关于高等工程数学 试题 答案
高等工程数学考试题及参考解答(仅供参考)
考试题及参考解答(参考)一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X 是来自X 的样本,则221102211152()X X U X X ++=++服从的分布是_______ .解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计ˆβ的协方差矩阵ˆβCov()=_______ . 解:1ˆσ-'2Cov(β)=()X X . 二、单项选择题(每小题3分,共15分)1,设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)N . 2,若总体2(,)XN μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-;(C )/(1)(1,)/()A e S r F r n r S n r ----; (D )A S 与e S 相互独立.5,在多元线性回归分析中,设ˆβ是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则___B____ . (A )ˆn E ()=0ε; (B )1ˆ]σ-''-εX X 2n Cov()=[()I X X ; (C )ˆˆ1n p '--εε是2σ的无偏估计; (D )(A )、(B )、(C )都对.三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)设总体X 的概率密度为1, 0,21(;), 1,2(1)0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<( 未知,12()n X X X ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X 不是2θ的无偏估计量.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-. (2)222211141 (4)44[()]4()424E X EX DX EX DX DX n nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22(4)E X θ>.故24X 不是2θ的无偏估计量.五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他, 似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X 为总体的样本,证明X 是参数p 的一个UMVUE .证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦.另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .七、(本题10分)某异常区的磁场强度服从正态分布20(,)N μσ,由以前的观测可知056μ=.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得261, 400x s ==, 问此仪器测出的结果与以往相比是否有明显的差异(α=0.05).附表如下:t 分布表 χ2分布表解:设0H :560==μμ.构造检验统计量)15(~0t ns X t μ-=, 确定拒绝域的形式2t t α⎧⎫>⎨⎬⎩⎭.由05.0=α,定出临界值1315.2025.02/==t t α,从而求出拒绝域{}1315.2>t .而60,16==x n ,从而 ||0.8 2.1315t ===<,接受假设0H ,即认为此仪器测出的结果与以往相比无明显的差异.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.解:设布定理知的样本方差,由抽样分,分别表示总体Y X S S 2221 , []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 则222221211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭,所求2221σσ的置信度为α-1的置信区间为 222212121/212/212//, (1,1)(1,1)S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭. 九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.答:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测。
高等数学工专试题及答案
高等数学工专试题及答案-卷面总分:60分答题时间:40分钟试卷题量:20题一、单选题(共20题,共40分)1.函数f(x,y)=x2+xy+y2+x-y+1的驻点为A.(1,-1)B.(-1,-1)C.(-1,1)D.(1,1)正确答案:C您的答案:本题解析:本题考查驻点的概念。
对x的偏导数为2x+y+1,对y的偏导数为x+2y-1,由于求驻点,也就是偏导数为0的点,所以2x+y+1=0,x+2y-1=0,得到x=-1,y=1。
2.如果A2=10E,则(A+3E)-1=A..A-2EB.A+2EC.A+3ED.A-3E正确答案:D您的答案:本题解析:本题考查矩阵逆的求法。
A2-9E=E,(A+3E)(A-3E)=E,(A+3E)-1=A-3E3.连续的概念A.f(x)在(-∞,1)上连续B.f(x)在(-1,+∞)上连续C.f(x)在(-∞,0)∪(0,+∞)上连续D.f(x)在(-∞,+∞)上连续正确答案:C您的答案:本题解析:本题考查连续的概念。
4.设A是k×l阶矩阵,B是m×n阶矩阵,如果A·CT·B有意义,则C是()矩阵。
A.k×nB.k×mC.l×mD.m×l正确答案:D您的答案:本题解析:本题考查矩阵的计算性质。
首先我们判断CT是l×m阶矩阵,所以C是m×l阶矩阵。
5.试确定k的值,使f(x)在x=1处连续,其中A.k=-2B.k=-1C.k=0D.k=2正确答案:D您的答案:本题解析:本题考查连续的定义。
6.关于矩阵的乘法的说法,正确的是A.单位矩阵与任意一个同阶方阵必不可交换。
B.一般情形下,矩阵乘法满足交换律。
C.如果AB=O,则A=O。
D.数量矩阵与任意一个同阶方阵必可交换。
正确答案:D您的答案:本题解析:暂无解析7.矩阵的计算A.2x=7B.y=x+1C.2y=xD.y=x-1正确答案:B您的答案:本题解析:本题考查矩阵的计算。
高等工程数学考试部分答案1
工程硕士学位课程考试
高等工程数学试题
注意:每位考生只要选做以下两部分试题,答案必须写在答题纸上
矩阵分析部分
一.(6分)设求值。
解:参考试题2第一题
二.(8分)已知函数矩阵:,求矩阵
解:参考试题2第二题
三.(10分)设向量
与,令,
(1)求的一组基和维数;(2)求维数。
解:参考试题2第三题
四.(10分)设,
1.求的Jordan标准形及最小多项式;
解: 矩阵的最小多项式为, Jordan标准形为
2。
求解初值问题
解:参考试题2第四题(2)小题
五.(8分)设与是线性空间的两个基,为从基到的过渡矩阵,为的一个线性变换,在基下的矩阵,求线性变换在基下的矩阵。
解: 由题意有
所以由第一式有
把第二式和第三式代入得到
把第一式代入左边得到
从而有, 所以
六.(8分)设且可逆,,求证:的特征值都是正数。
证明: 因为为正规矩阵, 所以酉矩阵与对角矩阵. 即存在酉矩阵, 使得, 其中为对角矩阵, 从而
所以的元素全为实数. 设为任意一个特征值, 是属于的特征向量, 则有
得证.。
高等工程数学第二章习题及答案
第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。
工程数学本科试题及答案
工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。
最新最全中南大学高等工程数学附答案
生产。工厂规定的经济规模为微型车 1500 辆,中级车 1200 辆,高级车 1000 辆,请建立使
该厂的利润最大的生产计划数学模型。
钢材(吨) 人工(小时) 利润
微型车 1.5 30 2
中级车 2 40 3
高级车 2.5 50 4
资源可用量 6000(吨) 55000(小时)
解:设微型车生产了 x1 辆,中级车生产了 x2 辆,高级车生产了 x3 辆,而钢材、人工均有限 制,所以应满足限制条件:
满足插值条件 S(xi)=yi(i=1,2,…,n);
5.随机变量 X ~ N(3, 4),(X1, X2,, X10) 为样本, X 是样本均值,则 X ~ N(3,
0.4);
6.正交表 LN (np mq ) 中各字母代表的含义为 L 表示正交表,N 表示试验次数,n、m
表示因子水平数,p、q 表示试验至多可以安排因素的个数 ;
((x) 满足:(x) C1[a,b],且 x [a,b] 有(x)[a,b] , ' (x) L 1 ;)
2. 已知二元非线性函数 f (x) x12 x1x2 x22 2x1 4x2 , X0 (2, 2)T ,该函数从 X0 出发
的最速下降方向为(最速下降方向为: p 4, 2T );
中南大学工程硕士“高等工程数学”考试试卷(开卷)1
考试日期:2010 年 4 月
注:解答全部写在答题纸上
日 时间 110 分钟
一、填空题(本题 24 分,每小题 3 分)
1.若函数(x) C1[a,b],且 x [a,b]有(x) [a,b] 和 '(x) L 1, 则方程
x (x) 在[a, b] 上的解存在唯一,对 任意 x0 a,b为初值由迭代公式 xn1 (xn ) 产生的序列 xn 一定收敛于方程
高等工程数学第二章习题及答案
第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。
《高等工程数学》习题三参考答案
1 P{ X 1 x, X 2 x, , X n x} 1 (1 P{ X x}) n 1 (1 F ( x)) n ;
因为 X ( n ) max X i ,所以 FX ( n ) ( x) P{ X ( n ) x} P{ X 1 x} P{ X n x} F ( x ) 。
11. 解:因 X ~ N (80,20 2 ) ,样本容量为 100,所以 X ~ N (80,4) ,
3
P{ X 80 3} P{
X 3 2
3 3 } 2(1 ( )) 2 * (1 - normcdf(3/2)) 0.1336 。 2 2
3 ), 10
12. 解:设 X 1 , X 2 , , X 10 和 Y1 , Y2 , , Y15 为 N ( 20,3) 两独立样本,则 X ~ N (20,
2
2 ( n) , X
X1 ~ t ( n) , X2 / n
所以 X
2
X1 /1 ~ F (1, n) 。 X2 / n
9. 解:MATLAB 命令为(1)norminv(0.99); (2)norminv(0.04); (3)chi2inv(0.975,15);(4) chi2inv(0.025,15);(5) chi2inv(0.95,50);(6) chi2inv(0.95,100);(7) tinv(0.975,19);(8) tinv(0.975,99); (9) finv(0.95,2,6);(10) finv(0.05,3,40);(11) finv(0.05,2,6);(12) finv(0.01,3,40) 10.解:因 X ~ N (1,4) ,样本容量为 16,所以 X ~ N (1,
《高等工程数学》科学出版社 吴孟达版习题答案(1-8章)
《高等工程数学》――科学出版社版习题答案: 第一章习题(P26) 1.略2.在R 4中,求向量a =[1,2,1,1]T ,在基a 1 = [1 , 1, 1, 1]T , a 2 = [1 , 1, -1,-1]T a 3 = [1 , -1, 1, -1]T a 4 = [1 , -1,-1, 1]T 下的坐标。
解:其坐标为:x =( 5/4, 1/4, -1/4,-1/4 )T 3.在R2×2中,求矩阵12A=03⎡⎤⎢⎥⎣⎦,在基 111B =11⎡⎤⎢⎥⎣⎦,211B =10⎡⎤⎢⎥⎣⎦,311B =00⎡⎤⎢⎥⎣⎦,410B =00⎡⎤⎢⎥⎣⎦下的坐标。
解:其坐标为:x =( 3, -3, 2,-1 )T 4.试证:在R 2×2中,矩阵111B =11⎡⎤⎢⎥⎣⎦,211B =01⎡⎤⎢⎥⎣⎦,311B =10⎡⎤⎢⎥⎣⎦,410B =11⎡⎤⎢⎥⎣⎦线性无关。
证明:设 k 1B 1+ k 2B 2+ k 3B 3+ k 4B 4=0000⎡⎤⎢⎥⎣⎦,只要证明k 1= k 2 = k 3= k 4 =0即可。
余略。
5.已知R 4中的两组基:和T T T T 1234=[2,1,1,1],=[0,3,1,0],=[5,3,2,1],=[6,6,1,3]ββββ-求由基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵,并求向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标。
解:基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵是:2056133611211013⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦- 向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标是:6.设R[x]n 是所有次数小于n 的实系数多项式组成的线性空间,求多项式p(x) = 1+ 2x n -1在基{1,(x -1),(x -1)2,(x -1)3,….,(x -1)n -1}的坐标。
《高等工程数学》习题一参考答案
2 1 1 1 3 1 0 0 1 4 ,可得基础解系为 1 1 1 0 1 0 1 1 1 5
f1 (0,1,1,0,0) , f 2 (1,1,0,1,0) , f 3 (4,5,0,0,1) ,Schmidt 正交化得,
1
13.按 P21 欧氏空间定义 2.1,逐条验证, 1) 不满足第 (2 ) 条, (4) 条, 故不是欧氏空间; 不满足第(4)条,故不是欧氏空间;3)都满足,故是欧氏空间。 14. 按 P21 欧氏空间定义 2.1,逐条验证,都满足,故是欧氏空间。 15. 设向量 ( x1 , x2 , x3 , x4 ) 与三个向量正交,则有
所以对两组基有相同坐标的非零向量可取为 (c, c, c,c)(c 0). 5. 由第 7 页子空间定义可得,1)向量满足加法和数乘封闭,是子空间;2)向量不满足加 法或数乘封闭,故而不是子空间。 注:从几何上看,子空间过原点,而不过原点的都不是。 6. 两个向量组生成相同子空间的充分必要条件是这两个向量组等价, 即可以互相线性表示。 解:因对应分量不成比例,故 α1 (1,1,0,0), α2 (1,0,1,1) , β1 (1,1,0,0), β2 (1,0,1,1) 线性
2
T1T2 ( x1 , x2 ) T1[T2 ( x1 , x2 )] T1 ( x1 , x2 ) ( x2 , x1 ) T2T1 ( x1 , x2 ) T2 [T1 ( x1 , x2 )] T2 ( x2 , x1 ) ( x2 , x1 )
11.略。 12. 解:1)因为 T ( x1 , x2 , x3 ) ( 2 x1 x2 , x2 x3 , x1 ) ,按照 P18 (1.21),可知
《高等工程数学》科学出版社--吴孟达版习题答案(1-8章)
《高等工程数学》――科学出版社版习题答案: 第一章习题(P26) 1.略2.在R 4中,求向量a =[1,2,1,1]T ,在基a 1 = [1 , 1, 1, 1]T , a 2 = [1 , 1, -1,-1]T a 3 = [1 , -1, 1, -1]T a 4 = [1 , -1,-1, 1]T 下的坐标。
解:其坐标为:x =( 5/4, 1/4, -1/4,-1/4 )T 3.在R2×2中,求矩阵12A=03⎡⎤⎢⎥⎣⎦,在基 111B =11⎡⎤⎢⎥⎣⎦,211B =10⎡⎤⎢⎥⎣⎦,311B =00⎡⎤⎢⎥⎣⎦,410B =00⎡⎤⎢⎥⎣⎦下的坐标。
解:其坐标为:x =( 3, -3, 2,-1 )T 4.试证:在R 2×2中,矩阵111B =11⎡⎤⎢⎥⎣⎦,211B =01⎡⎤⎢⎥⎣⎦,311B =10⎡⎤⎢⎥⎣⎦,410B =11⎡⎤⎢⎥⎣⎦线性无关。
证明:设 k 1B 1+ k 2B 2+ k 3B 3+ k 4B 4=0000⎡⎤⎢⎥⎣⎦,只要证明k 1= k 2 = k 3= k 4 =0即可。
余略。
5.已知R 4中的两组基:和T T T T 1234=[2,1,1,1],=[0,3,1,0],=[5,3,2,1],=[6,6,1,3]ββββ-求由基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵,并求向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标。
解:基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵是:2056133611211013⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦- 向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标是:6.设R[x]n 是所有次数小于n 的实系数多项式组成的线性空间,求多项式p(x) = 1+ 2x n -1在基{1,(x -1),(x -1)2,(x -1)3,….,(x -1)n -1}的坐标。
高等工程数学智慧树知到答案2024年南京理工大学
高等工程数学南京理工大学智慧树知到答案2024年第一章测试1.有限维线性空间上范数1,范数2之间的关系是A:2强于1 B:等价 C:1强于2 D:无法比较答案:B2.赋范线性空间成为Banach空间,需要范数足?A:完备性 B:可加性 C:不变性 D:非负性答案:A3.标准正交系是一个完全正交系的充要条件是满足Parseval等式A:错 B:对答案:B4.在内积空间中,可以从一组线性无关向量得到一列标准正交系A:对 B:错答案:A5.矩阵的F范数不满足酉不变性A:错 B:对答案:A6.与任何向量范数相容的矩阵范数是?A:F范数 B:极大行范数 C:算子范数 D:极大列范数答案:C7.正规矩阵的谱半径与矩阵何种范数一致A:极大行范数 B:极大列范数 C:矩阵2范数 D:算子范数答案:C8.矩阵收敛,则该矩阵的谱半径A:无从判断 B:大于1 C:小于1 D:等于1答案:C9.矩阵幂级数收敛,则该矩阵的谱半径A:等于1 B:大于1 C:无从判断 D:小于1答案:D10.正规矩阵的条件数等于其最大特征值的模与最小特征值的模之商A:错 B:对答案:B第二章测试1.l矩阵不变因子的个数等于( )A:矩阵的列数 B:矩阵的秩 C:行数和列数的最小值 D:矩阵的行数答案:B2.Jordan标准形中Jordan块的个数等于( )A:矩阵的秩 B:行列式因子的个数 C:不变因子的个数 D:初等因子的个数答案:D3.Jordan块的对角元等于其( )A:初等因子的零点 B:初等因子的次数 C:不变因子的个数 D:行列式因子的个数答案:A4.n阶矩阵A的特征多项式等于( )A:A的n个不变因子的乘积 B:A的n阶行列式因子 C:A的行列式因子的乘积 D:A的次数最高的初等因子答案:AB5.下述条件中,幂迭代法能够成功处理的有( )A:主特征值有两个,是一对共轭的复特征值 B:主特征值有两个,是一对相反的实数 C:主特征值是实r重的 D:主特征值只有一个答案:ABCD6.n阶矩阵A的特征值在( )A:A的n个行盖尔圆构成的并集与n个列盖尔圆构成的并集的交集中 B:A的n个列盖尔圆构成的并集中 C:A的n个行盖尔圆构成的并集中 D:都不对答案:ABC7.不变因子是首项系数为1的多项式A:错 B:对答案:B8.任意具有互异特征值的矩阵,其盖尔圆均能分隔开A:对 B:错答案:B9.特征值在两个或两个以上的盖尔圆构成的连通部分中分布是平均的A:错 B:对答案:A10.规范化幂迭代法中,向量序列uk不收敛A:对 B:错答案:B第三章测试1.二阶方阵可作Doolittle分解A:错 B:对答案:A2.若矩阵A可作满秩分解A=FG,则F的列数为A的()A:列数B:都不对C:秩D:行数答案:C3.矩阵的满秩分解不唯一.A:错 B:对答案:B4.酉等价矩阵有相同的奇异值.A:对 B:错答案:A5.求矩阵A的加号逆的方法有()A:满秩分解 B:Greville递推法 C:奇异值分解 D:矩阵迭代法答案:ABCD6.若A为可逆方阵,则A:错 B:对答案:B7.用A的加号逆可以判断线性方程组Ax=b是否有解?A:对 B:错答案:A8.A的加号逆的秩与A的秩相等A:错 B:对答案:B9.若方阵A是Hermite正定矩阵,则A的Cholesky分解存在且唯一.A:错 B:对答案:B10.是Hermite标准形.A:错 B:对答案:A第四章测试1.()是利用Gauss消去法求解线性方程组的条件.A:系数矩阵的顺序主子式均不为0B:系数矩阵满秩C:所有主元均不为0D:都不对答案:AC2.关于求解线性方程组的迭代解法, 下面说法正确的是().A:J法和GS法的敛散性无相关性B:若迭代矩阵谱半径不大于1, 则迭代收敛C:若系数矩阵A对称正定, 则GS迭代法收敛D:都不对答案:AC3.如果不考虑舍入误差, ()最多经n步可迭代得到线性方程组的解.A:SOR法B:共轭梯度法C:最速下降法D:都是答案:B4.关于共轭梯度法, 下面说法正确的是()A:相邻两步的残量正交 B:相邻两步的搜索方向正交 C:搜索方向满足A共轭条件 D:B和C都对答案:D5.下面哪些是求解线性方程组的迭代解法().A:共轭梯度法 B:三角分解解法 C:ABC都对 D:最速下降法答案:AD6.若系数矩阵A对称正定, 则()A:J法和GS法均收敛B:都不对 C:可用Cholesky法求解线性方程组D:SOR法收敛答案:C7.任意线性方程组都可以通过三角分解法求解.A:错 B:对答案:A8.最速下降法和共轭梯度法的区别在于选取的搜索方向不同.A:错 B:对答案:B9.广义逆矩阵法可用于任意线性方程组的求解.A:对 B:错答案:A10.Gauss消去法和列主元素法的数值稳定性相当.A:错 B:对答案:A第五章测试1.对于凸规划,如果x为问题的KKT点,则其为原问题的全局极小点A:对 B:错答案:A2.对于无约束规划问题,如果海塞阵非正定,我们可采用哪种改进牛顿法求解原问题?A:难以处理 B:构造一对称正定矩阵来取代当前海塞阵,并一该矩阵的逆乘以当前梯度的负值作为方向 C:牛顿法 D:阻尼牛顿法答案:B3.共轭梯度法中,为A:FR公式 B:DY公式 C:DM公式 D:PRP公式答案:A4.内点罚函数法中常用的障碍函数有A:三种都可以B:二次函数C:倒数障碍函数D:对数障碍函数答案:CD5.广义乘子罚函数的优点是在罚因子适当大的情形下,通过修正拉格朗日乘子就可逐步逼近原问题的最优解?A:错 B:对答案:B6.分子停留在最低能量状态的概率随温度降低趋于( ).A:2 B:3 C:0 D:1答案:D7.模拟退火算法内循环终止准则可采用的方法.A:固定步数 B:温度很低时 C:接受概率很低时 D:由接受和拒绝的比率控制迭代步答案:AD8.背包问题是组合优化问题吗?A:错 B:对答案:B9.单纯形算法是求解线性规划问题的多项式时间算法.A:对 B:错答案:B10.对于难以确定初始基本可行解的线性规划问题,我们引入人工变量后,可采用哪些方法求解原问题?A:单纯形法 B:无法确定 C:两阶段法 D:大M法答案:CD第六章测试1.如果不限定插值多项式的次数,满足插值条件的插值多项式也是唯一的()A:错 B:对答案:A2.改变节点的排列顺序,差商的值不变()A:错 B:对答案:B3.Hermite插值只能用插值基函数的方法求解()A:错 B:对答案:A4.在最小二乘问题中,权系数越大表明相应的数据越重要()A:错 B:对答案:B5.加窗傅里叶变换时频窗的长宽比是信号自适应的()A:对 B:错答案:B6.傅里叶变换域的点和时间域上的点是一一对应的()A:对 B:错答案:B7.若f(t)的傅里叶变换为,则 f(2t)的傅里叶变换为 ( )A: B: C:答案:B8.小波函数对应了()A:低通滤波器 B:高通滤波器答案:B第七章测试1.有界区域上的弦振动方程定解问题可以用傅里叶积分变换法求解。
中南大学最全高等工程数学试题集(部分含答案)(2)
中南大学工程硕士“高等工程数学”考试试卷考试日期:20XX 年月日 时间110分钟注:解答全部写在答题纸上一、填空题(本题24分,每小题3分)(1)对方程32()2f x x x x =-+,写出其Newton 迭代公式【注意重根】,使得由迭代公式产生的序列{}n x 可以2阶收敛于方程的唯一正根*x ;(2)在[,]a b 上,设0)(=x f 与)(x x ϕ=等价,则当)(x ϕ满足,和时,由)(1k k x x ϕ=+(L ,2,1,0=k )产生的序列{}k x 收敛于方程)(x x ϕ=的根;(3)用Doolittle 分解法求方程:123211413261225x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则:L =,U =,解x =;(4)已知2114132,61225A x ⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 则:A ∞=;1A =;1x =。
(5)已知)(x f y =在区间],[b a 上通过点(,),0,1,2,,i i x y i n =,则其三次样条插值函数)(x S 是满足,,;(6)设有线性回归模型1112122312322y y y βεββεββε=+⎧⎪=-+⎨⎪=++⎩,其中2~(0,)(1,2,3)i N i εσ=且相互独立,写出参数12,ββ的最小二乘估计。
(7)在多元线性回归建模过程中,需要考虑自变量的选择问题。
写出三种常用的自变量的选取方法。
(8)影响数学模型数值求解结果的误差有:,, 。
二、(本题8分)已知)(x f 的数据如表:试求三次Newton 插值多项式3()N x ,求(5)f 的近似值,并给出相应的误差估计式。
三、(本题10分)引入人工变量利用大M 法求解下面的线性规划(要求写出计算过程):12121212max 34..240.510,Z x x s tx x x x x x =++≤-≥≥≥四、(本题8分)某厂生产甲、乙、丙三种产品,都分别经A,B 两道工序加工,A 工序在设备1A 或2A 上完成,B 工序在1B ,2B ,3B 三种设备上完成。
高等数学工专教材答案
高等数学工专教材答案1. 课后题答案1.1 第一章1.1.1 选择题答案1.1.2 填空题答案1.1.3 解答题答案1.2 第二章1.2.1 选择题答案1.2.2 填空题答案1.2.3 解答题答案1.3 第三章1.3.1 选择题答案1.3.2 填空题答案1.3.3 解答题答案1.4 第四章1.4.1 选择题答案1.4.2 填空题答案1.4.3 解答题答案1.5 第五章1.5.1 选择题答案1.5.2 填空题答案1.5.3 解答题答案1.6 第六章1.6.1 选择题答案1.6.2 填空题答案1.6.3 解答题答案2. 习题答案2.1 第一章习题答案2.2 第二章习题答案2.3 第三章习题答案2.4 第四章习题答案2.5 第五章习题答案2.6 第六章习题答案3. 工程应用题答案3.1 第一章工程应用题答案3.2 第二章工程应用题答案3.3 第三章工程应用题答案3.4 第四章工程应用题答案3.5 第五章工程应用题答案3.6 第六章工程应用题答案4. 常见错误与解析4.1 第一章常见错误与解析4.2 第二章常见错误与解析4.3 第三章常见错误与解析4.4 第四章常见错误与解析4.5 第五章常见错误与解析4.6 第六章常见错误与解析5. 附录5.1 数学工具表5.2 参考书目以上为《高等数学工专教材》的答案内容。
本答案提供了课后题、习题以及工程应用题的详细解答,同时包含每章的常见错误与解析。
附录部分提供了数学工具表和参考书目。
希望这份教材答案能够帮助您更好地理解和应用高等数学知识。
如有任何问题,请随时与我们联系。
高等工程数学 试题 答案
《高等工程数学》试题一、 设总体X 具有分布律其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,求θ的矩估计和最大似然估计.解:(1)矩估计:2222(1)3(1)23EX θθθθθ=+⨯-+-=-+14(121)33X =++=令EX X =,得5ˆ6θ=. (2)最大似然估计:2256()2(1)22L θθθθθθθ=⋅⋅-=-45ln()10120d d θθθθ=-= 得5ˆ6θ= 二、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度)1,10(~N X ,今阶段性抽取10个水样,测得平均浓度为10.8(mg/L ),标准差为1.2(mg/L ),问该工厂生产是否正常?(220.0250.0250.9750.05,(9) 2.2622,(9)19.023,(9) 2.700t αχχ====)解:(1)检验假设H 0:σ2=1,H 1:σ2≠1; 取统计量:2022)1(σχs n -=;拒绝域为:χ2≤)9()1(2975.0221χχα=--n =2.70或χ2≥2025.022)1(χχα=-n =19.023, 经计算:96.1212.19)1(2222=⨯=-=σχs n ,由于)023.19,700.2(96.122∈=χ2,故接受H 0,即可以认为排出的污水中动植物油浓度的方差为σ2=1。
(2)检验假设101010≠'='μμ:,:H H ; 取统计量:10/10S X t -=~ )9(2αt ;拒绝域为2622.2)9(025.0=≥t t ;1028.210/2.1108.10=-=t <2.2622 ,所以接受0H ', 即可以认为排出的污水中动植物油的平均浓度是10(mg/L )。
综上,认为工厂生产正常。
三、 在单因素方差分析中,因素A 有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平0.05α=下对因素A 是否显著做检验。
高等工程数学I 试题(A)与答案(2019.11.23)
2019年高等工程数学试题答案一、(15分)设210120003⎛⎫⎪= ⎪ ⎪⎝⎭A ,计算()ρA 、225max =x Ax 及()2cond A 。
解:12321012001;3003λλλλλλλ---=--=⇒===-I A ()3ρ=A 2||||()3是正规矩阵ρ∴== A A A 2222515max 5max 5155==∞===x x xAx AA ()2331是正规矩阵∴== A cond A 二、(10分)讲述一下求解矩阵A 的最靠近*λ的特征值的思路、步骤。
答:**对使用逆幂法,求出其按模最小的特征值再加上。
λλ-A I 000u v =≠任取*11()max()k k k k k u A I v u v u λ--⎧=-⎪⎨=⎪⎩*1()max()k k kk k A I u v u v u λ-⎧-=⎪⎨=⎪⎩即**()A I P A I LUλλ--=对进行选列主元的三角分解有1max()k k k kk k k Ly PvUu y u v u -⎧⎪=⎪⎪∴=⎨⎪⎪=⎪⎩1max()max()k ik i u x v x λλ*⎧→⎪⎪⎨⎪→⎪⎩-有三、(18分)已知矩阵200226044-⎛⎫⎪= ⎪ ⎪⎝⎭A ,求P 使得1-P AP 为A 的Jordan 标准型,同时需要求出A 的Jordan 标准型。
解:200226044λλλλ+-=-----I A ()()23+28λλ=-D 211D D ==()()23+28λλ=-d 211d d ==初等因子:()()2+2 8,λλ-Jordan 标准形:2128-⎛⎫ ⎪=- ⎪ ⎪⎝⎭J 1123212,[]8令--⎛⎫⎪==-= ⎪ ⎪⎝⎭P AP J P p p p 11121223332[032]512[0]228[011]∴=-∴=-=-=-==TT TAp p p Ap p p p Ap p p 15002131,2201使得-⎛⎫⎪ ⎪⎪∴=-= ⎪ ⎪- ⎪⎝⎭P P AP J四、(20分)已知241111212,212211⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A b ,(1)求A 的满秩分解;(2)求A +;(3)判断Ax b =是否有解,有解时求极小范数解,无解时求极小范数最小二乘解。
高等工程数学考试题及参考解答(仅供参考)
考试题及参考解答(参考)一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X 是来自X 的样本,则221102211152()X X U X X ++=++服从的分布是_______ .解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计ˆβ的协方差矩阵ˆβCov()=_______ . 解:1ˆσ-'2Cov(β)=()X X . 二、单项选择题(每小题3分,共15分)1,设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)N . 2,若总体2(,)XN μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-;(C )/(1)(1,)/()A e S r F r n r S n r ----; (D )A S 与e S 相互独立.5,在多元线性回归分析中,设ˆβ是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则___B____ . (A )ˆn E ()=0ε; (B )1ˆ]σ-''-εX X 2n Cov()=[()I X X ; (C )ˆˆ1n p '--εε是2σ的无偏估计; (D )(A )、(B )、(C )都对.三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)设总体X 的概率密度为1, 0,21(;), 1,2(1)0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<( 未知,12()n X X X ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X 不是2θ的无偏估计量.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-. (2)222211141 (4)44[()]4()424E X EX DX EX DX DX n nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22(4)E X θ>.故24X 不是2θ的无偏估计量.五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他, 似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X 为总体的样本,证明X 是参数p 的一个UMVUE .证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦.另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .七、(本题10分)某异常区的磁场强度服从正态分布20(,)N μσ,由以前的观测可知056μ=.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得261, 400x s ==, 问此仪器测出的结果与以往相比是否有明显的差异(α=0.05).附表如下:t 分布表 χ2分布表解:设0H :560==μμ.构造检验统计量)15(~0t ns X t μ-=, 确定拒绝域的形式2t t α⎧⎫>⎨⎬⎩⎭.由05.0=α,定出临界值1315.2025.02/==t t α,从而求出拒绝域{}1315.2>t .而60,16==x n ,从而 ||0.8 2.1315t ===<,接受假设0H ,即认为此仪器测出的结果与以往相比无明显的差异.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.解:设布定理知的样本方差,由抽样分,分别表示总体Y X S S 2221 , []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 则222221211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭,所求2221σσ的置信度为α-1的置信区间为 222212121/212/212//, (1,1)(1,1)S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭. 九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.答:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测。
《高等工程数学》试题+解答
《高等工程数学》试题解答 (工程硕士及进修生用 2003.1)考生注意:1、可不抄题,答案必须写在统一配发的专用答题纸上; 2、本试题可能用到的常数:5752961 64199509750950 . ,. ,....===u u u . 一、填空题 (每空3分,共30分)。
(1) ⎥⎥⎦⎤⎢⎢⎣⎡=010100001H ;(2) 1)(Cond 2=U ;(3) 7 3 , ;(4) )1 1 (~)()(221221,F X X X X -+;(5) X 2ˆ=θ; (6) 664≥n ;(7) e A SS SS SS +=.二、(10分)[解] 记)(21A A diag A ,=,则21A A ,的特征多项式为2)1()()(21-==λλλA A f f , ∵ O I A ≠21 -,O I A ≠22 -,∴ 2)1()()(21-==λλλA A m m , 取)( )(21λλA A m m ,的最小公倍式,得 2)1()(-=λλA m ,故A 的Jordan 标准形为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡ 111111 , diag . 三、(10分)[解一] 记⎥⎥⎦⎤⎢⎢⎣⎡--=πππ021 A ,其特征值为πλ-=1 (二重根),记 则令 ⎩⎨⎧=-=⇒⎩⎨⎧=-=-⇒⎩⎨⎧'='=t t a t t t a t t a t a a g f g f 1 0 1 101 1 1 1 c o s sin cos cos sin )()()()(πππππππλλλλ ∴ . ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡==t t t t t A f g A g g A g At sin 00cos sin 000sin )()()()()(sin 2 11πππππππ[解二] ∵ J A 2 2001200022ππ∆⎥⎥⎦⎤⎢⎢⎣⎡--= ∴ . ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---==t t t t t t t t t t J t At sin 00cos 2sin 000sin )2(2sin 00)2(2cos 2)2(2sin 00022sin )2sin(sin πππππππππππ 四、(10分)[解] 对A 进行行初等变换故⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡-==--21 12 121 1 211 121)(11 R L L , 从而A 有Doolittle 分解:五、(10分)[证] 将ω扩充为nV 的一个标准正交基 B } {n ααω,,,2 =则∴ T B =-==} {} {n n T T T ααααωω,,,,,,22 B P 其中} 1 1 1 {,,, -=diagP 为对称和正交矩阵,故T 是对称变换和正交变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等工程数学》试题 一、 设总体X 具有分布律
其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,求θ的矩估计和最大似然估计.
解:(1)矩估计:2222(1)3(1)23EX θθθθθ=+⨯-+-=-+
令EX X =,得5
ˆ6
θ=. (2)最大似然估计: 得5ˆ6
θ=
二、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度)1,10(~N X ,今阶段性抽取10个水样,测得平均浓度为10.8(mg/L ),标准差为1.2(mg/L ),问该工厂生产是否
正常?(220.0250.0250.9750.05,(9) 2.2622,(9)19.023,(9) 2.700t αχχ====)
解:
(1)检验假设H 0:σ2
=1,H 1:σ2
≠1; 取统计量:20
2
2
)1(σ
χs n -=
;
拒绝域为:χ2≤)9()1(2975.0221χχα=--
n =2.70或χ2≥2
025.022
)1(χχα=-n =19.023,
经计算:96.121
2.19)1(22
2
2
=⨯=-=
σχs n ,由于)023.19,700.2(96.122∈=χ2,
故接受H 0,即可以认为排出的污水中动植物油浓度的方差为σ2
=1。
(2)检验假设101010
≠'='μμ:,:H H ; 取统计量:10
/10S X t -=~ )9(2
αt ;
拒绝域为2622.2)9(025.0=≥t t ;1028.210
/2.1108.10=-=
t Θ<2.2622 ,所以接受0
H ', 即可以认为排出的污水中动植物油的平均浓度是10(mg/L )。
综上,认为工厂生产正常。
三、 在单因素方差分析中,因素A 有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平0.05α=下对因素A 是否显著做检验。
解:
0.95(2,9) 4.26F =,7.5 4.26F =>,认为因素A 是显著的.
四、 现收集了16组合金钢中的碳含量x 及强度y 的数据,求得
0.125,45.7886,0.3024,25.5218xx xy x y L L ====,2432.4566yy L =.
(1)建立y 关于x 的一元线性回归方程01
ˆˆˆy x ββ=+; (2)对回归系数1β做显著性检验(0.05α=).
解:(1)1
25.5218
ˆ84.3975
0.3024
xy xx
l l β==
=
所以,ˆ35.238984.3975y
x =+ (2)1ˆ2432.456684.397525.5218278.4805e yy xy
Q l l β=-=-⨯= 拒绝原假设,故回归效果显著. 五、某正交试验结果如下
(1) 找出对结果y 影响最大的因素;
(2) 找出“算一算”的较优生产条件;(指标越大越好) (3) 写出第4号实验的数据结构模型。
解:
(1) 对结果y 影响最大的因素是B ; (2) “算一算”的较优生产条件为221A B C (3) 4号实验的数据结构模型为
2214y a b c με=++++,24~(0,)N εσ。