的理解,积极探索它背后的深刻意义。
狭义相对论与时空弯曲
狭义相对论是由爱因斯坦在20世纪初提出的一种理论,它通过重新解释时间和空间的概念,给我们带来了一种全新的视角。
其中最重要的一个概念就是时空弯曲。
在狭义相对论中,爱因斯坦提出了一个观点:时间和空间是相互交织在一起的。
传统的物理学认为时间是固定不变的,而空间是一个平坦的三维空间。
然而在爱因斯坦的理论中,他认为时间和空间是一个统一的整体,也就是所谓的时空。
而这个时空并不是平坦的,而是会被物质所扭曲,形成弯曲的效应。
这个时空弯曲的概念可以通过一个简单的实验来理解。
我们可以想象一个平坦的纸面,上面放置着一个重物,比如一个大理石。
根据引力的作用,大理石会在纸面上形成一个坑,使得纸面变得不再平坦,而是略微凹陷。
这就是时空弯曲的一个简单例子。
物质的存在会使得周围的时空弯曲,形成类似于坑的效应。
而在狭义相对论中,时空弯曲产生的原因是质量和能量。
质量和能量会产生引力,引力会使得周围的时空弯曲。
这个弯曲的程度与质量和能量的大小有关。
如果质量和能量非常大,那么弯曲的效应也会非常明显。
时空弯曲的概念不仅仅是一种理论,它也有着重要的实际应用。
狭义相对论的理论已经被证实,并且在日常生活中也有一些可以观察到的实际效应。
比如在航天飞行中,由于速度和引力的影响,航天器的时钟会与地球上的时钟产生微小的差异。
这就是时空弯曲效应的一个实验验证。
时空弯曲也对我们对宇宙的认识产生了影响。
根据狭义相对论的理论,宇宙的形态是由质量和能量所决定的。
如果宇宙中存在着大量的质量和能量,那么宇宙将会是一个弯曲的时空。
这个理论还预测了黑洞的存在,黑洞是由质量非常大的物体引力产生的一种现象,它会使得周围的时空弯曲到极致,造成吸引一切物质和辐射的效应。
总的来说,狭义相对论与时空弯曲给我们带来了一种全新的理论框架,重新界定了时间和空间的概念。
时空弯曲的概念揭示了宇宙的奥秘,影响了我们对世界的理解。
通过实验的验证和理论的深化,我们对这一概念的认识也在不断地发展。
关于爱因斯坦相对论论文
屏幕上一闪而过的那趟高速列车使我的视网膜受到了前所未有的冲击,这趟列车最终以7圈/S的速度极速穿行在地球表面,竭尽全力的靠近光速,一种难以想象的实物运行速度…当物体速度将达到光速的时候,时间的流速就会趋近于零,这种假设让我感觉到那种难以置信的速度,而且掺杂着一种无力去否认的人类现代科学研究。
本次的爱因斯坦相对论视频展又一次激起了我脑海里熄灭已久的一个念头,时光真正可以穿越吗这让我想起一部自己非常喜欢的电影,由元彪、张曼玉主演的《急冻奇侠》。
明崇祯年间,淫贼凤三为祸京师,皇帝命凤三的师弟方守正追捕凤三。
凤三偷取廖师门至宝黑玉佛,借此超越时空。
不料被方所阻,两人双双跌下悬崖埋身雪地。
1988年,两人的冻尸被地质队发现,准备运往美国进行研究,但途经香港时意外断电,两人苏醒过来,经历了一场穿越时空的生死搏斗…最终巧遇在港巡展的时光轮盘,借着时光隧道穿回了明朝。
时光可以穿梭,时间可以变慢,这一切还只是在理论与实践中摸爬滚打的科学假设!车内的时光明显变慢,也就是当物体速度将达到光速的时候,时间的流速就会趋近于零,这种假设真的让我感觉到那种难以置信的速度。
爱因斯坦狭义相对论证明高速旅行会使时间变慢,假定将来的某个时候,人们已解决了所有的技术难题,能够制造一艘以亚光速飞行的宇宙飞船,一定意义上的时间旅行就变成可能了。
如果飞船以亚光速从地球出发向遥远的星系飞去,来回的旅程仅仅几年(按飞船上的时间),但在此期间地球上却已过去了几千年,一切都发生了天翻地覆的变化。
如果人类文明依然还存在的话,那又会是一个什么新的模样呢?记得,英国著名物理学家史蒂芬・霍金继日前承认外星人的存在后,又发表一个惊人论述:他声称带着人类飞入未来的时光机,在理论上是可行的,所需条件包括太空中的虫洞或速度接近光速的宇宙飞船。
不过,霍金也警告,不要搭时光机回去看历史,因为“只有疯狂的科学家,才会想要回到过去"颠倒因果"。
是的,在我们的幻想中,我们穿越时光的旅行必然会引起一种结果:时空旅行者所在的世界,按照相对论,没有什么能够超过光速,也就是不能穿梭时光。
狭义相对论的基本原理和推论
狭义相对论的基本原理和推论
狭义相对论是由爱因斯坦在1905年提出的一种物理学理论,主要研究物体在高速运动情况下的相对性质和规律。
其基本原理和推论如下:
1. 物理定律的相对性原理:物理定律在所有匀速运动的惯性参考系中都具有相同的形式。
换句话说,无论观察者的相对运动如何,物理定律都应该保持不变。
2. 光速不变原理:光在真空中的速度是恒定的,且与光源的运动状态无关。
即使在不同的运动参考系中,光速的测量结果也应该保持不变。
基于以上原理,狭义相对论推导出了以下的一些重要推论:
1. 相对性同时:不同观察者在同一事件发生时的测量结果可能存在差异。
也就是说,两个事件是否同时发生,取决于观察者的相对运动状态。
2. 长度收缩效应:当一个物体以接近光速的速度运动时,观察者会认为它的长度缩短了。
这是因为在运动参考系中,时间进行了相对延长,导致距离看起来变短。
3. 时间膨胀效应:当一个物体以接近光速的速度运动时,观察者会认为它的时间变慢了。
这是因为在运动参考系中,时间进行了相对收缩,导致物体的振动频率减慢。
4. 质能等效原理:质量和能量之间存在一种等效关系,即
E=mc^2。
这意味着质量可以转换为能量,能量也可以转换为质量。
这是相对论中著名的质能转换方程。
这些基本原理和推论都是狭义相对论的核心内容,对于理解高速运动物体和光的行为具有重要的意义。
狭义相对论的应用
狭义相对论的应用狭义相对论是爱因斯坦于1905年提出的一种物理理论,它在物理学和现代科学发展中起到了重要的作用。
狭义相对论主要研究物体在相对运动中的特性,涉及到了时间、空间和质量的变化。
在现代科学技术的发展中,狭义相对论的应用越来越广泛。
本文将就狭义相对论的应用领域进行论述。
一、相对论在航天飞行中的应用狭义相对论的核心概念之一是光速不变原理,即光速在任何惯性参照系下都保持不变。
这一原理在航天飞行中的应用非常重要。
在航天器的飞行中,存在着相对论效应。
当航天器的速度逼近光速时,时间会变慢,长度会缩短,质量会增加。
因此,在航天器设计和航天飞行过程中,必须考虑到相对论效应的影响,以确保飞行的安全性和准确性。
相对论在航天飞行的导航、通信和测量等方面都有广泛的应用。
二、相对论在卫星导航系统中的应用卫星导航系统是现代导航技术的重要组成部分。
例如,全球定位系统(GPS)就是一个基于卫星导航原理的技术系统。
而在卫星导航系统中,相对论效应的考虑是非常必要的。
由于卫星轨道与地球表面存在速度差异,时间会因此而有微小的变化。
如果不考虑相对论效应,导航系统的精度将受到严重影响。
因此,在设计和使用卫星导航系统时,必须考虑到相对论效应,对时间进行修正,以提高导航系统的精度和可靠性。
三、相对论在核能源和核磁共振中的应用相对论也在核能源和核磁共振等领域中得到了广泛的应用。
在核能源中,核裂变和核聚变反应涉及到重要的物理参数,例如质量、能量和速度等。
相对论效应的考虑可以帮助科学家精确地预测核能源反应的参数,从而提高核能源的产出效率和安全性。
在核磁共振领域,相对论效应的考虑可以帮助科学家更精确地测量样品的微观结构和动力学行为,从而提高核磁共振技术的应用范围和精度。
四、相对论在粒子物理学中的应用粒子物理学是研究微观世界中基本粒子和宇宙结构的学科。
相对论在粒子物理学中发挥着重要的作用。
例如,在粒子加速器中,加速粒子的速度接近光速,相对论效应的考虑就成为必要的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ON THEELECTRODYNAMICSOF MOVING BODIESBy A. EinsteinJune 30, 1905It is known that Maxwell's electrodynamics--as usually understood at the present time--when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor. The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise--assuming equality of relative motion in the two cases discussed--to electric currents of the same path and intensity as those produced by the electric forces in the former case.Examples of this sort, together with the unsuccessful attempts to discover any motion of the earth relatively to the ``light medium,'' suggest that the phenomena of electrodynamics as well as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest rather that, as has already been shown to the first order of small quantities, the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics hold good.1 We will raise this conjecture (the purport of which will hereafter be called the ``Principle of Relativity'') to the status of a postulate, and also introduce another postulate, which is only apparently irreconcilable with the former, namely, that light is always propagated in empty space with a definite velocity c which is independent of the state ofmotion of the emitting body. These two postulates suffice for the attainment of a simple and consistent theory of the electrodynamics of moving bodies based on Maxwell's theory for stationary bodies. The introduction of a ``luminiferous ether'' will prove to be superfluous inasmuch as the view here to be developed will not require an ``absolutely stationary space'' provided with special properties, nor assign a velocity-vector to a point of the empty space in which electromagnetic processes take place.The theory to be developed is based--like all electrodynamics--on the kinematics of the rigid body, since the assertions of any such theory have to do with the relationships between rigid bodies (systems of co-ordinates), clocks, and electromagnetic processes. Insufficient consideration of this circumstance lies at the root of the difficulties which the electrodynamics of moving bodies at present encounters.I. KINEMATICAL PART§ 1. Definition of SimultaneityLet us take a system of co-ordinates in which the equations of Newtonian mechanics hold good.2 In order to render our presentation more precise and to distinguish this system of co-ordinates verbally from others which will be introduced hereafter, we call it the ``stationary system.''If a material point is at rest relatively to this system of co-ordinates, its position can be defined relatively thereto by the employment of rigid standards of measurement and the methods of Euclidean geometry, and can be expressed in Cartesian co-ordinates.If we wish to describe the motion of a material point, we give the values of its co-ordinates as functions of the time. Now we must bear carefully in mind that a mathematical description of this kind has no physical meaning unless we are quite clear as to what we understand by ``time.'' We have to take into account that all our judgments in which time plays a part are always judgments of simultaneous events. If, for instance, I say, ``That train arrives here at 7 o'clock,'' I mean something like this: ``The pointing of the small hand of my watch to 7 and the arrival of the train aresimultaneous events.''3It might appear possible to overcome all the difficulties attending the definition of ``time'' by substituting ``the position of the small hand of my watch'' for ``time.'' And in fact such a definition is satisfactory when we are concerned with defining a time exclusively for the place where the watch is located; but it is no longer satisfactory when we have to connect in time series of events occurring at different places, or--what comes to the same thing--to evaluate the times of events occurring at places remote from the watch.We might, of course, content ourselves with time values determined by an observer stationed together with the watch at the origin of the co-ordinates, and co-ordinating the corresponding positions of the hands with light signals, given out by every event to be timed, and reaching him through empty space. But this co-ordination has the disadvantage that it is not independent of the standpoint of the observer with the watch or clock, as we know from experience. We arrive at a much more practical determination along the following line of thought.If at the point A of space there is a clock, an observer at A can determine the time values of events in the immediate proximity of A by finding the positions of the hands which are simultaneous with these events. If there is at the point B of space another clock in all respects resembling the one at A, it is possible for an observer at B to determine the time values of events in the immediate neighbourhood of B. But it is not possible without further assumption to compare, in respect of time, an event at A with an event at B. We have so far defined only an ``A time'' and a ``B time.'' We have not defined a common ``time'' for A and B, for the latter cannot be defined at all unless we establish by definition that the ``time'' required by light to travel from A to B equals the ``time'' it requires to travel from B to A. Let a ray of light start at the ``A time'' from A towards B, let it at the ``B time'' bereflected at B in the direction of A, and arrive again at A at the ``A time'' .In accordance with definition the two clocks synchronize ifWe assume that this definition of synchronism is free from contradictions, and possible for any number of points; and that the following relations are universally valid:--1.If the clock at B synchronizes with the clock at A, the clockat A synchronizes with the clock at B.2.If the clock at A synchronizes with the clock at B and alsowith the clock at C, the clocks at B and C also synchronizewith each other.Thus with the help of certain imaginary physical experiments we have settled what is to be understood by synchronous stationary clocks located at different places, and have evidently obtained a definition of ``simultaneous,'' or ``synchronous,'' and of ``time.'' The ``time'' of an event is that which is given simultaneously with the event by a stationary clock located at the place of the event, this clock being synchronous, and indeed synchronous for all time determinations, with a specified stationary clock.In agreement with experience we further assume the quantityto be a universal constant--the velocity of light in empty space.It is essential to have time defined by means of stationary clocks in the stationary system, and the time now defined being appropriate to the stationary system we call it ``the time of the stationary system.''§ 2. On the Relativity of Lengths and TimesThe following reflexions are based on the principle of relativity and on the principle of the constancy of the velocity of light. These two principles we define as follows:--1.The laws by which the states of physical systems undergochange are not affected, whether these changes of state bereferred to the one or the other of two systems of co-ordinates in uniform translatory motion.2.Any ray of light moves in the ``stationary'' system of co-ordinates with the determined velocity c, whether the ray beemitted by a stationary or by a moving body. Hencewhere time interval is to be taken in the sense of the definition in § 1.Let there be given a stationary rigid rod; and let its length be l as measured by a measuring-rod which is also stationary. We now imagine the axis of the rod lying along the axis of x of the stationary system of co-ordinates, and that a uniform motion of parallel translation with velocity v along the axis of x in the direction of increasing x is then imparted to the rod. We now inquire as to the length of the moving rod, and imagine its length to be ascertained by the following two operations:--(a) The observer moves together with the given measuring-rodand the rod to be measured, and measures the length of therod directly by superposing the measuring-rod, in just thesame way as if all three were at rest.(b) By means of stationary clocks set up in the stationary systemand synchronizing in accordance with § 1, the observerascertains at what points of the stationary system the twoends of the rod to be measured are located at a definite time.The distance between these two points, measured by themeasuring-rod already employed, which in this case is at rest, is also a length which may be designated ``the length of therod.''In accordance with the principle of relativity the length to be discovered by the operation (a)--we will call it ``the length of the rod in the moving system''--must be equal to the length l of the stationary rod.The length to be discovered by the operation (b) we will call ``the length of the (moving) rod in the stationary system.'' This we shall determine on the basis of our two principles, and we shall find that it differs from l.Current kinematics tacitly assumes that the lengths determined by these two operations are precisely equal, or in other words, that a moving rigid body at the epoch t may in geometrical respects be perfectly represented by the same body at rest in a definite position.We imagine further that at the two ends A and B of the rod, clocks are placed which synchronize with the clocks of the stationary system, that is to say that their indications correspond at any instant to the ``time of the stationary system'' at the places where they happen to be. These clocks are therefore ``synchronous in the stationary system.''We imagine further that with each clock there is a moving observer, and that these observers apply to both clocks the criterion established in § 1 for the synchronization of two clocks. Let a rayof light depart from A at the time4, let it be reflected at B at the time , and reach A again at the time . Taking intoconsideration the principle of the constancy of the velocity of light we find thatwhere denotes the length of the moving rod--measured in the stationary system. Observers moving with the moving rod would thus find that the two clocks were not synchronous, while observers in the stationary system would declare the clocks to be synchronous.So we see that we cannot attach any absolute signification to the concept of simultaneity, but that two events which, viewed from a system of co-ordinates, are simultaneous, can no longer be looked upon as simultaneous events when envisaged from a system which is in motion relatively to that system.§ 3. Theory of the Transformation of Co-ordinates and Times from a StationarySystem to another System in UniformMotion of Translation Relatively to theFormerLet us in ``stationary'' space take two systems of co-ordinates, i.e. two systems, each of three rigid material lines, perpendicular to one another, and issuing from a point. Let the axes of X of the two systems coincide, and their axes of Y and Z respectively beparallel. Let each system be provided with a rigid measuring-rod and a number of clocks, and let the two measuring-rods, and likewise all the clocks of the two systems, be in all respects alike. Now to the origin of one of the two systems (k) let a constant velocity v be imparted in the direction of the increasing x of the other stationary system (K), and let this velocity be communicated to the axes of the co-ordinates, the relevant measuring-rod, and the clocks. To any time of the stationary system K there then will correspond a definite position of the axes of the moving system, and from reasons of symmetry we are entitled to assume that the motion of k may be such that the axes of the moving system are at the time t (this ``t'' always denotes a time of the stationary system) parallel to the axes of the stationary system.We now imagine space to be measured from the stationary system K by means of the stationary measuring-rod, and also from the moving system k by means of the measuring-rod moving with it; and that we thus obtain the co-ordinates x, y, z, and , , respectively. Further, let the time t of the stationary system be determined for all points thereof at which there are clocks by means of light signals in the manner indicated in § 1; similarly let the time of the moving system be determined for all points of the moving system at which there are clocks at rest relatively to that system by applying the method, given in § 1, of light signals between the points at which the latter clocks are located.To any system of values x, y, z, t, which completely defines the place and time of an event in the stationary system, there belongs a system of values , , , determining that event relatively to thesystem k, and our task is now to find the system of equations connecting these quantities.In the first place it is clear that the equations must be linear on account of the properties of homogeneity which we attribute to space and time.If we place x'=x-vt, it is clear that a point at rest in the system k must have a system of values x', y, z, independent of time. We first define as a function of x', y, z, and t. To do this we have to express in equations that is nothing else than the summary of the data of clocks at rest in system k, which have been synchronized according to the rule given in §1.From the origin of system k let a ray be emitted at the timealong the X-axis to x', and at the time be reflected thence to theorigin of the co-ordinates, arriving there at the time ; we thenmust have , or, by inserting the arguments of the function and applying the principle of the constancy of thevelocity of light in the stationary system:--Hence, if x' be chosen infinitesimally small,orIt is to be noted that instead of the origin of the co-ordinates we might have chosen any other point for the point of origin of the ray, and the equation just obtained is therefore valid for all values of x', y, z.An analogous consideration--applied to the axes of Y and Z--it being borne in mind that light is always propagated along these axes, when viewed from the stationary system, with the velocitygives usSince is a linear function, it follows from these equations thatwhere a is a function at present unknown, and where fort=0. brevity it is assumed that at the origin of k, ,whenWith the help of this result we easily determine the quantities , , by expressing in equations that light (as required by theprinciple of the constancy of the velocity of light, in combination with the principle of relativity) is also propagated with velocity c when measured in the moving system. For a ray of light emitted at the time in the direction of the increasingBut the ray moves relatively to the initial point of k, when measured in the stationary system, with the velocity c-v, so thatIf we insert this value of t in the equation for , we obtainIn an analogous manner we find, by considering rays moving along the two other axes, thatwhenThusSubstituting for x' its value, we obtainwhereand is an as yet unknown function of v. If no assumptionwhatever be made as to the initial position of the moving system and as to the zero point of , an additive constant is to be placed on the right side of each of these equations.We now have to prove that any ray of light, measured in the moving system, is propagated with the velocity c, if, as we have assumed, this is the case in the stationary system; for we have not as yet furnished the proof that the principle of the constancy of the velocity of light is compatible with the principle of relativity.At the time , when the origin of the co-ordinates is common to the two systems, let a spherical wave be emitted therefrom, and be propagated with the velocity c in system K. If (x, y, z) be a point just attained by this wave, thenx2+y2+z2=c2t2.Transforming this equation with the aid of our equations of transformation we obtain after a simple calculationThe wave under consideration is therefore no less a spherical wave with velocity of propagation c when viewed in the moving system. This shows that our two fundamental principles are compatible.5In the equations of transformation which have been developed there enters an unknown function of v, which we will nowdetermine.For this purpose we introduce a third system of co-ordinates ,which relatively to the system k is in a state of parallel translatory motion parallel to the axis of X, such that the origin of co-ordinates of system k moves with velocity -v on the axis of X. At the time t=0 let all three origins coincide, and when t=x=y=z=0 let the time t' of the system be zero. We call the co-ordinates, measured inthe system , x', y', z', and by a twofold application of our equations of transformation we obtainSince the relations between x', y', z' and x, y, z do not contain the time t, the systems K and are at rest with respect to one another, and it is clear that the transformation from K to must be theidentical transformation. ThusWe now inquire into the signification of . We give our attention to that part of the axis of Y of system k which lies between and . This part of the axis of Y is a rod moving perpendicularly to its axis with velocity v relatively to system K. Its ends possess in K the co-ordinatesandThe length of the rod measured in K is therefore ; and this gives us the meaning of the function . From reasons of symmetry it is now evident that the length of a given rod moving perpendicularly to its axis, measured in the stationary system, must depend only on the velocity and not on the direction and the senseof the motion. The length of the moving rod measured in the stationary system does not change, therefore, if v and -v are interchanged. Hence follows that , orIt follows from this relation and the one previously found that , so that the transformation equations which have beenfound becomewhere§ 4. Physical Meaning of the EquationsObtained in Respect to Moving RigidBodies and Moving ClocksWe envisage a rigid sphere6 of radius R, at rest relatively to the moving system k, and with its centre at the origin of co-ordinatesof k. The equation of the surface of this sphere moving relatively to the system K with velocity v isThe equation of this surface expressed in x, y, z at the time t=0 isA rigid body which, measured in a state of rest, has the form of a sphere, therefore has in a state of motion--viewed from the stationary system--the form of an ellipsoid of revolution with the axesThus, whereas the Y and Z dimensions of the sphere (and therefore of every rigid body of no matter what form) do not appear modified by the motion, the X dimension appears shortened in the ratio , i.e. the greater the value of v, the greater the shortening. For v=c all moving objects--viewed from the ``stationary'' system--shrivel up into plane figures.* For velocities greater than that of light our deliberations become meaningless; we shall, however, find in what follows, that the velocity of light in our theory plays the part, physically, of an infinitely great velocity. It is clear that the same results hold good of bodies at rest in the ``stationary'' system, viewed from a system in uniform motion. Further, we imagine one of the clocks which are qualified to mark the time t when at rest relatively to the stationary system, and the time when at rest relatively to the moving system, to belocated at the origin of the co-ordinates of k, and so adjusted that it marks the time . What is the rate of this clock, when viewed fromthe stationary system?Between the quantities x, t, and , which refer to the position of the clock, we have, evidently, x=vt andTherefore,whence it follows that the time marked by the clock (viewed in the stationary system) is slow by seconds per second, or--neglecting magnitudes of fourth and higher order--by .From this there ensues the following peculiar consequence. If at the points A and B of K there are stationary clocks which, viewed in the stationary system, are synchronous; and if the clock at A is moved with the velocity v along the line AB to B, then on itsarrival at B the two clocks no longer synchronize, but the clock moved from A to B lags behind the other which has remained at B by (up to magnitudes of fourth and higher order), t being the time occupied in the journey from A to B.It is at once apparent that this result still holds good if the clock moves from A to B in any polygonal line, and also when the points A and B coincide.If we assume that the result proved for a polygonal line is also valid for a continuously curved line, we arrive at this result: If one of two synchronous clocks at A is moved in a closed curve with constant velocity until it returns to A, the journey lasting t seconds, then by the clock which has remained at rest the travelled clock on its arrival at A will be second slow. Thence we conclude that a balance-clock7 at the equator must go more slowly, by a very small amount, than a precisely similar clock situated at one of the poles under otherwise identical conditions.§ 5. The Composition of VelocitiesIn the system k moving along the axis of X of the system K with velocity v, let a point move in accordance with the equationswhere and denote constants.Required: the motion of the point relatively to the system K. If with the help of the equations of transformation developed in § 3 we introduce the quantities x, y, z, t into the equations of motion of the point, we obtainThus the law of the parallelogram of velocities is validaccording to our theory only to a first approximation. We seta is then to be looked upon as the angle between the velocities v and w. After a simple calculation we obtain**It is worthy of remark that v and w enter into the expression for the resultant velocity in a symmetrical manner. If w also has the direction of the axis of X, we getIt follows from this equation that from a composition of two velocities which are less than c, there always results a velocity less than c. For if we set , and being positive and less than c, thenIt follows, further, that the velocity of light c cannot be altered by composition with a velocity less than that of light. For this case we obtainWe might also have obtained the formula for V, for the case when v and w have the same direction, by compounding two transformations in accordance with § 3. If in addition to the systems K and k figuring in § 3 we introduce still another system of co-ordinates k' moving parallel to k, its initial point moving on the axis of X with the velocity w, we obtain equations between thequantities x, y, z, t and the corresponding quantities of k', which differ from the equations found in § 3 only in that the place of ``v'' is taken by the quantityfrom which we see that such parallel transformations--necessarily--form a group.We have now deduced the requisite laws of the theory of kinematics corresponding to our two principles, and we proceed to show their application to electrodynamics.II. ELECTRODYNAMICALPART§ 6. Transformation of the Maxwell-Hertz Equations for Empty Space. On the Nature of the Electromotive Forces Occurring in a Magnetic Field During MotionLet the Maxwell-Hertz equations for empty space hold good for the stationary system K, so that we havewhere (X, Y, Z) denotes the vector of the electric force, and (L, M, N) that of the magnetic force.If we apply to these equations the transformation developed in § 3, by referring the electromagnetic processes to the system of co-ordinates there introduced, moving with the velocity v, we obtain the equationswhereNow the principle of relativity requires that if the Maxwell-Hertz equations for empty space hold good in system K, they also hold good in system k; that is to say that the vectors of the electric and the magnetic force--(, , ) and (, , )--of themoving system k, which are defined by their ponderomotive effects on electric or magnetic masses respectively, satisfy the following equations:--Evidently the two systems of equations found for system k must express exactly the same thing, since both systems of equations are equivalent to the Maxwell-Hertz equations for system K. Since, further, the equations of the two systems agree, with the exception of the symbols for the vectors, it follows that the functions occurring in the systems of equations at corresponding places must agree, with the exception of a factor , which is common for all functions of the one system of equations, and is independent of and but depends upon v. Thus we have the relationsIf we now form the reciprocal of this system of equations, firstlyby solving the equations just obtained, and secondly by applying the equations to the inverse transformation (from k to K), which is characterized by the velocity -v, it follows, when we consider that the two systems of equations thus obtained must be identical, that . Further, from reasons of symmetry8 and thereforeand our equations assume the formAs to the interpretation of these equations we make the following remarks: Let a point charge of electricity have the magnitude ``one'' when measured in the stationary system K, i.e. let it when at rest in the stationary system exert a force of one dyne upon an equal quantity of electricity at a distance of one cm. By the principle of relativity this electric charge is also of the magnitude ``one'' when measured in the moving system. If this quantity of electricity is at rest relatively to the stationary system, then by definition the vector (X, Y, Z) is equal to the force acting upon it. If the quantity of electricity is at rest relatively to the moving system (at least at the relevant instant), then the force acting upon it, measured in the moving system, is equal to the vector (, , ). Consequently the first three equations above allow themselvesto be clothed in words in the two following ways:--1.If a unit electric point charge is in motion in anelectromagnetic field, there acts upon it, in addition to theelectric force, an ``electromotive force'' which, if we neglectthe terms multiplied by the second and higher powers of v/c,is equal to the vector-product of the velocity of the chargeand the magnetic force, divided by the velocity of light. (Oldmanner of expression.)2.If a unit electric point charge is in motion in anelectromagnetic field, the force acting upon it is equal to theelectric force which is present at the locality of the charge,and which we ascertain by transformation of the field to asystem of co-ordinates at rest relatively to the electrical。