浙江省杭州第二中学2019-2020学年高二上学期期中考试数学试题(无答案)

合集下载

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷试题及答案

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷试题及答案

2019-2020学年学军中学西溪校区高二(上)期中数学试卷一、选择题1.圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS2.若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直3.已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β4.如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12 B.6 C.4 D.无法确定5.四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.6.某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5 D.27.在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化8.一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3 B.4 C.5 D.69.已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a 10.已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为.12.二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB 与平面β所成的角的余弦值是.13.正三棱锥的高为1,底面边长为2,则它体积为;若有一个球与该正三棱锥的各个面都相切,则球的半径为.14.若f(x)=﹣3x为奇函数,则a=,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为.15.在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是;(2)|A1P|的最小值为.17.若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a >1),则t的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.19.如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E分别为AD,PD 中点.(1)设平面PAB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面PAB.20.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.21.对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.22.如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC 上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS解:∵圆柱的轴截面是正方形,且轴截面面积是S,∴圆柱的母线长为,底面圆的直径为,∴圆柱的侧面积S=π××=πS.故选:B.2.若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直解:对于A,α内过直线l与平面α交点的直线与直线l是共面直线,∴A错误;对于B,α内过直线l与平面α交点的直线有无数条,且这些直线与直线l都是共面直线,∴B错误;对于C,α内不存在与直线l平行的直线,∴C错误;对于D,如图所示,直线PA与平面α交于点A,PO⊥α,则OA是PA在α内的射影,在α内作直线l⊥OA,则l⊥PA,这样的直线l有无数条,∴D正确.故选:D.3.已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β解:A.若α∥β,m⊂α,n⊂β,则m∥n或为异面直线,因此不正确;B.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥β,正确;C.若α⊥β,m∥n,m⊥α,则n∥β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,则n⊂β,或n∥β,或n与β相交,因此不正确.故选:B.4.如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12 B.6 C.4 D.无法确定解:∵侧面B′BCC′的面积是4,点A′到侧面B′BCC′的距离是3,∴V四棱锥A′﹣BCC′B′=.∵.∵V四棱锥A′﹣BCC′B′+V三棱锥A′﹣ABC=V三棱柱ABC﹣A′B′C′.∴.∴V三棱柱ABC﹣A′B′C′=6.故选:B.5.四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.解:四面体ABCD放到长方体中,AB=CD=2,其余AC=BC=AD=DB=4设长方体的边长分别为a,b,c.则,解得a2+b2+c2=18,四面体外接球半径:2R=3.R=.故选:D.6.某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5 D.2解:由题意可知几何体是正方体的一部分,是四棱锥P﹣ABCD,正方体的棱长为3,P是所在棱的3等分点,PB==,PA==,PC==,所以最长棱长为PB,.故选:B.7.在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化解:如图所示:∵M、N分别是棱BB1、BC的中点,∴MN∥CB1,∵M在以C1N为直径的圆上,∴∠C1MN=90°,∴C1M⊥MN,∴C1M⊥CB1,由长方体的几何特征,我们可得C1D1⊥B1C,∴B1C⊥平面C1D1M,∵A1D∥B1C,∴A1D⊥平面C1D1M,∴A1D⊥D1M,即异面直线A1D与D1M所成的角为90°,故选:C.8.一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3 B.4 C.5 D.6解:如图,连接QR并延长,分别交AA1,AB的延长线与E,F,连接PE交A1D1于G,连接PF交BC于H,连接PH,QH,GR,则五边形PGRQH即为此容器内存水最多时,容器中水的上表面的形状,故选:C.9.已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a解:因为<1.5<,所以<sin1.5<1;0<cos1.5<,∴a>,0<b<;∴b<a;找中间量sin1.5sin1.5,由y=sin1.5x是R上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0,+∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5;故c<d,只有A答案合适.故选:A.10.已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()解:A=(﹣∞,﹣2)∪(3,+∞),令f(x)=x2﹣3ax+4,由题意,△=9a2﹣16>0,且a>0,∴解得,,又,∴要使A∩B中恰好有两个整数解,则只能是4和5,∴,解得,∴a的取值范围是.故选:A.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为a.解:棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,取BD中点G,连结BE,CE,EG,FG,则EG∥AB,且EG=FG==,∴∠EFG是异面直线EF与AB所成的角(或所成角的补角),BE=CE==,EF==,cos∠EFG===,∴∠EFG=,∴异面直线EF与AB所成的角大小是,线段EF的长度为.故答案为:,.12.二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB与平面β所成的角的余弦值是.解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α﹣l﹣β的平面角,∠ADC=60°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=AD sin60°=x,Rt△ABD中,AB==2,BC==,∴Rt△ABC中,cos∠ABC===.故答案为:.13.正三棱锥的高为1,底面边长为2,则它体积为2;若有一个球与该正三棱锥的各个面都相切,则球的半径为﹣2 .解:底面等边三角形的面积S==,所以V=,设内切球的球心为O,半径为r,则在O与底面的中心M,BM=,OE=r,OA=1﹣r,侧面斜边的高AB=由△AOE ∽△ABM,得相似得,得,,所以.故答案为:﹣2.14.若f(x)=﹣3x为奇函数,则a= 1 ,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为(﹣2,5).解:∵f(x)为奇函数,∴f(0)=0,,∴a=1.∴∵,∴f(x)为减函数,且为奇函数∵f(1﹣x2)+f(3x+9)<0,∴f(1﹣x2)<﹣f(3x+9)=f(﹣3x﹣9),∴1﹣x2>﹣3x﹣9,∴﹣2<x<5.故不等式的解集为(﹣2,5).故答案为:1,(﹣2,5).15.在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.解:将△AB1C1绕边AC1旋转到APC1位置,使得平面APC1和平面ACC1在同一平面内,过点P作PN⊥平面ABCD,交AC1于M,垂足为N,则PN为MB1+MN的最小值.∵AB=2,BC=AA1=,∴AC1==2,AP=AB1==,∵sin∠C1AC===,∴∠C1AC=30°,∴∠PAN=2∠C1AC=60°,∴PN=AP•sin∠PAN==.∴MB1+MN的最小值为.故答案为:.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是平行;(2)|A1P|的最小值为.解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A1(1,0,1),E(0,1,),B(1,1,0),∵P,Q均在平面A1B1C1D1内,∴设P(a,b,1),Q(m,n,1),则=(﹣1,1,﹣),=(a﹣1,b﹣1,1),=(m﹣1,n﹣1,1),∵BP⊥A1E,BQ⊥A1E.∴,解得,∴PQ∥BD,即PQ与BD的位置关系是平行.故答案为:平行.(2)当|A1P|取最小值时,P在平面A1B1C1D1内,设P(a,b,1),由(1)得b=a+,∴|A1P|====,∴当a=,即P(,,1)时,|A1P|的最小值为.故答案为:.17.若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a>1),则t的取值范围是.解:原不等式等价于:或即①或②,注意到x=1时,②成立,此时≤t≤;当x∈Z,x≥2时,①成立,在①中,1+≤t≤x﹣,又g(x)=x﹣﹣为单调递增函数,所以,要使对x∈Z,x≥2成立,只需x=2时成立,又x=2时,≤t≤,所以要使不等式对任意的正整数x恒成立,则t的取值范围是:≤t≤,故答案为:≤t≤.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.【解答】解(1)由•=,得ab cos C=.又因为cos C=,所以ab==.又C为△ABC的内角,所以sin C=.所以△ABC的面积S=ab sin C=3.(2)因为∥,所以2sin cos=cos B,即sin B=cos B.因为cos B≠0,所以tan B=.因为B为三角形的内角,0<B<π,所以B=.由正弦定理=,所以a=,c=,所以a+c=,又A+C=,所以a+c==4(cos C+)=4sin(C+),又0,所以<C+,所以∈(2,4].19.如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E分别为AD,PD 中点.(1)设平面PAB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面PAB.【解答】(1)解:分别延长AB和DC交于点R,连接PR,则直线PR就是l的位置;R∈AB⊂平面PAB,R∈CD⊂平面PCD,所以P、R是平面PAB和平面PCD的两个公共点,由公理1可知,过P、R的直线就是两个平面的交线l.(2)证明:连接OE、OC,因为BC∥AD,且BC=AD,又AO=AD,所以BC∥AO,且BC=AO,所以四边形ABCO为平行四边形,所以OC∥AB,则OC∥平面PAB;又OE为△PAD的中位线,则OE∥AP,所以OE∥平面PAB,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面PAB∥平面OEC,又OQ⊂平面OEC,所以OQ∥平面PAB.20.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.解:(1)当n≥2时,2S n﹣1﹣(n﹣1)a n﹣1=3(n﹣1),又2S n﹣na n=3n,相减可得(n﹣1)a n﹣1﹣(n﹣2)a n=3,当n≥3时,(n﹣2)a n﹣2﹣(n﹣3)a n﹣1=3,所以(n﹣1)a n﹣1﹣(n﹣2)a n=(n﹣2)a n﹣2﹣(n﹣3)a n﹣1,可得2a n﹣1=a n﹣2+a n,所以{a n}为等差数列.又2S1﹣a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;(2)b n=====(﹣),T n=(﹣+﹣+﹣+﹣+…+﹣)=(﹣),要使T n成立,即(﹣)>,解得n>,所以最小正整数n的值为8.21.对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.解:(1),则x2=m2﹣n2不可能恒成立,所以f(x)=x不是““(m,n)型函数”;(2)①由题意,g(x+1)g(1﹣x)=4,取x=1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵(x+1)g(1﹣x)=4,所以g(x)g(2﹣x)=4.当x∈[0,1]时,2﹣x ∈[1,2]时,g(2﹣x)===.(a)当0<a<1时,0<,则g(x)在[0,1]内先减后增,且g(,即1+a﹣a2≤g(x)≤2,则当x∈[1,2]时,2≤g(x).所以当x∈[0,2]时,1+a﹣,由题意,,解得0≤a≤4,所以0<a<1.(b)当1≤a<2时,,则g(x)在][0,1]内先减后增,且g()≤g(x)≤g(0),即1+a﹣≤g(x)≤1+a,则当x∈[1,2]时,.要满足题意,则应满足,且解得0≤a≤33,所以1≤a<2.(c)当a≥2时,≥1,则g(x)在[0,1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a,则当x∈[1,2]时,.此时,g(x)min=,g(x)min=1+a.要满足条件,则应,解得a≤3,所以2≤a≤3.综上所述,0<a≤3.方法二:当x∈[0,2]时,都有1≤g(x)≤4成立,所以当x∈[1,2]时,1≤g(x)≤4;当x∈[0,1]时,2﹣x∈[1,2]时,所以g(2﹣x)∈[1,4],而g(x)g(2﹣x)=4,所以1,即1≤g(x)≤4,所以问题转化为当x∈[0,1]时,1≤g(x)≤4即可.当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),.(1)当0<<1,即0<a<2时,,解得0≤a≤3,所以0<a<2;(2)当,即a≥2时,只要解得a≤3,所以2<a≤3;综上所述,0<a≤3.22.如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC 上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.解:(1)证明:∵AM⊥BD,BD⊥AC′,AM∩AC′=A,∴BD⊥平面AMC′,∵BD⊂平面ABD,∴平面△AMC′⊥平面ABD.(2)解:如图,在△C′AM所在平面内,过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.又QC′是由QC翻折得到,∴∠C′QP=α=2∠C′CQ,且∠C′CQ就是直线C′C与平面ABC所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.(3)解:如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′﹣AD﹣B的平面角.设AB=AC=BD=4,则BM=MC=2,MD=4﹣2,CD=4﹣4=C′D,在直角△C′DM中,C′M2=C′D2﹣DM2=36﹣16.。

最新浙江省杭州第二中学2018-2019学年高二下学期期中考试数学试题 Word版无答案

最新浙江省杭州第二中学2018-2019学年高二下学期期中考试数学试题 Word版无答案

2018学年杭二高二下期中一、选择题:每小题4分,共40分1. 复数2iz i +=的共轭复数是( )A .12i +B .2i +C .2i -D .12i -2. 一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是( ) A .45B .35C .25 D .133. 二项式63x⎫-⎪⎭的展开式中的常数项为( ) A .540-B .135C .270D .5404. 若()()25270127121x x a a x a x a x +-=+++⋅⋅⋅+,则246a a a ++=( ) A .32B .31C .16D .15 5. 用数学归纳法证明不等式()*11111,122n n N n n n n +++>>∈+++的过程中,从n k =到1n k =+时左边需增加的代数式是( )A .122k +B .112122k k +++C .112122k k -++ D .121k +6. 已知0x >且1y x ->,则1y x-,13xy +的值满足( )A .1y x -,13x y +都大于1B .1y x-,13x y +都小于1C .1y x-,13x y +至少有一个小于1 D .以上说法都不正确7. 已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好使用了其中三种结账方式,那么他们结账方式的可能情况有( )种 A .19B .12C .30D .268. 函数()22ln f x x x =-的部分图象大致为( )DC B A9. 函数()()=ln 133f x m x x +--,若不等式()3x f x mx e >-在()0,x ∈+∞上恒成立,则实数m 的取值范围是( ) A .03m ≤≤B .3m ≥C .3m ≤D .0m ≤ 10. 已知函数()23=x x f x e -,关于x 的方程()()()22120f x tf x t R e+-=∈⎡⎤⎣⎦有m 个不同的实数解,则m 的所 有可能的值构成的集合为( )A .{}3B .{}3,5C .{}3,4D .{}3,4,5二、填空题:多空题每题6分,单空题每题5分,共37分11. 现有5件相同的产品,其中3件合格,2件不合格,从中随机抽检2件,则一件合格,另一件不合格的概率为 .12. 已知复数()()22lg 2146z m m m m i =+-+--,若复数z 是实数,则实数m = ;若复数z 对应的点位于复平面的第二象限,则实数m 的取值范围为 .13.若()13E ξ=,则x y += ;()D ξ= .14. 在()521ax x -+的展开式中,3x 的系数为30,则实数a 的值为 .15. 若存在0x R ∈,满足()()00f x g x =且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”,若函数()21f x ax =-与()ln g x x =存在“S 点”,则实数a = . 16. 在一个如图所示的6个区域栽种观赏植物,要求同一块区域中种同一种植物,相邻的两块区域中种不同的植物,现有4种不同的植物可供选择,则不同的栽种方案的总数为 .FEDC B A17. 设函数()()21x f x e x ax a =--+,其中a R ∈,若存在唯一的整数0x ,使得()00f x <,则实数a 的取值范围为 .三、解答题18. (满分14分)如图是一旅游景区供游客行走的路线图,假设从进口A 开始到出口B ,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共4名游客结伴到旅游景区游玩,他们从进口A 的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口B 集中,设点C 是其中的一个交叉路口点. (1)求甲经过C 的概率; (2)设这4名游客中恰有X 名游客都是经过点C ,求随机变量X 的概率分布列和数学期望.19. (满分14分)在2nx ⎛ ⎝的展开式中,第4项的系数与倒数第4项的系数之比为12. (1)求n 的值;(2)求展开式中系数最大的项.20. (满分15分)已知函数()2=2f x x-,记数列{}n a 的前n 项和为n S ,且有()11a f =.当2n ≥时,()()221522n n S n n f a -=+-. (1)计算1234,,,a a a a ;(2)请归纳猜测数列{}n a 的通项公式,并用数学归纳法证明.21. (满分15分)已知函数()1x f x axe =-,()ln g x x kx =+.(1)求()g x 的单调区间;(2)若1k =,()()f x g x ≥恒成立,求实数a 的取值范围.22. (满分15分)已知函数()ln 12x f x ax b x =--,()2g x ax bx =+. (1)当2a =,3b =-时,求函数()f x 在x e =处的切线方程,并求函数()f x 的最大值; (2)若函数()y f x =的两个零点分别为1x ,2x 且12x x ≠,求证:1212x x g +⎛⎫> ⎪⎝⎭.。

2024-2025学年高二上学期期中模拟考试数学试题02(直线与圆 圆锥曲线)含解析

2024-2025学年高二上学期期中模拟考试数学试题02(直线与圆 圆锥曲线)含解析

2024-2025学年高二数学上学期期中模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A版(2019)选择性必修第一册第一章~第三章(空间向量与立体几何+直线与圆+圆锥曲线)。

5.难度系数:0.65。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.如图,在平行六面体ABCD 则AC'的长为()A.98562+B.【答案】A-'【解析】平行六面体ABCD A故选:A7.已知椭圆的方程为2 9 x+的周长的最小值为()A.8B 【答案】C则由椭圆的中心对称性可知可知12AF BF 为平行四边形,则可得2ABF △的周长为2AF A .0B .【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.则21242||222y y m HC ++===12||4||22yy p AB HM ++===所以||2sin ||2(HC m HMN HM m ∠==因为20m ≥,所以212(1)m ∈三、填空题:本题共3小题,每小题5分,共15分.则11,22BN BA BD DM =+ 所以1122BN DM BA ⎛⋅=+ ⎝ 1144BA BC BD BC =⋅+⋅-uu r uu u r uu u r uu u r四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知两直线1:20l x y ++=和2:3210l x y -+=的交点为P .(1)直线l 过点P 且与直线310x y ++=平行,求直线l 的一般式方程;(2)圆C 过点()1,0且与1l 相切于点P ,求圆C 的一般方程.【解析】(1)直线l 与直线310x y ++=平行,故设直线l 为130x y C ++=,(1分)联立方程组203210x y x y ++=⎧⎨-+=⎩,解得11x y =-⎧⎨=-⎩.(3分)∴直线1:20l x y ++=和2:3210l x y -+=的交点()11P --,.16.(15分)在正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在线段1CC 上,且14CC CE = ,点F 为BD 中点.(1)求点1D 到直线EF 的距离;(2)求证:1A C ⊥面BDE .【解析】(1)如图,以D 为原点,以,DA DC 正四棱柱111ABCD A B C -()()(10,0,4,0,2,1,1,1,0D E F ∴则点1D 到直线EF 的距离为:17.(15分)18.(17分)如图,在四棱锥P ABCD -中,M 为棱PC 的中点.(1)证明:BM ∥平面PAD ;(2)若5PC =,1AB =,(2)1AB = ,2DC ∴=,又PD 222PC PD DC ∴=+,则PD DC ⊥又平面PDC ⊥平面ABCD ,平面PD ∴⊥平面ABCD ,(7分)19.(17分)416(2)(i )由题意知直线l 的方程为联立221416x y ⎧-=⎪⎨,化简得(4m 2(ii )1212232,41m y y y y m -+=-直线AD 的方程为11y y x =+。

浙江省宁波市慈溪市2022-2022学年高二数学上学期期中试题(含解析)

浙江省宁波市慈溪市2022-2022学年高二数学上学期期中试题(含解析)
故选A.
考点:二元一次不等式(组)与平面区域.
5.已知点M(-2,1,3)关于坐标平面xOz的对称点为A,点A关于y轴的对称点为B,则|AB|=( )
A. 2B.
C. D. 5
【答案】B
【解析】
【分析】
先根据对称逐个求出点 的坐标,结合空间中两点间的距离公式可求.
【详解】因为点M(-2,1,3)关于坐标平面xOz的对称点为A,
【答案】 (1). (2,-1) (2). (x-1)2+y2=2
【解析】
【分析】
先整理直线的方程为 ,由 可得定点;由于直线过定点 ,所以点(1,0)为圆心且与l相切的所有圆中,最大半径就是两点间的距离.
【详解(xiánɡ jiě)】因为 ,由 可得 ,所以(suǒyǐ)直线 经过(jīngguò)定点 ;
【答案】
【解析】
如图,连接(liánjiē) 交 于点 ,连接(liánjiē) .因为(yīn wèi) 是正方体,所以(suǒyǐ) 面 ,从而(cóng ér)可得 ,所以 面 ,从而有 ,所以 是二面角 的平面角.设正方体的边长为1,则 ,所以在 中有
16.设m,n是两条不同的直线, , , 是三个不同的平面,给出如下命题:
二、填空题(本大题共7小题,单空题每小题4分,多空题每小题6分,共36分)
11.已知直线 ,直线 .若直线 的倾斜角为 ,则 =_________;若 ,则 , 之间的距离为_____.
【答案】 (1). 1 (2).
【解析】
【分析】
利用直线 的倾斜角和斜率的关系可求 ;根据两条直线平行可得 ,再结合平行直线间的距离公式可求.
【详解】由圆的一般式方程可得圆心坐标 ,半径 ;
设 关于直线 的对称点为 ,则 ,解得 ,

2019-2020学年浙江省杭州市余杭区九年级(上)期中数学试卷 解析版

2019-2020学年浙江省杭州市余杭区九年级(上)期中数学试卷  解析版

2019-2020学年九年级(上)期中数学试卷一、选择题1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.15.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥18.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y39.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为.x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 613.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=.(用含a的代数式表示).15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.参考答案一、选择题:本题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同【分析】根据题意的函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵二次函数y=2x2与y=﹣x2+1,∴函数y=2x2的开口向上,对称轴是y轴,顶点坐标为(0,0);函数y=﹣x2+1的开口向下,对称轴是y轴,顶点坐标为(0,1);故选项A、C错误,选项D正确;∵二次函数y=2x2中的a=2,y=﹣x2+1中的a=﹣,∴它们的开口大小不一样,故选项B错误;故选:D.2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r【分析】直接根据点与圆的位置关系即可得出结论.解:∵⊙O的半径为r,点P到圆心的距离为d,P点在圆外,∴d>r,故选:A.3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°【分析】由点A,B,C在⊙O上,∠BOC=72°,直接利用圆周角定理求解即可求得答案.解:∵点A,B,C在⊙O上,∠BOC=72°,∴∠BAC=∠BOC=36°.故选:B.4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.1【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.解:设两双只有颜色不同的手套的颜色为红和绿,列表得:(红,绿)(红,绿)(绿,绿)﹣(红,绿)(红,绿)﹣(绿,绿)(红,红)﹣(绿,红)(绿,红)﹣(红,红)(绿,红)(绿,红)∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率=.故选:B.5.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°【分析】利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选:B.6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点【分析】根据圆心角,弧,弦之间的关系解决问题即可.解:∵AB=CD=EF,∴==,故选:B.7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥1【分析】根据函数解析式可知,开口方向向下,在对称轴的右侧y随x的增大而减小,在对称轴的左侧,y随x的增大而增大.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.8.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y3【分析】先求出二次函数y=﹣x2﹣4x+m的图象的对称轴,然后判断出A(﹣,y1),B(﹣1,y2),C(,y3)在抛物线上的位置,再根据二次函数的增减性求解.解:∵二次函数y=﹣x2﹣4x+m中a=﹣1<0,∴开口向下,对称轴为x=﹣=﹣2,∵A(﹣,y1)到对称轴的距离大于B(﹣1,y2)到对称轴的距离,∴y1<y2,又∵B(﹣1,y2),C(,y3)都在对称轴的右侧,而在对称轴的右侧,y随x得增大而减小,故y2>y3.∵A(﹣,y1)到对称轴的距离小于C(,y3)到对称轴的距离,∴y1>y3,∴y2>y1>y3.故选:D.9.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α【分析】连接OD,求得∠DCE=α,得到∠BCD=90°﹣α,根据等腰三角形的性质和三角形的内角和即可得到结论.解:连接OD,∵的度数为α,∴∠DCE=α,∵∠ACB=90°,∴∠BCD=90°﹣α,∵BC=DC,∴∠B=(180°﹣∠BCD)=(180°﹣90°+α)=45°+α,∴∠A=90°﹣∠B=45°﹣α,故选:A.10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动【分析】先分别求出当b=﹣1、0、1时函数图象的顶点坐标即可得出答案.解:当b=﹣1时,此函数解析式为:y=x2+x+1,顶点坐标为:(﹣,);当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2﹣x+1,顶点坐标为:(,).故函数图象应先往右上方移动,再往右下方移动.故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.【分析】根据题意可以画出相应的树状图,从而可以求得相应的概率.解:由题意可得,所列树状图如下图所示,故甲、乙两人位置恰好相邻的概率是,故答案为:.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为x>3或x<﹣2 .x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 6【分析】本题通过描点画出图象,即可根据图象在x轴上部的那部分得出不等式ax2+bx+c >0的解集.解:通过描点作图如下,从图中可看出不等式ax2+bx+c>0的解集为x>3或x<﹣2.13.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为6acm.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).故答案为6cm.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=a.(用含a的代数式表示).【分析】先根据垂径定理得出AE=PE,PF=BF,故可得出EF是△APB的中位线,再根据中位线定理即可得出EF∥AB,EF=AB即可.解:连接AB,∵OE⊥AP于E,OF⊥PB于F,∴AE=PE,PF=BF,∴EF是△APB的中位线,∴EF∥AB,EF=AB=,故答案为:a.15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为15°或75°.【分析】根据圆的轴对称性知有两种情况:两弦在圆心的同旁;两弦在圆心的两旁.根据垂径定理和三角函数求解.解:过点O作OM⊥AC于M,在直角△AOM中,OA=r.根据OM⊥AC,则AM=AC=r,所以cos∠OAM=,则∠OAM=30°,同理可以求出∠OAB=45°,当AB,AC位于圆心的同侧时,∠BAC的度数为45°﹣30°=15°;当AB,AC位于圆心的异侧时,∠BAC的度数为45°+30°=75°.故答案为15°或75°.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=1或0或.【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.【分析】根据二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3),可以设该函数的交点式,然后根据与y轴交于点(0,3),即可求得a的值,从而可以得到该函数的解析式.解:设二次函数的解析式为y=a(x+1)(x﹣3),∵该二次函数的图象与y轴交于点(0,3),∴3=a(0+1)×(0﹣3),解得,a=﹣1,∴该函数解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即这个二次函数表达式是y=﹣x2+2x+3.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.【分析】连接AE,根据圆周角定理可得∠AEB=90°,再根据等腰三角形三线合一可得∠BAE=∠CAE,进而可得弧BE=弧DE,根据等弧所对的弦相等可得结论.【解答】证明:连接AE,∵AB是直径,∴∠AEB=90°,∵AB=AC,∴BE=CE,∠BAE=∠CAE,∴弧BE=弧DE,∴BE=ED,∴ED=EC19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.【分析】(1)根据函数图象中的数据可以得到方程ax2+bx+c=0(a≠0)的实数解;(2)根据图象中的数据可以得到方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围;(3)根据图象中的数据可以得到当0<x<3时,函数值y的取值范围..解:(1)由图象可得,当y=0时,x=﹣1或x=3,故方程ax2+bx+c=0(a≠0)的实数解是x1=﹣1,x2=3;(2)由图象可知,函数y=ax2+bx+c(a≠0)的最小值是y=﹣4,故方程ax2+bx+c=k有两个不相等的实数根,k的取值范围是k>﹣4;(3)由图象可知,当0<x<3时,函数值y的取值范围﹣4≤y<0.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?【分析】(1)由概率公式计算即可;(2)列举得出所有等可能的情况数,找出两次都是白球的情况数,即可求出所求的概率;(3)由题意得出方程,解方程即可.解:(1)将“恰好是白球”记为事件A,则P(A)==.(2)画树状图如图所示:共有12个等可能的结果,从中任意摸出2个球,“2个都是白球”记为事件B,则P(B)==.(3)设放入n个黑球,由题意得=,解得n=10,即放入了10个黑球.21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.【分析】(1)由在⊙O中,弦BC垂直于半径OA,根据垂径定理可得=,则可求得∠AOC的度数;(2)首先连接OB,由弦BC=6cm,可求得半径的长,继而求得图中劣弧的长.解:(1)∵在⊙O中,弦BC垂直于半径OA,∴=,∴∠AOC=2∠ADB=2×30°=60°;(2)连接OB,∴∠BOC=2∠AOC=120°,∵弦BC=6cm,OA⊥BC,∴CE=3cm,∴OC==2cm,∴劣弧的长为:=π.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.【分析】(1)根据a+3>a作出判断;(2)联立方程组,通过解方程组求得答案;(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入求值.解:(1)因为a+3>a,所以经过B、D、C的图象是y=(a+3)x2+(b﹣15)x+c+18的图象.(2)解方程组解得x1=2,x2=3,∴点B,D的横坐标分别为2,3.(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入,解得a=2,即y=2x2﹣12x+16,因此左边抛物线的解析式为y=﹣x2+3x﹣2.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.【分析】(1)如图1中,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS),推出△DFC为等边三角形即可解决问题.(2)①结论:AC=CD+CB,如图2,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS)即可解决问题.②结论:BD=2DP.如图3,过点D作DF⊥AC于点F,证明△DFE≌△CBE(AAS),△ADE≌△BDP(ASA)即可解决问题.【解答】(1)证明:如图1中,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=60°,∴△DFC为等边三角形,∴DC=FC,∴AC=AF+FC=BC+CD.(2)①解:结论:AC=CD+CB.理由:如图2,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=90°,∴△DFC为等腰直角三角形,∴FC=DC,∴AC=AF+FC=CD+CB.②解:结论:BD=2DP.理由:如图3,过点D作DF⊥AC于点F,∵∠ACD=∠ABD=45°,∴△CFD是等腰直角三角形,∴CD=DF,∵CD=CB,∴DF=CB,在△DFE和△CBE中,,∴△DFE≌△CBE(AAS),∴DE=BE=BD,在△ADE和△BDP中,,∴△ADE≌△BDP(ASA),∴DP=DE=BE=BD,即BD=2DP.。

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷试题数:22.满分:1501.(单选题.4分)圆柱的轴截面是正方形.且轴截面面积是S.则它的侧面积是()SA. 1πB.πSC.2πSD.4πS2.(单选题.4分)若直线l与平面α相交.则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直3.(单选题.4分)已知m.n是空间两条不同的直线.α.β是空间两个不同的平面.则下列命题正确的是()A.若α || β.m⊂α.n⊂β.则m || nB.若m.n异面.m⊂α.n⊂β.m || β.n || α.则α || βC.若α⊥β.m || n.m⊥α.则n || βD.若α⊥β.α∩β=m.n⊥m.则n⊥β4.(单选题.4分)如图.三棱柱ABC-A′B′C′中.侧面B′B′CC′的面积是4.点A′到侧面B′BCC′的距离是3.则三棱柱ABC-A′B′C′的体积为()A.12B.6C.4D.无法确定5.(单选题.4分)四面体ABCD中.AB=CD=2.其余棱长均为4.则该四面体外接球半径为()A. √14B. √142C.3 √2D. 3√226.(单选题.4分)某几何体的三视图如图所示.则该几何体的最长棱长为()A. √19B. √22C.5D.2 √77.(单选题.4分)在长方体ABCD-A1B1C1D1中.M.N分别是棱BB1.BC的中点.若M在以C1N为直径的圆上.则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化8.(单选题.4分)一封闭的正方体容器ABCD-A1B1C1D1.P.Q.R分别为AD.BB1.A1B1的中点.如图所示.由于某种原因.在P.Q.R处各有一个小洞.当此容器内存水最多时.容器中水的上表面的形状是()边形A.3B.4C.5D.69.(单选题.4分)已知a=sin1.5+cos1.5.b=sin1.5•cos1.5.c=(cos1.5)sin1.5.d=(sin1.5)cos1.5.则a.b.c.d的大小关系为()A.b<c<d<aB.b<d<c<aC.d<b<c<aD.d<c<b<a10.(单选题.4分)已知集合A={x|x2-x-6>0}.B={x|x2-3ax+4≤0}.若a>0.且A∩B中恰好有两个整数解.则a的取值范围是()A.[ 2915,209)B.(2915,209)C.[ 139,209)D.(53,209)11.(填空题.6分)棱长为a的正四面体ABCD中.E.F分别为棱AD.BC的中点.则异面直线EF 与AB所成的角大小是 ___ .线段EF的长度为 ___ .12.(填空题.4分)二面角α-l-β的大小是60°.线段AB⊂α.B∈l.AB与l所成的角为45°.则AB与平面β所成的角的余弦值是___ .13.(填空题.6分)正三棱锥的高为1.底面边长为2 √6 .则它体积为___ ;若有一个球与该正三棱锥的各个面都相切.则球的半径为___ .14.(填空题.6分)若f(x)= a−4x2x-3x为奇函数.则a=___ .此时.不等式f(1-x2)+f(3x+9)<0的解集为___ .15.(填空题.4分)在长方体ABCD-A1B1C1D1中.M是对角线AC1上一点.N是底面ABCD上一点.若AB=2.BC=AA1= √2 .则MB1+MN的最小值为___ .16.(填空题.6分)在棱长为1的正方体ABCD-A1B1C1D1中.E为CC1的中点.P.Q是正方体表面上相异两点.满足BP⊥A1E.BQ⊥A1E.(1)若P.Q均在平面A1B1C1D1内.则PQ与BD的位置关系是___ ;(2)|A1P|的最小值为___ .17.(填空题.4分)若不等式[2x(t-1)-1]•log a4x−14t≥0对任意的正整数x恒成立(其中a∈R.且a>1).则t的取值范围是___ .18.(问答题.14分)在△ABC中.角A.B.C的对边分别为a.b.c.(1)若cosC= 35 .且CB⃗⃗⃗⃗⃗ •CA⃗⃗⃗⃗⃗ = 92.求△ABC的面积;(2)设向量x =(2sin B2 . √3). y =(cosB.cos B2).且x || y .b=2.求a+c的取值范围.19.(问答题.15分)如图.在四棱锥P-ABCD的底面ABCD中.BC || AD.且AD=2BC.O.E分别为AD.PD中点.(1)设平面PAB∩平面PCD=l.请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点.证明:OQ || 平面PAB.20.(问答题.15分)已知数列{a n}的前n项和S n满足2S n-na n=3n(n∈N*).且a2=5.(1)证明数列{a n}为等差数列.并求{a n}的通项公式;(2)设b n=a√a+a√a .T n为数列{b n}的前n项和.求使T n>√310成立的最小正整数n的值.21.(问答题.15分)对于函数f(x).若存在实数对(m.n).使得等式f(m+x)•f(m-x)=n 对定义域中的每一个x都成立.则称函数f(x)是“(m.n)型函数”.(1)判断函数f(x)= √x是否为“(m.n)型函数”.并说明理由;(2)① 若函数g(x)是“(1.4)型函数”.已知g(0)=1.求g(2);② 若函数g(x)是“(1.4)型函数”.且当x∈[0.1]时.g(x)=x2-a(x-1)+1(a>0).若当x∈[0.2]时.都有1≤g(x)≤4成立.试求a的取值范围.22.(问答题.15分)如图.在等腰三角形ABC中.AB=AC.∠A=120°.M为线段BC的中点.D为线段BC上一点.且BD=BA.沿直线AD将△ADC翻折至△ADC′.使AC′⊥BD.记二面角C′-AD-B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小.并证明你的结论;(3)求cosα的值.2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷参考答案与试题解析试题数:22.满分:1501.(单选题.4分)圆柱的轴截面是正方形.且轴截面面积是S.则它的侧面积是()SA. 1πB.πSC.2πSD.4πS【正确答案】:B【解析】:根据圆柱的轴截面是正方形.且轴截面面积是S求出圆柱的母线长与底面圆的直径.代入侧面积公式计算.【解答】:解:∵圆柱的轴截面是正方形.且轴截面面积是S.∴圆柱的母线长为√S .底面圆的直径为√S .∴圆柱的侧面积S=π× √S × √S=πS.故选:B.【点评】:本题考查了圆柱的侧面积及轴截面.属于基础题.2.(单选题.4分)若直线l与平面α相交.则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直【正确答案】:D【解析】:α内过直线l与平面α交点的直线与直线l共面.判断A错误;α内过直线l与平面α交点的直线有无数条.判断B错误;α内不存在与直线l平行的直线.判断C错误;画出图形.结合图形判断D正确.【解答】:解:对于A.α内过直线l与平面α交点的直线与直线l是共面直线.∴A错误;对于B.α内过直线l与平面α交点的直线有无数条.且这些直线与直线l都是共面直线.∴B错误;对于C.α内不存在与直线l平行的直线.∴C错误;对于D.如图所示.直线PA与平面α交于点A.PO⊥α.则OA是PA在α内的射影.在α内作直线l⊥OA.则l⊥PA.这样的直线l有无数条.∴D正确.故选:D.【点评】:本题考查了直线与平面位置关系的应用问题.是基础题.3.(单选题.4分)已知m.n是空间两条不同的直线.α.β是空间两个不同的平面.则下列命题正确的是()A.若α || β.m⊂α.n⊂β.则m || nB.若m.n异面.m⊂α.n⊂β.m || β.n || α.则α || βC.若α⊥β.m || n.m⊥α.则n || βD.若α⊥β.α∩β=m.n⊥m.则n⊥β【正确答案】:B【解析】:A.由α || β.m⊂α.n⊂β.可知m与n无公共点.即可判断出正误;B.由m.n异面.m⊂α.n⊂β.m || β.n || α.即可得出α与β的位置关系;C.若α⊥β.m || n.m⊥α.则n || β或n⊂β.因此不正确;D.若α⊥β.α∩β=m.n⊥m.可得n与β的三种位置关系都有可能.【解答】:解:A.若α || β.m⊂α.n⊂β.则m || n或为异面直线.因此不正确;B.若m.n异面.m⊂α.n⊂β.m || β.n || α.则α || β.正确;C.若α⊥β.m || n.m⊥α.则n || β或n⊂β.因此不正确;D.若α⊥β.α∩β=m.n⊥m.则n⊂β.或n || β.或n与β相交.因此不正确.故选:B.【点评】:本题考查了空间位置关系的判定与性质定理、简易逻辑的判定方法.考查了推理能力与计算能力.属于中档题.4.(单选题.4分)如图.三棱柱ABC-A′B′C′中.侧面B′B′CC′的面积是4.点A′到侧面B′BCC′的距离是3.则三棱柱ABC-A′B′C′的体积为()A.12B.6C.4D.无法确定【正确答案】:B【解析】:由已知求得四棱锥A′-BCC′B′的体积.结合V三棱锥A′−ABC =13V三棱柱ABC−A′B′C′.可得V四棱锥A′-BCC′B′+V三棱锥A′-ABC=V三棱柱ABC-A′B′C′.从而求得三棱柱ABC-A′B′C′的体积.【解答】:解:∵侧面B′BCC′的面积是4.点A′到侧面B′BCC′的距离是3.∴V四棱锥A′-BCC′B′= 13×4×3=4.∵ V三棱锥A′−ABC =13V三棱柱ABC−A′B′C′.∵V四棱锥A′-BCC′B′+V三棱锥A′-ABC=V三棱柱ABC-A′B′C′.∴ 2 3V三棱柱ABC−A′B′C′=V四棱锥A′−BCC′B′=4.∴V三棱柱ABC-A′B′C′=6.故选:B.【点评】:本题考查了棱锥的体积计算公式.考查了推理能力与计算能力.属于中档题.5.(单选题.4分)四面体ABCD中.AB=CD=2.其余棱长均为4.则该四面体外接球半径为()B. √142C.3 √2D. 3√22【正确答案】:D【解析】:把四面体ABCD 放到长方体中.不难发现AB=CD=2.其余棱长均为4正好是长方体的对角线.从而即可求解四面体外接球半径【解答】:解:四面体ABCD 放到长方体中.AB=CD=2.其余AC=BC=AD=DB=4设长方体的边长分别为a.b.c .则 {a 2+b 2=4b 2+c 2=16a 2+c 2=16.解得a 2+b 2+c 2=18.四面体外接球半径:2R=3 √2 .R=3√22. 故选:D .【点评】:本题考查外接球的半径的求法.是中档题.解题时要认真审题.注意空间思维能力的培养.6.(单选题.4分)某几何体的三视图如图所示.则该几何体的最长棱长为( )A. √19B. √22C.5【正确答案】:B【解析】:画出几何体的直观图.利用三视图的数据.求解几何体的最长棱长.【解答】:解:由题意可知几何体是正方体的一部分.是四棱锥P-ABCD.正方体的棱长为3.P是所在棱的3等分点.PB= √32+32+22 = √22 .PA= √32+22 = √13 .PC= √32+32+12 = √19 .所以最长棱长为PB. √22.故选:B.【点评】:本题考查三视图求解几何体的棱长.考查转化思想以及空间想象能力.7.(单选题.4分)在长方体ABCD-A1B1C1D1中.M.N分别是棱BB1.BC的中点.若M在以C1N为直径的圆上.则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化【正确答案】:C【解析】:推导出C1M⊥MN.C1M⊥CB1.C1D1⊥B1C.从而B1C⊥平面C1D1M.由A1D || B1C.得A1D⊥平面C1D1M.由此能求出异面直线A1D与D1M所成的角的大小.【解答】:解:如图所示:∵M、N分别是棱BB1、BC的中点.∴MN || CB1.∵M在以C1N为直径的圆上.∴∠C1MN=90°.∴C1M⊥MN.∴C1M⊥CB1.由长方体的几何特征.我们可得C1D1⊥B1C.∴B1C⊥平面C1D1M.∵A1D || B1C.∴A1D⊥平面C1D1M.∴A1D⊥D1M.即异面直线A1D与D1M所成的角为90°.故选:C.【点评】:本题考查的知识点是异面直线及其所成的角.其中根据线面垂直的判定定理及性质定理.将问题转化为线线垂直的判定是解答本题的关键.8.(单选题.4分)一封闭的正方体容器ABCD-A1B1C1D1.P.Q.R分别为AD.BB1.A1B1的中点.如图所示.由于某种原因.在P.Q.R处各有一个小洞.当此容器内存水最多时.容器中水的上表面的形状是()边形A.3B.4C.5D.6【正确答案】:C【解析】:画出过P.Q.R三点的平面与正方体容器ABCD-A1B1C1D1的截面得答案.【解答】:解:如图.连接QR并延长.分别交AA1.AB的延长线与E.F.连接PE交A1D1于G.连接PF交BC于H.连接PH.QH.GR.则五边形PGRQH即为此容器内存水最多时.容器中水的上表面的形状.故选:C.【点评】:本题考查柱、锥、台的结构特征.考查了空间线面的位置关系.考查空间想象能力和思维能力.正确画出截面图是关键.是中档题.9.(单选题.4分)已知a=sin1.5+cos1.5.b=sin1.5•cos1.5.c=(cos1.5)sin1.5.d=(sin1.5)cos1.5.则a.b.c.d 的大小关系为( )A.b <c <d <aB.b <d <c <aC.d <b <c <aD.d <c <b <a【正确答案】:A【解析】:因为 π3 <1.5< π2 .所以 √32 <sin1.5<1;0<cos1.5< 12.注意到四个答案里都是a 最大.主要比较c 与d 的大小关系即可;找中间量sin1.5sin1.5.由y=sin1.5x 是R 上的减函数.sin1.5>cos1.5.可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0.+∞)上的增函数.sin1.5>cos1.5.可得cos1.5sin1.5<sin1.5sin1.5;故c <d.只有A 答案合适.【解答】:解:因为 π3 <1.5< π2 .所以 √32 <sin1.5<1;0<cos1.5< 12 .∴a > √32 .0<b < 12 ;∴b <a ;找中间量sin1.5sin1.5.由y=sin1.5x 是R 上的减函数.sin1.5>cos1.5.可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0.+∞)上的增函数.sin1.5>cos1.5.可得cos1.5sin1.5<sin1.5sin1.5;故c <d.只有A 答案合适.故选:A .【点评】:本题考查了大小关系比较.利用指数函数与幂函数的单调性.构造中间量a a 或b b .可比较a b 与b a 形式的数的大小关系.及排除法解决选择题.属于中档题.10.(单选题.4分)已知集合A={x|x 2-x-6>0}.B={x|x 2-3ax+4≤0}.若a >0.且A∩B 中恰好有两个整数解.则a 的取值范围是( )A.[ 2915,209 )B.( 2915,209 ) C.[ 139,209 ) D.( 53,209 ) 【正确答案】:A【解析】:可以求出集合A=(-∞.-2)∪(3.+∞).可令f (x )=x 2-3ax+4.根据a >0及△>0即可得出 a >43 .并且求出 B =[3a−√9a 2−162,3a+√9a 2−162] .可得出 0<3a−√9a 2−162<2 .从而得出要使A∩B 中恰好有两个整数解.只能是4和5.从而可得出 {f (4)≤0f (5)≤0f (6)>0.解出a 的范围即可.【解答】:解:A=(-∞.-2)∪(3.+∞).令f (x )=x 2-3ax+4.由题意.△=9a 2-16>0.且a >0.∴解得 a >43 . B =[3a−√9a 2−162,3a+√9a 2−162] . 又 0<3a−√9a 2−162=3a+√9a 2−162 .∴要使A∩B 中恰好有两个整数解.则只能是4和5.∴ {f (4)=16−12a +4≤0f (5)=25−15a +4≤0f (6)=36−18a +4>0 .解得 2915≤a <209 .∴a 的取值范围是 [2915,209) . 故选:A .【点评】:考查描述法、区间表示集合的定义.一元二次方程和一元二次不等式的解法.以及元素与集合的关系.减函数的定义.11.(填空题.6分)棱长为a 的正四面体ABCD 中.E.F 分别为棱AD.BC 的中点.则异面直线EF 与AB 所成的角大小是 ___ .线段EF 的长度为 ___ .【正确答案】:[1] π4 ; [2] √22 a【解析】:取BD中点G.连结BE.CE.EG.FG.则EG || AB.且EG=FG= 12AB = a2.∠EFG是异面直线EF与AB所成的角(或所成角的补角).由此能求出异面直线EF与AB所成的角大小和线段EF的长度.【解答】:解:棱长为a的正四面体ABCD中.E.F分别为棱AD.BC的中点.取BD中点G.连结BE.CE.EG.FG.则EG || AB.且EG=FG= 12AB = a2.∴∠EFG是异面直线EF与AB所成的角(或所成角的补角).BE=CE= √a2−(a2)2= √3a2.EF= √(√3a2)2−(a2)2= √2a2.cos∠EFG= EF2+GF2−EG22×EF×GF =a22+a24−a242×√2a2×a2= √22.∴∠EFG= π4.∴异面直线EF与AB所成的角大小是π4 .线段EF的长度为√22a.故答案为:π4 . √22a.【点评】:本题考查异面直线所成角的大小、线段长的求法.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是基础题.12.(填空题.4分)二面角α-l-β的大小是60°.线段AB⊂α.B∈l.AB与l所成的角为45°.则AB与平面β所成的角的余弦值是___ .【正确答案】:[1] √104【解析】:根据二面角和直线和平面所成角的定义.先作出对应的平面角.结合三角形的边角关系进行求解即可.【解答】:解:过点A作平面β的垂线.垂足为C.在β内过C作l的垂线.垂足为D.连结AD.根据三垂线定理可得AD⊥l.因此.∠ADC为二面角α-l-β的平面角.∠ADC=60°又∵AB与l所成角为45°.∴∠ABD=45°连结BC.可得BC为AB在平面β内的射影.∴∠ABC为AB与平面β所成的角.设AD=2x.则Rt△ACD中.AC=ADsin60°= √3 x.Rt△ABD中.AB= ADsin45°=2 √2x .BC= √(2√2x)2−(√3x)2 = √5x .∴Rt△ABC中.cos∠ABC= BCAB = √5x2√2x= √104.故答案为:√104.【点评】:本题主要考查线面垂直的定义与性质、二面角的平面角的定义和直线与平面所成角的定义及求法等知识.13.(填空题.6分)正三棱锥的高为1.底面边长为2 √6 .则它体积为___ ;若有一个球与该正三棱锥的各个面都相切.则球的半径为___ .【正确答案】:[1]2 √3 ; [2] √6 -2【解析】:求出底面的面积.利用体积公式带入即可.要求内切球半径.根据横截面图.利用三角形相似得出r.【解答】:解:底面等边三角形的面积S= √34•(2√6)2 = 6√3 .所以V= 13•6√3•1=2√3 .设内切球的球心为O.半径为r.则在O与底面的中心M.BM= 2√6•√32•13=√2 .OE=r.OA=1-r.侧面斜边的高AB= √1+OM2=√3由△AOE∽△ABM.得相似得rBM =1−rAB.√2=√3. r(√3+√2)=√2 .所以r=√6−2.故答案为:√6 -2.【点评】:考察正三棱锥的体积.内切球的半径.中档题.14.(填空题.6分)若f(x)= a−4x2x-3x为奇函数.则a=___ .此时.不等式f(1-x2)+f(3x+9)<0的解集为___ .【正确答案】:[1]1; [2](-2.5)【解析】:含有参数的函数奇偶性问题.要利用常见的结论.通过赋值法解决;第二问综合应用函数单调性和奇偶性的性质.【解答】:解:∵f(x)为奇函数.∴f(0)=0.即a−4020−3×0=0 .∴a=1.∴ f(x)=1−4x2x =12x−2x,∵ 12x减函数,−2x也为减函数 .∴f(x)为减函数.且为奇函数∵f(1-x2)+f(3x+9)<0.∴f(1-x2)<-f(3x+9)=f(-3x-9).∴1-x2>-3x-9.∴-2<x<5.故不等式的解集为(-2.5).故答案为:1.(-2.5).【点评】:第一问是常规问题.注意函数定义域即可;第二问要利用函数是奇函数.把不等式的表达形式变形.15.(填空题.4分)在长方体ABCD-A1B1C1D1中.M是对角线AC1上一点.N是底面ABCD上一点.若AB=2.BC=AA1= √2 .则MB1+MN的最小值为___ .【正确答案】:[1] 3√22【解析】:将△AB1C1绕边AC1旋转到APC1位置.使得平面APC1和平面ACC1在同一平面内.则P到平面ABCD的距离即为MB1+MN的最小值.利用勾股定理解出即可.【解答】:解:将△AB1C1绕边AC1旋转到APC1位置.使得平面APC1和平面ACC1在同一平面内.过点P作PN⊥平面ABCD.交AC1于M.垂足为N.则PN为MB1+MN的最小值.∵AB=2.BC=AA1= √2 .∴AC1= √4+2+2 =2 √2 .AP=AB1= √4+2 = √6 .∵sin∠C1AC= CC1AC1 = √22√2= 12.∴∠C1AC=30°.∴∠PAN=2∠C1AC=60°.∴PN=AP•sin∠PAN= √6•√32 = 3√22.∴MB1+MN的最小值为3√22.故答案为:3√22.【点评】:本题考查了空间距离的计算.将两线段转化为同一平面上是解决最小值问题的一般思路.属于中档题.16.(填空题.6分)在棱长为1的正方体ABCD-A1B1C1D1中.E为CC1的中点.P.Q是正方体表面上相异两点.满足BP⊥A1E.BQ⊥A1E.(1)若P.Q均在平面A1B1C1D1内.则PQ与BD的位置关系是___ ;(2)|A1P|的最小值为___ .【正确答案】:[1]平行; [2] 3√24【解析】:(1)以D为原点.DA为x轴.DC为y轴.DD1为z轴.建立空间直角坐标系.利用向量法能判断PQ与BD的位置关系.(2)当|A1P|取最小值时.P在平面A1B1C1D1内.设P(a.b.1).推导出b=a+ 12.由此能求出|A1P|的最小值.【解答】:解:(1)以D 为原点.DA 为x 轴.DC 为y 轴.DD 1为z 轴.建立空间直角坐标系. 则A 1(1.0.1).E (0.1. 12 ).B (1.1.0). ∵P .Q 均在平面A 1B 1C 1D 1内.∴设P (a.b.1).Q (m.n.1).则 A 1E ⃗⃗⃗⃗⃗⃗⃗ =(-1.1.- 12 ). BP⃗⃗⃗⃗⃗ =(a-1.b-1.1). BQ ⃗⃗⃗⃗⃗ =(m-1.n-1.1). ∵BP⊥A 1E.BQ⊥A 1E .∴ {BP ⃗⃗⃗⃗⃗ •A 1E ⃗⃗⃗⃗⃗⃗⃗ =−(a −1)+(b −1)−12=0BQ ⃗⃗⃗⃗⃗ •A 1E ⃗⃗⃗⃗⃗⃗⃗ =−(m −1)+(n −1)−12=0 . 解得 {b −a =12n −m =12.∴PQ || BD .即PQ 与BD 的位置关系是平行. 故答案为:平行.(2)当|A 1P|取最小值时.P 在平面A 1B 1C 1D 1内.设P (a.b.1).由(1)得b=a+ 12 .∴|A 1P|= √(a −1)2+b 2 = √(a−1)2+(a +12)2 = √2a 2−a +54 = √2(a −14)2+98 .∴当a= 14 .即P ( 14 . 34 .1)时.|A 1P|的最小值为3√24. 故答案为:3√24 .【点评】:本题考查两直线位置关系的判断.考查两点间距离的最小值的求法.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是中档题.17.(填空题.4分)若不等式[2x (t-1)-1]•log a 4x−14t≥0对任意的正整数x 恒成立(其中a∈R .且a >1).则t 的取值范围是___ .【正确答案】:[1] 54≤t ≤32【解析】:原不等式等价于 {2x (t −1)−1≥0log a 4x−14t ≥0 或{2x (t −1)−1≤0log a 4x−14t ≤0 即 {t ≥1+12x t ≤x −14 ① 或 {t ≤1+12x t ≥x −14② .进而求解;【解答】:解:原不等式等价于:{2x (t −1)−1≥0log a 4x−14t ≥0 或 {2x (t −1)−1≤0log a 4x−14t ≤0 即 {t ≥1+12x t ≤x −14 ① 或 {t ≤1+12x t ≥x −14② . 注意到x=1时. ② 成立.此时 34 ≤t≤ 32 ;当x∈Z .x≥2时. ① 成立.在 ① 中.1+ 12x ≤t≤x - 14 .又g (x )=x- 12x - 54 为单调递增函数.所以.要使 {t ≥1+12x t ≤x −14对x∈Z .x≥2成立.只需x=2时成立.又x=2时. 54 ≤t≤ 74 . 所以要使不等式对任意的正整数x 恒成立.则t 的取值范围是: 54 ≤t≤ 32 .故答案为: 54 ≤t≤ 32 .【点评】:考查不等式的性质.求解.函数单调性.转化思想;18.(问答题.14分)在△ABC 中.角A.B.C 的对边分别为a.b.c .(1)若cosC= 35 .且 CB ⃗⃗⃗⃗⃗ •CA ⃗⃗⃗⃗⃗ = 92.求△ABC 的面积; (2)设向量 x =(2sin B 2 . √3 ). y =(cosB.cos B 2 ).且 x || y .b=2.求a+c 的取值范围.【正确答案】:【解析】:(1)由 CB ⃗⃗⃗⃗⃗ • CA ⃗⃗⃗⃗⃗ = 92 .得ab= 152 .可得△ABC 的面积S= 12 absinC=3. (2)由 x || y .可得B= π3 .由正弦定理可得a=√3 .c= √3 .则a+c= √3(2π3−C)+sinC] =4(cosC+√32sinC )=4sin (C+ π6).即可求解. 【解答】:解(1)由 CB ⃗⃗⃗⃗⃗ • CA ⃗⃗⃗⃗⃗ = 92 .得abcosC= 92. 又因为cosC= 35 .所以ab= 92cosC = 152 .又C为△ABC的内角.所以sinC= 45.所以△ABC的面积S= 12absinC=3.(2)因为x || y .所以2sin B2 cos B2= √3 cosB.即sinB= √3 cosB.因为cosB≠0.所以tanB= √3.因为B为三角形的内角.0<B<π.所以B= π3.由正弦定理asinA =csinC=bsinB= 4√3.所以a= 4sinA√3.c= 4sinC√3.所以a+c= 4√3(sinA+sinC) .又A+C= 2π3.所以a+c= 4√3[sin(2π3−C)+sinC] =4(cosC+ √32sinC)=4sin(C+ π6).又0 <C<2π3 .所以π6<C+ π6<5π6.所以∈(2.4].【点评】:本题考查了正弦定理、三角恒等变形.属于中档题.19.(问答题.15分)如图.在四棱锥P-ABCD的底面ABCD中.BC || AD.且AD=2BC.O.E分别为AD.PD中点.(1)设平面PAB∩平面PCD=l.请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点.证明:OQ || 平面PAB.【正确答案】:【解析】:(1)分别延长AB和DC交于点R.连接PR.直线PR就是交线l的位置;根据平面公理即可得出结论;(2)连接OE、OC.证明OC || 平面PAB.OE || 平面PAB.得出平面PAB || 平面OEC.证得OQ || 平面PAB.【解答】:(1)解:分别延长AB和DC交于点R.连接PR.则直线PR就是l的位置;R∈AB⊂平面PAB.R∈CD⊂平面PCD.所以P 、R 是平面PAB 和平面PCD 的两个公共点. 由公理1可知.过P 、R 的直线就是两个平面的交线l . (2)证明:连接OE 、OC.因为BC || AD.且BC= 12AD. 又AO= 12 AD.所以BC || AO.且BC=AO.所以四边形ABCO 为平行四边形. 所以OC || AB.则OC || 平面PAB ; 又OE 为△PAD 的中位线.则OE || AP. 所以OE || 平面PAB.又OE⊂平面OEC.OC⊂平面OEC.且OE∩OC=O . 所以平面PAB || 平面OEC. 又OQ⊂平面OEC. 所以OQ || 平面PAB .【点评】:本题考查了空间中的平行关系证明与应用问题.是基础题.20.(问答题.15分)已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n∈N*).且a 2=5. (1)证明数列{a n }为等差数列.并求{a n }的通项公式; (2)设b n = a√a +a √a .T n 为数列{b n }的前n 项和.求使T n >√310 成立的最小正整数n 的值.【正确答案】:【解析】:(1)运用数列的递推式.两次将n 换为n-1.相减.结合等差数列的定义和通项公式.即可得到所求; (2)求得b n =√a •√a (√a +√a )=√2n+1•√2n+3(√2n+1+√2n+3) = √2n+3−√2n+12√2n+1•√2n+3 = 12 ( √2n+1-√2n+3).再由数列的裂项相消求和.以及不等式的解法.可得所求最小值.【解答】:解:(1)当n≥2时.2S n-1-(n-1)a n-1=3(n-1).又2S n -na n =3n. 相减可得(n-1)a n-1-(n-2)a n =3.当n≥3时.(n-2)a n-2-(n-3)a n-1=3. 所以(n-1)a n-1-(n-2)a n =(n-2)a n-2-(n-3)a n-1.可得2a n-1=a n-2+a n .所以{a n }为等差数列.又2S 1-a 1=3.且a 1=S 1.得a 1=3.又a 2=5. 所以{a n }为公差为2的等差数列.则a n =2n+1; (2)b n = a√a +a √a = √a •√a (√a +√a ) = √2n+1•√2n+3(√2n+1+√2n+3) = √2n+3−√2n+12√2n+1•√2n+3 = 12 √2n+1 - √2n+3). T n = 12 ( √3 - √5 + √5 - √7 + √7 - 13 + 13 - √11 +…+ √2n+1 - √2n+3 )= 12 √3 - √2n+3).要使T n >√310 成立. 即 12 √3 -√2n+3 √310 .解得n > 638 .所以最小正整数n 的值为8.【点评】:本题考查数列的递推式的运用.考查等差数列的定义和性质、通项公式.考查数列的裂项相消求和.以及不等式的解法.考查化简运算能力.属于中档题.21.(问答题.15分)对于函数f (x ).若存在实数对(m.n ).使得等式f (m+x )•f (m-x )=n 对定义域中的每一个x 都成立.则称函数f (x )是“(m.n )型函数”. (1)判断函数f (x )= √x 是否为“(m.n )型函数”.并说明理由; (2) ① 若函数g (x )是“(1.4)型函数”.已知g (0)=1.求g (2);② 若函数g (x )是“(1.4)型函数”.且当x∈[0.1]时.g (x )=x 2-a (x-1)+1(a >0).若当x∈[0.2]时.都有1≤g (x )≤4成立.试求a 的取值范围.【正确答案】:【解析】:(1) √m +x •√m −x =√m 2−x 2=n .则x 2=m 2-n 2不可能恒成立.即可判定; (2) ① 由g (x+1)g (1-x )=4.取x=1.则g (2)g (0)=4.即可求得g (2)=4. ② 方法一:可得当x∈[0.1]时.2-x∈[1.2]时.g (2-x )= 4g (x ) = 4x 2−a (x−1)+1 = 4x 2−ax+a+1 . (a )当0<a <1时.(b )当1≤a <2时.(c )当a≥2时讨论即可方法二:当x∈[1.2]时.1≤g (x )≤4;当x∈[0.1]时.2-x∈[1.2]时.所以g (2-x )∈[1.4].而g (x )g (2-x )=4.所以1 ≤4g (x )≤4 .即1≤g (x )≤4.问题转化为当x∈[0.1]时.1≤g (x )≤4即可.【解答】:解:(1) √m +x •√m −x =√m 2−x 2=n .则x 2=m 2-n 2不可能恒成立.所以f (x )=x 不是““(m.n )型函数”;(2) ① 由题意.g (x+1)g (1-x )=4.取x=1.则g (2)g (0)=4.又g (0)=1.所以g (2)=4.② 方法一:∵g (x+1)g (1-x )=4.所以g (x )g (2-x )=4.当x∈[0.1]时.2-x∈[1.2]时.g (2-x )= 4g (x ) = 4x 2−a (x−1)+1 = 4x 2−ax+a+1 .(a )当0<a <1时.0< a2<12 .则g (x )在[0.1]内先减后增.且g ( a2 ≤g (x )≤41+a−a 24.即1+a-14a 2≤g (x )≤2. 则当x∈[1.2]时.2≤g (x ) ≤41+a−14a 2.所以当x∈[0.2]时.1+a- 14a 2 ≤g (x )≤41+a−14a 2.由题意. {1+a −14a 2≥141+a−14a2≤4 .解得0≤a≤4.所以0<a <1.(b )当1≤a <2时. 12≤a 2<1 .则g (x )在][0.1]内先减后增.且g ( a2 )≤g (x )≤g (0).即1+a- 14a 2 ≤g (x )≤1+a . 则当x∈[1.2]时. 41+a ≤g (x )≤41+a−14a 2.要满足题意.则应满足 {41+a≥11+a −a 24≥1.且 {1+a ≤441+a−a24≤4解得0≤a≤33.所以1≤a <2.(c )当a≥2时. a 2≥1.则g (x )在[0.1]内递减.且g (1)≤g (x )≤g (0).即2≤g (x )≤1+a . 则当x∈[1.2]时. 41+a ≤g (x )≤2 .此时.g (x )min = 41+a .g (x )min =1+a .要满足条件.则应{41+a≥11+a ≤4.解得a≤3.所以2≤a≤3.综上所述.0<a≤3.方法二:当x∈[0.2]时.都有1≤g (x )≤4成立.所以当x∈[1.2]时.1≤g (x )≤4;当x∈[0.1]时.2-x∈[1.2]时.所以g (2-x )∈[1.4].而g (x )g (2-x )=4.所以1 ≤4g (x )≤4 .即1≤g (x )≤4. 所以问题转化为当x∈[0.1]时.1≤g (x )≤4即可.当x∈[0.1]时.g(x)=x2-a(x-1)+1(a>0).(1)当0<a2<1.即0<a<2时. {g(a2)=1+a−a24≥1g(0)=a+1≤4g(1)=2≤4.解得0≤a≤3.所以0<a<2;(2)当a2≥1 .即a≥2时.只要{g(0)=a+1≤4g(1)=2≥1解得a≤3.所以2<a≤3;综上所述.0<a≤3.【点评】:本题考查了函数的新定义.考查了函数的最值问题、分类讨论思想、转化思想.考查了分析问题的能力.属于难题.22.(问答题.15分)如图.在等腰三角形ABC中.AB=AC.∠A=120°.M为线段BC的中点.D为线段BC上一点.且BD=BA.沿直线AD将△ADC翻折至△ADC′.使AC′⊥BD.记二面角C′-AD-B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小.并证明你的结论;(3)求cosα的值.【正确答案】:【解析】:(1)推导出AM⊥BD.BD⊥AC′.从而BD⊥平面AMC′.由此能证明平面△AMC′⊥平面ABD.(2)过点C′作C′P⊥AM.垂足为P.则C′P⊥平面ABD.过P作PQ⊥AD.连接C′Q.则C′Q⊥AQ.∠C′QP=α.QC′是由QC翻折得到.从而∠C′QP=α=2∠C′CQ.且∠C′CQ就是直线C′C与平面ABC所成的角.同理.∠C′DB=2∠C′CD.由此能证明∠C′DB>α.(3)在△C′AM中.过点C′作AM的垂线.垂足为P.过P作AD的垂线.垂足为Q.推导出∠C′QP 就是二面角C′-AD-B的平面角.由此能求出cosα的值.【解答】:解:(1)证明:∵AM⊥BD.BD⊥AC′.AM∩AC′=A.∴BD⊥平面AMC′.∵BD⊂平面ABD.∴平面△AMC′⊥平面ABD.(2)解:如图.在△C′AM所在平面内.过点C′作C′P⊥AM.垂足为P.则C′P⊥平面ABD.过P作PQ⊥AD.连接C′Q.则C′Q⊥AQ.∠C′QP=α.又QC′是由QC翻折得到.∴∠C′QP=α=2∠C′CQ.且∠C′CQ就是直线C′C与平面ABC所成的角.同理.又C′D是由DC翻折得到.∴∠C′DB=2∠C′CD.由线面角的最小性可知.∠C′CD>∠C′CQ.∴∠C′DB>α.(3)解:如图.在△C′AM中.过点C′作AM的垂线.垂足为P.过P作AD的垂线. 垂足为Q.平面AMC′⊥平面BCD.交线为AM.C′P⊥平面ABD.又PQ⊥AD.∴CQ⊥AD.∴∠C′QP就是二面角C′-AD-B的平面角.△AMC中.∠MAD=15°.∠CAD=45°.作出二面角的平面角∠C1QP后.若将半平面C1AD摊平.则P.Q.C的连线与AD垂直.且cos∠C′QP= PQQC1 = PQQC= PQAQ=tan∠PAQ=tan15°=2- √3.【点评】:本题考查平面与平面垂直的证明.考查两角大小的判断与证明.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是中偿题.。

浙江省温州市2019-2020学年数学中考一模试卷(含答案)

浙江省温州市2019-2020学年数学中考一模试卷(含答案)

浙江省温州市2019-2020学年数学中考一模试卷(含答案)一、单选题1.在,,0,-2这四个数中,为无理数的是( )A. B. C. 0 D. -2【答案】A【考点】无理数的认识2.下列计算正确的是()A. a2+a3=a5B. a2•a3=a5C. (2a)2=4aD. (a2)3=a5【答案】B【考点】同底数幂的乘法,合并同类项法则及应用,积的乘方,幂的乘方3.如图所示,该圆柱体的左视图是()A. B. C. D.【答案】C【考点】简单几何体的三视图4.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A. 22°B. 26°C. 32°D. 34°【答案】A【考点】圆周角定理5.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表所示:表中表示成绩分数的数据中,中位数是()A. 38分B. 38.5分C. 39分D. 39.5分【答案】C【考点】中位数6.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A. (x+3)2=1B. (x﹣3)2=1C. (x+3)2=19D. (x﹣3)2=19【答案】 D【考点】公式法解一元二次方程7.不等式组的解集是()A. x≥2B. 1<x<2C. 1<x≤2D. x≤2【答案】C【考点】解一元一次不等式组8.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A. 0<y1<y2B. y1<0<y2C. y1<y2<0D. y2<0<y1【答案】B【考点】比较一次函数值的大小9.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”.如图是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中点E,P分别是AD,CD的中点,AB=2 ,一只蚂蚁从A处沿图中实线爬行到出口P处,则它爬行的最短路径长为()A. 3B. 2+C. 4D. 3【答案】B【考点】七巧板,勾股定理,矩形的性质10.如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A. 15B. 18C. 20D. 24【答案】C【考点】相似三角形的判定与性质,旋转的性质二、填空题11.分解因式:a2﹣4a=________.【答案】a(a﹣4)【考点】因式分解-提公因式法12.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为________.【答案】3【考点】利用频率估计概率13.某种品牌手机经过4,5月份连续两次降价,每部售价由5000降到3600元,且5月份降价的百分率是4月份降价的百分率的2倍.设4月份降价的百分率为x,根据题意可列方程:________(不解方程).【答案】5000(1﹣x)(1﹣2x)=3600【考点】一元二次方程的实际应用-销售问题14.如图,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE,若∠B=30°,则∠CDE=________°.【答案】45【考点】菱形的判定与性质,翻折变换(折叠问题)15.如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120°角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD= 米,则路灯的灯柱BC高度应该设计为________米(计算结果保留根号).【答案】【考点】相似三角形的判定与性质,相似三角形的应用,解直角三角形16.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD 的面积为S2,若,则CD的长为________.【答案】【考点】反比例函数与一次函数的交点问题,反比例函数的实际应用三、解答题17.计算:(﹣2)0﹣()2+|﹣1|.【答案】解:原式=1﹣6+1=﹣4【考点】实数的运算18.如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.【答案】(1)证明:∵∠ABE+∠EBD+∠DBC=180°,∠A+∠AEB+∠EBA=180°,∵∠EBD=∠A=∠DCB,∴∠EBA=∠DBC,在△ABE与△CDB中,∴△ABE≌△CDB(AAS)(2)解:∵△ABE≌△CDB,∴BE=DB,∠AEB=∠DBC,∵∠CDB=60°,∠AEB=50°,∴∠DBC=50°,∴∠C=180°﹣60°﹣50°=70°,∴∠EBD=∠DCB=70°,∴∠BDE= .【考点】全等三角形的判定与性质19.如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.【答案】解:△POQ如图所示;【考点】勾股定理,作图—复杂作图20.随着道路交通的不断完善,某市旅游业快速发展,该市旅游景区有A、B、C、D、E等著名景点,市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2017年“五•一”期间,该市旅游景点共接待游客________万人,扇形统计图中A景点所对应的圆心角的度数是________,并补全条形统计图.________(2)在等可能性的情况下,甲、乙两个旅行团在A、B、D三个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.【答案】(1)50;108°;补全条形图如下,(2)解:画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率= =【考点】扇形统计图,条形统计图,列表法与树状图法21.如图,钝角△ABC中,AB=AC,BC=2 ,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB 于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.【答案】(1)证明:连接OE,如图,∵OB=OE,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∵EF为切线,∴OE⊥EF,∴EF⊥AC(2)解:连接DE,如图,设⊙O的半径长为r,∵BD为直径,∴∠BED=90°,在Rt△BDE中,∵∠B=30°,∴DE= BD=r,BE= r,∵DF∥BC,∴∠EDF=∠BED=90°,∵∠C=∠B=30°,∴∠CEF=60°,∴∠DFE=∠CEF=60°,在Rt△DEF中,DF= r,∴EF=2DF= r,在Rt△CEF中,CE=2EF= r,而BC=2 ,∴r+ r=2 ,解得r= ,即⊙O的半径长为.【考点】圆周角定理,切线的性质,解直角三角形22.如图,▱ABCD位于直角坐标系中,AB=2,点D(0,1),以点C为顶点的抛物线y=ax2+bx+c经过x轴正半轴上的点A,B,CE⊥x轴于点E.(1)求点A,B,C的坐标.(2)将该抛物线向上平移m个单位恰好经过点D,且这时新抛物线交x轴于点M,N.①求MN的长.________②点P是新抛物线对称轴上一动点,将线段AP绕点A顺时针旋转60°得AQ,则OQ的最小值为________(直接写出答案即可)【答案】(1)解:∵四边形ABCD是平行四边形,∴CD=AB=2,∵CE⊥x轴,∴OE=2,∵点E是AB中点,∴AE=BE=1,∴OA=2﹣1=1.OB=OE+BE=3,∴A(1,0),B(3,0),∵D(0,1),∴C(2,1)(2)解:由(1)知,抛物线的顶点C(2,1),∴设抛物线的解析式为y=a(x﹣2)2+1,∵A(1,0)在抛物线上,∴a(1﹣2)2+1=0,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣2)2+1,①该抛物线向上平移m个单位恰好经过点D,设平移后的抛物线解析式为y=﹣(x﹣2)2+1+m,∵D(0,1),∴﹣(﹣2)2+1+m=1,∴m=4,∴平移后的抛物线解析式为y=﹣(x﹣2)2+5,令y=0,∴0=﹣(x﹣2)2+5,∴x=2± ,∴M(2+ ,0),N(2﹣,0),∴MN=2;【考点】待定系数法求二次函数解析式,二次函数的实际应用-几何问题23.如图,王爷爷家院子里有一块三角形田地ABC,AB=AC=5米,BC=6米,现打算把它开垦出一个矩形MNFE区域种植韭菜,△AMN区域种植芹菜,△CME和△BNF区域种植青菜(开垦土地面积损耗均忽略不计),其中点M,N分别在AC,AB上,点E,F在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,设CM=5x米,王爷爷的蔬菜总收益为W元.(1)当矩形MNFE恰好为正方形时,求韭菜种植区域矩形MNFE的面积.(2)若种植韭菜的收益等于另两种蔬菜收益之和的2倍,求这时x的值.(3)求王爷爷的蔬菜总收益为W关于x的函数表达式及W的最大值.【答案】(1)解:作AH⊥BC于H,交MN于D.∵AB=AC,AH⊥BC,∴CH=HB=3,在Rt△ACH中,AH= =4,∵ME∥AH,∴= = ,∴CE=3x,EM=EF=4x,易证△MEC≌△NFB,∴CE=BF=3x,∴3x+4x+3x=6,∴x= ,∴EM= ,∴矩形MNFE的面积为平方米(2)解:由题意:100×4x•(6﹣6x)=2•[60× ×(6﹣6x)•(4﹣4x)+40×4x×3x],解得x= 或(3)解:由题意W=100×4x•(6﹣6x)+60× ×(6﹣6x)•(4﹣4x)+40×4x×3x=﹣1200x2+960x+720=﹣1200(x﹣)2+912,,∵﹣1200<0,∴x= 时,W有最大值,最大值为912元.【考点】相似三角形的判定与性质,一元二次方程的实际应用-销售问题,二次函数的实际应用-销售问题24.如图,矩形ABCD中,AD=10,CD=15,E是边CD上一点,且DE=5,P是射线AD上一动点,过A,P,E三点的⊙O交直线AB于点F,连结PE,EF,PF,设AP=m.(1)当m=6时,求AF的长.(2)在点P的整个运动过程中.①tan∠PFE的值是否改变?若不变,求出它的值;若改变,求出它的变化范围.②当矩形ABCD恰好有2个顶点落在⊙O上时,求m的值.(3)若点A,H关于点O成中心对称,连结EH,CH.当△CEH是等腰三角形时,求出所有符合条件的m 的值.(直接写出答案即可)【答案】(1)解:如图1中,连接AE.在Rt△DPE中,∵DE=5,DP=AD﹣AP=4,∴PE= = ,在Rt△ADE中,AE= =5 ,∵∠PAF=90°,∴PF是⊙O的直径,∴∠PEF=∠ADF=90°,∵∠DAE=∠PFE,∴△ADE∽△FEP,∴= ,∴= ,∴PF= ,在Rt△PAF中,AF= = =13.(2)解:①tan∠PFE的值不变.理由:如图1中,∵∠PFE=∠DAE,∴tan∠PFE=tan∠DAF= = .②如图2中,当⊙O经过A、D时,点P与D重合,此时m=10.如图3中,当⊙O经过A、B时,在Rt△BCE中,BE= =10 ,∵tan∠PFE= ,∴PE=5 ,∴PD= =5,∴m=PA=5.如图4中当⊙O经过AC时,作FM⊥DC交DC的延长线于M.根据对称性可知,DE=CM=BF=5,在Rt△EFM中,EF= =5 ,∴PE= EF= ,∴PD= = ,∴m=AD﹣PD= ,综上所述,m=10或5或时,矩形ABCD恰好有2个顶点落在⊙O上(3)解:如图5中,当EC=CH时,根据对称性可知:PE=CH=EC=10,PD= =5 ,∴m=10﹣5 .如图6中当EC=EH=10时,在Rt△AEH中,AH= = =5 ,易知PF=AH=5 ,∵∴∴PE:EF:PF=1:2:,∴PE= ,在Rt△PDE中,DP= =2 ,∴m=PA=AD﹣PD=10﹣2 .如图7中当HC=HE时,延长FH交CD于M,则EM=CM=BF=5,HM= ,∴m=PA=HF=10﹣= .如图8中,当EH=EC时,PF=AH= = =5 ,∵PE:EF:PF=1:2:,∴PE= ,在Rt△PDE中,PD= =3 ,∴m=PA=AD+PD=10+3 ,综上所述,满足条件的m的值为10﹣5 或10﹣2 或或10+3 .【考点】圆的综合题,几何图形的动态问题。

专题04 恒成立问题 高二数学(人教A版2019)

专题04 恒成立问题 高二数学(人教A版2019)

专题04 恒成立问题一、单选题1.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef【试题来源】2020届福建省仙游县枫亭中学高三上学期期中考试(理) 【答案】B【分析】构造函数()()x f x F x e=,求出'()0F x >,得到该函数为R 上的增函数,故得(0)(1)F F <,(0)(2018)F F <,从而可得到结论.【解析】设()()x f x F x e =,x R ∈(),所以'()()[]x f x F x e '==()()xf x f x e '-, 因为对于()(),x R f x f x ∀∈<',所以'()0F x >,所以()F x 是R 上的增函数,所以(0)(1)F F <,(0)(2018)F F <,即(1)(0)f f e <,2018(2018)(0)f f e<, 整理得()()10f ef >和()20182018(0f e f >).故故选B .2.已知数列{}n a 满足11a =,111nn a a e++=.若110n n a ta +-+≥恒成立,则实数t A .最小值是21e - B .最大值是2e 1- C .最大值是eD .最小值是e【试题来源】哈尔滨市第三中学2020-2021学年上学期高三1月线上学习阶段性考试(理) 【答案】C【分析】作差()111ln 1n n n n a a a a +++-=-+,构造函数()ln(1)f x x x =-+,利用导数知识可得111n n a a a +≥≥=,将110n n a ta +-+≥恒成立化为()11111ln 1n n n n a a t a a +++++≤=+1(1n a +≥)恒成立,构造函数()ln xg x x=(2)x ≥,利用导数知识求出()g x 的最小值即可得解. 【解析】由111nn a a e++=得11n a n a e ++=,得1211a a e e =-=-,()1ln 1n n a a +=+,所以()111ln 1n n n n a a a a +++-=-+, 令()ln(1)f x x x =-+,则1()111xf x x x '=-=++(1)x >-, 当10x -<<时,()0f x '<,当0x >时,()0f x '>, 所以()f x 在(1,0)-上递减,在(0,)+∞上递增,所以当0x =时,()f x 取得最小值(0)0f =,所以()0f x ≥, 所以11()0n n n a a f a ++-=≥,所以111n n a a a +≥≥=, 因为110n n a ta +-+≥恒成立,所以11n n ta a +≤+恒成立, 所以()11111ln 1n n n n a a t a a +++++≤=+1(1n a +≥)恒成立, 令()ln xg x x=(2)x ≥,则()211ln ()ln x x x g x x ⨯-⋅'=2ln 1(ln )x x -=,令()0g x '<得ln 10x -<,得0x e <<,又2x ≥,所以2x e ≤<,令()0g x '>得ln 10x ->,得x e >,所以()g x 在[2,)e 上递减,在(,)e +∞上递增, 所以当x e =时,()g x 取得最小值()g e e =,所以t e ≤,即t 的最大值为e .故选C 【名师点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤.3.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010【试题来源】新疆维吾尔自治区2021届高三第二次联考数学(理)能力测试试题 【答案】D【分析】由极值点得数列的递推关系,由递推关系变形得数列1{}n n a a +-是等比数列,求得1n n a a +-,由累加法求得n a ,计算出n b ,然后求和122311202020202020n n b b b b b b ++++,利用增函数定义得此式的最小值,从而得出n S 的最小值,再由不等式恒成立可得t 的最大值.【解析】3212()43n n n f x a x a x a '++=--,所以12(1)430n n n f a a a '++=--=,即有()2113n n n n a a a a +++-=-,所以{}1n n a a +-是以2为首项3为公比的等比数列,所以1123n n n a a -+-=⋅,1201111221123232313n n nn n n n n n n a a a a a a a a a a --++---=-+-+-++-+=⋅+⋅++⋅+=所以31log n n b a n +==,所以12231120202020202011120201223(1)n n b b b b b b n n +⎛⎫+++=+++⎪⨯⨯+⎝⎭1111120202020122311nn n n ⎛⎫=-+-++-= ⎪++⎝⎭, 又20201ny n =+为增函数,当1n =时,1010n S =,10102020n S ≤<, 若n S t ≥恒成立,则t 的最大值为1010.故选D .【名师点睛】本题考查函数的极值,等比数列的判断与通项公式,累加法求通项公式,裂项相消法求和,函数新定义,不等式恒成立问题的综合应用.涉及知识点较多,属于中档题.解题方法是按部就班,按照题目提供的知识点顺序求解.由函数极值点得数列的递推公式,由递推公式引入新数列是等比数列,求得通项公式后用累加法求得n a ,由对数的概念求得n b ,用裂项相消法求和新数列的前n 项和,并利用函数单调性得出最小值,然后由新定义得n S 的最小值,从而根据不等式恒成立得结论.4.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()xxf x e =,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【分析】当1x <时,求导,得出导函数恒小于零,得出()f x 在(),1-∞内是增函数.再由()()2f x f x -=+得()f x 的图象关于直线1x =对称,从而得()f x 在()1,+∞内是减函数,由此可得选项.【解析】当1x <时,'1()0x x f x e-=->,则()f x 在(),1-∞内是增函数. 由()()2f x f x -=+得()f x 的图象关于直线1x =对称,所以()f x 在()1,+∞内是减函数, .所以()()350f f ->.故选C .【名师点睛】本题考查运用导函数研究函数的单调性,抽象函数的对称性的应用,以及由函数的单调性比较其函数的大小关系,属于中档题. 5.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 【试题来源】浙江省杭州市萧山中学2019-2020学年高三下学期返校考试 【答案】D【解析】对于A ,不妨令01a <≤,1b ≥,则1a ab b b a a a a a b a b a b ⎛⎫⎛⎫⋅=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭, 所以1baa b ⋅=即11b aaab-=,由10b a -≥可知101b aa -<≤,则101ab <≤,所以1≥ab ,2a b +≥≥,故A 正确; 对于B ,若a b ≤,则0ab e e -≤,320b a ->,故32a b e e b a -≠-即23a b e a e b +≠+,与已知矛盾,故B 正确;对于C ,()ln ln ln 1b b a a b a b a a-≥-⇔-≥-, 令0b x a =>,()()ln 10f x x x x =-->,则()1x f x x-'=, 则()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()10f x f ≥=,所以ln 10b b a a --≥即ln 1b ba a-≥-,故C 正确; 对于D ,设()()ln 0h x x x x =>,()()0x xg x x e=>, 则()ln 1h x x '=+,()1xxg x e -'=, 所以()h x 在()10,e-上单调递减,在()1,e-+∞上单调递增,则()()11h x h e e --≥=-,()g x 在()0,1上单调递增,在()1,+∞上单调递减,则()()11g x g e -≤=,所以()()110h eg e --+<,即当1a b e-==时ln 0bba a e +<,故D 错误.故选D . 二、多选题1.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+D .21cos 12x x ≥-【试题来源】广东省中山市2019-2020学年高二下学期期末 【答案】ACD 【分析】令10tx ,()1ln 1f t t t =+-,导数方法求出最小值,即可判定出A 正确;令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >,导数方法研究单调性,求出范围,即可判定B 错; 令()1xf x e x =--,导数的方法求出最小值,即可判定C 正确; 令()21cos 12f x x x =-+,导数的方法求出最小值,即可判定D 正确.【解析】A 选项,因为1x >-,令10tx ,()1ln 1f t t t=+-,则()22111t f t t t t -'=-=,所以01t <<时,()210t f t t-'=<,即()f t 单调递减;1t >时,()210t f t t-'=>,即()f t 单调递增;所以()()min 10f t f ==,即()1ln 10f t t t =+-≥,即1ln t t t -≥,即()ln 11x x x +≥+,1x >-恒成立;故A 正确;B 选项,令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >, 则()()2222211112110222x x x f x x x x x ---⎛⎫'=-+==-≤ ⎪⎝⎭显然恒成立, 所以()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭在0x >上单调递减, 又()10f =,所以当()0,1x ∈时,()()10f x f >=,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,故B 错; C 选项,令()1xf x e x =--,则()1xf x e '=-,当0x >时,()10xf e x ='->,即()f x 单调递增;当0x <时,()10xf e x ='-<,所以()f x 单调递减;则()()00f x f ≥=,即1x e x ≥+恒成立;故C 正确; D 选项,令()21cos 12f x x x =-+,则()sin f x x x '=-+, 所以()cos 10f x x ''=-+≥恒成立,即函数()sin f x x x '=-+单调递增, 又()00f '=,所以当0x >时,()0f x '>,即()21cos 12f x x x =-+单调递增; 当0x <时,()0f x '<,即()21cos 12f x x x =-+单调递减; 所以()()min 00f x f ==,因此21cos 12x x ≥-恒成立,故D 正确;故选ACD . 【名师点睛】本题主要考查导数的方法判定所给不等式是否正确,考查导数的方法判定函数单调性、求函数最值等,属于常考题型.2.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0a f f a e>【试题来源】江苏省扬州中学2019-2020学年高二下学期6月月考 【答案】BD【分析】根据()()'0f x f x +>,设()()xh x e f x =,()()()()xh x ef x f x ''=+,得到()h x 在R 上是增函数,再根据a 是正实数,利用单调性逐项判断.【解析】设()()xh x e f x =,()()()()xh x ef x f x ''=+,因为()()'0f x f x +>,所以()0h x '>,()h x 在R 上是增函数, 因为a 是正实数,所以2a a <,所以()()22aae f a e f a <,因为21a a e e >>, ()(),2f a f a 大小不确定,故A 错误,因为a a -<,所以()()a a e f a e f a --<,即()()2af a e f a >-,故B 正确.因为0a >,所以()()()000ae f a e f f >=,因为1a e >,()(),0f a f 大小不确定.故C 错误.()()()000a e f a e f f >=,因为1a e >,所以()()0a f f a e>,故D 正确.故选BD. 【名师点睛】本题主要考查导数与函数单调性比较大小,还考查了运算求解的能力,属于中档题.3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x <D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1【试题来源】山东省肥城市2019-2020学年高二下学期期中考试 【答案】BCD【分析】先对函数求导,根据022f ππ⎛⎫'=-≠⎪⎝⎭,排除A ;再由导数的方法研究函数单调性,判断出B 选项;构造函数()sin xg x x=,由导数的方法研究其单调性,即可判断C 选项;根据()sin x g x x =的单调性,先得到sin 2x x π>,再令()sin h x x x =-,根据导数的方法研究其单调性,得到sin 1xx<,即可判断D 选项. 【解析】因为()cos sin f x x x x =-,所以()cos sin cos sin f x x x x x x x '=--=-, 所以022f ππ⎛⎫'=-≠⎪⎝⎭,所以2x π=不是函数的极值点,故A 错; 若[]0,x π∈,则()sin 0f x x x '=-≤,所以函数()cos sin f x x x x =-在区间[]0,π上单调递减;因此()()00≤=f x f ,故B 正确; 令()sin x g x x =,则()2cos sin x x xg x x-'=, 因为()cos sin 0f x x x x =-≤在[]0,π上恒成立,所以()2cos sin 0x x xg x x -'=<在()0,π上恒成立, 因此函数()sin xg x x=在()0,π上单调递减;又120x x π<<<,所以()()12g x g x >,即1212sin sin x x x x >,所以1122sin sin x x x x <,故C 正确;因为函数()sin x g x x =在()0,π上单调递减;所以0,2x π⎛⎫∈ ⎪⎝⎭时,函数()sin x g x x =也单调递减,因此()sin 22x g x g x ππ⎛⎫=>= ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭上恒成立; 令()sin h x x x =-,0,2x π⎛⎫∈ ⎪⎝⎭,则()1cos 0h x x '=-≥在0,2π⎛⎫⎪⎝⎭上恒成立,所以()sin h x x x =-在0,2π⎛⎫⎪⎝⎭上单调递增, 因此()sin 0h x x x =->,即sin 1xx <在0,2π⎛⎫ ⎪⎝⎭上恒成立; 综上,2sin 1x x π<<在0,2π⎛⎫⎪⎝⎭上恒成立,故D 正确.故选BCD . 【名师点睛】本题主要考查导数的应用,利用导数的方法研究函数的极值,单调性等,属于常考题型.4.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 【试题来源】冲刺2020高考数学之拿高分题目强化卷(山东专版) 【答案】ACD【分析】对选项A ,()f x 在[]1,2上的最小值小于a 即可;对选项B ,()g x 的最小值大于0即可;对选项C ,()f x 在[]1,2上的最小值大于()g x 的最大值即可;对选项D ,[]11,2x ∀∈,[]20,1x ∃∈,()min min ()g x f x ≤,()max max ()g x f x ≥即可.【解析】对选项A ,只需()f x 在[]1,2上的最小值小于a ,()f x 在[]1,2上单调递增,所以min 2()(1)111f x f ==-=-,所以1a >-,故正确; 对选项B ,只需()g x 的最小值大于0,因为[]πcos,2x a a a ∈-,所以min ()52530g x a a a =-+-=->,所以503a <<,故错误; 对选项C ,只需()f x 在[]1,2上的最小值大于()g x 的最大值,min ()1f x =-,max ()525g x a a a =+-=-,即15a ->-,6a >,故正确;对选项D ,只需()min min ()g x f x ≤,()max max ()g x f x ≥,max 2()(2)212f x f ==-=,所以[]11,2x ∈,[]1()1,1f x ∈-, []0,1x ∈时,π0,22x π⎡⎤∈⎢⎥⎣⎦,所以()g x 在[]0,1上单调递减, ()min (1)52a g x g ==-,()max (0)5a g x g ==-,所以()[]52,5g x a a ∈--,由题意,52151a a -≤-⎧⎨-≥⎩⇒34a ≤≤,故正确.故选ACD .【名师点睛】本题主要考查不等式恒成立和存在性问题,考查学生的分析转化能力,注意恒成立问题和存在性问题条件的转化,属于中档题.5.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->【试题来源】江苏省盐城市伍佑中学2019-2020学年高二下学期期中 【答案】BCD【分析】构造出函数()()xxf x F x e =,再运用求导法则求出其导数,借助导数与函数单调性之间的关系及题设中()()()f x xf x xf x '+<,从而确定函数()()xxf x F x e=是单调递减函数,然后可判断出每个答案的正误. 【解析】构造函数()()xxf x F x e =, 因为2[()()]()()()()()0()x x x xe f x xf x xe f x f x xf x xf x F x e e'+-+-=='<', 故函数()()xxf x F x e =在R 上单调递减函数, 因为21>,所以212(2)(1)(2)(1)f f F F e e <⇒<,即2(2)(1)f f e<,故A 正确,B 错误;因为()(1)0F F <,即()10f e<,所以()10f <,故C 错误; 因为()(1)0F F ->,即()110f e--->,所以()10f -<,故D 错误,故选BCD. 【名师点睛】解答本题的难点所在是如何依据题设条件构造出符合条件的函数()()xxf x F x e =,这里要求解题者具有较深的观察力和扎实的基本功,属于较难题. 6.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 【试题来源】福建省福州第一中学2021届高三上学期开学检测 【答案】ABD【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解.【解析】由()1ln 2n n n a a a +=+-,1102a <<,设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--,所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数,所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确;由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确;2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确,故选ABD .7.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .1【试题来源】江苏省南京市2020-2021学年高三上学期期中考前训练 【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立,令()()3ln ln 1x F x x x x x=++>,利用导数法研究其最小值即可.【解析】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x =++>,则()222131ln 2ln x x x F x x x x x ---'=-+=. 令()ln 2x x x ϕ=--,因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=,将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数,所以713,34t ⎛⎫∈ ⎪⎝⎭,即()min1713,41216F x ⎛⎫∈ ⎪⎝⎭. 因为k 为整数,所以0k ≤.故选ABC .8.已知0a >,0b >,下列说法错误的是 A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立 【试题来源】2020年高考数学母题题源全揭秘(浙江专版) 【答案】AD【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【解析】A . 1ln ln 0⋅=⇔+=a b a b a a b b ,设()ln f x x x =,()()0∴+=f a f b ,由图可知,当1+→b 时,存在0+→a ,使()()0f a f b +=; 此时1+→a b ,故A 错误.B . 232+=+>+a b b e a e b e b ,设()2x f x e x =+单调递增,a b ∴>,B 正确;C . ()ln ln ln1-≥-⇔≥-a ba ab a b b a, 又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确;D . max 1=⇒=x x y y e e 当且仅当1x =;min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选AD.【名师点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题. 三、填空题1.若()()220xxxme ex e ex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.【试题来源】浙江省杭州地区(含周边)重点中学2020-2021学年高三上学期期中 【答案】32m ≤-【分析】对已知不等式进行变形,利用换元法、构造函数法、常变量分离法,结合导数的性质进行求解即可.【解析】()()()()222210xx xxxxme ex e ex me ex e ex ee++++-⇒≤≤ (1), 令x ext e=,因为()0,x ∈+∞,所以0t >, 则不等式(1)化为2221(2)(1)11t t m t t m t --+++≤⇒≤+,设()xex f x e=,()0,x ∈+∞,'(1)()x e x f x e -=,当1x >时,'()0,()f x f x <单调递减, 当01x <<时,'()0,()f x f x >单调递增,因此当()0,x ∈+∞时,max ()(1)1f x f ==,而(0)0f =,因此当()0,x ∈+∞时,()(0,1]f x ∈,因此(0,1]t ∈,设2221()1t t g t t --+=+,(0,1]t ∈,因此要想()()220x x xme ex e ex e ++-≤在()0,x ∈+∞上恒成立,只需min ()m g t ≤,2'2243()(1)t t g t t ---=+,因为(0,1]t ∈,所以'()0g t <,因此()g t 在(0,1]t ∈时单调递减,所以min 3()(1)2g t g ==-,因此32m ≤-.2.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.【试题来源】四川省三台中学实验学校2019-2020学年高二下学期期末适应性考试(理)【答案】1,e e ⎛⎫ ⎪⎝⎭【分析】先由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;原问题即可转化为直线y ax =介于x y e =与ln y x =之间,作出其大致图象,由图象得到只需<<OA OB k a k ;根据导数的方法求出OA ,OB 所在直线斜率,进而可得出结果. 【解析】由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;所以若()()(ln )0=--<xf x e ax x ax 恒成立,只需0ln 0x e ax x ax ⎧->⎨-<⎩,即直线y ax =介于xy e =与ln y x =之间,作出其大致图象如下:由图象可得,只需<<OA OB k a k ;设11(,)A x y ,由ln y x =得1y x'=,所以111OA x x k y x =='=, 所以曲线ln y x =在点11(,)A x y 处的切线OA 的方程为1111ln ()-=-y x x x x , 又该切线过点O ,所以11110ln (0)1-=-=-x x x ,解得1x e =,所以1=OA k e; 设22(,)B x y ,由x y e =得e xy '=,所以22x OB x x k y e =='=,所以曲线xy e =在点22(,)B x y 处的切线OB 的方程为222()-=-x x y e e x x ,又该切线过点O ,所以2220(0)-=-x x ee x ,解得21x =,所以=OB k e ;所以1a e e <<.故答案为1,e e ⎛⎫ ⎪⎝⎭.【名师点睛】本题主要考查由导数的方法研究不等式恒成立的问题,熟记导数的几何意义即可,属于常考题型.3.已知函数()1xf x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.【试题来源】黑龙江省七台河市田家炳高级中学2019-2020学年高二下学期期中考试(理) 【答案】[1,)-+∞【分析】求导得到()xf x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案.【解析】因为()1x f x e ax =+-,所以()xf x e a '=+,因为0x ,所以()1f x a '+.当10a +,即1a ≥-时,()0f x ',则()f x 在[0,)+∞上单调递增,从而()(0)0f x f =,故1a ≥-符合题意;当10a +<,即1a <-时,因为()x f x e a '=+在[0,)+∞上单调递增,且(0)10f a '=+<,所以存在唯一的0(0,)x ∈+∞,使得()00f x '=.令()0f x '<,得00x x <,则()f x 在[)00,x 上单调递减,从而()(0)0f x f =,故1a <-不符合题意.综上,a 的取值范围是[1,)-+∞.故答案为[1,)-+∞.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 【试题来源】2020年高考数学选填题专项测试(文理通用) 【答案】[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【解析】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)xg x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥,故答案为[)0,+∞.【名师点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________. 【试题来源】2020届四川省成都七中高三二诊数学模拟(理)试题 【答案】0a e ≤<【分析】若函数()0xf x e ax =->恒成立,即min ()0f x >,求导得'()x f x e a =-,在0,0,0a a a >=<三种情况下,分别讨论函数单调性,求出每种情况时的min ()f x ,解关于a的不等式,再取并集,即得.【解析】由题意得,只要min ()0f x >即可,'()x f x e a =-,当0a >时,令'()0f x =解得ln x a =, 令'()0f x <,解得ln x a <,()f x 单调递减, 令'()0f x >,解得ln x a >,()f x 单调递增,故()f x 在ln x a =时,()f x 有最小值,min ()(ln )(1ln )f x f a a a ==-, 若()0f x >恒成立,则(1ln )0a a ->,解得0a e <<; 当0a =时,()0xf x e =>恒成立;当0a <时,'()xf x e a =-,()f x 单调递增,,()x f x →-∞→-∞,不合题意,舍去.综上,实数a 的取值范围是0a e ≤<.故答案为0a e ≤< 6.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.【试题来源】四川省泸州市2020学年下学期高二期末统一考试(文) 【答案】(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可. 【解析】函数的导数2()21f ax x x '=+-,由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立,即221a x x+,得322x x a +在1x 上恒成立,设32()2g x x x =+,则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数, 则当1x =时,()g x 取得最小值()1213g =+=,则3a , 即实数a 的取值范围是(],3-∞,故答案为(],3-∞.【名师点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题. 7.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 【试题来源】陕西省商洛市洛南中学2019-2020学年高二下学期第二次月考(理) 【答案】(2,)+∞ 【分析】设()3212,[1,2]2x x x x f x --∈-=,利用导数求得函数的单调性与最大值,结合题意,即可求得实数m 的取值范围. 【解析】由题意,设()3212,[1,2]2x x x x f x --∈-=, 则()22(1)(323)x x f x x x --=-+'=,当2[1,)3x ∈--或(1,2]x ∈时,()0f x '>,()f x 单调递增;当2(,1)3x ∈-时,()0f x '<,()f x 单调递减, 又由222(),(2)2327f f -==,即2()(2)3f f -<, 即函数()f x 在区间[1,2]-的最大值为2, 又由当[1,2]x ∈-时,32122x x x m --<恒成立,所以2m >, 即实数m 的取值范围是(2,)+∞.故答案为(2,)+∞【名师点睛】本题主要考查了恒成立问题的求解,其中解答中熟练应用函数的导数求得函数的单调性与最值是解答的关键,着重考查推理与运算能力,属于基础题. 8.不等式()221nn n N*>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________. 【试题来源】北京市101中学2019-2020学年高三10月月考 【答案】331n n >-【分析】将不等式中的数字2变为3,得出331n n >-,然后利用导数证明出当3n ≥时,33n n ≥即可,即可得出不等式331n n >-对任意的n *∈N 恒成立.【解析】13311>-,23321>-,33331>-,猜想,对任意的n *∈N ,331n n >-.下面利用导数证明出当3n ≥时,33n n ≥,即证ln33ln n n ≥,即证ln ln 33n n ≤,构造函数()ln x f x x =,则()21ln xf x x -'=,当3x ≥时,()0f x '<. 所以,函数()ln x f x x =在区间[)3,+∞上单调递减,当3n ≥时,ln ln 33n n ≤.所以,当3n ≥且n *∈N 时,33n n ≥,所以,331n n >-.故答案为331n n >-. 【名师点睛】本题考查数列不等式的证明,考查了归纳法,同时也考查了导数在证明数列不等式的应用,考查推理能力,属于中等题.9.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________. 【试题来源】湖北省襄阳市第一中学2019-2020学年高二下学期5月月考 【答案】(,1)-∞【分析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->,分类讨论,分离参数,求最值,即可求实数m 的取值范围.【解析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->, (ⅰ)当(0,1)x ∈时,||0x m -≥,ln 0xx<,不等式恒成立,所以m R ∈; (ⅰ)当1x =时,|1|0m -≥,ln 0xx=,所以1m ≠; (ⅰ)当1x >时,不等式恒成立等价于ln x m x x <-恒成立或ln xm x x>+恒成立, 令ln ()x h x x x =-,则221ln ()x x h x x'-+=,因为1x >,所以()0h x '>,从而()1h x >, 因为ln xm x x<-恒成立等价于min ()m h x <,所以1m ,令ln ()x g x x x =+,则221ln ()x xg x x +-'=,再令2()1ln p x x x =+-,则1'()20p x x x=->在(1,)x ∈+∞上恒成立,()p x 在(1,)x ∈+∞上无最大值,综上所述,满足条件的m 的取值范围是(,1)-∞.故答案为(,1)-∞.10.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.【试题来源】陕西省安康市2020-2021学年高三上学期10月联考(理)【答案】4e -⎡⎤⎣⎦【分析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立,当0x ≠时,则2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩,然后构造函数()x e g x x =(0x >),()221x h x x x +=-(0x <),分别求解函数()g x 的最小值和()h x 的最大值,只需()()min max h x a g x ≤≤即可.【解析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立;当0x ≠时,则()2,012,0xe ax x a x x x x ⎧≥>⎪⎨-≥--<⎪⎩,因为当0x <时,20x x ->, 所以只需满足2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩即可,令()x e g x x =(0x >),则()()21x x e g x x -'=, 则()0,1x ∈时,()0g x '<,所以()g x 在()0,1x ∈上递减, 当()1,x ∈+∞时,()0g x '>,则()g x 在()1,+∞上递增, 所以()()1min g x g e ==,所以a e ≤,令()221x h x x x +=-(0x <),则()()()()()()22222222112221x x x x x x h x x x x x --+-+-'==--,令()0h x '=,得x =(舍)或x =,则当12,x ⎛⎫∈-∞ ⎝- ⎪⎪⎭时,()0h x '>;当1,02x ⎛⎫-∈ ⎪ ⎪⎝⎭时,()0h x '<, 所以函数()h x在12,⎛-∞ ⎝ -⎭上递增,在12⎛⎫- ⎪ ⎪⎝⎭上递减, 所以()41122maxh x h ===-⎛⎫⎝⎭--- ⎪⎝⎭故4a ≥-4a e -≤≤.故答案为4e -⎡⎤⎣⎦.【名师点睛】本题考查根据不等式恒成立问题求参数的取值范围问题,考查学生分析问题、转化问题的能力,考查参变分离思想的运用,考查利用导数求解函数的最值,属于难题. 解决此类问题的方法一般有以下几种:(1)作出函数的图象,利用数形结合思想加以研究;(2)先进行参变分离,然后利用导数研究函数的最值,即可解决问题,必要时可以构造新函数进行研究.11.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________.【试题来源】【全国区级联考】江苏省徐州市铜山区下学期高二数学(文)期中试题 【答案】2c ≥【解析】由()()f x g x ≥,即32ln 1x x c x -+≥+,即32ln 1c x x x ≥-+++.令()()32ln 10h x x x x x =-+++>,()()()21331x x x h x x'-++=-,故函数()h x 在区间()0,1上递增,在()1,+∞上递减,最大值为()12h =,所以2c ≥.【名师点睛】本题主要考查利用分析法和综合法求解不等式恒成立,问题,考查利用导数研究函数的单调性,极值和最值等知识.首先根据()()f x g x ≥,对函数进行分离常数,这里主要的思想方法是分离常数后利用导数求得另一个部分的最值,根据这个最值来求得参数的取值范围.12.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________.【试题来源】河南省名校联盟2020届高三(6月份)高考数学(理)联考试题 【答案】[)0,+∞ 【分析】先根据2x π=时22f a ππ⎛⎫≤⎪⎝⎭得0a ≥,再对函数()f x 求导,研究导函数的单调性、最值等,进而研究函数()f x 单调性,即可解决.【解析】22f a ππ⎛⎫≤ ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π,0a ∴≥. 由题意得()()2sin sin cos 1sin cos 1f x x x x x x x x '=-++-=-+-⎡⎤⎣⎦, 令()sin cos 1g x x x x =-+-,则()sin g x x x '=-.当,2x π⎛⎤∈π ⎥⎝⎦时,()0g x '<,()g x 单调递减;当3,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,()g x ∴的最小值为()1g ππ=--. 又22g π⎛⎫=- ⎪⎝⎭,302g π⎛⎫= ⎪⎝⎭,3,22x ππ⎡⎤∴∈⎢⎥⎣⎦,()0g x ≤,即()0f x '≤, ()f x ∴在区间3,22ππ⎡⎤⎢⎥⎣⎦为减函数.02f π⎛⎫= ⎪⎝⎭,∴当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x ≤.又当0a ≥,3,22x ππ⎡⎤∈⎢⎥⎣⎦时,0ax ≥,故()f x ax ≤恒成立,因此a 的取值范围是[)0,+∞. 13.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.【试题来源】6月大数据精选模拟卷04(上海卷)(满分冲刺篇) 【答案】e -【分析】把不等式()221ln 0a x ax x ax -+≥+恒成立,转化为函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,结合函数的单调性和零点,得出1a-是函数ln y ax x =-的零点,即可求解. 【解析】由题意,不等式()221ln 0a x ax x ax -+≥+恒成立,即函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,由ln ,0,0y ax x a x =-<>,则10y a x'=-<,所以ln y ax x =-为(0,)+∞减函数, 又由当0a <,可得1y ax =+为(0,)+∞减函数, 所以1y ax =+ 与ln y ax x =-同为单调减函数,且1a-是函数1y ax =+的零点, 故1a -是函数ln y ax x =-的零点,故110ln a a a ⎛⎫⎛⎫=⋅--- ⎪ ⎪⎝⎭⎝⎭,解得a e =-.【名师点睛】本题主要考查了不等式的恒成立问题,以及函数与方程的综合应用,其中解答中把不等式恒成立问题转化为函数的性质和函数的零点问题是解答的关键,着重考查转化思想,以及推理与运算能力.14.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________. 【试题来源】2020届辽宁省抚顺市高三二模考试(理) 【答案】12-【分析】设()()2211xx ax f x x e-+=≤,结合导数可知当0a <时,()()min 21f x f a =+;由题意可知,()()2122211a a f x f a e++≥+=≥,设()1tg t e t =--,则()0g t ≤,由导数可求出当0t =时,()g t 有最小值0,即()0g t ≥.从而可确定()0g t =,即可求出a 的值.【解析】设()()2211x x ax f x x e -+=≤,则()()()121xx x a f x e--+⎡⎤⎣⎦'=. 当211a +≥,即0a ≥时,()0f x '≤,则()f x 在(],1-∞上单调递减, 故()()2211a f x f e -≥=≥,解得102ea ≤-<,所以0a ≥不符合题意; 当211a +<,即0a <时,()f x 在(),21a -∞+上单调递减,在(]21,1a +上单调递增,则()()min21f x f a =+.因为2211x x ax e -+≥,所以()()2122211a a f x f a e ++≥+=≥. 令211a t +=<,不等式21221a a e++≥可转化为10te t --≤,设()1t g t e t =--, 则()1tg t e '=-,令()0g t '<,得0t <;令()0g t '>,得01t <<,则()g t 在(),0-∞上单调递减,在()0,1上单调递增;当0t =时,()g t 有最小值0, 即()0g t ≥.因为()0g t ≤,所以()0g t =,此时210a +=,故12a =-. 【名师点睛】本题考查了函数最值的求解,考查了不等式恒成立问题.本题的难点在于将已知恒成立问题,转化为()10tg t e t =--≤恒成立.本题的关键是结合导数,对含参、不含参函数最值的求解.15.若[,)x e ∀∈+∞,满足32ln 0mx x x me -≥恒成立,则实数m 的取值范围为___________. 【试题来源】2020届湖南省长沙市长郡中学高三下学期3月停课不停学阶段性测试(理) 【答案】(,2]e -∞【分析】首先对参数的范围进行讨论,分两种情况,尤其是当0m >时,对式子进行变形,构造新函数,将恒成立问题转化为最值来处理,利用函数的单调性来解决,综述求得最后的结果.【解析】(1)0m ≤,显然成立;(2)0m >时,由32ln 0mxx x me -≥22ln m x m x x e x ⇒≥2ln (2ln )mxx m x e e x⇒≥,由()xf x xe =在[),e +∞为增2ln mx x⇒≥2ln m x x ⇒≤在[),e +∞恒成立, 由()2ln g x x x =在[),e +∞为增,min ()2g x e =,02m e <≤, 综上,2m e ≤,故答案为(,2]e -∞. 四、双空题1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【试题来源】辽宁省锦州市渤大附中、育明高中2020-2021学年高三上学期第一次联考 【答案】10,2⎛⎫ ⎪⎝⎭[)5,-+∞【分析】求出导函数()2122122ax x f x ax x x-+'=-+=,只需方程22210ax x -+=有两个不相等的正根,满足1212010210x x a x x a ⎧⎪∆>⎪⎪=>⎨⎪⎪+=>⎪⎩,解不等式组可得a 的取值范围;求出 ()()1212f x f x x x +--的表达式,最后利用导数,通过构造函数,求出新构造函数的单调性,最后求出t 的取值范围.【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---, 设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭, 22()0a h a a '-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞. 故答案为10,2⎛⎫ ⎪⎝⎭;[)5,-+∞【名师点睛】本题考查了已知函数极值情况求参数取值范围问题,考查了不等式恒成立问题,构造新函数,利用导数是解题的关键,属于基础题. 2.已知函数()ln xf x x=,则曲线()y f x =在点()()1,1f 处的切线方程是___________;若不等式()1x x a f x x+>-≥对于任意的()0,x ∈+∞恒成立,则实数a 的取值范围是___________.【试题来源】2020年高考全国卷考前冲刺演练精品密卷ⅰ(理) 【答案】1y x =- []0,1【分析】由题意结合导数的几何意义、直线的点斜式方程即可得切线方程;易得1y x x=+的图象与直线y x =无限接近但永远不能相交,再作出函数1y x =-及()ln xf x x=的图象,数形结合即可得解.【解析】由题意()10f =,()21ln xf x x -'=,()11f '=, 所以曲线1ln xy x-=在点()1,0处的切线方程为1y x =-; 由1y x x x=+>,且随着x 的增加,1x x +与x 的取值不断接近,所以1y x x=+的图象与直线y x =无限接近但永远不能相交; 令()()ln 1x h x x x =--,则()221ln x x h x x --'=, 当01x <<时,()0h x '>,()h x 单调递增,当1x >时,()0h x '<,()h x 单调递减, 结合()10h =可得()0h x ≥即ln 1xx x≥-, 在坐标系中作出函数1y x =-及()ln xf x x=的图象,如图所示,由图可知,曲线y x a =-的最低点(),0a 必须在以()0,0和()1,0为端点的线段上运动, 所以01a ≤≤,故a 的取值范围是[]0,1.故答案为1y x =-;[]0,1.【名师点睛】本题考查了利用导数求切线方程及作函数图象,考查了函数图象的应用及数形结合思想,属于中档题.3.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________. 【试题来源】2021年新高考数学一轮复习学与练【答案】13,2⎛⎤-∞- ⎥⎝⎦ 132- 【分析】将2n =代入求解即可;当n 为奇数时,cos 1n π=-,则转化32()2710f n n n n λ=+--≥为2127n n n λ+-≤,设21()27g n n n n=+-,由单调性求得()g n 的最小值;同理,当n 为偶数时,cos 1n π=,则转化32()2710f n n n n λ=---≥为2127n n n λ--≤,设21()27(2)h x x x x x=--≥,利用导函数求得()h x 的最小值,进而比较得到λ的最大值. 【解析】由题,(2)1628210f λ=---≥,解得132λ-≤. 当n 为奇数时,cos 1n π=-,由32()2710f n n n n λ=+--≥,得2127n n nλ+-≤, 而函数21()27g n n n n=+-为单调递增函数,所以min ()(1)8g n g ==,所以8λ≤; 当n 为偶数时,cos 1n π=,由32()2710f n n n n λ=---≥,得2127n n nλ--≤,设21()27(2)h x x x x x =--≥,212,()470x h x x x'∴=-+>≥,()h x ∴单调递增,。

浙江省“七彩阳光”新高考研究联盟2020-2021学年高二上学期期中联考信息技术试题(解析版)

浙江省“七彩阳光”新高考研究联盟2020-2021学年高二上学期期中联考信息技术试题(解析版)

2020学年第一学期浙江“七彩阳光”新高考研究联盟期中联考高二年级技术学科试题命题:余杭第二高级中学;审校:萧山第二高级中学第一部分信息技术(50分)一、选择题(本大题共16小题,每小题2分,共32分。

在每小题给出的四个选项中,只有一个符合题目要求)1. 下列关于信息的说法中,正确的是()A. 只有信息时代才有信息技术,古代没有信息技术B. 物质、能源和信息是当今人类社会的三大要素C. 信息具有载体依附性,但也有部分信息不依附于载体D. 小方将自己的个人基本信息生成为二维码的过程属于信息的采集【答案】B【解析】【详解】本题主要考查信息相关知识点。

古代也有信息技术,选项A说法错误;物质、能源和信息是当今人类社会的三大要素,故本题选B选项;信息必须依附于载体,选项C说法错误;小方将自己的个人基本信息生成为二维码的过程属于信息的加工处理,选项D说法错误。

2. 下列说法不正确的是()A. 网页文件可以通过Dreamweaver. Frontpage、记事本等编辑B. OCR软件的识别对象文件的类型有TIF、JPG、HTMLC. 搜索引擎包括自动网页搜索和全文检索两大核心技术D. 浏览器的主要功能是解释执行HTML语言【答案】B【解析】【详解】本题主要考查网页检索相关知识点。

网页文件可以通过Dreamweaver. Frontpage、记事本等编辑;OCR软件的识别对象文件的类型有TIF、JPG、BMP;搜索引擎包括自动网页搜索和全文检索两大核心技术;浏览器的主要功能是解释执行HTML语言,故本题选B选项。

3. 下列负责把邮件从发件人传输到收件人邮件服务器的协议是()A. HTTPB. FTPC. POP3D. SMTP【答案】D【解析】【详解】本题主要考查邮件协议。

HTTP是超文本传输协议,FTP是文件传输协议,POP3 用于接收邮件,SMTP (简单邮件传输协议)用于发送邮件,故本题选D选项。

4. 下列描述属于人工智能应用范畴的是()A. 高速ETC(电子不停车收费系统)对汽车车牌的识别B. 与微信好友进行语音聊天C. 地铁站使用X光机对旅客行李进行安检扫描D. ABBYY FineReady是一款字符识别软件,打开软件,使用“图像文件到PDF”功能【答案】A【解析】【详解】本题主要考查人工智能技术。

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一数学上学期期中模拟卷(苏教版2019)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:苏教版2019必修第一册第1章~第5章。

5.难度系数:0.65。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}()14,2,5A x x B =-<<=,则()R B A = ð()A .(]1,2-B .()1,2-C .()[),45,-∞⋃+∞D .()[),15,-∞-+∞ 【答案】A【解析】()2,5B =,则R (,2][5,)B =-∞+∞ ð,则()(]R 1,2B A =- ð.故选:A.2.已知集合{}{}2,,42,A xx k k B x x k k ==∈==+∈Z Z ∣∣.设:,:p x A q x B ∈∈,下列说法正确的是()A .p 是q 的充分不必要条件B .p 是q 的必要不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件【答案】B【解析】由(){}221,B xx k k ==+∈Z ∣,{}2,A x x k k ==∈Z ∣,故B 为A 的真子集,又:,:p x A q x B ∈∈,故p 是q 的必要不充分条件.故选:B.3.,,,a b c b c ∈>R ,下列不等式恒成立的是()A .22a b a c +>+B .22a b a c +>+C .22ab ac >D .22a b a c>【答案】B【解析】对于A ,若0c b <<,则22b c <,选项不成立,故A 错误;对于B ,因为b c >,故22a b a c +>+,故B 成立,对于C 、D ,若0a =,则选项不成立,故C 、D 错误;故选:B.4.已知实数a 满足14a a -+=,则22a a -+的值为()A .14B .16C .12D .18【答案】A【解析】因为()212212a a a a a a ---=+++⋅,所以()22211216214a a a a a a ---+=+-⋅=-=.故选:A.5.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()2121a b++的最大值为()A .916B .2516C .94D .254【答案】C【解析】因为()()212122221a b a b a b++=⋅+++,又221a b +=,所以()()22292121222(224a b aba b+++=⋅+≤+=,当且仅当1222ab==,即1a b ==-时取等号,故选:C6.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A .(]0,3B .[)2,+∞C .()0,∞+D .[]2,3【答案】D【解析】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得23a ≤≤,所以a 的取值范围是[]2,3.故选:D.7.已知函数()221x f x x x =-+,且()()1220f x f x ++<,则()A .120x x +<B .120x x +>C .1210x x -+>D .1220x x ++<【答案】A【解析】由函数单调性性质得:y x x =,21x y =+在R 上单调递增,所以()221x f x x x =-+在R 上单调递增,令函数222121()||1||||21212121x x x x x x g x x x x x x x +-=-+=-+=+++++,则2112()||||()2121x xxx g x x x x x g x -----=-+=-+=-++,所以()()0g x g x +-=,则函数()g x 为奇函数,且在R 上单调递增,故()()()()12121212200f x f x g x g x x x x x ++<⇔<-⇔<-⇔+<.故选:A .8.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,则29c a b++的取值范围为()A .[)6,-+∞B .(,6)-∞C .(6,)-+∞D .(],6∞--【答案】D【解析】由不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,可知1和4-是方程20ax bx c ++=的两个实数根,且0a <,由韦达定理可得4141b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即可得3,4b a c a ==-,所以()222499169994463444a c a a a a b a a a a a -+++⎛⎫===+=--+≤-=- ⎪++-⎝⎭.当且仅当944a a -=-时,即34a =-时等号成立,即可得(]29,6c a b∞+∈--+.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合{1,1,3,5}M =-,集合{3,1,5}N =-,则正确的结论是()A .,x N x M ∀∈∈B .,x N x M ∃∈∈C .{1,5}M N ⋂=D .{1,5}M N = 【答案】BC【解析】对于A ,3N -∈,但是3M -∉,A 错误,对于B ,1N ∈,1M ∈,B 正确,对于CD ,{1,1,3,5}{3,1,5}{1,5}M N =--= ,{1,1,3,5}{3,1,5}{3,1,1,3,5}M N =--=-- ,C 正确,D 错误.故选:BC .10.已知0a >,0b >,且2a b +=,则()A .222a b +≥B .22log log 0a b +≤C .1244a b -<<D .20a b ->【答案】ABC【解析】对于A ,有()()()()2222222222111122222222a b a ab b a ab b a b a b a b ⎡⎤+=+++-+=++-≥+=⋅=⎣⎦,当且仅当a b =时取等号,故A 正确;对于B ,0a >,0b >,有()22112144ab a b ≤+=⋅=,当且仅当a b =时取等号,故1ab ≤,从而()2222log log log log 10a b ab +=≤=,故B 正确;对于C ,由,0a b >,知0ab >,所以()()()()()()222222222042224ab a ab b a ab b a b a b a b a b <=++--+=+--=--=--,故()24a b -<,从而22a b -<-<,所以22122244a b --=<<=,故C 正确;对于D ,由于当1a b ==时,有,0a b >,2a b +=,但2110a b -=-=,故D 错误.故选:ABC.11.对于任意的表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”.下列说法正确的是()A .函数[]()y x x =∈R 为奇函数B .函数[]y x =的值域为ZC .对于任意的,x y +∈R ,不等式[][][]x y x y +≤+恒成立D .不等式[]2[]430x x -+<的解集为{}23x x ≤<【答案】BCD【解析】对于A ,当01x ≤<时,[]0y x ==,当10x -<<,[]1y x ==-,所以[]()y x x =∈R 不是奇函数,所以A 错误,对于B ,因为[]x 表示不超过x 的最大整数,所以当x ∈R 时,[]Z x ∈,所以函数[]y x =的值域为Z ,所以B 正确,对于C ,因为,x y +∈R 时,[][],x x y y ≤≤,所以[][][][][]x y x y x y x y ⎡⎤+=+≤+≤+⎣⎦,所以C 正确,对于D ,由[]2[]430x x -+<,得[]13x <<,因为[]x 表示不超过x 的最大整数,所以23x ≤<,所以D 正确.故选:BCD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷及答案

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷及答案

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS2.(4分)若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直3.(4分)已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β4.(4分)如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12B.6C.4D.无法确定5.(4分)四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.26.(4分)某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5D.27.(4分)在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N 为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化8.(4分)一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3B.4C.5D.69.(4分)已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a 10.(4分)已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为.12.(4分)二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB与平面β所成的角的余弦值是.13.(6分)正三棱锥的高为1,底面边长为2,则它体积为;若有一个球与该正三棱锥的各个面都相切,则球的半径为.14.(6分)若f(x)=﹣3x为奇函数,则a=,此时,不等式f(1﹣x2)+f (3x+9)<0的解集为.15.(4分)在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.16.(6分)在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是;(2)|A1P|的最小值为.17.(4分)若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a>1),则t的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.19.(15分)如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E 分别为AD,PD中点.(1)设平面P AB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面P AB.20.(15分)已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.21.(15分)对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.22.(15分)如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS【解答】解:∵圆柱的轴截面是正方形,且轴截面面积是S,∴圆柱的母线长为,底面圆的直径为,∴圆柱的侧面积S=π××=πS.故选:B.2.(4分)若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直【解答】解:对于A,α内过直线l与平面α交点的直线与直线l是共面直线,∴A错误;对于B,α内过直线l与平面α交点的直线有无数条,且这些直线与直线l都是共面直线,∴B错误;对于C,α内不存在与直线l平行的直线,∴C错误;对于D,如图所示,直线P A与平面α交于点A,PO⊥α,则OA是P A在α内的射影,在α内作直线l⊥OA,则l⊥P A,这样的直线l有无数条,∴D正确.故选:D.3.(4分)已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β【解答】解:A.若α∥β,m⊂α,n⊂β,则m∥n或为异面直线,因此不正确;B.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥β,正确;C.若α⊥β,m∥n,m⊥α,则n∥β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,则n⊂β,或n∥β,或n与β相交,因此不正确.故选:B.4.(4分)如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12B.6C.4D.无法确定【解答】解:∵侧面B′BCC′的面积是4,点A′到侧面B′BCC′的距离是3,∴V四棱锥A′﹣BCC′B′=.∵.∵V四棱锥A′﹣BCC′B′+V三棱锥A′﹣ABC=V三棱柱ABC﹣A′B′C′.∴.∴V三棱柱ABC﹣A′B′C′=6.故选:B.5.(4分)四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.2【解答】解:四面体ABCD放到长方体中,AB=CD=2,其余AC=BC=AD=DB=4设长方体的边长分别为a,b,c.则,解得a2+b2+c2=16,四面体外接球半径:2R=4.R=2.故选:D.6.(4分)某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5D.2【解答】解:由题意可知几何体是正方体的一部分,是四棱锥P﹣ABCD,正方体的棱长为3,P是所在棱的3等分点,PB==,P A==,PC==,所以最长棱长为PB,.故选:B.7.(4分)在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N 为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化【解答】解:如图所示:∵M、N分别是棱BB1、BC的中点,∴MN∥CB1,∵M在以C1N为直径的圆上,∴∠C1MN=90°,∴C1M⊥MN,∴C1M⊥CB1,由长方体的几何特征,我们可得C1D1⊥B1C,∴B1C⊥平面C1D1M,∵A1D∥B1C,∴A1D⊥平面C1D1M,∴A1D⊥D1M,即异面直线A1D与D1M所成的角为90°,故选:C.8.(4分)一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3B.4C.5D.6【解答】解:如图,连接QR并延长,分别交AA1,AB的延长线与E,F,连接PE交A1D1于G,连接PF交BC于H,连接PH,QH,GR,则五边形PGRQH即为此容器内存水最多时,容器中水的上表面的形状,故选:C.9.(4分)已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a【解答】解:因为<1.5<,所以<sin1.5<1;0<cos1.5<,∴a>,0<b<;∴b<a;找中间量sin1.5sin1.5,由y=sin1.5x是R上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0,+∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5;故c<d,只有A答案合适.故选:A.10.(4分)已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()【解答】解:A=(﹣∞,﹣2)∪(3,+∞),令f(x)=x2﹣3ax+4,由题意,△=9a2﹣16>0,且a>0,∴解得,,又,∴要使A∩B中恰好有两个整数解,则只能是4和5,∴,解得,∴a的取值范围是.故选:A.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为a.【解答】解:棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,取BD中点G,连结BE,CE,EG,FG,则EG∥AB,且EG=FG==,∴∠EFG是异面直线EF与AB所成的角(或所成角的补角),BE=CE==,EF==,cos∠EFG===,∴∠EFG=,∴异面直线EF与AB所成的角大小是,线段EF的长度为.故答案为:,.12.(4分)二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB与平面β所成的角的余弦值是.【解答】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α﹣l﹣β的平面角,∠ADC=60°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=AD sin60°=x,Rt△ABD中,AB==2,BC==,∴Rt△ABC中,cos∠ABC===.故答案为:.13.(6分)正三棱锥的高为1,底面边长为2,则它体积为2;若有一个球与该正三棱锥的各个面都相切,则球的半径为﹣2.【解答】解:底面等边三角形的面积S==,所以V=,设内切球的球心为O,半径为r,则在O与底面的中心M,BM=,OE=r,OA=1﹣r,侧面斜边的高AB=由△AOE ∽△ABM,得相似得,得,,所以.故答案为:﹣2.14.(6分)若f(x)=﹣3x为奇函数,则a=1,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为(﹣2,5).【解答】解:∵f(x)为奇函数,∴f(0)=0,,∴a=1.∴∵,∴f(x)为减函数,且为奇函数∵f(1﹣x2)+f(3x+9)<0,∴f(1﹣x2)<﹣f(3x+9)=f(﹣3x﹣9),∴1﹣x2>﹣3x﹣9,∴﹣2<x<5.故不等式的解集为(﹣2,5).故答案为:1,(﹣2,5).15.(4分)在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.【解答】解:将△AB1C1绕边AC1旋转到APC1位置,使得平面APC1和平面ACC1在同一平面内,过点P作PN⊥平面ABCD,交AC1于M,垂足为N,则PN为MB1+MN的最小值.∵AB=2,BC=AA1=,∴AC1==2,AP=AB1==,∵sin∠C1AC===,∴∠C1AC=30°,∴∠P AN=2∠C1AC=60°,∴PN=AP•sin∠P AN==.∴MB1+MN的最小值为.故答案为:.16.(6分)在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是平行;(2)|A1P|的最小值为.【解答】解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A1(1,0,1),E(0,1,),B(1,1,0),∵P,Q均在平面A1B1C1D1内,∴设P(a,b,1),Q(m,n,1),则=(﹣1,1,﹣),=(a﹣1,b﹣1,1),=(m﹣1,n﹣1,1),∵BP⊥A1E,BQ⊥A1E.∴,解得,∴PQ∥BD,即PQ与BD的位置关系是平行.故答案为:平行.(2)当|A1P|取最小值时,P在平面A1B1C1D1内,设P(a,b,1),由(1)得b=a+,∴|A1P|====,∴当a=,即P(,,1)时,|A1P|的最小值为.故答案为:.17.(4分)若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a>1),则t的取值范围是.【解答】解:原不等式等价于:或即①或②,注意到x=1时,②成立,此时≤t≤;当x∈Z,x≥2时,①成立,在①中,1+≤t≤x﹣,又g(x)=x﹣﹣为单调递增函数,所以,要使对x∈Z,x≥2成立,只需x=2时成立,又x=2时,≤t≤,所以要使不等式对任意的正整数x恒成立,则t的取值范围是:≤t≤,故答案为:≤t≤.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.【解答】解(1)由•=,得ab cos C=.又因为cos C=,所以ab==.又C为△ABC的内角,所以sin C=.所以△ABC的面积S=ab sin C=3.(2)因为∥,所以2sin cos=cos B,即sin B=cos B.因为cos B≠0,所以tan B=.因为B为三角形的内角,0<B<π,所以B=.由正弦定理=,所以a=,c=,所以a+c=,又A+C=,所以a+c==4(cos C+)=4sin(C+),又0,所以<C+,所以∈(2,4].19.(15分)如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E 分别为AD,PD中点.(1)设平面P AB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面P AB.【解答】(1)解:分别延长AB和DC交于点R,连接PR,则直线PR就是l的位置;R∈AB⊂平面P AB,R∈CD⊂平面PCD,所以P、R是平面P AB和平面PCD的两个公共点,由公理1可知,过P、R的直线就是两个平面的交线l.(2)证明:连接OE、OC,因为BC∥AD,且BC=AD,又AO=AD,所以BC∥AO,且BC=AO,所以四边形ABCO为平行四边形,所以OC∥AB,则OC∥平面P AB;又OE为△P AD的中位线,则OE∥AP,所以OE∥平面P AB,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面P AB∥平面OEC,又OQ⊂平面OEC,所以OQ∥平面P AB.20.(15分)已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.【解答】解:(1)当n≥2时,2S n﹣1﹣(n﹣1)a n﹣1=3(n﹣1),又2S n﹣na n=3n,相减可得(n﹣1)a n﹣1﹣(n﹣2)a n=3,当n≥3时,(n﹣2)a n﹣2﹣(n﹣3)a n﹣1=3,所以(n﹣1)a n﹣1﹣(n﹣2)a n=(n﹣2)a n﹣2﹣(n﹣3)a n﹣1,可得2a n﹣1=a n﹣2+a n,所以{a n}为等差数列.又2S1﹣a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;(2)b n=====(﹣),T n=(﹣+﹣+﹣+﹣+…+﹣)=(﹣),要使T n成立,即(﹣)>,解得n>,所以最小正整数n的值为8.21.(15分)对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.【解答】解:(1),则x2=m2﹣n2不可能恒成立,所以f(x)=x不是““(m,n)型函数”;(2)①由题意,g(x+1)g(1﹣x)=4,取x=1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵(x+1)g(1﹣x)=4,所以g(x)g(2﹣x)=4.当x∈[0,1]时,2﹣x∈[1,2]时,g(2﹣x)===.(a)当0<a<1时,0<,则g(x)在[0,1]内先减后增,且g(,即1+a﹣a2≤g(x)≤2,则当x∈[1,2]时,2≤g(x).所以当x∈[0,2]时,1+a﹣,由题意,,解得0≤a≤4,所以0<a<1.(b)当1≤a<2时,,则g(x)在][0,1]内先减后增,且g()≤g(x)≤g(0),即1+a﹣≤g(x)≤1+a,则当x∈[1,2]时,.要满足题意,则应满足,且解得0≤a≤33,所以1≤a<2.(c)当a≥2时,≥1,则g(x)在[0,1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a,则当x∈[1,2]时,.此时,g(x)min=,g(x)min=1+a.要满足条件,则应,解得a≤3,所以2≤a≤3.综上所述,0<a≤3.方法二:当x∈[0,2]时,都有1≤g(x)≤4成立,所以当x∈[1,2]时,1≤g(x)≤4;当x∈[0,1]时,2﹣x∈[1,2]时,所以g(2﹣x)∈[1,4],而g(x)g(2﹣x)=4,所以1,即1≤g(x)≤4,所以问题转化为当x∈[0,1]时,1≤g(x)≤4即可.当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),.(1)当0<<1,即0<a<2时,,解得0≤a≤3,所以0<a<2;(2)当,即a≥2时,只要解得a≤3,所以2<a≤3;综上所述,0<a≤3.22.(15分)如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.【解答】解:(1)证明:∵AM⊥BD,BD⊥AC′,AM∩AC′=A,∴BD⊥平面AMC′,∵BD⊂平面ABD,∴平面△AMC′⊥平面ABD.(2)解:如图,在△C′AM所在平面内,过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.又QC′是由QC翻折得到,∴∠C′QP=α=2∠C′CQ,且∠C′CQ就是直线C′C与平面ABC所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.(3)解:如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′﹣AD﹣B的平面角.△AMC中,∠MAD=15°,∠CAD=45°,作出二面角的平面角∠C1QP后,若将半平面C1AD摊平,则P,Q,C的连线与AD垂直,且cos∠C′QP====tan∠P AQ=tan15°=2﹣.第21页(共21页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭州二中2019学年第一学期高二年级期中考数学试卷
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 经过点()1,0-,且斜率为2的直线方程为( )
A.220x y +-=
B.220x y -+-=
C.220x y +-=
D.220x y ++=
2. 如图,正方体1111ABCD A B C D -,中,异面直线1A B 与1B C 所成的角为( ) A.6π B.4π C.3π D.2
π
3. 长方体的正视图与侧视图如图所示,则其俯视图的面积为( )
A.12
B.8
C.6
D.4
正视图 侧视图 4. 命题“若一个数是质数,则它不能被2整除”的否命题是( )
A.若一个数是质数,则它能被2整除
B.若一个数是合数,则它能被2整除
C.若一个数不是质数,则它能被2整除
D.若一个数不是质数,则它不能被2整除 5. 已知a ,b 是空间中两条不同的直线,α,β是空间中两个不同的平面,若a α⊥,b β⊥,αβ⊥,则a ,b 一定( )
A.平行
B.相交
C.异面
D.垂直
6. 平面直角坐标系xOy ()cos sin 1y R ααα+=∈与圆O :22=1x y +( )
A.相切
B.相交
C.相离
D.相交或相切
7. 过点()4,0-引直线l 与曲线y =A ,B 两点,O 为坐标原点,当AOB V 面积最大时,直线l 的斜率为( )
A.12
B.7
C.7-
D.7
± 8. 用一个平面去截一个正四面体,截面不可能...
为( ) A.内角均不为90︒的菱形
B.平行四边形
C.等腰三角形
D.钝角三角形
9. 已知正方体1111ABCD A B C D -的棱长为3,M ,N 分别为1AB ,11A C 上的点,
且1A N AM =,12AM MB =,P ,Q 分别为1BB ,11B C 上的动点,则折线MPQN 长度的最小值为( )
A.3
10. 在平面直角坐标系xOy 中,过点)
P 作直线与两条直线1:l y x =,2:l y x =-交于A ,B 两点,则OA OB AB +-的最大值为( )
A. B.10 C.20 D.1+非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.
11. 已知圆22:244A x y x y +-+=,则圆心A 的坐标为___________,圆A 的半径为___________.
12. 已知直线21:10l x m y ++=与直线2:20l mx y --=平行,若12//l l ,则m =___________;若12l l ⊥,则m =
___________.
13. 已知正方体的棱长为1,则它的外接球半径为___________,与它各棱都相切的球的半径为___________.
14. 在平面直角坐标系xOy 中,点()1,2P 到直线:410l ax y +-=的距离为2,则a =___________.
15. 如图,在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形边长为1,则1BC 与侧面11ACC A 所成角
的正弦值是___________.
16. 如图,已知三棱锥A BCD -中,F ,G 分别是AC ,AD 的中点,E 在线段AB 上,且2AE EB =,平面
EFG 将该三棱锥截成一个四面体和一个五面体,分别记该四面体和五面体的体积为1V ,2V ,则12V V =___________,若分别记该四面体和五面体的表面积为1S ,2S ,则2S ___________12S (填“>”、“<”或“=”).
17. 如图,矩形ABCD 中,2AB =,5BC =,E ,F 分别为边BC ,AD 上的定点,且45BAE ∠=︒,
30DCF ∠=︒,分别将ABE V ,CDF V 沿着AE ,CF 向矩形所在平面的同一侧翻折至AB E 'V 与CD F
'V 处,且满足B D AB ''⊥,分别将锐二面角B AE D '--与锐二面角D FC B '--记为1θ与2θ,则2212cos cos θθ+的最小值为___________.
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.(本题满分14分) 已知:31p ax -≤,()()2:2110q x b x b b -+++≤.
(Ⅰ)当2a =-时,求p 中所对应的实数x 的取值范围;
(Ⅱ)若p 是q 的充分必要条件,求a ,b 的值.
19.(本题满分15分)
平面直角坐标系xOy 中,已知()1,0A -,()2,1B ,在ABC V 中,AC 边上的中线所在直线的方程为1y =

BC 边上的高所在的直线斜率为12
.
(Ⅰ)求直线BC 的方程;
(Ⅱ)求以AC 为直径的圆的标准方程.
20.(本题满分15分)
已知直三棱柱111ABC A B C -中,底面ABC V 为等腰直角三角形,12AC BC AA ===.
(Ⅰ)求五面体111A B C BC 的体积;
(Ⅱ)若D 为AB 中点,E 为1AC 上一点,且//DE 平面1A BC ,求线段AE 的长度.
21.(本题满分15分)
已知圆()221:55C x y ++=,直线l 过点()1,3A -且与圆1C 相切.
(Ⅰ)求直线l 的方程;
(Ⅱ)设圆2C 与圆1C 关于直线l 对称,试问在x 轴上是否存在点P ,使得P 若存在,求出点P 的坐标;若不存在,说明理由.
22.(本题满分15分)
已知四棱锥E ABCD -的底面为直角梯形90DAB ∠=︒,//AB CD ,122AD CD CE AB ====,EAB V 是以AB 为底边的等腰直角三角形.
(Ⅰ)求证:CE AB ⊥;
(Ⅱ)若H 为EAD V 的垂心,求二面角H EC B --的余弦值.。

相关文档
最新文档