工程数学试卷与答案汇总(完整版)
工程数学试卷及标准答案
1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
工程数学试题A及答案
工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
最新国家开放大学电大《工程数学》期末题库及答案
最新国家开放大学电大《工程数学》期末题库及答案
考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
《工程数学》题库及答案一
一、单项选择题(每小题3分.共15分)
试题答案及评分标准(供参考)
《工程数学》题库及答案二一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)
试题答案。
四川自考工程数学试题及答案
四川自考工程数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,满足f(x) + f(1-x) = 1的函数是()。
A. f(x) = xB. f(x) = 1 - xC. f(x) = x^2D. f(x) = 1/22. 微分方程y'' - y' = 0的通解是()。
A. y = e^x + C1B. y = e^x + C1x + C2C. y = e^x + C1cos(x) + C2sin(x)D. y = C1 + C2x3. 曲线y = x^3在点(1,1)处的切线斜率是()。
A. 0B. 1C. 3D. 124. 以下哪个选项不是二元函数z = f(x, y)的偏导数?()。
A. ∂f/∂xB. ∂f/∂yC. ∂f/∂zD. ∂^2f/∂x∂y5. 设随机变量X服从参数为λ的泊松分布,P(X=k)等于()。
A. λ^k / k!B. e^(-λ)λ^k / k!C. (λ^k / k!) * e^(-λ)D. k * λ^k / e^(λ)10. 以下哪个矩阵是可逆的?()。
A. |1 2||3 4|B. |2 0||0 2|C. |1 0||0 1|D. |1 1||1 1|二、填空题(每题3分,共15分)11. 若函数f(x) = 2x^3 - 6x^2 + 3在区间[1, 2]上的最大值为M,则M = ____。
12. 二阶常系数线性微分方程y'' + 5y' + 6y = 0的特征方程为____。
13. 设随机变量X服从均匀分布U(0, 1),则E(X) = ____。
14. 若函数f(x)在点x=a处连续,则lim(x→a) f(x) = ____。
15. 对于二元函数f(x, y) = x^2 + y^2,其在点(1, 1)处的方向导数为cosθ * ____。
三、解答题(共65分)16. (10分)设函数f(x) = sinx + cosx,请求解f(x)的二阶导数f''(x)。
工程数学期末考试试题和标准答案及评分标准模板
《工程数学》试题(A 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数293x x xy -++=的定义域是( ). A.{}3|-≥x x ; B.{}3|≤x x ;C.{}33|≤≤-x x ; D .{}33|≤<-x x . 2.函数x y =在0=x 处( ) .A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导. 3.x x arctan lim +∞→=﹙ ).A.0;B.不存在 ;C. 2π-; D.2π. 4.若11,1,22()3,1,1,1x x f x x x ⎧+<⎪⎪==⎨⎪>⎪⎩,则1lim ()x f x →=( ).A.2;B. 1;C.1-;D.不存在. 5.函数11)(-=x x f 的水平渐近线是( ). A. 1=x ; B. 1-=y ; C. 0=x ; D. 0=y . 6.函数()y f x =在x 处可导是该点可微的( )条件.A.必要;B.充分;C.充要;D.无关.7.若),)(b a x f 在(内二阶可导,且0)(,0)(<''<'x f x f ,则在),(b a 内函数( ). A.单调减,凸函数; B. 单调增,凸函数; C. 单调减,凹函数; D. 单调增,凹函数.8.函数22,1(),1x x f x x x >⎧=⎨≤⎩,在点1x =处( ).A.不连续;B.连续;C. ()2f x '=可导且;D.无法判断. 9.设函数()f x ,()g x 在[,]a b 上连续,且()()f x g x ≥,则( ).A.()d ()d bbaaf x xg x x ≥⎰⎰ ; B.()d ()d bbaaf x xg x x ≤⎰⎰;C.()d ()d f x x g x x ≥⎰⎰ ; D.()d ()d f x x g x x ≤⎰⎰.10. 曲线x y x y ==与2所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ).A. ⎰-1024d )(x x x π; B. ⎰-142d )(x x x π;C. ⎰-102d )(y yy π; D. ⎰-12d )(y y y π.二、填空题(共20分,共5小题,每小题4分)1.函数654)(22+--=x x x x f ,则2=x 是_______间断点,3=x 是 _______间断点.2. 复合而成和是由函数函数 earcsin xy =.3.点()1,0是曲线b ax x y +-=233 的拐点,则=a ______,=b ______. 4. 设 ()f x 的一个原函数为1x,则=)(x f . 5. ⎪⎩⎪⎨⎧==tty x 2ee ,=x y d d __________.2.已知y x x y '+=求,cos sin 22. 三、计算题(共42分,共6小题,每小题7分)1.求x x x2)51(lim +∞→ 2.已知y x x y '+=求,cos sin 22. 3. 已知.d ,2cos e2y x y x求=4.求x x x d e 2⎰. 5.求⎰exdx x 1ln .6.求由曲线2,,1===x x y xy 围成的平面图形的面积. 四、证明题(共8分,共1小题,每小题8分)1.证明不等式()()0,1ln 1><+<+x x x xx.《工程数学》试题(B 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数242y x x x-++=的定义域是( ). .A {}2|-≥x x ; B.{}2|≤x x ;C.{}22|≤≤-x x ; D . {}22|≤<-x x2. 当0→x 时,下列变量为无穷小的是( )A.;cos x x B. ;sin xxC.;12-xD..sin 1x - 3.x x arctan lim ∞→=﹙ ﹚.A.0 ;B.不存在 ;C. —2π ; D.2π. 4.若⎩⎨⎧>-≤=1,21,)(2x x x x x f ,则1lim ()x f x →=( ).2;A .1;B .1;C - .;D 不存在5.函数xx f 1)(=的水平渐近线是( ). A. 1=x B. 1-=y C. 0=x D. 0=y6.函数()y f x =在x 处可导是该点连续的( )条件.;A 必要 .;B 充分 .;C 充要 .;D 无关7.若),)(b a x f 在(内二阶可导,且0)(,0)(///>>x f x f ,则在),(b a 内函数( ).A.单调减,凸函数B. 单调增,凸函数C. 单调减,凹函数D. 单调增,凹函数8.函数⎪⎩⎪⎨⎧>+≤=1,21211,)(2x x x x x f ,在点1x =处( )A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导.9.设函数()f x 在[,]a b 上连续,则( )dx x f dx x f A b ab a⎰⎰≤)()(. dx x f dx x f B bab a⎰⎰≥)()(.dx x f dx x f C b ab a⎰⎰=)()(. dx x f dx x f D bab a ⎰⎰>)()(.10. 曲线12==x x y 与及x 轴所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ) A. ⎰14dx x πB. ⎰102dx x π C. ⎰10ydy π D. ⎰12dy y π二、填空题(共20分,共5小题,每小题4分)1.函数231)(22+--=x x x x f ,则2=x 是_______间断点,1=x 是 _______间断点.2. 复合而成和是由函数函数 sin xey =.3.点(1,3)是曲线y=23bx ax + 的拐点,则a=______,b=______. 4. 设 ()f x 的一个原函数为x sin ,则=)(x f .5. ⎩⎨⎧==3x bty at ,=dx dy __________. 三、计算题(共42分,共6小题,每小题7分)1.xx x2)31(lim +∞→2.已知')),ln(ln(ln y x y 求=. 3. 已知.dy ,2sin 求x x y = 4.求dx xe x ⎰.5.求⎰-224dx x .6.求由曲线0,1,2===y x x y 围成的平面图形的面积.四、证明题(共8分,共1小题,每小题8分)1.证明:当x x x 211,0+>+>时一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、D4、B5、D6、C7、A8、A9、A 10、B 二、填空题(共20分,共5小题,每小题4分)1、可去(或者第一类);无穷(或者第二类)2、x u e y uarcsin ,==;3、a=0,b=1;4、21x-;5、t2e . 三、计算题(共42分,共6小题,每小题7分)1..7(5())5111(lim (3()5111(lim )51(lim 101051)51(102分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(sin 2cos sin 24()(sin )(sin sin 22'22''分)分)x x x x x x x x y -=-= 3..7()2sin 2(cos 23(2cos 2cos 222分)分)dx x x e x d e xde dy x x x-=+=4. C e x d e dx e x dx xe x x x x +===⎰⎰⎰2222215)((213()(212'2分)分).(7分) 5.1ln ex xdx ⎰=211ln 2e xdx ⎰(3分)=2221111111ln 2244ee x x x dx e x -⋅=+⎰(7分).6..72ln 235(|)ln 21(3()1(21221分)(分)分)-=-=-=⎰x x dx x x S四、证明题(共8分,共1小题,每小题8分)1、证:令f(x)=ln(1+x), 在[]x 0,上连续,在(0,x )内可导, )(x f '=x11+,(2分) 由拉格朗日中值定理,在(0,x )内至少存在一点ξ,使得ξ+=-+-+110)01ln()x 1ln x ((4分) 有 ln(1+x)=ξ+1x ,又 0<x <ξ, 1<1+x +<1ξ,x x x x <+<+ξ11,(7分) 所以,x x xx<+<+)1ln(1 (8分)一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、B4、B5、D6、B7、D8、C9、A 10、A . 二、填空题(共20分,共5小题,每小题4分)1、无穷(或者第二类);可去(或者第一类)2、x u e y usin ,==;3、29,23=-=b a ;4、x cos ;5、a bt 23.三、计算题(共42分,共6小题,每小题7分)1..7(5())3111(lim (3()3111(lim )31(lim 6631)31(62分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(1ln 1)ln(ln 16()(ln ln 1)ln(ln 13())(ln(ln )ln(ln 1'''分)分)分)xx x x x x x x y ===3..7()2cos 22(sin 3(2sin 2sin 分)分)dx x x x x xd xdx dy +=+= 4. .7(4()(''分)分)C e xe dx e x xe dx e x dx xe x x x x x x +-=-==⎰⎰⎰5.令2,2;0,0,cos 2sin 2π======t x t x tdt dx t x 当当则.(1分)⎰-224dx x =tdt ⎰202cos 4π(3分)=⎰+20)2cos 1(2πdt t (4分)=20|)2sin 21(2πt t +(6分)=π.(7分))6..7315(|313(10312分)(分)分)===⎰x dx x S 四、证明题(共8分,共1小题,每小题8分)1、证:令x x x f 211)(+-+=, )(x f '=02x1121>+-+x ,0>x (3分)0)0()(,0],0[)(=>>f x f x x x f 单调递增,在,(6分) ,0211)(>+-+=x x x f 即x x 211+>+.(8分)[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。
工程数学试卷及答案
一、 选择填空题1. 某数x 的有四位有效数字且绝对误差限是4105.0-⨯的近似值是(A ) (A )0.693 (B)0.6930 (C )0.06930 (D)0.006930 2. n 次拉格朗日插值多项式的余项是( A)(A))()!1()()(1)1(x n f x R n n n +++=ωξ (B)()()()()!n n n f R x x n ξω= (C))!1()()()1(+=+n f x R n n ξ (D)()()()!n n f R x n ξ=3. 求积公式)1()1()(11f f dx x f +-≈⎰-具有(A )次代数精度(A )1 (B )2 (C )4 (D )34. 用牛顿法计算)0(>a a n ,构造迭代公式时,下列方程不可用的是(A )(A )0)(=-≡n a x x f (B )0)(=-≡n a x x f (C )0)(=-≡nx a x f (D )01)(=-≡nx ax f 5. 由数据0051152252171 022 42......x y --- 所确定的插值多项式是次数不大于( D )的多项式.(A )二次 (B )三次 (C )四次 (D )五次 6. 在牛顿—柯特斯公式()()()()nbn i i ai f x dx b a C f x =≈-∑⎰中,当系数()n i C 有负值时,公式的稳定性不能保证,所以实际应用中,当n ( B )时的牛顿—柯特斯公式不使用。
(A )10≥ (B )8≥ (C )6≥ (D )4≥ 7. 经过点)3,2(),2,1(),1,0(C B A 的插值多项式=)(x P ( B ) 8. (A )x (B ) 1+x (C )12+x (D )12+x 9. 给定向量Tx )4,3,2(-=,则∞xx x,,21分别为( A )(A )4,29,9 (B )5,29,9 (C )4,29,5.8 (D )5,29,5.8 10. 精确值x =36.85用四舍五入保留三位有效数字的近似数为 36.9 。
最新国家开放大学电大《工程数学》期末题库及答案
最新国家开放大学电大《工程数学》期末
题库及答案
最新国家开放大学电大《工程数学》期末题库及答案
考试说明:本文汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用查找工具,把考题中的关键字输到查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
题库及答案一:单项选择题(每小题3分,共15分)
试题答案及评分标准(供参考)
题库及答案二:
一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)。
电大《工程数学》期末真题(含31套历年真题:2002年至2017年)
) 。
D. D. 秩(A)<n 或秩(B)<n
三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C 二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)
1
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数 学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n
0 00
, 则{ A} 今(
0 0
A . 2 4
1 3 . 一 2 4
C.0
U . 1 2
’,口“ z + " + a . } , 若有 O a , 十O a z - } - . . . 0 a . = 0 , 则向量组 a } , a z ・, 对 于向量组 a ' ,a
(含 31 套历年真题)2002 年 1 月至 2017 年 7 月 国家开放大学(中央电大)“开放本科”期末考 试《工程数学》(本)试题及参考答案(含 15 年 31 套真题)
试卷代号:1080
《工程数学》真题目录(31 套)
1、2002 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 2、2003 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 3、2003 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 4、2004 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 5、2004 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 6、2005 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 7、2005 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 8、2006 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 9、2006 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 10、2007 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 11、2007 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 12、2008 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 13、2008 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 14、2009 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 15、2009 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 16、2010 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 17、2010 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 18、2011 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 19、2011 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 20、2012 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 21、2012 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 22、2013 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 23、2013 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 24、2014 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 25、2014 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 26、2015 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 27、2015 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 28、2016 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 29、2016 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 30、2017 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 31、2017 年 6 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案
工程数学试题(含答案)
【题型】计算题【题干】计算下列行列式:;.【答案】【难度】3【分数】15【课程结构】00027001001【题型】计算题【题干】设,求矩阵及矩阵的秩;【答案】【难度】3【分数】15【课程结构】00027001002【题型】计算题【题干】已知,,求(1);(2).【答案】(1);(2).【难度】3【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】设,, 求.【答案】,,【难度】3【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】求矩阵的逆矩阵。
【答案】【难度】3【分数】10【课程结构】00027001002【题型】计算题【题干】解矩阵方程【答案】【难度】3【分数】15【课程结构】00027001002;00027001003【题型】计算题【题干】设为三阶方阵,是的伴随矩阵,且,求下列行列式:(1);(2); (3).【答案】 (1)(2)(3)【难度】5【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】设,,求使.【答案】【难度】4【分数】15【课程结构】00027001002【题型】计算题【题干】两批相同产品分别来自甲、乙两厂,甲厂产品6件,其中一等品2件,乙厂产品5件,其中一等品1件。
现从甲厂产品中任取一件混入乙厂产品中,再从后者中任取一件,求取得一等品的概率。
【答案】【难度】4【分数】10【课程结构】00027001004【题型】计算题【题干】已知随机变量的分布密度为,求⑴分布函数;⑵.【答案】⑴分布函数⑵【难度】4【分数】15【课程结构】00027001005【题型】计算题【题干】求解线性方程组【答案】同解方程组为方程组的解为:【难度】4【分数】15【课程结构】00027001003【题型】计算题【题干】某人去甲、乙、丙三国之一旅游。
注意到这三国在此季节内下雨的概率分别是,他去这三国旅游的概率分别是.据此信息计算:(1)他旅游遇上雨天的概率;(2)若他旅游遇上雨天,求此人去甲国旅游的概率。
工程数学1期末试题及参考答案
《工程数学1》综合复习题及参考答案一、填空题1.设A ,B 为三阶方阵,4=A ,5-=B ,则____________41=--T B A2.设向量组T T T k ),3,5( ,)1,3,1( ,)0,1,1(321=-==ααα线性无关,则常数k 应满足条件________________________3.若二次型()31212322213212233,,x x x tx x x x x x x f ++++=是正定二次型,则t 的 取值范围为_________________________4.随机事件B A , 相互独立,且5.0)(=A P ,8.0)(=B A P ,则______)(=AB P 5.设随机变量X 的分布函数21arctan 1)(+=x x F π(+∞<<-x ),则X 的概率密度函数_____________________)(=x f6.设随机变量X 与Y 相互独立,且)5,2(~N X 错误!未找到引用源。
,)1,0(~N Y ,则____)32(=-Y X D7. 来自正态总体2~( , 0.9)X N μ容量为9的简单随机样本,测得样本均值5=x ,则未知参数μ的置信度为0.95的置信区间为 (其中30.2)8(,96.1025.0025.0==t z )二、选择题1. 设A ,B 均为n 阶可逆矩阵,则下列运算错误的是( ) (A) ()TT T AB B A = (B) ()111AB B A ---= (C) AB A B =⋅ (D) ()()22A B A B A B +-=-2.已知21,αα分别为n 阶矩阵A 对应不同特征值21,λλ的特征向量,则( ) (A )21,αα线性相关; (B )21,αα线性无关;(C )21αα= (D )21ααk =3. 设随机变量)9,2(~N X 错误!未找到引用源。
,)(x Φ为标准正态分布函数,错误!未找到引用源。
工程数学期末考试试题与标准答案及评分标准模板
《工程数学》试题(A 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数293x x xy -++=的定义域是( ). A.{}3|-≥x x ; B.{}3|≤x x ;C.{}33|≤≤-x x ; D .{}33|≤<-x x . 2.函数x y =在0=x 处( ) .A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导. 3.x x arctan lim +∞→=﹙ ).A.0;B.不存在 ;C. 2π-; D.2π. 4.若11,1,22()3,1,1,1x x f x x x ⎧+<⎪⎪==⎨⎪>⎪⎩,则1lim ()x f x →=( ). A.2; B. 1; C.1-; D.不存在. 5.函数11)(-=x x f 的水平渐近线是( ). A. 1=x ; B. 1-=y ; C. 0=x ; D. 0=y . 6.函数()y f x =在x 处可导是该点可微的( )条件.A.必要;B.充分;C.充要;D.无关.7.若),)(b a x f 在(内二阶可导,且0)(,0)(<''<'x f x f ,则在),(b a 内函数( ). A.单调减,凸函数; B. 单调增,凸函数; C. 单调减,凹函数; D. 单调增,凹函数.8.函数22,1(),1x x f x x x >⎧=⎨≤⎩,在点1x =处( ).A.不连续;B.连续;C. ()2f x '=可导且;D.无法判断. 9.设函数()f x ,()g x 在[,]a b 上连续,且()()f x g x ≥,则( ).A.()d ()d bbaaf x xg x x ≥⎰⎰ ; B.()d ()d bbaaf x xg x x ≤⎰⎰;C.()d ()d f x x g x x ≥⎰⎰ ; D.()d ()d f x x g x x ≤⎰⎰.10. 曲线x y x y ==与2所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ).A. ⎰-124d )(x x x π; B. ⎰-142d )(x x x π;C.⎰-12d )(y y y π; D. ⎰-12d )(y y y π.二、填空题(共20分,共5小题,每小题4分)1.函数654)(22+--=x x x x f ,则2=x 是_______间断点,3=x 是 _______间断点.2. 复合而成和是由函数函数 e arcsin x y =. 3.点()1,0是曲线b ax x y +-=233 的拐点,则=a ______,=b ______. 4. 设 ()f x 的一个原函数为1x,则=)(x f . 5. ⎪⎩⎪⎨⎧==tty x 2ee,=x y d d __________.2.已知y x x y '+=求,cos sin 22.三、计算题(共42分,共6小题,每小题7分)1.求x x x2)51(lim +∞→ 2.已知y x x y '+=求,cos sin 22. 3. 已知.d ,2cos e 2y x y x 求= 4.求x x x d e 2⎰. 5.求⎰exdx x 1ln .6.求由曲线2,,1===x x y xy 围成的平面图形的面积. 四、证明题(共8分,共1小题,每小题8分)1.证明不等式()()0,1ln 1><+<+x x x xx.《工程数学》试题(B 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数242y x x x-++=的定义域是( )..A {}2|-≥x x ; B.{}2|≤x x ;C.{}22|≤≤-x x ; D . {}22|≤<-x x2. 当0→x 时,下列变量为无穷小的是( )A.;cos x x B. ;sin xxC.;12-xD..sin 1x - 3.x x arctan lim ∞→=﹙ ﹚.A.0 ;B.不存在 ;C. —2π ; D.2π. 4.若⎩⎨⎧>-≤=1,21,)(2x x x x x f ,则1lim ()x f x →=( ).2;A .1;B .1;C - .;D 不存在5.函数xx f 1)(=的水平渐近线是( ). A. 1=x B. 1-=y C. 0=x D. 0=y6.函数()y f x =在x 处可导是该点连续的( )条件.;A 必要 .;B 充分 .;C 充要 .;D 无关7.若),)(b a x f 在(内二阶可导,且0)(,0)(///>>x f x f ,则在),(b a 内函数( ).A.单调减,凸函数B. 单调增,凸函数C. 单调减,凹函数D. 单调增,凹函数8.函数⎪⎩⎪⎨⎧>+≤=1,21211,)(2x x x x x f ,在点1x =处( )A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导.9.设函数()f x 在[,]a b 上连续,则( )dx x f dx x f A b ab a⎰⎰≤)()(. dx x f dx x f B bab a⎰⎰≥)()(.dx x f dx x f C b ab a⎰⎰=)()(. dx x f dx x f D bab a⎰⎰>)()(.10. 曲线12==x x y 与及x 轴所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ) A. ⎰14dx x πB. ⎰102dx x π C. ⎰10ydy π D. ⎰12dy y π二、填空题(共20分,共5小题,每小题4分)1.函数231)(22+--=x x x x f ,则2=x 是_______间断点,1=x 是 _______间断点. 2. 复合而成和是由函数函数 sin x e y =. 3.点(1,3)是曲线y=23bx ax + 的拐点,则a=______,b=______. 4. 设 ()f x 的一个原函数为x sin ,则=)(x f .5. ⎩⎨⎧==3x bt y at ,=dxdy__________. 三、计算题(共42分,共6小题,每小题7分)1.x x x2)31(lim +∞→2.已知')),ln(ln(ln y x y 求=.3. 已知.dy ,2sin 求x x y =4.求dx xe x ⎰.5.求⎰-224dx x .6.求由曲线0,1,2===y x x y 围成的平面图形的面积.四、证明题(共8分,共1小题,每小题8分)1.证明:当x x x 211,0+>+>时一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、D4、B5、D6、C7、A8、A9、A 10、B 二、填空题(共20分,共5小题,每小题4分)1、可去(或者第一类);无穷(或者第二类)2、x u e y u arcsin ,==;3、a=0,b=1;4、21x-;5、t2e . 三、计算题(共42分,共6小题,每小题7分)1..7(5())5111(lim (3()5111(lim )51(lim 101051)51(102分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(sin 2cos sin 24()(sin )(sin sin 22'22''分)分)x x x x x x x x y -=-= 3..7()2sin 2(cos 23(2cos 2cos 222分)分)dx x x e x d e xde dy x x x -=+= 4. C e x d e dx e x dx xe x x x x +===⎰⎰⎰2222215)((213()(212'2分)分).(7分) 5.1ln ex xdx ⎰=211ln 2exdx ⎰(3分)=2221111111ln 2244ee x x x dx e x -⋅=+⎰(7分).6..72ln 235(|)ln 21(3()1(21221分)(分)分)-=-=-=⎰x x dx x x S 四、证明题(共8分,共1小题,每小题8分)1、证:令f(x)=ln(1+x), 在[]x 0,上连续,在(0,x )内可导, )(x f '=x11+,(2分) 由拉格朗日中值定理,在(0,x )内至少存在一点ξ,使得ξ+=-+-+110)01ln()x 1ln x ((4分) 有 ln(1+x)=ξ+1x ,又 0<x <ξ, 1<1+x +<1ξ, x xx x <+<+ξ11,(7分) 所以,x x xx<+<+)1ln(1 (8分)一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、B4、B5、D6、B7、D8、C9、A 10、A . 二、填空题(共20分,共5小题,每小题4分)1、无穷(或者第二类);可去(或者第一类)2、x u e y u sin ,==;3、29,23=-=b a ;4、x cos ;5、abt 23.三、计算题(共42分,共6小题,每小题7分)1..7(5())3111(lim (3()3111(lim )31(lim 6631)31(62分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(1ln 1)ln(ln 16()(ln ln 1)ln(ln 13())(ln(ln )ln(ln 1'''分)分)分)xx x x x x x x y ===3..7()2cos 22(sin 3(2sin 2sin 分)分)dx x x x x xd xdx dy +=+=4. .7(4()(''分)分)C e xe dx e x xe dx ex dx xe x x x x x x +-=-==⎰⎰⎰5.令2,2;0,0,cos 2sin 2π======t x t x tdt dx t x 当当则.(1分)⎰-224dx x =tdt ⎰202cos 4π(3分)=⎰+20)2cos 1(2πdt t (4分)=20|)2sin 21(2πt t +(6分)=π.(7分))6..7315(|313(10312分)(分)分)===⎰x dx x S 四、证明题(共8分,共1小题,每小题8分)1、证:令x x x f 211)(+-+=, )(x f '=02x1121>+-+x ,0>x (3分)0)0()(,0],0[)(=>>f x f x x x f 单调递增,在,(6分) ,0211)(>+-+=x x x f 即x x 211+>+.(8分)。
工程数学试卷及答案
一、 选择填空题1. 某数x 的有四位有效数字且绝对误差限是4105.0-⨯的近似值是(A ) (A )0.693 (B)0.6930 (C )0.06930 (D)0.006930 2. n 次拉格朗日插值多项式的余项是( A)(A))()!1()()(1)1(x n f x R n n n +++=ωξ (B)()()()()!n n n f R x x n ξω= (C))!1()()()1(+=+n f x R n n ξ (D)()()()!n n f R x n ξ=3. 求积公式)1()1()(11f f dx x f +-≈⎰-具有(A )次代数精度(A )1 (B )2 (C )4 (D )34. 用牛顿法计算)0(>a a n ,构造迭代公式时,下列方程不可用的是(A )(A )0)(=-≡n a x x f (B )0)(=-≡n a x x f (C )0)(=-≡nx a x f (D )01)(=-≡n xax f 5. 由数据0051152252171 022 42......x y --- 所确定的插值多项式是次数不大于( D )的多项式.(A )二次 (B )三次 (C )四次 (D )五次 6. 在牛顿—柯特斯公式()()()()nbn i i ai f x dx b a C f x =≈-∑⎰中,当系数()n i C 有负值时,公式的稳定性不能保证,所以实际应用中,当n ( B )时的牛顿—柯特斯公式不使用。
(A )10≥ (B )8≥ (C )6≥ (D )4≥ 7. 经过点)3,2(),2,1(),1,0(C B A 的插值多项式=)(x P ( B ) 8. (A )x (B ) 1+x (C )12+x (D )12+x 9. 给定向量Tx )4,3,2(-=,则∞xx x,,21分别为( A )(A )4,29,9 (B )5,29,9 (C )4,29,5.8 (D )5,29,5.8 10. 精确值x =36.85用四舍五入保留三位有效数字的近似数为 36.9 。
工程数学试题及参考答案
工程数学试题B一、单项选择题(每小题3分,本题共21分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ).(A) BA AB = (B) T T T )(B A AB =(C) T T T )(B A B A +=+ (D) AB AB =T )(2.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则=)(A r ( ). (A) 0 (B) 1(C) 3 (D) 43.设B A ,为n 阶矩阵,λ既是A 又是B 的特征值,x 既是A 又是B 的特征向量,则结论( )成立.(A) λ是B A +的特征值 (B) λ是B A -的特征值(C) x 是B A +的特征向量 (D) λ是AB 的特征值4.设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+(C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-5.随机事件A B ,相互独立的充分必要条件是( ).(A) )()()(B P A P AB P = (B) )()(A P B A P =(C) 0)(=AB P (D) )()()()(AB P B P A P B A P -+=+6.设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有=≤<)(b X a P ( ).(A) ⎰b a x x F d )( (B) ⎰ba x x f d )( (C) )()(a fb f - (D) )()(b F a F -7. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量.(A) X (B) ∑=31i i X(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X 二、填空题(每小题3分,共15分)1.设B A ,均为3阶矩阵,2=A ,3=B ,则=--1T 3B A .2.线性无关的向量组的部分组一定 .3.已知5.0)(,3.0)(=-=A B P A P ,则=+)(B A P .4.设连续型随机变量X 的密度函数是)(x f ,则=)(X E .5.若参数θ的估计量θˆ满足θθ=)ˆ(E ,则称θˆ为θ的 估计.三、计算题(每小题10分,共60分)1.设矩阵⎥⎦⎤⎢⎣⎡=3021A ,求A 的特征值与特征向量. 2.线性方程组的增广矩阵为求此线性方程组的全部解.3.用配方法将二次型322322213216537),,(x x x x x x x x f +++=化为标准型,并求出所作的满秩变换.4.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。
专科工程数学试题及答案
专科工程数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是周期函数?A. f(x) = x^2B. f(x) = sin(x)C. f(x) = e^xD. f(x) = ln(x)答案:B2. 函数f(x) = 3x^2 + 2x - 5的导数是:A. 6x + 4B. 6x^2 + 4C. 6x + 2D. 6x^2 + 2x答案:A3. 以下哪个选项是二阶微分方程的解?A. y = e^(-x)B. y = e^(3x)C. y = x^2 + xD. y = sin(x) + cos(x)答案:B4. 积分∫(2x + 1)dx的结果是:A. x^2 + x + CB. 2x^2 + x + CC. 2x^2 + x + 2D. x^2 + C答案:B5. 函数y = sin(x)的泰勒级数展开在x=0处的前三项是:A. x - x^3/3!B. x - x^3/6C. 1 - x^2/2!D. 1 - x^2/3!答案:C6. 以下哪个矩阵是可逆矩阵?A. [1 2; 3 4]B. [1 0; 0 1]C. [2 0; 0 2]D. [1 1; 1 1]答案:B7. 方程组x + y = 1和2x - y = 1的解是:A. (1, 0)B. (0, 1)C. (1, 1)D. (2, -1)答案:D8. 以下哪个不是拉普拉斯变换的性质?A. 线性B. 时移C. 频移D. 微分答案:C9. 以下哪个是傅里叶变换的公式?A. F(ω) = ∫f(t)e^(-jωt)dtB. F(ω) = ∫f(t)e^(jωt)dtC. F(ω) = ∫f(t)sin(ωt)dtD. F(ω) = ∫f(t)cos(ωt)dt答案:B10. 以下哪个是线性代数中的基本概念?A. 向量B. 矩阵C. 微分D. 积分答案:A二、填空题(每空2分,共20分)11. 函数f(x) = x^3 - 2x^2 + x - 3的导数是______。
电大本科 工程数学-期末复习试卷含答案
工程数学综合练习(一)一、单项选择题A. 1B. -1C. 0D. 24. A.B 都是〃阶矩阵(〃:>1),则下列命题正确的是(). A.AB=BAB,若AB = O ,则 A = 0或8 = 0C. (A-B)2 =A 2-2AB + B 2D.仇耳=凤同 5. 若A 是对称矩阵,则等式()成立. A. A -1 = A f B. A = —A C. A = A'D. A ,= -A1 2 6. 若 A = 3 5,则A. 0 9. 向量组a, =[1 2 3]',%=[2 2 4]',%=[1 极大无关组可取为().B. a,,a 2C.D. %,。
2,%,。
410. 向量组 %=[1,0,-2],%=[2,3,5],%=[1,2,1],则 2a,+a 2-3a 3 =b a 2 b 2a 3 a 2 3角-如C 2a 33%-打 C3B 是矩阵,则下列运算中有意义的是(). A'B D AB' 3. 己知A7.若人=2 2 2 23 3 3 3 44 4 4C. 2A. 4 2]',%= [2 3 5]'的一个 C 2 C 3C|设A 是〃xs 矩阵, AB B. BA C.2. A. 0 0 -a,若 AB = ,则。
=(8.向量组A. 1,-3,2B. 1,-3,-2]C. 1,3,-2]D. 1,3,2]11. 线性方程组」X,+X2=+X2=解的情况是(). x 2 + x 3 = 0A.无解 D.只有零解 C.有唯一非零解 D.有无穷多解12, 若线性方程组AX=O 只有零解,则线性方程组AX=b (). A.有唯一解 B.有无穷多解C.可能无解 D.无解 13. 若〃元线性方程组AX=O 有非零解,则()成立. A. r(A) < n B. r(A) = n C. |A| = 0D. A 不是行满秩矩阵14. 下列事件运算关系正确的是(). C. D. B = BA+BA15. 对于随机事件A,B.下列运算公式()成立. A. P(A + B) = P(A) + P(B) - P(AB) B. P(AB) = P(A)P(B) C. P(AB) = P(8)P(B|A) D. P(A + B) = P(A) + P(B)16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球的概率是(). A. AB. Ac. AD .210 20 252517.若随机事件满足AB = 0,则结论()成立 A. A 与8是对立事件 B. A 与B 互不相容C. A 与B 相互独立D. 1与京互不相容 18.若A, B 满足() ,则A 与8是相互独立. A. P(A + B) = P(A) + P(B) B. P(A-B) = P(A)-P(B)Dpg端 中的数组可以作为离散型随机变量的概率分布.A. B = BA + BAB. A = BA + BAC. P(AB) = P(A)P(B) 19.下列数组中,(1 1 1 3 1 1 3 12 4 16 162 4 8 820. 设X123则 P(X <2)=0.1 0.3 0.4 0.2A. 0.1B. 0.4C. 0.3D. 0.221. 随机变量X 〜8(3,:), 则 P(X <2)=()A. 0B.C.1D782822.已知X 〜N(2,22),若aX+b~ N(O,1),那么(). A. a = 2,b = -2 B.。
工程数学试卷与答案汇总(完整版)
)是
无偏估计.
二、填空题(每小题 3 分,共 15 分)
6.设 A, B 均为 3 阶方阵, A 2, B 3 ,则 3AB1 -18 .
7.设 A 为 n 阶方阵,若存在数和非零 n 维向量 X ,使得 AX X ,则称为 A 的特
征值.
0 1 2
8.设随机变量
X
~
0.2
0.5
a
(2 分) (2 分)
故 a 是 A 的一个特征向量。
又 A 对称,故 A 必相似于对角阵
(1 分)
设 A∽ diag(λ1,λ2,…,λn)=B, 其中λ1,λ2,…,λn 是 A 的特征值 (1 分)
因 rank(A)=1, 所以 rank(B)=1
(1 分)
从而λ1,λ2,…,λn 中必有 n-1 个为 0, 即 0 是 A 的 n-1 重特征值 (3) A 对称,故 A 必相似于对角阵Λ,
利用初等行变换得112100235010324001112100011210012301?????????????????????????????????????????????????????????????112100011210001511112100011210001511?????????????????????????????????110922010721001511100201010721001511即a?????????????????1201721511由矩阵乘法和转置运算得xab???????????????????????????????????????????1201721511201151111136212
,则
x
=
。
1 1 0 0 0 1
国家开放大学电大本科《工程数学》2023-2024期末试题及答案(试卷代号:1080)
国家开放大学电大本科《工程数学(本)》2023-2024期末试题及答案(试卷代号:1080)一、单项选择题(每小题3分,共15分)I.设方阵A可逆.则下列命8S中不正确的是<).A.人尹OK税性方程组AX =。
必有非冬解C. I A |# OD.矩阵A'可逆2 .若向at组到血.・〃•线忤相关,则(MKM内(> 可被该向败组内其余向屈线性表出・A.任何一个向歌B.没有一个向量C.至多一个向量D.至少有一个向做3. 设A.B均为”阶方阵.则下列结论正确的是().A.若A既乂是H的特征值,叫必是A +B的特征值Lk若A既是人,又是B的特征值,则必是八B的特征值C. 若x既是A,又是B的特征向量,则必是A+8的特征向量D. A的特征向量的线性组合仍为A的特征向足4. 设袋中有3个红球■?个白球,现从中随机抽取2 4球-则2个球恰好不同色的横率屉();Q a To5. 对箪•正态.总体X 〜巳知时,关于均值“的假设检弗应采用()・A.F检脸法氏』检验法C・U检睑法D・F检验法二、填空题(每小题3分,共15分)6. 设A为3X5地阵,H为1X3矩阵,且乘人C'B有意义,则「为矩阵•pcj += I7. 当A=_ —时.非齐次线性方秘纽j有无列多觥・[3z(— 6 工】=38. 设人,B是两个随机事件•若P(人)=0.7/(人耳〉=0.3.则P<AB) =.9. 设随挑变地X ~ N<2.妒〉,则随机要址Y=~ N(0.l〉.10. 设Rfi挑变地X/E(X〉=L则E(2X 1)~・三、计算题(每小题16分,共64分)H.解炬阵方程人X-X = B,其中八=12.当人取何值时•齐次。
性方Ktfl有作零解?II TW的情况F求力程蛆的通解.13.世 X - NOS.bt >R I <I>P (X<5)I (2)F (X > 9).(CM0(n 0. 8413.0(2) ■ 0.9772.也(3)・Q. 9987〉为r 对完成某项工作所箫时间建立・个标准,工厂随机抽查了 16名工人分别去完成 这项工作.结果发现他们所需的平均时间为15分钟,佯本标准差为3分钟•假设完成这项工作 所需的时间服从正态分布•在标准差不变的情况下,试确定完成此项工作所需平均时间的置信 度为0.95的置值区间(已知 5 =1.96).四、证明题(本题6分)15.设随机事件A 与B 相互:独立.IS 证A 与百也相互独立.试题答案及评分标准:一•单顼堆择JH (哥小Bl X 分■共15分)L B 2. fj3.CLA二、坡空踏(<3小《1彳分出葺分)C. 4 X 5-2H.。
四川工程数学试题及答案
四川工程数学试题及答案一、选择题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 3 \)的零点个数为:A. 0B. 1C. 2D. 3答案:C2. 以下哪个选项不是线性方程组的解?A. \( \begin{cases} x + y = 1 \\ x - y = 1 \end{cases} \)B. \( \begin{cases} x + y = 1 \\ x - y = 0 \end{cases} \)C. \( \begin{cases} x + y = 2 \\ x - y = 0 \end{cases} \)D. \( \begin{cases} x + y = 3 \\ x - y = 1 \end{cases} \) 答案:A3. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值为:A. 0B. 1C. -1D. 2答案:B4. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \frac{1}{x} \)答案:B5. 以下哪个选项是二阶导数?A. \( f'(x) \)B. \( f''(x) \)C. \( f(x) \)D. \( f'''(x) \)答案:B二、填空题(每题3分,共15分)1. 函数\( y = \ln(x) \)的导数为_________。
答案:\( \frac{1}{x} \)2. 函数\( y = e^x \)的二阶导数为_________。
答案:\( e^x \)3. 曲线\( y = x^3 \)在点\( (1,1) \)处的切线斜率为_________。
答案:34. 函数\( y = \sin(x) \)的周期为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
10.设二维连续型随机变量),(Y X 的联合概率密度函数为其它当0,00),()43(>>⎩⎨⎧=+-y x ke y x f y x ,则系数=k 。
11.求函数t e t f β-=)(的傅氏变换 (这里0>β),并由此证明:二、填空题(每空3分,共15分)三、计算题(每小题10分,共50分)te d t ββπωωβω-+∞=+⎰2cos 02212.发报台分别以概率0.6和0.4发出信号“1”和“0”。
由于通讯系统受到干扰,当发出信号“1”时,收报台未必收到信号“1”,而是分别以概率0.8和0.2收到信号“1”和“0”;同时,当发出信号“0”时,收报台分别以概率0.9和0.1收到信号“0”和“1”。
求 (1)收报台收到信号“1”的概率;(2)当收报台收到信号“1”时,发报台确是发出信号“1”的概率。
13.设二维随机变量),(Y X 的联合概率函数是其它0,00),()42(>>⎩⎨⎧=+-y x ce y x f y x求:(1)常数c ;(2)概率P (X ≥Y );(3)X 与Y 相互独立吗?请说出理由。
14.将n个球随机的放入N个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X的数学期望。
15.设一口袋中依此标有1,2,2,2,3,3数字的六个球。
从中任取一球,记随机变量X为取得的球上标有的数字,求(1)X的概率分布律和分布函数。
(2)EX12n )T,a1≠0,其长度为║a║,又A=aa T,(1)证明A2=║a║2A;(2)证明a是A的一个特征向量,而0是A的n-1重特征值;(3)A能相似于对角阵Λ吗?若能,写出对角阵Λ.四、证明题(共10分)五、应用题(共10分)17.设在国际市场上每年对我国某种出口商品的需求量X是随机变量,它在[2000,4000]( 单位:吨 )上服从均匀分布,又设每售出这种商品一吨,可为国家挣得外汇3万元,但假如销售不出而囤积在仓库,则每吨需保养费1万元。
问需要组织多少货源,才能使国家收益最大。
参考答案及评分标准一、 选择题(每小题3分,共15分)1.B 2.C 3.D 4.A 5.A 二、 填空题(每小题3分,共15分)6. 97. 18. 1–(1–P)39. 3/4 10. 12 三、计算题(每题10分,共50分) 11.解答:函数f(t)的付氏变换为:F (w )=dt e dt edt eeet j tj tj t t ⎰⎰⎰+∞--+∞+--+∞∞---+==ℜ0)(0)(||||][ϖβϖβϖββ (3分)=22211ϖββϖβϖβ+=-++j j (2分)由付氏积分公式有f(t)=[1-ℜF(w )]=ϖϖπϖd e F tj ⎰+∞∞-)(21(2分) =ϖϖϖϖββπd t j t ⎰+∞∞-++)sin (cos 22122 ==ϖϖβϖπβϖϖϖββπd td t ⎰⎰+∞+∞∞-+=+02222cos 2cos 221(2分) 所以 te d t ββπωωβω-+∞=+⎰2cos 022 (1分)12.解答:设 A1=“发出信号1”,A0=“发出信号0”,A=“收到信号1” (2分)(1)由全概率公式 (1分) 有 P(A)=P(A|A1)P(A1)+P(A|A0)P(A0) (2分) =0.8x0.6+0.1 x0.4=0.52 (1分) (2)由贝叶斯公式 (1分) 有 P(A1|A)=P(A|A1)P(A1)/ P(A) (2分) =0.8x0.6/0.52=12/13 (1分)13.解答:(1) 由联合概率密度的性质有⎰⎰+∞∞-+∞∞-=1),(dy y x f dx即⎰⎰+∞+-+∞=0)42(01dy cedx y x (2分)从而 c =8 (2分)(2)⎰⎰≥==≥yx dxdy y x f Y X P ),()(⎰⎰=+-+∞xy x dy e dx 0)42(0328 (2分) (3) 当x >0时, ⎰⎰∞∞-∞-+-===2)42(28),()(x y x X e dy edy y x f x f (2分)当x <=0时, 0)(=x f X同理有 其它04)(4>⎩⎨⎧=-y e y f y Y (1分)因 y x y f x f y x f Y X ,)()(),(∀=故X 与Y 相互独立 (1分)14.解答:设 否则个盒子有球第i X i ⎩⎨⎧=01i =1,2,…,N (2分)则 ∑==Ni iXX 1(1分)因 nni N N X P )1()0(-== (2分)nni i NN X P X P )1(1)0(1)1(--==-== (2分) 因而 nni i i N N X P X P EX )1(1)1(1)0(0--==⋅+=⋅= (2分)所以 ))11(1(1nNi iNN EXEX --==∑= (2分) 15.解答:(1)随机变量X 的取值为1,2,3。
(1分)依题意有:62)3(;63}2{;61}1{======X P X P X P (3分) X 的分布函数}{)(x X P x F ≤= (1分) 由条件知:当1<x 时,;0(=)x F (1分)当21<≤x 时,;61)1((===X P x F ) (1分)当32<≤x 时,;32)2()1((==+==X P X P x F ) (1分)当3≥x 时,;1(=)x F (1分)(2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6 (1分)四、证明题(共10分)(1) A 2=aa T ·aa T =a T a ·aa T =║a ║2A (2分)(2)因 Aa= aa T ·a=a T a ·a= ║a ║2a (2分)故a 是A 的一个特征向量。
又A 对称,故A 必相似于对角阵 (1分) 设A ∽ diag(λ1,λ2,…,λn )=B, 其中λ1,λ2,…,λn 是A 的特征值 (1分) 因rank(A)=1, 所以 rank(B)=1 (1分) 从而λ1,λ2,…,λn 中必有n-1个为0, 即0是A 的n-1重特征值 (1分) (3) A 对称,故A 必相似于对角阵Λ,Λ=diag(║a ║2, 0,…,0) (2分)五、应用题(共10分) 解答:设y 为预备出口的该商品的数量,这个数量可只介于2000与4000之间,用Z 表示国家的收益(万元), (1分) 则有 yX y X X y X y X g Z <≥⎩⎨⎧--==)(33)( (4分)因 X 服从R(2000,4000), 故有其它4000200002000/1)(<<⎩⎨⎧=x x f X (1分)所以dx ydx x y x dx x f x g EZ yyX ⎰⎰⎰+--==∞∞-40002000200032000)(3)()( =–( y 2–7000y + 4•106) /1000 (3分) 求极值得 y=3500 (吨) (1分)工程数学(本)10秋模拟试题(一) 一、单项选择题(每小题3分,共15分) 1.设B A ,都是n 阶方阵,则下列命题正确的是( AB A B= ).2.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( 3 ).3.n 元线性方程组AX b =有解的充分必要条件是()()(b A r A r =).4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(259). 5.设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(321535151x x x ++ )是μ无偏估计.二、填空题(每小题3分,共15分)6.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-=-18 .7.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ= ,则称λ为A 的特征值.8.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a =0.3 .9.设X 为随机变量,已知3)(=X D ,此时D X ()32-=27 .10.设θˆ是未知参数θ的一个无偏估计量,则有 ˆ()E θθ= .三、(每小题16分,共64分) 11.设矩阵A B =---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎤⎦⎥112235324215011,,且有AX B =',求X .解:利用初等行变换得112100235010324001112100011210012301---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511→------⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥110922010721001511100201010721001511 即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1201721511由矩阵乘法和转置运算得X A B ='=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1201721511201151111136212.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x 的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131方程组的一般解为x x x x x x14243415=+==-⎧⎨⎪⎩⎪ (其中x 4为自由未知量)令x 4=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为⎪⎩⎪⎨⎧-===4342415xx x x x x (其中x 4为自由未知量)令x 4=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为10kX X X +=(其中k 为任意常数)13.设)4,3(~N X ,试求: (1))95(<<X P ;(2))7(>X P .(已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ) 解:(1))3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=(2))23723()7(->-=>X P X P)223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=14.据资料分析,某厂生产的一批砖,其抗断强度)21.1,5.32(~N X ,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.12,问这批砖的抗断强度是否合格(α==0051960975.,..u ). 解: 零假设H 0325:.μ=.由于已知σ2121=.,故选取样本函数U x nN =-μσ~(,)01 已知x =3112.,经算得σ9113037==..,x n -=-=μσ3112325037373....由已知条件u 0975196..=,x nu -=>=μσ3731960975...故拒绝零假设,即这批砖的抗断强度不合格。