2019年12月浙江省学考选考浙江省杭州市杭州二中高2020届高2017级高三历史试题参考答案

合集下载

浙江省杭州第二中学 2020届选考信息技术学业复习测试一(word版,有答案)

浙江省杭州第二中学 2020届选考信息技术学业复习测试一(word版,有答案)

信息技术学业水平考试选择题复习一班级:学号:姓名:(注:请同学认真作答,如遇难点,可参考《学业水平导引》和教科书)1.下图是用音频解霸软件播放歌曲"祝福.mp3"时的界面,从图中可以看出当前歌曲正播放到……()A. 53秒B. 1分46秒C. 2分53秒D. 4分27秒2.十进制数4与二进制数1101相乘的积是………………………………………………………………()A.(11010)2B.(10100)2C.(110100)2D.(101100)23.以下文件中能使用Word软件打开编辑的是……………………………………………………………()A.books.mdb B.秋天不回来.wav C.成绩.xls D.雨巷.doc4.小张想给自己的电脑安装一款杀毒软件,并通过各种途径获得了下面几款软件,请根据软件的相关信息帮助小张做出正确评估,他应选择安装……………………………………………………………………()A.某网站下载的KV 2008 破解版B.瑞星的官方网站下载的瑞星2008 免费试用版C.朋友处借来正版金山毒霸2008D.某博客上下载的自编超强杀毒软件5.小王用UltraEdit软件观察字符的内码,如第5题图所示,下列说法中正确的是…………………()A.“同一个梦想”字符在计算机内存储和处理时使用的是ASCII码(中文存储用GB国标码)B.“One dream”字符在计算机内存储时,每个字符占2B (英文数字存储用ASCII码)C.“O”的ASCII码是01001111B O=4F(十六进制)=01001111BD.“世界”内码的十六进制表示是BBB8H CACO BDEF H6.为了获得北京奥运圣火在绍兴传递的火炬手名单,王峰使用全文搜索引擎在网上查找,下列选项中最有效的关键词是………………………………………………………………………………………………()A.奥运圣火B.圣火传递C.绍兴火炬手D.奥运圣火7.某航空公司的某次航班因“天气原因”临时推迟起飞时间,该航空公司需要及时通知已购票的乘客,下列方式中较合适的有………………………………………………………………………………………()A.打电话 B.利用传统书信C.上门通知D.利用QQ、MSN等实时交流工具8.如第8题图所示为使用IE保存一个包含文字、图片等内容的网页,单击“保存”按钮后,下列相关描述中正确的是………………………………………………………………………………………………()第8题图A.该网页中的文字内容将被保存在“huiha.网页”文件中B.该网页中的图片将被保存在“huiha.files”文件夹中C.使用当前保存类型,只能保存网页中的文字信息D.使用当前保存类型,只能保存网页中的图片9.超市收银员用扫描仪扫描顾客选购商品的条形码,然后在计算机中根据识别后的条形码信息在相应数据库中查找其对应商品的名称、价格等信息。

2024届浙江省杭州市杭州第二中学高三下第二次检测试题考试数学试题

2024届浙江省杭州市杭州第二中学高三下第二次检测试题考试数学试题

2024届浙江省杭州市杭州第二中学高三下第二次检测试题考试数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+D .,a b R ∃∈,a b a b -≥+2.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆2222x y a b+=1(a >b >0),A ,B 为椭圆的长轴端点,C ,D 为椭圆的短轴端点,动点M 满足MA MB=2,△MAB 面积的最大值为8,△MCD 面积的最小值为1,则椭圆的离心率为( ) A .23B .33C .22D .323.将一块边长为cm a 的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为3722cm ,则a 的值为( )A .6B .8C .10D .124.命题“(0,1),ln xx ex -∀∈>”的否定是( )A .(0,1),ln x x e x -∀∈≤B .000(0,1),ln x x e x -∃∈> C .000(0,1),ln x x ex -∃∈<D .000(0,1),ln x x ex -∃∈≤5.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )A 43B .43C 23D .236.已知函数13log ,0()1,03x x x f x a x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩,若关于x 的方程[()]0f f x =有且只有一个实数根,则实数a 的取值范围是( ) A .(,0)(0,1)-∞ B .(,0)(1,)-∞⋃+∞ C .(,0)-∞D .(0,1)(1,)⋃+∞7.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的取值范围是( )A .[]5,3-B .[]2,3C .[)2,+∞D .(],3-∞8.若1(1)z a i =+-(a R ∈),|2|z =a =( )A .0或2B .0C .1或2D .19.已知集合{}2|320M x x x =-+≤,{}|N x y x a ==-若M N M ⋂=,则实数a 的取值范围为( )A .(,1]-∞B .(,1)-∞C .(1,)+∞D .[1,)+∞10.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8B .9C .10D .1111.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦ B .1,2⎛⎫+∞ ⎪⎝⎭C .1,,233e e ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭D .1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭12.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .45二、填空题:本题共4小题,每小题5分,共20分。

浙江省五校(杭州二中、学军中学、杭州高级中学、效实中学、绍兴一中)2021届高三上学期联考语文试题

浙江省五校(杭州二中、学军中学、杭州高级中学、效实中学、绍兴一中)2021届高三上学期联考语文试题

浙江省2020学年第一学期五校联考试题高三年级语文试题卷考生须知:1.本卷满分150分,考试时间150分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号:3.所有答案必须写在答题卷上,写在试卷上无效:4.考试结束后,只需上交答题卷。

一、语言文字运用(共20分)1.下列各句中,没有错别字且加点字的注音全都正确的项是()(3分)A.一条浅溪蒙绕着村落,平添了几分灵气;清泉山中来,凉凉溪流,汩汩(gǔ)有声,鱼虾嬉戏水藻间;近处的田地瓜蔓(màn)繁茂,生机勃勃。

B.在现代化的都市里,钢筋水泥拔地而起,高楼大厦鳞次栉(zhì)比,然而许多人却成了雨天的匆匆过客,忘了咂(zá)摸品味一下自然赋予的香茗。

C.文学延展了我们的人生:它能够裹挟着你恓惶的内心左奔右突,能够重建你坍圮(pǐ)的阅读视界,能够帮助你摆脱生活的桎梏(gù)。

D.在民生凋蔽、饿殍(piǎo)遍野的魏晋时代,琐碎、迁腐、荒唐、既无学术效用又无理论价值的谶(chèn)纬和经术,在时代动乱和农民革命的冲击下,终于垮台。

阅读下面的文字,完成2-3题。

(5分)从某种意义上说,在现当代中国的思想、文化史上,【甲】关于..女性和妇女解放的话语或多或少是两幅女性镜像间的徘徊:秦香莲——被侮辱与被损害的弱者;花木兰——逾越男权社会的女性规范、报效祖国的女英雄。

【乙】或许时至今日,我们仍难以真正估价“时代不同了,男女都一样”(毛泽东语)作为彼时的权成指令与话语,对中国妇女解放产生了怎样巨大而深刻的影响。

一个不争的事实是,这句家喻户晓..,进而支持并保....的口号确实有力地保障了妇女权力护了妇女解放的实现。

然而,就另一个方面而言,【丙】“男女都一样”“中华儿女多奇志,不爱红装爱武装”的话语及其社会实践在颜覆性别歧视的社会休制与文化传统的同时,也意味着对历史造就的男性、女性间深刻的文化对立与被数千年男性历史所写就的性别文化差异的遮蔽。

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题一、单选题1.设集合{}N 12A x x =∈-≤≤,{}2,1,0,1B =--,则A B = ()A .{}2,1,0,1,2--B .{}1,0,1-C .{}0,1D .{}12.若函数()1f x +的定义域是{}10x x -<<,则函数()f x 的定义域为()A .{}01x x <<B .{}21x x -<<-C .{}10x x -<<D .{}20x x -<<3.不等式20cx ax b ++>的解集为112x x ⎧⎫-<<⎨⎬⎩⎭,则函数2y ax bx c =+-的图象大致为()A .B .C .D .4.已知()e e x x xf x a -=+是偶函数,则a =()A .2-B .1-C .1D .25.已知命题p :0x ∃≥,111x x +<+,则()A .命题p 的否定为0x ∀≥,111x x +≥+,且p 是真命题B .命题p 的否定为0x ∃≥,111x x +≥+,且p 是真命题C .命题p 的否定为0x ∀≥,111x x +≥+,且p 是假命题D .命题p 的否定为0x ∀<,111x x +≥+,p 是假命题6.已知函数2()32x a x f x ax x ⎧≤=⎨+>⎩,,是R 上的增.函数,则实数a 的取值范围为()A .1a >B .13a <<C .13a -≤≤D .13a <£7.已知,,abc 为正数,且22a b c ++=,则14a b b c +++的最小值为()A .52B .52C .92D .948.已知函数341()=41x x f x x -++,则不等式(21)()0f x f x -+<的解集为()A .(1,)+∞B .(,1)-∞C .1(,)3+∞D .1(,)3-∞二、多选题9.设,R a b ∈,若0a b ->,则下列结论正确的是()A .0b a ->B .0b a +>C .220a b ->D .330a b +<10.某校“五一田径运动会”上,共有12名同学参加100米、400米、1500米三个项目,其中有8人参加“100米比赛”,有7人参加“400米比赛”,有5人参加“1500米比赛”,“100米和400米”都参加的有4人,“100米和1500米”都参加的有3人,“400米和1500米”都参加的有3人,则下列说法正确的是()A .三项比赛都参加的有2人B .只参加100米比赛的有3人C .只参加400米比赛的有3人D .只参加1500米比赛的有3人11.设R x ∈,[]x 表示不超过x 的最大整数,如][1.51, 1.52⎡⎤=-=-⎣⎦,记{}[]x x x =-.则下列说法正确的有()A .R,Z x n ∀∈∈,都有[][]n x n x +=+B .,x y ∀∈R ,都有[][][]xy x y ≥C .*R,N x n ∀∈∈,都有[]x x n n ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦D .若存在实数x ,使得23[]1,[]2,[]3,...,[]n x x x x n ====同时成立,则正整数n 的最大值为4.三、填空题12.设集合(){}22,2,N,N A x y x y x y =+≤∈∈,则A 中元素的个数为13.如果2339x x --<,则x 的取值范围为.14.函数()f x 的定义域为D ,若对于任意12x x D ∈,当12x x <时,有12()()f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[0,1]上为非减函数,且满足以下三个条件:①(0)0;f =②1()()32x f f x =;③(1)()1f x f x -+=.则21((55f f +=四、解答题15.已知命题22:R,60p x x x a ∃∈-+=,当命题p 为真命题时,实数a 的取值集合为A .(1)求集合A ;(2)设集合{}321B a m a m =-≤≤-,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.16.已知函数()4(0)4x xa f x a =+≠(1)当1a =时,根据定义证明函数()f x 在(0,+∞)上单调递增.(2)若()f x 有最小值4,求a 的值.17.某公园为了美化游园环境,计划修建一个如图所示的总面积为7502m 的矩形花园.图中阴影部分是宽度为1m 的小路,中间,,A B C 三个矩形区域将种植牡丹、郁金香、月季(其中,B C 区域的形状、大小完全相同).设矩形花园的一条边长为m x ,鲜花种植的总面积为2m S .(1)用含有x 的代数式表示a ,并写出x 的取值范围;(2)当x 的值为多少时,才能使鲜花种植的总面积最大?18.设函数()222f x x tx =-+,其中R t ∈.(1)若1t =,(i )当[0,3]x ∈时,求()f x 的最大值和最小值;(ii )对任意的[]0,2x a ∈+,都有()5f x ≤,求实数a 的取值范围;(2)若对任意的12,[0,4]x x ∈,都有()()128f x f x -≤,求实数t 的取值范围.19.定义在R 上的奇函数()f x ,当0x ≥时,2()4f x x x =-+.(1)求()f x 的解析式;(2)当()f x 的定义域为[,]a b (0a )时,()f x 的值域为[,]a b ,求,a b 的取值.(3)是否存在实数,a b ,使得当()f x 的定义域为[,]a b 时,()f x 的值域为88[,b a,如果存在,求出,a b 的值;若不存在,请说明理由.。

浙江省杭州市2023_2024学年高二数学上学期12月阶段联考试题含解析

浙江省杭州市2023_2024学年高二数学上学期12月阶段联考试题含解析

考生须知:1.本卷共4页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、学号和姓名;考场号、座位号写在指定位置;3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.准线方程为2y =的抛物线的标准方程是()A.24x y = B.24x y =-C.28x y= D.28x y=-2.直线210x ay +-=和直线()3110a x ay ---=垂直,则a =()A.1B.12C.1或12D.1或12-3.已知在等比数列{}n a 中,4816a a ⋅=,则6a 的值是()A.4B.-4C.±4D.164.如图,在三棱台111ABC A B C -中,且112AB A B =,设1,,AB a AC b AA c ===,点D 在棱11B C 上,满足112B D DC = ,若AD xa yb zc =++,则()A.11,,163x y z === B.111,,632x y z ===C.11,,136x y z === D.111,,362x y z ===5.已知等差数列{}n a 的前n 项和为n S ,且202220230,0S S ><,则下列说法错误的是()A.10120a < B.10110a >C.数列{}n a 是递减数列D.{}n S 中1010S 最大6.已知圆221:20(0)C x ax y a -+=>,直线:0l x =,圆1C 上恰有3个点到直线l 的距离等于1,则圆1C 与圆222:(1)(1C x y -+=的位置关系是()A.内切B.相交C.外切D.相离7.已知圆22:(4)1C x y +-=上有一动点P ,双曲线22:197x y M -=的左焦点为F ,且双曲线的右支上有一动点Q ,则PQ QF +的最小值为()A.1- B.5- C.7D.58.阅读材料:空间直角坐标系O xyz -中,过点()000,,P x y z 且一个法向量为(),,n a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,阅读上面材料,解决下面问题:已知平面α的方程为21x y z -+=,点()3,1,1Q -,则点Q 到平面α距离为()A.6B.2C.102D.34二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()()2,2,2,1,2,1a b =-=-,则下列说法正确的是()A.()1,4,1a b +=-B.a∥bC.a b⊥D.3cos ,23a ab -=10.已知直线()():2220l mx m y m m R ++--=∈,圆22:(1)(2)25C x y -+-=,点P 为圆C 上的任意一点,下列说法正确的是()A.直线l 恒过定点()1,1B.直线l 与圆C 恒有两个公共点C.直线l 被圆C 截得最短弦长为D.当1m =-时,点P 到直线l 距离最大值是252+11.已知数列{}{},n n a b 满足()*123111,23n n n a a a a b n N S n++++=∈ 是{}n a 的前n 项和,下列说法正确的是()A.若2n a n n =+,则232n n nb +=B.若n b n =,则{}n a 为等差数列C.若1n b n =+,则{}n a 为等差数列D.若2nn b =,则()122nn S n =-⋅+12.已知抛物线2:4C y x =的焦点为F ,准线l 与x 轴交于点M ,过M 的直线l 与抛物线C 相交于()()1122,,,A x y B x y 两点,点D 是点A 关于x 轴的对称点,则下列说法正确的是()A.124y y =- B.4AF BF +的最小值为10C.,,B F D 三点共线D.0MB MD ⋅>三、填空题:本题共4小题,每题5分,共20分.13.在空间直角坐标系O xyz -中,已知点()()3,1,4,2,1,5M N -,则MN =__________.14.过点()0,0作圆22:430C x y y +-+=的两条切线,切点为A B 、,则劣弧长 AB =__________.15.如图,已知正方形0000A B C D 的边长为2,分别取边00000000,,,D A A B B C C D 的中点1111,,,A B C D ,并连接形成正方形1111A B C D ,继续取边11111111,,,D A A B B C C D 的中点2222,,,A B C D ,并连接形成正方形2222A B C D ,继续取边22222222,,,D A A B B C C D 的中点3333,,,A B C D ,并连接形成正方形3333,A B C D ,依此类推;记011A A B 的面积为1122,a A A B 的面积为2,a ,依此类推,()*1n n n A A B n N -∈ 的面积为n a ,若12310231024n a a a a +++=,则n =__________.16.设12F F 、是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点,P Q 为椭圆C 上的两点,且满足21260,2PF Q PF QF ∠==,则椭圆C 的离心率为__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)如图,在长方体1111ABCD A B C D -中,12,3,4AB AD AA ===,点,E F 分别为棱1,AB DD的中点,(1)求证:1C F ⊥平面BCF ;(2)求直线1C F 与平面1DEC 所成角的正弦值.18.(本题满分12分)已知数列{}n a 满足11a =,点()*111,n n n N a a +⎛⎫∈⎪⎝⎭在直线210x y -+=上.(1)求证:数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求出{}n a 的通项公式;(2)求满足11635n a ≤≤的n 的取值构成的集合.19.(本题满分12分)已知动点P 与两个定点()()1,0,4,0A B 的距离的比是2.(1)求动点P 的轨迹C 的方程;(2)直线l 过点()2,1,且被曲线C 截得的弦长为3,求直线l 的方程.20.(本题满分12分)已知等差数列{}n a 前n 项和为n S ,满足343,10a S ==.数列{}n b 满足12b =,*112,n n n nb a n N b a ++=∈.(1)求数列{}{},n n a b 的通项公式;(2)设数列{}nc 满足()*1(1)32,n n n n n c n N a b +-+=∈,求数列{}n c 的前n 项和n T .21.(本题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为正方形,2,,AB PA E F ==分别为,PB PD 的中点.(1)求平面CEF 与底面ABCD 所成角的余弦值;(2)求平面CEF 与四棱锥P ABCD -表面的交线围成的图形的周长.22.(本题满分12分)已知双曲线C 的中心为坐标原点,上顶点为()0,2,离心率为2.(1)求双曲线C 的渐近线方程;(2)记双曲线C 的上、下顶点为12,,A A P 为直线1y =上一点,直线1PA 与双曲线C 交于另一点M ,直线2PA 与双曲线C 交于另一点N ,求证:直线MN 过定点,并求出定点坐标.2023学年第一学期金华卓越联盟12月阶段联考高二年级数学参考答案命题人:东阳二中吕夏雯陆琳琳;审题人:汤溪中学张拥军一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.D 【解析】242pp =⇒=,又抛物线开口向下,所以抛物线的方程为28,D x y =-正确.2.C 【解析】()()311201a a a a -⋅+⋅-=⇒=或1,C 2a =正确.3.C 【解析】2486616,4,C a a a a ⋅==∴=±正确.4.A 【解析】1111111111111212,,3333AD AA A D A D A B AC AD AA A B AC =+=+∴=++又111111111,,,2263A B a AC b AA c AD a b c ===∴=++ ,A 正确.5.D 【解析】()()120222022101110121011101220221011002a a S a a a a +==+>⇒+>()1202320231012101220232023002a a S a a +==<⇒<,则10110a >所以数列{}n a 单调递减,{}n S 中1011S 最大.D 正确.6.B 【解析】圆上3个点到直线的距离是1,则圆心到直线的距离应是1,12aa a -∴=-,则2a =,圆1C 的圆心为()2,0,半径是2,圆2C 的圆心为(,半径是1,则12C C =,所以两圆的位置关系是相交.B 正确.7.D 【解析】圆心()0,4C ,取双曲线的左焦点()224,0,1,6F PQ QC QF QF ≥-=+ ,则()22216555PQ QF QC QF QC QF CF +≥-++=++≥+=PQ QF ∴+的最小值为5+,D 正确.8.A 【解析】平面α的法向量()1,1,2n =-,在平面α上任取一点()1,0,1A -,则()4,1,0QA =- ,556A 66QA n d n ⋅== 正确.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ACD 【解析】()1,4,1a b +=- ,选项A 正确,a b λ≠ ,选项B 错误;()()2122210a b -⋅+⋅+⋅-=∴⊥选项C 正确;()12324,2,4cos ,23236a b a a b -=--∴->=⋅,选项D 正确,正确答案是A.C.D 10.ABD 【解析】直线():2220l m x y y +-+-=,所以恒过定点()1,1.选项A 正确;因为定点()1,1在圆C 内,所以直线l 与圆C 恒有两个公共点.选项B 正确;l 被圆C 截得的最短弦长2516-=C 错误;当1m =-时,:0l x y -=,点P 到直线l 的距离的最大值是25522+=+,选项D 正确.正确答案是A.B.D11.ABD 【解析】当2n a n n =+,则11n a n n =+,所以()221322n n n n n b +++==,选项A 正确;已知12311123n a a a a n n++++= ,当1n =时,11a =,当2n ≥时,12311111231n a a a n n -++++=-- ,则(11,1n n a a n n n=∴==时也成立),所以{}n a 为等差数列,选项B 正确;已知123111123n a a a a n n++++=+ ,当1n =时,12a =,当2n ≥时,1231111231n a a a a n n -++++=- ,则(11,1n n a a n n n=∴==时不成立),所以{}n a 不是等差数列,选项C 不正确;已知123111223n n a a a a n++++= ,当1n =时,12a =,当2n ≥时,112311112231n n a a a a n --++++=- ,则1112,2(1n n n n a a n n n--=∴=⋅=时不成立),所以12,1;2,2n n n a n n -=⎧=⎨⋅≥⎩当1n =时,12S =,1n =时,12112,222322n n a S n -==+⋅+⋅++⋅ ()2122222122n nn S n n -=⋅+⋅++-⋅+⋅ ()()22314122022222212212n n n nnn S n n n ----=++++-⋅=+-⋅=-⋅-- 所以()122,1nn S n n =-⋅+=时也成立,选项D 正确.正确答案是A.B.D 12.CD【解析】设直线:1l x my =-,联立方程组224,4401y x y my x my ⎧=-+=⎨=-⎩,则121244y y m y y +=⎧⎨=⎩,选项A 不正确;221212144y y x x =⋅=,所以()121244114559AF BF x x x x +=+++=++≥=当且仅当2142x x ==时等号成立,所以4AF BF +的最小值为9,选项B 不正确;()11,D x y -,设:l x ny t =+,联立方程组224,440y x y ny t x ny t ⎧=--=⎨=+⎩,则121244y y my y t -+=⎧⎨-=-⎩,所以1t =,即直线BD 过点F ,选项C 正确;对于D 选项,()()22111,,1,MB x y MD x y =+=+-,22121212114214440MB MD x x x x y y m m ∴⋅=+++-=+-++=+>,选项D 正确.正确答案是C.D三、填空题:本题共4小题,每题5分,共20分.【解析】()1,2,1,MN MN =-∴==.14.23π【解析】圆C :22(2)1x y +-=,2,63COB COA ACB ππ∠∠∠∴==∴=,故劣弧长23AB π=.15.10【解析】由题意可知三角形的面积构成首项为12,公比为12的等比数列,12311122110231,1012102412nnn a a a a n ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭∴+++==-=∴=-.16.9【解析】如图,过1F 作12F M QF = ,连接2MF ,因为122PF QF = ,所以12260F PF PF Q ∠∠==,设2QF t =,则11222,,22,2PF t MF t PF a t MF a t ===-=-,在2PMF 中,222222||||PM PF PM PF MF +-=,即22222294846644t a at t at t a at t +-+-+=-+,化简得1210859,,99a t PF a PF a ===,所以1006480221299c t a ==,所以离心率219c a =.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【解析】(1)方法一:因为F 是1DD 的中点,所以111112,D F D C FD DC D FC ==== 和FDC 是等腰直角三角形,所以1145D FC CFD ∠∠==,1C F CF ∴⊥,因为BC ⊥平面111,CDD C C F ⊂平面11CDD C ,所以1BC C F ⊥,,BC CF ⊂平面11BCF C F ∴⊥平面BCF方法二:以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴建立空间直角坐标系,()()()()()()()110,3,0,2,3,0,0,0,2,0,2,4,2,0,0,0,2,2,0,2,2,C B F C CB CF C F ==-=--所以111440,0,C F CF C F CB C F ⋅=-=⋅=∴⊥平面BCF ;(2)()()13,1,0,0,2,4DE DC == ,设平面1DEC 的法向量为(),,n x y z =,则130240DE n x y DC n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,所以取()2,6,3n =- ,又()10,2,2C F =--,11132sin cos ,14||C F n C F n C F n θ⋅∴==== .直线1C F 与平面1DEC所成角的正弦值为14.18.【解析】(1)由已知得111212121,21111n n n n nn a a a a a a ++++=+∴==++,且11120a +=≠,所以数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,112n n a ∴+=,则1;21n n a =-(2)因为11635n a ≤≤,所以111,52163,626463215n n n ≤≤≤-≤∴≤≤-,得2log 66n ≤≤,又因为*n N ∈,所以n 的取值构成的集合是{}3,4,5,6.19.【解析】(1)设点(),P x y=,化简得2210210x y x +-+=,所以动点P 的轨迹C 的方程为22(5)4x y -+=;(2)由(1)可知点P 的轨迹C 是以()5,0为圆心,2为半径的圆,可计算得圆心()5,0到直线l的距离1d ==,①当直线l 的斜率不存在时,圆心到直线l 的距离是3,不符合条件,②当直线l 的斜率存在时,设直线l 的方程为()12y k x -=-,即210kx y k --+=,所以1d ==,化简得229611k k k ++=+,解得0k =或34k =-,所以直线l 的方程是1y =或34100x y +-=.20.【解析】(1)设数列{}n a 的公差为1123,4610a d d a d +=⎧∴⎨+=⎩,解得11,1,n a d a n ==∴=.()11211,2n n n n b n b n b b n n ++++=∴= ,且121b =,所以n b n ⎧⎫⎨⎩⎭是等比数列,2,2n nn n b b n n∴=∴=⋅(也可用累乘法求{}n b 的通项公式)(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅21.【解析】(1)以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,平面ABCD 的法向量为()0,0,1m =,()()()()()2,2,0,1,0,1,0,1,1,1,2,1,1,1,0C E F CE EF =--=- ,设平面CEF 的法向量为(),,n x y z = ,所以200CE n x y z EF n x y ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,所以取()1,1,3n = ,所以cos ,||||11m n m n m n ⋅〈〉=== ,所以平面CEF 与底面ABCD所成角的余弦值为11;(2)由对称性可知平面CEF 与棱PA 交于一点,设交点()()40,0,,1,0,1,1330,3Q t QE t QE n t t =-⋅=+-=∴= ,103QE QF ∴==又CE CF ==,所以围成的图形的周长为210263+22.【解析】(1)设双曲线方程为22221(0,0)y x a b a b-=>>,由上顶点坐标可知2a =,则由52c e a ==可得225,1c b c a ==-,双曲线的渐近线方程为2y x =±.(2)由(1)可得()()120,2,0,2A A -,设()()1122,,,M x y N x y ,设直线MN 的方程为y kx m =+,与2214y x -=联立可得()2224240k x kmx m -++-=,且()22Δ1640k m =-+>,则212122224,44km m x x x x k k --+==--,()2212122248,44k m m y y y y k k -+-∴+==--设()1213,1,,A P A P P t k k t t ∴=-=,2111233,4A P A P MA MA MA k k k k k ∴=-=-⋅= ,得2212MA NA k k ⋅=-2221221222441641612,124y y k m m k x x m ++---+-∴⋅=-=--,化简得22(2)3,4m m +=-。

浙江省杭州市杭州二中2024届物理高一上期中教学质量检测试题含解析

浙江省杭州市杭州二中2024届物理高一上期中教学质量检测试题含解析

浙江省杭州市杭州二中2024届物理高一上期中教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求。

全部选对的得5分,选对但不全的得3分,有选错的得0分。

1、关于自由落体运动的加速度g,下列说法中正确的是:( )A.g值随高度的增加而增大B.g值在地面任何地方都一样C.g值在赤道处大于南北两极处D.同一地点轻重不同的物体的g值一样大2、一辆火车在前30分钟里的平均速度是60千米/时,下面说法正确的是()A.这辆火车在1小时内所通过的位移一定是60千米B.这辆火车在通过前15千米的位移所用时间一定为15分钟C.这辆火车在前30分钟内一定以60千米/时的速度行驶D.这辆火车在前30分钟里所通过的位移是30千米3、十一假期中小明一家自驾游,高速路上堵车,小明听到导航仪提醒“前方2公里拥堵,估计需要30分钟通过”,根据导航仪提醒,下列推断合理的是()A.汽车将匀速通过前方2公里B.能够计算出此时汽车的速度约为1.1m/sC.通过前方这2公里的过程中,汽车的平均速率大约为4km/hD.若此时离目的地还有20公里,到达目的地一定需要5小时4、关于自由落体运动,下列说法正确的是A.在空气中不考虑空气阻力的运动是自由落体运动B.自由落体运动是初速度为零的匀加速直线运动C.质量大的物体,所受重力大,因而落地速度大D.自由落体的加速度在地球赤道处最大5、8月19日,2018年雅加达亚运会女子200米仰泳决赛,中国选手柳雅欣发挥出色,后来居上以2分07秒65夺冠(国际标准游泳池长50米).下列说法正确的是()A.在研究柳雅欣的技术动作时,可以把柳雅欣看成质点B.在游泳过程中,以游泳池里的水为参考系,柳雅欣是静止的C.柳雅欣200米自由泳的平均速度约为1.57 m/sD.“2分07秒65”指的是时间间隔6、如图所示,质量为M、半径为R的半球形物体A放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m、半径为r的光滑球B。

浙江省杭州第二中学2024-2025学年新高一上学期分班考试物理试卷(含答案)

浙江省杭州第二中学2024-2025学年新高一上学期分班考试物理试卷(含答案)

杭州第二中学2024-2025学年新高一上学期分班考试物理卷(总分75分)本卷中可能会用到:球体体积公式,球体表面积公式一、单项选择题:每小题3分,共30分。

1.如图所示,一圆柱容器上部圆筒较细,下部的圆筒较粗且足够长。

容器的底部是一可沿下圆筒无摩擦移动的活塞S ,用细绳通过测力计F 将活塞提着,容器中盛水。

开始时,水面与上圆筒的开口处在同一水平面上,然后提着活塞的同时使活塞缓慢地下移,在这一过程中,测力计的读数()A .先变小,然后保持不变B .一直保持不变C .先变大,然后保持不变D .先变小,然后变大2.下列关于热量的描述中,正确的是( )A .热量就是指物体具有多少的内能B .温度越高的物体,具有的热量越大C .热量是指物体在热传递过程中内能的改变量D .热量是从内能大的物体传给内能小的物体3.如图所示,雨后的晚上,天刚放晴,地面虽已干,但仍有不少水潭,为了不致踩在水潭里,则()A .迎着月亮走时,地面上较暗处是水潭B .迎着月亮走时,地面上较亮处是水潭C .背着月亮走时,地面上较暗处是地面D .背着月亮走时,地面上较亮处是水潭4.以下健身项目在完全失重的太空舱中仍较适合健身的是()A .俯卧撑B .引体向上34π3V R =24πs R =C .深蹲D .拉弹簧拉力器5.如图所示,在水平桌面上用盒子做成一个斜面,把一个手机放在斜面上保持静止,下列说法中正确的是()A .斜面对手机的静摩擦力大于手机重力沿斜面向下的分力B .斜面对手机的静摩擦力大于手机对斜面的静摩擦力C .增大斜面倾角,手机与斜面始终相对静止,则手机所受支持力不断减小D .增大斜面倾角,手机与斜面始终相对静止,则手机所受摩擦力不断减小6.在两个相同的杯子内盛有质量相等的热水和冷水,将一半热水倒入冷水杯内,冷水杯内的温度升高21℃,若再将热水杯内剩余热水的一半再次倒入冷水杯内,冷水杯内的水温会升高( )A .9℃B .8℃C .6℃D .5℃7.如图所示,电源电压恒定,定值电阻与滑动变阻器R 串联,已知:,在滑动变阻器的滑片P 移动过程中,下列表示两电表读数I 、U 及和R 消耗的电功率和分别随变阻器连入电路部分R 的阻值变化的关系图线中,可能正确的是()A .B .C .D .8.光伏产业是新能源产业的重要发展方向之一,光伏市场的发展对于优化我国能源结构、促进能源生产和0R 0R R 0R 0p R P消费革命、推动能源技术创新等方面都有重要的意义。

浙江省杭州第二中学2023-2024学年高一上学期期中考试数学试题

浙江省杭州第二中学2023-2024学年高一上学期期中考试数学试题

B. 0
C. 0,1
D. 1, 0,1
2.已知函数 f 2x 1 x2 1,则 f 3 ( )
A.1
B. 2
3.“ x2 y2 0 ”是“ xy 0 ”的( )
C. 4
D. 6
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
4.已知函数 f x 的定义域为 0,1 ,则函数 f 2x 1 的定义域为( )

.
15.
f
x
log 2
4x
log 1
4
x 2

x
1 2
, 4
的最大值为

16.已知函数 f x x2 mx n m, n R ,记集合 A x f x 0 ,
B x f f x 2 0 ,若 A B ,则实数 m 的取值范围是
.
四、解答题
17.设集合 A x x2 ax a2 19 0 , B x x2 5x 6 0 , C x x2 2x 3 0 .
P m, f n 构成一个正方形区域,则实数 a 的值为( )
试卷第 1页,共 4页
A.-1
B.-2
C.-3
D.-4
二、多选题
9.已知 x , y 都为正数,且 2x y 1,则下列说法正确的是( )
A.
2 xy
的最大值为
1 4
C. x x y 的最大值为 1
4
B.
4x2
y2
的最小值为
1 2
问题都可以转化为几何问题加以解决,如:对于形如 x a2 y b2 的代数式,可
以转化为平面上点 M x, y 与 N a,b 的距离加以考虑.结合综上观点,对于函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档