2020年湖北省恩施州中考数学试卷
2020年中考数学试卷 湖北恩施-word解析
A. 0
B. 1
C. 2
D. 3
【答案】C
【解析】
【分析】
根据二次函数的图像性质逐个分析即可.
【详解】解:对于①:二次函数开口向下,故 a<0,与 y 轴的交点在 y 的正半轴,故 c>0,故 ac<0,故①
错误;
对于②:二次函数的图像与 x 轴相交于 A2, 0 、 B 1, 0 ,由对称性可知,其对称轴为:
长的最小值为( ).
A. 5
B. 6
C. 7
D. 8
【答案】B
【解析】
【分析】
连接 ED 交 AC 于一点 F,连接 BF,根据正方形的对称性得到此时 △BFE 的周长最小,利用勾股定理求
出 DE 即可得到答案.
【详解】连接 ED 交 AC 于一点 F,连接 BF,
∵四边形 ABCD 是正方形,
∴点 B 与点 D 关于 AC 对称,
C. 乙车比甲车先到 B 城 【答案】D 【解析】 【分析】 根据图象逐项分析判断即可. 【详解】由图象知:
B. 乙车的平均速度为100 km h D. 乙车比甲车先出发1h
A.甲车的平均速度为 300 = 60 (km h) ,故此选项正确; 10 5
B.乙车的平均速度为 300 100(km h) ,故此选项正确; 96
主视图为:
,
左视图为:
,
俯视图为:
,
故答案为:A. 【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.
10.甲乙两车从 A 城出发前往 B 城,在整个行程中,汽车离开 A 城的距离 y 与时刻 t 的对应关系如图所示,
则下列结论错误的是( ).
2020年湖北省恩施州中考数学试卷(后附答案及详尽解析)
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1. 5的绝对值是()A.5B.−5C.15D.−15【答案】A【考点】绝对值【解析】根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.【解答】在数轴上,数5所表示的点到原点0的距离是5;2. 茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】120000=1.2×105,3. 下列交通标识,既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】D【考点】中心对称图形轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.4. 下列计算正确的是()A.a2⋅a3=a6B.a(a+1)=a2+aC.(a−b)2=a2−b2D.2a+3b=5ab【答案】B【考点】合并同类项同底数幂的乘法完全平方公式单项式乘多项式【解析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】A、a2⋅a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a−b)2=a2−2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;5. 函数y=√x+1x的自变量的取值范围是()A.x≥−1B.x≥−1且x≠0C.x>0D.x>−1且x≠0【答案】B【考点】函数自变量的取值范围【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】根据题意得,x+1≥0且x≠0,解得x≥−1且x≠0.6. “彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.2 11B.411C.511D.611【答案】D【考点】概率公式【解析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.【解答】由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,7. 在实数范围内定义运算“☆”:a ☆b =a +b −1,例如:2☆3=2+3−1=4.如果2☆x =1,则x 的值是( )A.−1B.1C.0D.2 【答案】C【考点】解一元一次方程实数的运算【解析】已知等式利用题中的新定义化简,计算即可求出x 的值.【解答】由题意知:2☆x =2+x −1=1+x ,又2☆x =1,∴ 1+x =1,∴ x =0.8. 我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A.{5x +y =3x +5y =2B.{5x +y =2x +5y =3C.{5x +3y =1x +2y =5D.{3x +y =52x +5y =1【答案】A【考点】数学常识由实际问题抽象出二元一次方程组【解析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】依题意,得:{5x +y =3x +5y =2.9. 如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】从正面看易得第一列有2个正方形,第二列底层有1个正方形.10. 甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/ℎB.乙车的平均速度为100km/ℎC.乙车比甲车先到B 城D.乙车比甲车先出发1ℎ【答案】D【考点】一次函数的应用【解析】根据图象逐项分析判断即可.【解答】由图象知:=60km/ℎ,故A选项不合题意;A.甲车的平均速度为30010−5=100km/ℎ,故B选项不合题意;B.乙车的平均速度为3009−6C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1ℎ,故此选项错误,11. 如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【答案】B【考点】勾股定理正方形的性质轴对称——最短路线问题【解析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时△BFE的周长最小,利用勾股定理求出DE即可得到答案.【解答】如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90∘,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,12. 如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(−2, 0)、B(1, 0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=−1;③2a+c=0;④a−b+c>0.其中正确的有()个.A.0B.1C.2D.3【答案】C【考点】二次函数图象与系数的关系抛物线与x轴的交点【解析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合判断即可.【解答】对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac< 0,因此①错误;对于②:二次函数的图象与x轴相交于A(−2, 0)、B(1, 0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x−1)=ax2+ax−2a,比较一般式与交点式的系数可知:b=a,c=−2a,故2a+c=0,因此③正确;对于④:当x=−1时对应的y=a−b+c,观察图象可知x=−1时对应的函数图象的y值在x轴上方,故a−b+c>0,因此④正确.∴只有③④是正确的.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)9的算术平方根是________.【答案】3【考点】算术平方根【解析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.如图,直线l1 // l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30∘,∠1=80∘,则∠2=________.【答案】40∘【考点】平行线的性质等腰三角形的性质【解析】利用等腰三角形的性质得到∠C=∠4=30∘,利用平行线的性质得到∠1=∠3=80∘,再根据三角形内角和定理即可求解.【解答】如图,延长CB交l2于点D,∵AB=BC,∠C=30∘,∴∠C=∠4=30∘,∵l1 // l2,∠1=80∘,∴∠1=∠3=80∘,∵∠C+∠3+∠2+∠4=180∘,即30∘+80∘+∠2+30∘=180∘,∴∠2=40∘.如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60∘,则图中阴影部分的面积为________.(结果不取近似值【答案】2√3−π【考点】扇形面积的计算近似数和有效数字【解析】根据60∘特殊角求出AC和BC,再算出△ABC的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可.【解答】∵AB是直径,∴∠ACB=90∘,∵∠ABC=60∘,∴∠CAB=30∘,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30∘,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(−2, 0),B(1, 2),C(1, −2).已知N(−1, 0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为________.【答案】(−1, 8)【考点】坐标与图形变化-旋转关于x轴、y轴对称的点的坐标规律型:点的坐标规律型:图形的变化类规律型:数字的变化类【解析】先求出N1至N6点的坐标,找出其循环的规律为每6个点循环一次即可求解.【解答】由题意得,作出如下图形:N点坐标为(−1, 0),N点关于A点对称的N1点的坐标为(−3, 0),N1点关于B点对称的N2点的坐标为(5, 4),N2点关于C点对称的N3点的坐标为(−3, 8),N3点关于A点对称的N4点的坐标为(−1, 8),N4点关于B点对称的N5点的坐标为(3, −4),N5点关于C点对称的N6点的坐标为(−1, 0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(−1, 8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【答案】(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=mm−3⋅m−3m2=1m;当m=√2时,原式=√2=√22.【考点】分式的化简求值【解析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m值求解即可.【解答】(m2−92−3)÷m2=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=mm−3⋅m−3m2=1m;当m=√2时,原式=√2=√22.如图,AE // BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【答案】证明:∵AE // BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE // BF,即AD // BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.【考点】菱形的判定全等三角形的性质与判定【解析】由AE // BF,BD平分∠ABC得到∠ABD=∠ADB,得到AB=AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD为平行四边形,再由邻边相等即可证明四边形ABCD为菱形.【解答】证明:∵AE // BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE // BF,即AD // BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了________名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为________;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有________名.【答案】50C类学生人数为:50−15−20−5=10(名),条形图如下:36∘150【考点】条形统计图扇形统计图用样本估计总体【解析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360∘乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】本次共调查的学生数为:20÷40%=50(名).故答案为:50;C类学生人数为:50−15−20−5=10(名),条形图如下:D类所对应扇形的圆心角为:360×5=36.50故答案为:36∘;=150(名).该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550故答案为:150.如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45∘方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60∘方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【答案】此时船与小岛P的距离约为44海里.【考点】解直角三角形的应用-方向角问题【解析】过P作PH⊥AB,设PH=x,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.【解答】如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90∘−60∘=30∘,∠PAH=90∘−45∘=45∘,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB−AH=60−x,∴tan∠PBH=tan30∘=PHBH =√33,∴√33=x60−x,解得:x=30(√3−1),∴PB=2x=60(√3−1)≈44(海里),如图,在平面直角坐标系中,直线y=ax−3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx (x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.【答案】(3, 0)a=−1,k=2【考点】反比例函数与一次函数的综合【解析】(1)令y=ax−3a(a≠0)中y=0即可求出点A的坐标;(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,证明△BCM∽△BAO,利用BC=12AC和OA=3进而求出CM的长,再由S△AOC=3求出CN的长,进而求出点C坐标即可求解.【解答】由题意得:令y=ax−3a(a≠0)中y=0,即ax−3a=0,解得x=3,∴点A的坐标为(3, 0),故答案为(3, 0).过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM // OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴BCBA =CMAO,即:13=CM3,∴CM=1,又S△AOC=12OA⋅CN=3即:12×3×CN=3,∴CN=2,∴C点的坐标为(1, 2),故反比例函数的k=1×2=2,再将点C(1, 2)代入一次函数y=ax−3a(a≠0)中,即2=a−3a,解得a=−1,故答案为:a=−1,k=2.某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元【考点】分式方程的应用一元一次不等式组的应用一次函数的应用【解析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x−20)元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,根据总价=单价×数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x−20)元,根据题意,得900x =720x−20,解得:x=100,经检验x=100是原方程的解,x−20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;设购买m个A品牌足球,则购买(90−m)个B品牌足球,则W=100m+80(90−m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m+80(90−m)≤8500m≥2(90−m),解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.【答案】如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90∘,∴∠ODC=∠CDA+∠ODA=90∘,∴CE是⊙O的切线.如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90∘,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM // BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4−x,CE=4+x,∴(4+x)2=(4−x)2+62,解得:x=94,∴tan∠BOE=BEOB =943=34,∵∠BOE=2∠BHE,∴tan∠BOE=2tan∠BHE1−tan2∠BHE =34,解得:tan∠BHE=13或−3(−3不合题意舍去),∴tan∠BHE=13.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE=BEOB =34,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB // HJ,∴OBHJ =OEEH=EBEJ,∴4kHJ =5k9k=3kEJ,∴HJ=365k,EJ=275k,∴BJ=EJ−BE=275k−3k=125k∴tan∠BHJ=BJHJ =13,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=13.【考点】圆的综合题【解析】(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90∘=∠ODC,由切线的判定定理可得结论;(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90∘,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.【解答】如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90∘,∴∠ODC=∠CDA+∠ODA=90∘,∴CE是⊙O的切线.如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90∘,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM // BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4−x,CE=4+x,∴(4+x)2=(4−x)2+62,解得:x=94,∴tan∠BOE=BEOB =943=34,∵∠BOE=2∠BHE,∴tan∠BOE=2tan∠BHE1−tan2∠BHE =34,解得:tan∠BHE=13或−3(−3不合题意舍去),∴tan∠BHE=13.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE=BEOB =34,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB // HJ,∴OBHJ =OEEH=EBEJ,∴4kHJ =5k9k=3kEJ,∴HJ=365k,EJ=275k,∴BJ=EJ−BE=275k−3k=125k∴tan∠BHJ=BJHJ =13,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=13.如图1,抛物线y=−14x2+bx+c经过点C(6, 0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90∘,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【答案】∵点C(6, 0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a =−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;当点M在点C的左侧时,如图2−1中:∵抛物线的解析式为y=−14x2+x+3,对称轴为x=2,C(6, 0)∴点A(2, 0),顶点B(2, 4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45∘;∵将△MPC逆时针旋转90∘得到△MEF,∴FM=CM,∠2=∠1=45∘,设点M的坐标为(m, 0),∴点F(m, 6−m),又∵∠2=45∘,∴直线EF与x轴的夹角为45∘,∴设直线EF的解析式为y=x+b,把点F(m, 6−m)代入得:6−m=m+b,解得:b=6−2m,直线EF的解析式为y=x+6−2m,∵直线EF与抛物线y=−14x2+x+3只有一个交点,∴{y=x+6−2my=−14x2+x+3,整理得:14x2+3−2m=0,∴△=b2−4ac=0,解得m=32,点M的坐标为(32, 0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45∘,因此直线EF与抛物线y=−14x2+x+3不可能只有一个交点.综上,点M的坐标为(32, 0).①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵PC=√2,由(2)知∠BCA=45∘,∴PG=GC=1,∴点G(5, 0),设点M的坐标为(m, 0),∵将△MPC逆时针旋转90∘得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90∘,∴∠HEM=∠GMP,在△EHM和△MGP中,{∠EHM=∠MGP ∠HEM=∠GMPEM=MP,∴△EHM≅△MGP(AAS),∴EH=MG=5−m,HM=PG=1,∴点H(m−1, 0),∴点E的坐标为(m−1, 5−m);∴EA=√(m−1−2)2+(5−m−0)2=√2m2−16m+34,又∵D为线段BC的中点,B(2, 4),C(6, 0),∴点D(4, 2),∴ED=√(m−1−4)2+(5−m−2)2=√2m2−16m+34,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m−1, 5−m),因此EA=ED.②当点E在(1)所求的抛物线y=−14x2+x+3上时,把E(m−1, 5−m)代入,整理得:m2−10m+13=0,解得:m=5+2√3或m=5−2√3,∴CM=2√3−1或CM=1+2√3.【考点】二次函数综合题【解析】(1)根据点C在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B及已知点C的坐标,证明△ABC是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45∘,因此设直线EF的解析式为y=x+b,设点M的坐标为(m, 0),推出点F(m, 6−m),直线EF与抛物线y=−14x2+x+3只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标.注意有两种情况,均需讨论.(3)①过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,设点M的坐标为(m, 0),由PC=√2及旋转的性质,证明△EHM≅△MGP,得到点E的坐标为(m−1, 5−m),再根据两点距离公式证明EA=ED,注意分两种情况,均需讨论;②把E(m−1, 5−m)代入抛物线解析式,解出m的值,进而求出CM的长.【解答】∵点C(6, 0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a =−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;当点M在点C的左侧时,如图2−1中:∵抛物线的解析式为y=−14x2+x+3,对称轴为x=2,C(6, 0)∴点A(2, 0),顶点B(2, 4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45∘;∵将△MPC逆时针旋转90∘得到△MEF,∴FM=CM,∠2=∠1=45∘,设点M的坐标为(m, 0),∴点F(m, 6−m),又∵∠2=45∘,∴直线EF与x轴的夹角为45∘,∴设直线EF的解析式为y=x+b,把点F(m, 6−m)代入得:6−m=m+b,解得:b=6−2m,直线EF的解析式为y=x+6−2m,∵直线EF与抛物线y=−14x2+x+3只有一个交点,∴{y=x+6−2my=−14x2+x+3,整理得:14x2+3−2m=0,∴△=b2−4ac=0,解得m=32,点M的坐标为(32, 0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45∘,因此直线EF与抛物线y=−14x2+x+3不可能只有一个交点.综上,点M的坐标为(32, 0).①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵PC=√2,由(2)知∠BCA=45∘,∴PG=GC=1,∴点G(5, 0),设点M的坐标为(m, 0),∵将△MPC逆时针旋转90∘得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90∘,∴∠HEM=∠GMP,在△EHM和△MGP中,{∠EHM=∠MGP ∠HEM=∠GMPEM=MP,∴△EHM≅△MGP(AAS),∴EH=MG=5−m,HM=PG=1,∴点H(m−1, 0),∴点E的坐标为(m−1, 5−m);∴EA=√(m−1−2)2+(5−m−0)2=√2m2−16m+34,又∵D为线段BC的中点,B(2, 4),C(6, 0),∴点D(4, 2),∴ED=√(m−1−4)2+(5−m−2)2=√2m2−16m+34,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m−1, 5−m),因此EA=ED.x2+x+3上时,②当点E在(1)所求的抛物线y=−14把E(m−1, 5−m)代入,整理得:m2−10m+13=0,解得:m=5+2√3或m=5−2√3,∴CM=2√3−1或CM=1+2√3.。
2020年湖北省恩施州中考数学试卷和答案解析
2020年湖北省恩施州中考数学试卷和答案解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是()A.5B.﹣5C.D.﹣解析:根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.参考答案:解:在数轴上,数5所表示的点到原点0的距离是5,所以5的绝对值是5,故选:A.点拨:本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:120000=1.2×105,故选:B.点拨:本题考查科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.故选:D.点拨:本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,折叠后对称轴两旁的部分可重合;中心对称图形是要寻找对称中心,旋转180°后会与原图重合.4.(3分)下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab解析:利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.参考答案:解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.点拨:本题考查了同底数幂的乘法,单项式乘多项式,完全平方公式以及合并同类项,解此题的关键在于熟练掌握其知识点.5.(3分)函数y=的自变量的取值范围是()A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x >﹣1且x≠0解析:根据被开方数大于等于0,分母不等于0列式计算即可得解.参考答案:解:根据题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:B.点拨:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.B.C.D.解析:粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.参考答案:解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:,故选:D.点拨:本题考查了概率的基本运算,熟练掌握概率公式是解题的关键.7.(3分)在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.2解析:已知等式利用题中的新定义化简,计算即可求出x的值.参考答案:解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.点拨:本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.B.C.D.解析:根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.参考答案:解:依题意,得:.故选:A.点拨:本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.解析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.参考答案:解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.点拨:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h解析:根据图象逐项分析判断即可.参考答案:解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,点拨:本题考查了一次函数的应用,函数的图象,正确识别图象并能提取相关信息是解答的关键.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解析:连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时△BFE的周长最小,利用勾股定理求出DE即可得到答案.参考答案:解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,点拨:此题考查正方形的性质:四条边都相等,四个角都是直角以及正方形的对称性质,还考查了勾股定理的计算.依据正方形的对称性,连接DE交AC于点F时△BFE的周长有最小值,这是解题的关键.12.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c >0.其中正确的有()个.A.0B.1C.2D.3解析:根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合判断即可.参考答案:解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.点拨:本题考查了二次函数的图象与其系数的关系及二次函数的对称性,熟练掌握二次函数的图象性质是解决此类题的关键.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是3.解析:9的平方根为±3,算术平方根为非负,从而得出结论.参考答案:解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.点拨:本题考查了数的算术平方根,解题的关键是牢记算术平方根为非负.14.(3分)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.解析:利用等腰三角形的性质得到∠C=∠4=30°,利用平行线的性质得到∠1=∠3=80°,再根据三角形内角和定理即可求解.参考答案:解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.点拨:本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.15.(3分)如图,已知半圆的直径AB=4,点C在半圆上,以点A 为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2﹣π.(结果不取近似值)解析:根据60°特殊角求出AC和BC,再算出△ABC的面积,根据扇形面积公式求出扇形CAD的面积,再用三角形的面积减去扇形面积即可.参考答案:解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=,AC=,∴,∵∠CAB=30°,∴扇形ACD的面积=,∴阴影部分的面积为.故答案为:.点拨:本题考查了圆周角定理,解直角三角形,扇形面积的计算,关键在于利用圆周角的性质找到直角三角形并结合扇形面积公式解出.16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B 的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).解析:先求出N1至N6点的坐标,找出其循环的规律为每6个点循环一次即可求解.参考答案:解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).点拨:本题考查了平面直角坐标系内点的对称规律问题,本题需要先去验算前面一部分点的坐标,进而找到其循环的规律后即可求解.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(﹣)÷,其中m=.解析:根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m值求解即可.参考答案:解:====;当时,原式=.点拨:本题主要考查了分式的化简求值以及二次根式的化简,熟练掌握分式的混合运算法则是解答的关键.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.解析:由AE∥BF,BD平分∠ABC得到∠ABD=∠ADB,得到AB =AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD为菱形.参考答案:证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.点拨:本题考了菱形的判定、平行四边形的判定与性质、等腰三角形的判定、角平分线性质、平行线的性质等知识;熟练掌握平行四边形判定及性质和等腰三角形的判定是解决此题的关键.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.解析:(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360°乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.参考答案:解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:(名).故答案为:150.点拨:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).解析:过P作PH⊥AB,设PH=x,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.参考答案:解:如图,过点P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°==,∴,解得:,∴PB=2x=≈44(海里),答:此时船与小岛P的距离约为44海里.点拨:本题考查了直角三角形的应用﹣方向角问题,掌握方向角的概念和解直角三角形的知识是解答本题的关键.21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.解析:(1)令y=ax﹣3a(a≠0)中y=0即可求出点A的坐标;(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,证明△BCM∽△BAO,利用和OA=3进而求出CM的长,再由S△AOC=3求出CN的长,进而求出点C坐标即可求解.参考答案:解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,即ax﹣3a=0,解得x=3,∴点A的坐标为(3,0),故答案为(3,0).(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM∥OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴,即:,∴CM=1,又即:,∴CN=2,∴C点的坐标为(1,2),故反比例函数的k=1×2=2,再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,即2=a﹣3a,解得a=﹣1,∴当S△AOC=3时,a=﹣1,k=2.点拨:本题考查了反比例函数与一次函数的图象及性质,相似三角形的判定和性质等,熟练掌握其图象性质是解决此题的关键.22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?解析:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,根据总价=单价×数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.参考答案:解:(1)设购买A品牌足球的单价为x元,则购买B 品牌足球的单价为(x﹣20)元,根据题意,得,解得:x=100,经检验x=100是原方程的解,x﹣20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,则W=100m+80(90﹣m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴,解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.点拨:本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D 在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.解析:(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90°=∠ODC,由切线的判定定理可得结论;(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90°,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.参考答案:解:(1)如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x=,∴,∵∠BOE=2∠BHE,∴,解得:tan∠BHE=或﹣3(﹣3不合题意舍去),∴tan∠BHE=.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE==,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB∥HJ,∴==,∴==,∴HJ=k,EJ=k,∴BJ=EJ﹣BE=k﹣3k=k∴tan∠BHJ==,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=.点拨:本题主要考查了切线的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角函数/,勾股定理等知识,熟练掌握这些知识点并能熟练应用是解题的关键.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.解析:(1)根据点C在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B及已知点C的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45°,因此设直线EF的解析式为y=x+b,设点M的坐标为(m,0),推出点F(m,6﹣m),直线EF与抛物线只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标.注意有两种情况,均需讨论.(3)①过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,设点M的坐标为(m,0),由及旋转的性质,证明△EHM≌△MGP,得到点E的坐标为(m﹣1,5﹣m),再根据两点距离公式证明EA=ED,注意分两种情况,均需讨论;②把E(m﹣1,5﹣m)代入抛物线解析式,解出m的值,进而求出CM的长.参考答案:解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为,对称轴为x=2,C(6,0)∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将△MPC逆时针旋转90°得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6﹣m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6﹣m)代入得:6﹣m=m+b,解得:b=6﹣2m,直线EF的解析式为y=x+6﹣2m,∵直线EF与抛物线只有一个交点,∴,整理得:,∴△=b2﹣4ac=0,解得m=,点M的坐标为(,0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.综上,点M的坐标为(,0).(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵,由(2)知∠BCA=45°,∴PG=GC=1,∴点G(5,0),设点M的坐标为(m,0),∵将△MPC逆时针旋转90°得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90°,∴∠HEM=∠GMP,在△EHM和△MGP中,,∴△EHM≌△MGP(AAS),∴EH=MG=5﹣m,HM=PG=1,∴点H(m﹣1,0),∴点E的坐标为(m﹣1,5﹣m);∴EA==,又∵D为线段BC的中点,B(2,4),C(6,0),∴点D(4,2),∴ED==,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.②当点E在(1)所求的抛物线上时,把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,解得:m =或m =,∴CM =或CM =.点拨:本题属于二次函数综合题,考查了二次函数的图象和性质,旋转的性质,一次函数的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.第31页(共31页)。
2020年湖北省恩施州中考数学试卷及其答案
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是()A.﹣5B.C.﹣D.52.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×1063.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.(3分)下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab5.(3分)函数y=的自变量的取值范围是()A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x>﹣1且x≠06.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.B.C.D.7.(3分)在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.28.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.B.C.D.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h11.(3分)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE 周长的最小值为()A.5B.6C.7D.812.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c >0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是.14.(3分)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值)16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(﹣)÷,其中m=.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;=3时,求a和k的值.(2)当S△AOC22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量与用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C (异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN 于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是()A.﹣5B.C.﹣D.5【解答】解:根据正数的绝对值是它本身,得|5|=5.故选:D.2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106【解答】解:120000=1.2×105,故选:B.3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.故选:D.4.(3分)下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab【解答】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.5.(3分)函数y=的自变量的取值范围是()A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x>﹣1且x≠0【解答】解:根据题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:B.6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.B.C.D.【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:,故选:D.7.(3分)在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.2【解答】解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.B.C.D.【解答】解:依题意,得:.故选:A.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h【解答】解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE 周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长最小值=5+1=6,故选:B.12.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c >0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac <0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.14.(3分)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l1于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2﹣π.(结果不取近似值)【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=,AC=,∴,∵∠CAB=30°,∴扇形ACD的面积=,∴阴影部分的面积为.故答案为:.16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N 1点关于B点对称的N2点的坐标为(5,4),N 2点关于C点对称的N3点的坐标为(﹣3,﹣8),N 3点关于A点对称的N4点的坐标为(﹣1,8),N 4点关于B点对称的N5点的坐标为(3,﹣4),N 5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(﹣)÷,其中m=.【解答】解:====;当时,原式=.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).【解答】解:如图,过点P作PH⊥AB于H,由题意得:AB=30×2=60(海里),∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x海里,在Rt△PBH中,PB=2PH=2x海里,BH=AB﹣AH=(60﹣x)海里,∴tan∠PBH=tan30°==,∴,解得:,∴PB=2x=≈44(海里),答:此时船与小岛P的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S=3时,求a和k的值.△AOC【解答】解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,即ax﹣3a=0,解得x=3,∴点A的坐标为(3,0),故答案为(3,0).(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM∥OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴,即:,∴CM=1,又即:,∴CN=2,∴C点的坐标为(1,2),故反比例函数的k=1×2=2,再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,即2=a﹣3a,解得a=﹣1,∴当S=3时,a=﹣1,k=2.△AOC22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量与用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,根据题意,得,解得:x=100,经检验x=100是原方程的解,x﹣20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,则W=100m+80(90﹣m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴,解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C (异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN 于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.【解答】解:(1)如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图1中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBE=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x=,∴,∵∠BOE=2∠BHE,∴,解得:tan∠BHE=或﹣3(﹣3不合题意舍去),∴tan∠BHE=.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tan∠BOE==,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB∥HJ,∴==,∴==,∴HJ=k,EJ=k,∴BJ=EJ﹣BE=k﹣3k=k∴tan∠BHJ==,∵∠BHE=∠HBA=∠BHJ,∴tan∠BHE=.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为,对称轴为x=2,C(6,0)∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将△MPC逆时针旋转90°得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6﹣m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+d,把点F(m,6﹣m)代入得:6﹣m=m+b,解得:d=6﹣2m,直线EF的解析式为y=x+6﹣2m,∵直线EF与抛物线只有一个交点,∴,整理得:,∴Δ=b2﹣4ac=0,解得m=,点M的坐标为(,0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.综上,点M的坐标为(,0).(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵,由(2)知∠BCA=45°,∴PG=GC=1,∴点G(5,0),设点M的坐标为(m,0),∵将△MPC逆时针旋转90°得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90°,∴∠HEM=∠GMP,在△EHM和△MGP中,,∴△EHM≌△MGP(AAS),∴EH=MG=5﹣m,HM=PG=1,∴点H(m﹣1,0),∴点E的坐标为(m﹣1,5﹣m);∴EA==,又∵D为线段BC的中点,B(2,4),C(6,0),∴点D(4,2),∴ED==,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.②当点E在(1)所求的抛物线上时,把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,解得:m=或m=,∴CM=或CM=.。
2020年湖北省恩施市中考数学试卷
(元).
答:该队共有 种购买方案,购买 个 品牌, 个 品牌的总费用最低,最低费用是
元.
23.( 1 )证明见解析. ( 2 )证明见解析. (3) .
解析: ( 1 )连接 ,
∵
,
∴
,
∵
,
∴
,
∵直线 与⊙ 相切于点 .
∴
,
∴
,
17
∴ 是⊙ 的切线. ( 2 )连接 , ,
∵
,
∴
,
∵ 是⊙ 的切线, 是⊙ 的切线,
C.
二、填空题
13. 的算术平方根是
.
14. 如图,直线 .
,点 在直线 上,点 在直线 上,
x
O
D.
,
,
,则
15. 如图,已知半圆的直径
,点 在半圆上,以点 为圆心, 为半径画弧交
接 .若
,则图中阴影部分的面积为
.(结果不取近似值)
于点 ,连
3
16. 如图,在平面直角坐标系中,
的顶点坐标分别为:
,与 轴的交点在 的正半轴,故
,故
,故①错误.
对于②:二次函数的图象与 轴相交于
、
,由对称性可知,其对称轴为:
,故②错误.
对于③:设二次函数
的交点式为
,比较一般式与交
点式的系数可知:
,
,故
,故③正确.
对于④:当
时对应的
,观察图象可知
时对应的函数图象的 值在 轴上方,故
,故④正确.
∴只有③④是正确的.
甲乙
B. 乙车的平均速度为 D. 乙车比甲车先出发
11. 如图,正方形
的边长为 ,点 在
最新2020年湖北省恩施州中考数学试卷及答案
C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60/km hB .乙车的平均速度为100/km hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE ∆周长的最小值为( )A .5B .6C .7D .812.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 .14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= .15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 .(结果不取近似值16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 .三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m mm m m m--÷-+--,其中2m=.18.(8分)如图,//AE BF,BD平分ABC∠交AE于点D,点C在BF上且BC AB=,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B 处,在B 处测得小岛P 位于其北偏东60︒方向.求此时船与小岛P 的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =.(1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等. (1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点)A 在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是O 的切线; (2)求证:BE EF =;(3)如图2,连接EO 并延长与O 分别相交于点G 、H ,连接BH .若6AB =,4AC =,求tan BHE ∠. 24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M的坐标.(3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上) 1.(3分)5的绝对值是( ) A .5B .5-C .15D .15-【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数; 即可得解.【解答】解:在数轴上,数5所表示的点到原点0的距离是5; 故选:A .2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( ) A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:5120000 1.210=⨯, 故选:B .3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.4.(3分)下列计算正确的是( ) A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab +=【分析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、2(1)a a a a +=+,原计算正确,故此选项符合题意;C 、222()2a b a ab b -=-+,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)函数y =的自变量的取值范围是( ) A .1x -B .1x -且0x ≠C .0x >D .1x >-且0x ≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【解答】解:根据题意得,10x +且0x ≠, 解得1x -且0x ≠. 故选:B .6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( ) A .211B .411C .511D .611【分析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案. 【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611, 故选:D .7.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( ) A .1-B .1C .0D .2【分析】已知等式利用题中的新定义化简,计算即可求出x 的值. 【解答】解:由题意知:2☆211x x x =+-=+,11x∴+=,x∴=.故选:C.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩【分析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意,得:5352x yx y+=⎧⎨+=⎩.故选:A.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60/km h B.乙车的平均速度为100/km h C.乙车比甲车先到B城D.乙车比甲车先出发1h【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为30060/105km h=-,故A选项不合题意;B.乙车的平均速度为300100/96km h=-,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且1BE=,F为对角线AC上一动点,则BFE∆周长的最小值为()A.5 B.6 C.7 D.8【分析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时BFE∆的周长最小,利用勾股定理求出DE即可得到答案.【解答】解:如图,连接ED交AC于一点F,连接BF,四边形ABCD是正方形,∴点B与点D关于AC对称,BF DF∴=,BFE∴∆的周长BF EF BE DE BE=++=+,此时BEF∆的周长最小,正方形ABCD 的边长为4,4AD AB ∴==,90DAB ∠=︒,点E 在AB 上且1BE =,3AE ∴=, 225DE AD AE ∴=+=,BFE ∴∆的周长516=+=,故选:B .12.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a 、b 、c 满足的关系综合判断即可.【解答】解:对于①:二次函数开口向下,故0a <,与y 轴的交点在y 的正半轴,故0c >,故0ac <,因此①错误;对于②:二次函数的图象与x 轴相交于(2,0)A -、(1,0)B ,由对称性可知,其对称轴为:21122x -+==-,因此②错误;对于③:设二次函数2y ax bx c =++的交点式为2(2)(1)2y a x x ax ax a =+-=+-,比较一般式与交点式的系数可知:b a =,2c a =-,故20a c +=,因此③正确;对于④:当1x =-时对应的y a b c =-+,观察图象可知1x =-时对应的函数图象的y 值在x 轴上方,故0a b c -+>,因此④正确.∴只有③④是正确的.故选:C .二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 3 .【分析】9的平方根为3±,算术平方根为非负,从而得出结论.【解答】解:2(3)9±=,9∴的算术平方根是|3|3±=.故答案为:3.14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=40︒ .【分析】利用等腰三角形的性质得到430C ∠=∠=︒,利用平行线的性质得到1380∠=∠=︒,再根据三角形内角和定理即可求解.【解答】解:如图,延长CB 交2l 于点D ,AB BC =,30C ∠=︒,430C ∴∠=∠=︒,12//l l ,180∠=︒,1380∴∠=∠=︒,324180C ∠+∠+∠+∠=︒,即3080230180︒+︒+∠+︒=︒,240∴∠=︒.故答案为:40︒.15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 23π- .(结果不取近似值【分析】根据60︒特殊角求出AC 和BC ,再算出ABC ∆的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可. 【解答】解:AB 是直径,90ACB ∴∠=︒,60ABC ∠=︒,30CAB ∴∠=︒,122BC AB ∴==,23AC = ∴112322322ABC S AC BC ∆===, 30CAB ∠=︒,∴扇形ACD 的面积22301(23)36012AC πππ===, ∴阴影部分的面积为23π.故答案为:23π.16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 (1,8)- .【分析】先求出1N 至6N 点的坐标,找出其循环的规律为每6个点循环一次即可求解.【解答】解:由题意得,作出如下图形:N 点坐标为(1,0)-,N 点关于A 点对称的1N 点的坐标为(3,0)-,1N 点关于B 点对称的2N 点的坐标为(5,4),2N 点关于C 点对称的3N 点的坐标为(3,8)-,3N 点关于A 点对称的4N 点的坐标为(1,8)-,4N 点关于B 点对称的5N 点的坐标为(3,4)-,5N 点关于C 点对称的6N 点的坐标为(1,0)-,此时刚好回到最开始的点N 处,∴其每6个点循环一次,202063364∴÷=⋯⋯,即循环了336次后余下4,故2020N 的坐标与4N 点的坐标相同,其坐标为(1,8)-.故答案为:(1,8)-.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m m m m m m --÷-+--,其中2m =. 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可.【解答】解:22293()6933m m m m m m --÷-+-- 22(3)(3)33[](3)3m m m m m m +--=--- 2333()33m m m m m +-=--- 233m m m m -=- 1m=; 当2m =时,原式22==. 18.(8分)如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.【分析】由//AE BF ,BD 平分ABC ∠得到ABD ADB ∠=∠,得到AB AD =,再由BC AB =,得到对边AD BC =,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD 为菱形.【解答】证明://AE BF ,ADB DBC ∴∠=∠,BD平分ABC∠,∴∠=∠,DBC ABD∴∠=∠,ADB ABD∴=,AB AD又AB BC=,∴=,AD BCAD BC,//AE BF,即//∴四边形ABCD为平行四边形,又AB AD=,∴四边形ABCD为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50 名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.【分析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360︒乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】解:(1)本次共调查的学生数为:2040%50÷=(名).故答案为:50;(2)C类学生人数为:501520510---=(名),条形图如下:(3)D类所对应扇形的圆心角为:53603650︒⨯=︒.故答案为:36︒;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:1550015050⨯=(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60︒方向.求此时船与小岛P的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.【分析】过P作PH AB⊥,设PH x=,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.【解答】解:如图,过P作PH AB⊥,设PH x=,由题意得:30260AB=⨯=,906030PBH∠=︒-︒=︒,904545PAH∠=︒-︒=︒,则PHA∆是等腰直角三角形,AH PH∴=,在Rt PHA∆中,设AH PH x==,在Rt PBH ∆中,22PB PH x ==,60BH AB AH x =-=-, 3tan tan303PH PBH BH ∴∠=︒==, ∴3360x x=-, 解得:30(31)x =-,260(31)44PB x ∴==-≈(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =. (1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.【分析】(1)令3(0)y ax a a =-≠中0y =即可求出点A 的坐标;(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,证明BCM BAO ∆∆∽,利用12BC AC =和3OA =进而求出CM 的长,再由3AOC S ∆=求出CN 的长,进而求出点C 坐标即可求解.【解答】解:(1)由题意得:令3(0)y ax a a =-≠中0y =,即30ax a -=,解得3x =,∴点A 的坐标为(3,0), 故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,//CM OA ,BCM BAO ∴∠=∠,且ABO CBO ∠=∠,BCM BAO ∴∆∆∽, ∴BC CM BA AO =,即:133CM =, 1CM ∴=, 又132AOC S OA CN ∆== 即:1332CN ⨯⨯=, 2CN ∴=,C ∴点的坐标为(1,2),故反比例函数的122k =⨯=,再将点(1,2)C 代入一次函数3(0)y ax a a =-≠中,即23a a =-,解得1a =-,故答案为:1a =-,2k =.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【分析】(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(20)x -元,根据用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,根据总价=单价⨯数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据题意,得90072020x x=-,解得:100x=,经检验100x=是原方程的解,2080x-=,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,则10080(90)207200W m m m=+-=+,A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴10080(90)85002(90)m mm m+-⎧⎨-⎩,解不等式组得:6065m,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当60m=时,W最小,60m=时,206072008400W=⨯+=(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是O的直径,直线AM与O相切于点A,直线BN与O相切于点B,点C(异于点)A在AM上,点D在O上,且CD CA=,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是O的切线;(2)求证:BE EF=;(3)如图2,连接EO并延长与O分别相交于点G、H,连接BH.若6∠.AC=,求tan BHEAB=,4【分析】(1)连接OD,根据等边对等角可知:CAD CDA∠=∠,OAD ODA∠=∠,再根据切线的性质可知∠=∠+∠=∠+∠=︒=∠,由切线的判定定理可得结论;CAO CAD OAD CDA ODA ODC90(2)连接BD,根据等边对等角可知ODB OBDODE OBE∠=∠=︒,由等∠=∠,再根据切线的性质可知90量减等量差相等得EDB EBD=,然后根据平行线的性质及对顶角相等∠=∠,再根据等角对等边得到ED EB可得EDF EFD=,由此得出结论;∠=∠,推出DE EF(3)过E点作EL AM⊥于L,根据勾股定理可求出BE的长,即可求出tan BOE∠的值,再利用倍角公式即可求出tan BHE∠的值.【解答】解:(1)如图1中,连接OD,CD CA=,∴∠=∠,CAD CDA=OA OD∴∠=∠,OAD ODA直线AM与O相切于点A,∴∠=∠+∠=︒,CAO CAD OAD90∴∠=∠+∠=︒,ODC CDA ODA90∴是O的切线.CE(2)如图2中,连接BD,OD OB=,∴∠=∠,ODB OBDCE是O的切线,BF是O的切线,90∴∠=∠=︒,OBD ODE∴∠=∠,EDB EBD∴=,ED EB⊥,BN ABAM AB⊥,AM BN∴,//∴∠=∠,CAD BFD∠=∠=∠,CAD CDA EDFBFD EDF ∴∠=∠,EF ED ∴=,BE EF ∴=.(3)如图2中,过E 点作EL AM ⊥于L ,则四边形ABEL 是矩形,设BE x =,则4CL x =-,4CE x =+,222(4)(4)6x x ∴+=-+, 解得:94x =, ∴934tan 34BE BOE OB ∠===, 2BOE BHE ∠=∠, ∴22tan 3tan 1tan 4BHE BOE BHE ∠∠==-∠, 解得:1tan 3BHE ∠=或3(3--不合题意舍去), 1tan 3BHE ∴∠=. 补充方法:如图2中,作HJ EB ⊥交EB 的延长线于J . 34BE tab BOE OB ∠==, ∴可以假设3BE k =,4OB k =,则5OE k =,//OB HJ , ∴OB OE EB HJ EH EJ ==, ∴4539k k k HJ k EJ==,365HJ k ∴=,275EJ k =, 2712355BJ EJ BE k k k ∴=-=-= 1tan 3BJ BHJ HJ ∴∠==, BHE OBE BHJ ∠=∠=∠,1tan 3BHE ∴∠=.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标.(3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明ABC ∆是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45︒,因此设直线EF 的解析式为y x b =+,设点M 的坐标为(,0)m ,推出点(,6)F m m -,直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,设点M 的坐标为(,0)m ,由2PC =及旋转的性质,证明EHM MGP ∆≅∆,得到点E 的坐标为(1,5)m m --,再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把(1,5)E m m --代入抛物线解析式,解出m 的值,进而求出CM 的长.【解答】解:(1)点(6,0)C 在抛物线上,∴103664b c =-⨯++, 得到69b c +=,又对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,3c ∴=,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如图21-中:抛物线的解析式为2134y x x =-++,对称轴为2x =,(6,0)C ∴点(2,0)A ,顶点(2,4)B ,4AB AC ∴==,ABC ∴∆是等腰直角三角形,145∴∠=︒;将MPC ∆逆时针旋转90︒得到MEF ∆,FM CM ∴=,2145∠=∠=︒,设点M 的坐标为(,0)m ,∴点(,6)F m m -,又245∠=︒,∴直线EF 与x 轴的夹角为45︒,∴设直线EF 的解析式为y x b =+,把点(,6)F m m -代入得:6m m b -=+,解得:62b m =-, 直线EF 的解析式为62y x m =+-,直线EF 与抛物线2134y xx =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴△240b ac =-=,解得32m =, 点M 的坐标为3(2,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45︒,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为3(2,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,2PC ,由(2)知45BCA ∠=︒,1PG GC ∴==,∴点(5,0)G ,设点M 的坐标为(,0)m , 将MPC ∆逆时针旋转90︒得到MEF ∆,EM PM ∴=,90HEM EMH GMP EMH ∠+∠=∠+∠=︒,HEM GMP ∴∠=∠,在EHM ∆和MGP ∆中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EHM MGP AAS ∴∆≅∆,5EH MG m ∴==-,1HM PG ==,∴点(1,0)H m -,∴点E 的坐标为(1,5)m m --;222(12)(50)21634EA m m m m ∴--+---+,又D 为线段BC 的中点,(2,4)B ,(6,0)C ,∴点(4,2)D ,222(14)(52)21634ED m m m m ∴--+---+,EA ED ∴=.当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(1,5)m m --,因此EA ED =.②当点E 在(1)所求的抛物线2134y x x =-++上时, 把(1,5)E m m --代入,整理得:210130m m -+=, 解得:523m =+523m =-, 231CM ∴=或123CM =+.。
湖北恩施州2020年中考数学试题(图片版)
湖北恩施州数学--2020年初中毕业升学学业水平考试题(图片版)答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将选项前的字母代号填涂在答题卷相应位置上.1.A .2.B .3.D .4.B .5.B .6.D .7.C .8.A.9.A. 10.D . 11.B . 12.C .二、填空题:不要求写出解答过程,请把答案直接写在答题卷相应位置上.13.3.14.40︒15.π-16.(-1,8)三、解答题:请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.1m 【详解】222936933m m m m m m ⎛⎫--÷ ⎪-+--⎝⎭ 22(3)(3)33(3)3m m m m m m ⎡⎤+--=-⋅⎢⎥--⎣⎦ 2333()33m m m m m+-=-⋅-- 233m m m m -=⋅- 1m=;当m =时,原式== 18.【详解】证明:∵//AE BF ,∴∠ADB=∠DBC ,又BD 平分∠ABC ,∴∠DBC=∠ABD ,∴∠ADB=∠ABD ,∴△ABD 为等腰三角形,∴AB=AD ,又已知AB=BC ,∴AD=BC ,又//AE BF ,即AD //BC ,∴四边形ABCD 为平行四边形,又AB=AD ,∴四边形ABCD 为菱形.【点睛】本题考了角平分线性质,平行线的性质,菱形的判定方法,平行四边形的判定方法等,熟练掌握其判定方法及性质是解决此类题的关键.19.(1)50名;(2)条形图见解析;(3)36︒;(4)150名.【详解】(1)本次共调查的学生数为:2040%50÷=名;(2)C 类学生人数为:50-15-20-5=10名,条形图如下:(3)D 类所对应扇形的圆心角为:53603650︒⨯=︒; (4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:15500=15050⨯名. 20.【答案】此时船与小岛P 的距离约为44海里【详解】如图,过P 作PH ⊥AB ,设PH=x ,由题意,AB=60,∠PBH=30º,∠PAH=45º,在Rt △PHA 中,AH=PH=x,在Rt △PBH 中,BH=AB-AH=60-x ,PB=2x ,∴tan30º=PH BH, 360x x=-, 解得:30(31)x =,∴PB=2x=60(31)≈44(海里),答:此时船与小岛P 的距离约为44海里.【点睛】本题考查了直角三角形的应用,掌握方向角的概念和解直角三角形的知识是解答本题的关键. 21.(1) (3,0);(2) 1a =-,2k =【详解】解:(1)由题意得:令()30y ax a a =-≠中0y =,即30-=ax a ,解得3x =,∴点A 的坐标为(3,0),故答案为(3,0) .(2) 过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM //OA ,∴∠BCM=∠BAO ,且∠ABO=∠CBO ,∴△BCM ∽△BAO , ∴=BC CM BA AO,代入数据: 即:133=CM ,∴CM =1, 又132=⋅=AOC S OA CN 即:1332⨯⨯=CN ,∴=2CN , ∴C 点的坐标为(1,2),故反比例函数的122k =⨯=,再将点C(1,2)代入一次函数()30y ax a a =-≠中,即23=-a a ,解得1a =-,故答案为:1a =-,2k =.22.(1)购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.【详解】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据题意,得 90072020x x =- 解得:x=100经检验x=100是原方程的解x-20=80答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元.(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,则W=100m+80(90-m)=20m+7200∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元. ∴()2072008500290m m m +≤⎧⎨≥-⎩解不等式组得:60≤m ≤65所以,m 的值为:60,61,62,63,64,65即该队共有6种购买方案,当m=60时,W 最小m=60时,W=20×60+7200=8400(元)答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元. 23.【详解】(1)连接OD ,∵CD CA =,∴∠CAD=∠CDA ,∵OA=OD∴∠OAD =∠ODA ,∵直线AM 与O 相切于点A ,∴∠CAO=∠CAD+∠OAD=90°∴∠ODC=∠CDA+∠ODA=90°∴CE 是O 的切线;(2)连接BD∵OD=OB∴∠ODB=∠OBD ,∵CE 是O 的切线,BF 是O 的切线,∴∠OBD=∠ODE=90°∴∠EDB=∠EBD∴ED=EB∵AM ⊥AB ,BN ⊥AB∴AM ∥BN∴∠CAD=∠BFD∵∠CAD=∠CDA=∠EDF∴∠BFD=∠EDF∴EF=ED∴BE=EF(3)过E 点作EL ⊥AM 于L ,则四边形ABEL 是矩形,设BE=x ,则CL=4-x ,CE=4+X∴(4+x)2=(4-x)2+62解得:x=94 934tan 34BE BOE OB ∴∠=== ∵∠BOE=2∠BHE22tan 3tan 1tan 4BHE BOE BHE ∠∴∠==-∠ 解得:tan ∠BHE=13或-3(-3不和题意舍去) ∴tan ∠BHE=1324.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =231-或CM =123+ 【详解】(1)∵点()6,0C 在抛物线上,∴103664b c=-⨯++,得到6=9b c+,又∵对称轴2x=,∴2122()4b bxa=-=-=⨯-,解得1b=,∴3c=,∴二次函数的解析式为2134y x x=-++;(2)当点M在点C的左侧时,如下图:∵抛物线的解析式为2134y x x=-++,对称轴为2x=,()6,0C∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将MPC逆时针旋转90︒得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6-m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6-m)代入得:6-m=m+b,解得:b=6-2m,直线EF的解析式为y=x+6-2m,∵直线EF与抛物线2134y x x=-++只有一个交点,∴262134y xm y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点. 综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC =2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴EA=22(12)(50)m m --+--=221634m m -+, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED=22(14)(52)m m --+--=221634m m -+, ∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0, 解得:m=523+或m=523-∴CM =231或CM =123+.。
湖北省恩施州2020年中考数学试题
本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
2.B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
∴x+5y=2,
∴得到方程组 ,
故选:A.
【点睛】
此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.
9.A
【解析】
【分析】
根据几何体的三视图解答即可.
【详解】
根据立体图形得到:
主视图为: ,
左视图为: ,
俯视图为: ,
故答案为:A.
【点睛】
此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.
对于④:当 时对应的 ,观察图像可知 时对应的函数图像的 值在 轴上方,故 ,故④正确.
∴只有③④是正确的.
故选:C.
【点睛】
本题考查了二次函数的图像与其系数的关系及二次函数的对称性,熟练掌握二次函数的图像性质是解决此类题的关键.
13.3.
【解析】
【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
∴∠C=∠4= ,
∵ ,∠1= ,
∴∠1=∠3= ,
∵∠C +∠3+∠2+∠4 = ,即
∴
故答案为: .
【点睛】
本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.
2020年湖北省恩施州中考数学试题(学生版)
湖北省恩施州2020年中考数学试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将选项前的字母代号填涂在答题卷相应位置上.1.5的绝对值是( ) A. 5B. ﹣5C.15D. 15-2.茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( ). A .41210⨯B. 51.210⨯C. 61.210⨯D. 60.1210⨯3.下列交通标识,既是中心对称图形,又是轴对称图形的是( ).A.B. C.D.4.下列计算正确的是( ). A. 236a a a ⋅= B. ()21a a a a +=+C. ()222a b a b -=- D. 235a b ab +=5.函数1x y +=( ) A. 1x ≥﹣B. 1x ≥﹣且0x ≠C. 0x >D. 1x >-且0x ≠ 6.“彩缕碧筠粽,香梗白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣烷4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( ).A. 211B. 411C. 511D.6117.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A. 1-B. 1C. 0D. 28.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A. 5352x y x y +=⎧⎨+=⎩B. 5253x y x y +=⎧⎨+=⎩C. 53125x y x y +=⎧⎨+=⎩D. 35251x y x y +=⎧⎨+=⎩9.如图是由四个相同的小正方体组成的立体图形,它的主视图为( ).A. B. C. D.10.甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误..的是( ).A. 甲车的平均速度为60km hB. 乙车的平均速度为100km hC. 乙车比甲车先到B 城D. 乙车比甲车先出发1h11.如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE △周长的最小值为( ).A. 5B. 6C. 7D. 812.如图,已知二次函数2y ax bx c=++图象与x 轴相交于()2,0A -、()10B ,两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A. 0B. 1C. 2D. 3二、填空题:不要求写出解答过程,请把答案直接写在答题卷相应位置上.13.9的算术平方根是.14.如图,直线12//l l,点A在直线1l上,点B在直线2l 上,AB BC=,30C∠=︒,180∠=︒,则2∠=______.15.如图,已知半圆的直径4AB=,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若60ABC∠=︒,则图中阴影部分的面积为______.(结果不取近似值)16.如图,在平面直角坐标系中,ABC的顶点坐标分别为:()2,0A-,()1,2B,()1,2C-.已知()1,0N-,作点N关于点A的对称点1N,点1N关于点B的对称点2N,点2N关于点C的对称点3N,点3N关于点A 的对称点4N,点4N关于点B的对称点5N,…,依此类推,则点2020N的坐标为______.三、解答题:请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.先化简,再求值:222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭,其中2m =. 18.如图,//AE BF ,BD 平分∠ABC 交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.19.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A 类—非常了解;B 类—比较了解;C —一般了解;D 类—不了解.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了______名学生; (2)补全条形统计图;(3)D 类所对应扇形的圆心角的大小为______;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有______名.20.如图,一艘轮船以每小时30海里的速度自东向西航行,在A 处测得小岛P 位于其西北方向(北偏西45︒方向),2小时后轮船到达B 处,在B 处测得小岛P 位于其北偏东60︒方向.求此时船与小岛P 的距离(结果保留整数,参考数据:2 1.414≈,3 1.732≈).21.如图,在平面直角坐标系中,直线()30y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0ky x x=>的一个交点为C ,且12BC AC =.(1)求点A 的坐标; (2)当3AOCS=时,求a 和k 的值.22.某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等. (1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元? 23.如图,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点A )在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE是O的切线;(2)求证:BE EF=;(3)如图,连接EO并延长与O分别相交于点G、H,连接BH.若6AB=,4AC=,求tan BHE∠.24.如图,抛物线214y x bx c=-++经过点()6,0C,顶点为B,对称轴2x=与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将MPC逆时针旋转90︒,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线214y x bx c=-++只有一个交点时,求点M的坐标.(3)MPC在(2)的旋转变换下,若2PC=(如图)..①求证:EA ED②当点E在(1)所求的抛物线上时,求线段CM的长.。
湖北省恩施州2020年中考数学试题(教师版)
湖北省恩施州2020年中考数学试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将选项前的字母代号填涂在答题卷相应位置上.1.5的绝对值是( ) A. 5 B. ﹣5C.15D. 15-【答案】A 【解析】 【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数; 即可得解.【详解】解:在数轴上,数5所表示的点到原点0的距离是5; 故选A .【点睛】本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( ). A. 41210⨯ B. 51.210⨯C. 61.210⨯D. 60.1210⨯【答案】B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】120000=51.210⨯, 故选:B.【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.3.下列交通标识,既是中心对称图形,又是轴对称图形的是( ).A. B. C. D.【答案】D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】根据轴对称图形与中心对称图形的概念,知: A 、不是轴对称图形,也不是中心对称图形; B 、不是轴对称图形,也不是中心对称图形; C 、是轴对称图形,但不是中心对称图形; D 、既是中心对称图形,又是轴对称图形. 故选:D .【点睛】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,折叠后对称轴两旁的部分可重合;中心对称图形是要寻找对称中心,旋转180°后会与原图重合. 4.下列计算正确的是( ). A. 236a a a ⋅= B. ()21a a a a +=+C. ()222a b a b -=- D. 235a b ab +=【答案】B 【解析】 分析】根据同底数幂的乘法,单项式乘多项式,完全平方公式以及合并同类项的法则进行计算即可. 【详解】A 、235a a a ⋅=,该选项错误,不符合题意; B 、()21a a a a +=+,该选项正确,符合题意;C 、()2222a b a ab b -=-+,该选项错误,不符合题意; D 、23a b +,不是同类项,不能合并,该选项错误,不符合题意; 故选:B .【点睛】本题考查了同底数幂的乘法,单项式乘多项式,完全平方公式以及合并同类项,解此题的关键在于熟练掌握其知识点.5.函数y x=的自变量的取值范围是( ) A. 1x ≥﹣ B. 1x ≥﹣且0x ≠C. 0x >D. 1x >-且0x ≠【答案】B 【解析】 【分析】根据二次根式的被开方数大于等于0,分式分母不等于0列式计算即可得解. 【详解】解:根据题意得,x +1≥0且x≠0, 解得:x≥−1且x≠0. 故选:B .【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.“彩缕碧筠粽,香梗白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣烷4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( ). A.211B.411C.511D.611【答案】D 【解析】 【分析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案. 【详解】由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611, 故选:D.【点睛】本题考查了概率的基本运算,熟练掌握公式是关键.7.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A. 1- B. 1 C. 0D. 2【答案】C 【解析】 【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.8.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A. 5352x y x y +=⎧⎨+=⎩B. 5253x y x y +=⎧⎨+=⎩C. 53125x y x y +=⎧⎨+=⎩D. 35251x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】根据大小桶所盛酒的数量列方程组即可.【详解】∵5个大桶加上1个小桶可以盛酒3斛, ∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛, ∴x+5y=2,∴得到方程组5352x y x y +=⎧⎨+=⎩,故选:A.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键. 9.如图是由四个相同小正方体组成的立体图形,它的主视图为( ).A. B. C. D.【答案】A【解析】【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.10.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误..的是().A. 甲车的平均速度为60km hB. 乙车的平均速度为100km hC. 乙车比甲车先到B城D. 乙车比甲车先出发1h【答案】D【解析】【分析】根据图象逐项分析判断即可.【详解】由图象知:A .甲车的平均速度为300105-=60()km h ,故此选项正确; B .乙车的平均速度为300100()96km h =-,故此选项正确;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故此选项正确;D .甲5时出发,乙6时出发,所以乙比甲晚出发1h ,故此选项错误, 故选:D .【点睛】本题考查了函数的图象,正确识别图象并能提取相关信息是解答的关键.11.如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE △周长的最小值为( ).A. 5B. 6C. 7D. 8【答案】B 【解析】 【分析】连接ED 交AC 于一点F ,连接BF ,根据正方形的对称性得到此时BFE △的周长最小,利用勾股定理求出DE 即可得到答案.【详解】连接ED 交AC 于一点F ,连接BF , ∵四边形ABCD 是正方形, ∴点B 与点D 关于AC 对称, ∴BF=DF ,∴BFE △的周长=BF+EF+BE=DE+BE ,此时周长最小, ∵正方形ABCD 的边长为4, ∴AD=AB=4,∠DAB=90°, ∵点E 在AB 上且1BE =, ∴AE=3, ∴225AD AE +=,∴BFE △的周长=5+1=6, 故选:B.【点睛】此题考查正方形的性质:四条边都相等,四个角都是直角以及正方形的对称性质,还考查了勾股定理的计算,依据对称性得到连接DE 交AC 于点F 是BFE △的周长有最小值的思路是解题的关键.12.如图,已知二次函数2y ax bx c =++的图象与x 轴相交于()2,0A -、()10B ,两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A. 0B. 1C. 2D. 3【答案】C 【解析】 【分析】根据二次函数的图像性质逐个分析即可.【详解】解:对于①:二次函数开口向下,故a <0,与y 轴的交点在y 的正半轴,故c >0,故ac <0,故①错误;对于②:二次函数的图像与x 轴相交于()2,0A -、()1,0B ,由对称性可知,其对称轴为:21122x -+==-,故②错误;对于③:设二次函数2y ax bx c =++的交点式为2(2)(1)2y a x x ax ax a =+-=+-,比较一般式与交点式的系数可知:,2==-b a c a ,故20a c +=,故③正确;对于④:当1x =-时对应的y a b c =-+,观察图像可知1x =-时对应的函数图像的y 值在x 轴上方,故0a b c -+>,故④正确.∴只有③④是正确的. 故选:C .【点睛】本题考查了二次函数的图像与其系数的关系及二次函数的对称性,熟练掌握二次函数的图像性质是解决此类题的关键.二、填空题:不要求写出解答过程,请把答案直接写在答题卷相应位置上.13.9的算术平方根是 . 【答案】3. 【解析】 【分析】根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】∵239=, ∴9算术平方根为3. 故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.14.如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=______.【答案】40︒ 【解析】 【分析】利用等腰三角形的性质得到∠C=∠4=30︒,利用平行线的性质得到∠1=∠3=80︒,再根据三角形内角和定理即可求解.【详解】如图,延长CB 交2l 于点D ,∵AB=BC ,∠C=30︒, ∴∠C=∠4=30︒, ∵12//l l ,∠1=80︒, ∴∠1=∠3=80︒,∵∠C +∠3+∠2+∠4 =180︒,即3080230180︒+︒+∠+︒=︒, ∴240∠=︒, 故答案为:40︒.【点睛】本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.15.如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为______.(结果不取近似值)【答案】23π 【解析】 【分析】根据60°特殊角求出AC 和BC,再算出△ABC 的面积,根据扇形面积公式求出扇形的面积,再用三角形的面积减去扇形面积即可. 【详解】∵AB 是直径, ∴∠ACB=90°,∠ABC=60°,∴BC=122AB =,AC=3∴11=232=2322ABC S AC BC =⋅⋅⋅由以上可知∠CAB=30°,∴扇形ACD 的面积=()223012336012AC πππ⋅=⋅=,∴阴影部分的面积为23π-. 故答案为: 23π-.【点睛】本题考查圆和扇形面积的结合,关键在于利用圆周角的性质找到直角三角形并结合扇形面积公式解出.16.如图,在平面直角坐标系中,ABC 的顶点坐标分别为:()2,0A -,()1,2B ,()1,2C -.已知()1,0N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,…,依此类推,则点2020N 的坐标为______.【答案】(-1,8) 【解析】 【分析】先求出N 1至N 6点的坐标,找出其循环的规律为每6个点循环一次即可求解. 【详解】解:由题意得,作出如下图形:N点坐标为(-1,0),N点关于A点对称的N1点的坐标为(-3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(-3,8),N3点关于A点对称的N4点的坐标为(-1,8),N4点关于B点对称的N5点的坐标为(3,-4),N5点关于C点对称的N6点的坐标为(-1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴20206=3364÷,即循环了336次后余下4,故2020N的坐标与N4点的坐标相同,其坐标为(-1,8) .故答案为:(-1,8) .【点睛】本题考查了平面直角坐标系内点的对称规律问题,本题需要先去验算前面一部分点的坐标,进而找到其循环的规律后即可求解.三、解答题:请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.先化简,再求值:222936933m mm m m m⎛⎫--÷⎪-+--⎝⎭,其中2m=.【答案】1m ,22【解析】 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可.【详解】222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭ 22(3)(3)33(3)3m m m m m m ⎡⎤+--=-⋅⎢⎥--⎣⎦2333()33m m m m m +-=-⋅-- 233m m m m -=⋅- 1m=; 当2m =时,原式22==. 【点睛】本题主要考查了分式的化简求值以及二次根式的化简,熟练掌握分式的混合运算法则是解答的关键.18.如图,//AE BF ,BD 平分∠ABC 交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.【答案】见解析 【解析】 【分析】由//AE BF ,BD 平分∠ABC 得到∠ABD=∠ADB ,进而得到△ABD 为等腰三角形,进而得到AB=AD ,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD为平行四边形,再由邻边相等即可证明ABCD为菱形.AE BF,【详解】证明:∵//∴∠ADB=∠DBC,又BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴△ABD为等腰三角形,∴AB=AD,又已知AB=BC,∴AD=BC,AE BF,即AD//BC,又//∴四边形ABCD为平行四边形,又AB=AD,∴四边形ABCD为菱形.【点睛】本题考了角平分线性质,平行线的性质,菱形的判定方法,平行四边形的判定方法等,熟练掌握其判定方法及性质是解决此类题的关键.19.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类—非常了解;B类—比较了解;C—一般了解;D类—不了解.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了______名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为______;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有______名.【答案】(1)50名;(2)条形图见解析;(3)36︒;(4)150名.【解析】【分析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360︒乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【详解】(1)本次共调查的学生数为:2040%50÷=名;(2)C类学生人数为:50-15-20-5=10名,条形图如下:(3)D类所对应扇形的圆心角为:53603650︒⨯=︒;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:15500=15050⨯名.【点睛】本题考查了条形统计图、扇形统计图,根据图得出相关信息是解题的关键.20.如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60︒方向.求此时船与小岛P的距离(结2 1.414≈3 1.732≈).【答案】此时船与小岛P 的距离约为44海里 【解析】 【分析】过P 作PH ⊥AB ,设PH=x ,由已知分别求PB 、BH 、AH ,然后根据锐角三角函数求出x 值即可求解 【详解】如图,过P 作PH ⊥AB ,设PH=x , 由题意,AB=60,∠PBH=30º,∠PAH=45º, 在Rt △PHA 中,AH=PH=x,在Rt △PBH 中,BH=AB-AH=60-x ,PB=2x , ∴tan30º=PHBH, 即3360xx=-, 解得:30(31)x =-,∴PB=2x=60(31)-≈44(海里), 答:此时船与小岛P 的距离约为44海里.【点睛】本题考查了直角三角形的应用,掌握方向角的概念和解直角三角形的知识是解答本题的关键. 21.如图,在平面直角坐标系中,直线()30y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0ky x x=>的一个交点为C ,且12BC AC =.(1)求点A 的坐标; (2)当3AOCS=时,求a 和k 的值.【答案】(1) (3,0);(2) 1a =-,2k = 【解析】 【分析】(1)令()30y ax a a =-≠中0y =即可求出点A 的坐标;(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,证明△BCM ∽△BAO ,利用12BC AC =和OA =3进而求出CM 的长,再由3AOCS=求出CN 的长,进而求出点C 坐标即可求解.【详解】解:(1)由题意得:令()30y ax a a =-≠中0y =, 即30-=ax a ,解得3x =, ∴点A 的坐标为(3,0), 故答案为(3,0) .(2) 过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM //OA ,∴∠BCM=∠BAO ,且∠ABO=∠CBO , ∴△BCM ∽△BAO ,∴=BC CMBA AO ,代入数据: 即:133=CM ,∴CM =1,又132=⋅=AOC S OA CN即:1332⨯⨯=CN ,∴=2CN ,∴C 点的坐标为(1,2), 故反比例函数的122k =⨯=,再将点C(1,2)代入一次函数()30y ax a a =-≠中, 即23=-a a ,解得1a =-, 故答案为:1a =-,2k =.【点睛】本题考查了反比例函数与一次函数的图像及性质,相似三角形的判定和性质等,熟练掌握其图像性质是解决此题的关键.22.某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等. (1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】(1)购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元. 【解析】 【分析】(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,根据总价=单价×数量结合总价不超过8500元,以及A 品牌足球的数量不小于B 品牌足球数量的2倍,即可得出关于m 的一元一次不等式组,解之取其中的最小整数值即可得出结论.【详解】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据题意,得90072020x x =- 解得:x=100经检验x=100是原方程的解 x-20=80答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元. (2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,则 W=100m+80(90-m)=20m+7200∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.∴()2072008500290m m m +≤⎧⎨≥-⎩解不等式组得:60≤m ≤65所以,m 的值为:60,61,62,63,64,65 即该队共有6种购买方案, 当m=60时,W 最小m=60时,W=20×60+7200=8400(元)答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元. 【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组. 23.如图,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点A )在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是O 的切线;(2)求证:BE EF =; (3)如图,连接EO 并延长与O 分别相交于点G 、H ,连接BH .若6AB =,4AC =,求tan BHE ∠.【答案】(1)见详解;(2)见详解;(3)1 3【解析】【分析】(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90°=∠ODC,由切线的判定定理可得结论;(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90°,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.【详解】(1)连接OD,∵CD CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD =∠ODA,∵直线AM与O相切于点A,∴∠CAO=∠CAD+∠OAD=90°∴∠ODC=∠CDA+∠ODA=90°∴CE是O的切线;(2)连接BD∵OD=OB∴∠ODB=∠OBD , ∵CE 是O 的切线,BF 是O 的切线,∴∠OBD=∠ODE=90° ∴∠EDB=∠EBD ∴ED=EB∵AM ⊥AB ,BN ⊥AB ∴AM ∥BN ∴∠CAD=∠BFD ∵∠CAD=∠CDA=∠EDF ∴∠BFD=∠EDF ∴EF=ED ∴BE=EF(3)过E 点作EL ⊥AM 于L ,则四边形ABEL 是矩形, 设BE=x ,则CL=4-x ,CE=4+X ∴(4+x)2=(4-x)2+62 解得:x=94934tan 34BE BOE OB ∴∠===∵∠BOE=2∠BHE22tan 3tan 1tan 4BHE BOE BHE ∠∴∠==-∠ 解得:tan ∠BHE=13或-3(-3不和题意舍去)∴tan ∠BHE=13【点睛】本题主要考查了切线的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角函数/,勾股定理等知识,熟练掌握这些知识点并能熟练应用是解题的关键.24.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标.(3)MPC 在(2)的旋转变换下,若2PC =(如图).①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【答案】(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =31或CM =123+ 【解析】【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F(m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论. (3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由2PC =旋转的性质,证明△EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上, ∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,∴3c =,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点. 综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC =2)知∠BCA=45°, ∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴EA=22(12)(50)m m --+--=221634m m -+,又∵D 为线段BC 的中点,B (2,4),C (6,0),∴点D (4,2),∴ED=22(14)(52)m m --+--=221634m m -+,∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0,解得:m=523+m=523-∴CM=1或CM=1+.【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是( )A .5B .5-C .15D .15- 2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)下列计算正确的是( )A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab += 5.(3分)函数1x y +=的自变量的取值范围是( ) A .1x - B .1x -且0x ≠ C .0x > D .1x >-且0x ≠6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( )A .1-B .1C .0D .28.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60/km hB .乙车的平均速度为100/km hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE ∆周长的最小值为( )A .5B .6C .7D .812.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 .14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= .15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 .(结果不取近似值16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m mm m m m--÷-+--,其中2m=.18.(8分)如图,//AE BF,BD平分ABC∠交AE于点D,点C在BF上且BC AB=,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A 处测得小岛P 位于其西北方向(北偏西45︒方向),2小时后轮船到达B 处,在B 处测得小岛P 位于其北偏东60︒方向.求此时船与小岛P 的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =. (1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点)A 在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是O 的切线;(2)求证:BE EF =;(3)如图2,连接EO 并延长与O 分别相交于点G 、H ,连接BH .若6AB =,4AC =,求tan BHE ∠.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC ∆在(2)的旋转变换下,若2PC =(如图2).①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是( )A .5B .5-C .15D .15- 【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数; 即可得解.【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:5120000 1.210=⨯,故选:B .3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)下列计算正确的是( )A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab +=【分析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、2(1)a a a a +=+,原计算正确,故此选项符合题意;C 、222()2a b a ab b -=-+,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)函数y =的自变量的取值范围是( ) A .1x - B .1x -且0x ≠ C .0x > D .1x >-且0x ≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,10x +且0x ≠,解得1x -且0x ≠.故选:B .6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【分析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611, 故选:D .7.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( )A .1-B .1C .0D .2 【分析】已知等式利用题中的新定义化简,计算即可求出x 的值.【解答】解:由题意知:2☆211x x x=+-=+,又2☆1x=,11x∴+=,x∴=.故选:C.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是( )A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩【分析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意,得:5352x yx y+=⎧⎨+=⎩.故选:A.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t 的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60/km h B.乙车的平均速度为100/km h C.乙车比甲车先到B城D.乙车比甲车先出发1h【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为30060/105km h=-,故A选项不合题意;B.乙车的平均速度为300100/96km h=-,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且1BE=,F为对角线AC上一动点,则BFE∆周长的最小值为()A.5B.6C.7D.8【分析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时BFE∆的周长最小,利用勾股定理求出DE即可得到答案.【解答】解:如图,连接ED交AC于一点F,连接BF,四边形ABCD是正方形,∴点B与点D关于AC对称,BF DF ∴=,BFE ∴∆的周长BF EF BE DE BE =++=+,此时BEF ∆的周长最小,正方形ABCD 的边长为4,4AD AB ∴==,90DAB ∠=︒,点E 在AB 上且1BE =, 3AE ∴=,225DE AD AE ∴=+=,BFE ∴∆的周长516=+=,故选:B .12.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a 、b 、c 满足的关系综合判断即可.【解答】解:对于①:二次函数开口向下,故0a <,与y 轴的交点在y 的正半轴,故0c >,故0ac <,因此①错误;对于②:二次函数的图象与x 轴相交于(2,0)A -、(1,0)B ,由对称性可知,其对称轴为:21122x -+==-,因此②错误; 对于③:设二次函数2y ax bx c =++的交点式为2(2)(1)2y a x x ax ax a =+-=+-,比较一般式与交点式的系数可知:b a =,2c a =-,故20a c +=,因此③正确;对于④:当1x =-时对应的y a b c =-+,观察图象可知1x =-时对应的函数图象的y 值在x 轴上方,故0a b c -+>,因此④正确.∴只有③④是正确的.故选:C .二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上) 13.(3分)9的算术平方根是 3 .【分析】9的平方根为3±,算术平方根为非负,从而得出结论. 【解答】解:2(3)9±=, 9∴的算术平方根是|3|3±=.故答案为:3.14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= 40︒ .【分析】利用等腰三角形的性质得到430C ∠=∠=︒,利用平行线的性质得到1380∠=∠=︒,再根据三角形内角和定理即可求解. 【解答】解:如图,延长CB 交2l 于点D , AB BC =,30C ∠=︒, 430C ∴∠=∠=︒, 12//l l ,180∠=︒,1380∴∠=∠=︒,324180C ∠+∠+∠+∠=︒,即3080230180︒+︒+∠+︒=︒, 240∴∠=︒.故答案为:40︒.15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 23π- .(结果不取近似值【分析】根据60︒特殊角求出AC 和BC ,再算出ABC ∆的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可. 【解答】解:AB 是直径,90ACB ∴∠=︒, 60ABC ∠=︒, 30CAB ∴∠=︒, 122BC AB ∴==,23AC = ∴112322322ABC S AC BC ∆===, 30CAB ∠=︒,∴扇形ACD 的面积22301(23)36012AC πππ===, ∴阴影部分的面积为23π.故答案为:23π.16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 (1,8)- .【分析】先求出1N 至6N 点的坐标,找出其循环的规律为每6个点循环一次即可求解. 【解答】解:由题意得,作出如下图形:N 点坐标为(1,0)-,N 点关于A 点对称的1N 点的坐标为(3,0)-, 1N 点关于B 点对称的2N 点的坐标为(5,4), 2N 点关于C 点对称的3N 点的坐标为(3,8)-, 3N 点关于A 点对称的4N 点的坐标为(1,8)-,4N 点关于B 点对称的5N 点的坐标为(3,4)-,5N 点关于C 点对称的6N 点的坐标为(1,0)-,此时刚好回到最开始的点N 处,∴其每6个点循环一次,202063364∴÷=⋯⋯,即循环了336次后余下4,故2020N 的坐标与4N 点的坐标相同,其坐标为(1,8)-. 故答案为:(1,8)-.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m m m m m m --÷-+--,其中2m =. 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可.【解答】解:22293()6933m m m m m m --÷-+-- 22(3)(3)33[](3)3m m m m m m +--=--- 2333()33m m m m m +-=--- 233m m m m -=-1m=; 当2m =时, 原式1222==. 18.(8分)如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.【分析】由//AE BF ,BD 平分ABC ∠得到ABD ADB ∠=∠,得到AB AD =,再由BC AB =,得到对边AD BC =,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD 为菱形.【解答】证明://AE BF ,ADB DBC ∴∠=∠,BD 平分ABC ∠,DBC ABD ∴∠=∠,ADB ABD ∴∠=∠, AB AD ∴=,又AB BC =,AD BC ∴=,//AE BF ,即//AD BC ,∴四边形ABCD 为平行四边形,又AB AD =,∴四边形ABCD 为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A 类--非常了解;B 类--比较了解;C 类--般了解;D 类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了 50 名学生; (2)补全条形统计图;(3)D 类所对应扇形的圆心角的大小为 ;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.【分析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360︒乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】解:(1)本次共调查的学生数为:2040%50÷=(名).故答案为:50;(2)C类学生人数为:501520510---=(名),条形图如下:(3)D类所对应扇形的圆心角为:53603650︒⨯=︒.故答案为:36︒;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:1550015050⨯=(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60︒方向.求此时船与小岛P的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.【分析】过P作PH AB⊥,设PH x=,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x 值即可求解.【解答】解:如图,过P 作PH AB ⊥,设PH x =,由题意得:30260AB =⨯=,906030PBH ∠=︒-︒=︒,904545PAH ∠=︒-︒=︒, 则PHA ∆是等腰直角三角形,AH PH ∴=,在Rt PHA ∆中,设AH PH x ==,在Rt PBH ∆中,22PB PH x ==,60BH AB AH x =-=-, 3tan tan303PH PBH BH ∴∠=︒==, ∴3360xx=-, 解得:30(31)x =-,260(31)44PB x ∴==-≈(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =.(1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.【分析】(1)令3(0)y ax a a =-≠中0y =即可求出点A 的坐标;(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,证明BCM BAO ∆∆∽,利用12BC AC =和3OA =进而求出CM 的长,再由3AOC S ∆=求出CN 的长,进而求出点C 坐标即可求解.【解答】解:(1)由题意得:令3(0)y ax a a =-≠中0y =, 即30ax a -=,解得3x =,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,//CM OA ,BCM BAO ∴∠=∠,且ABO CBO ∠=∠, BCM BAO ∴∆∆∽,∴BC CM BA AO =,即:133CM=, 1CM ∴=,又132AOC S OA CN ∆==即:1332CN ⨯⨯=,2CN ∴=,C ∴点的坐标为(1,2),故反比例函数的122k =⨯=,再将点(1,2)C 代入一次函数3(0)y ax a a =-≠中, 即23a a =-,解得1a =-, 故答案为:1a =-,2k =.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【分析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,根据总价=单价⨯数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据题意,得90072020x x=-,解得:100x=,经检验100x=是原方程的解,2080x-=,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,则10080(90)207200W m m m=+-=+,A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴10080(90)85002(90)m mm m+-⎧⎨-⎩,解不等式组得:6065m,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当60m=时,W最小,60m=时,206072008400W=⨯+=(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是O的直径,直线AM与O相切于点A,直线BN与O相切于点B,点C(异于点)A在AM上,点D在O上,且CD CA=,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是O的切线;(2)求证:BE EF=;(3)如图2,连接EO并延长与O分别相交于点G、H,连接BH.若6AC=,AB=,4求tan BHE∠.【分析】(1)连接OD,根据等边对等角可知:CAD CDA∠=∠,再根据∠=∠,OAD ODA切线的性质可知90∠=∠+∠=∠+∠=︒=∠,由切线的判定定CAO CAD OAD CDA ODA ODC理可得结论;(2)连接BD,根据等边对等角可知ODB OBD∠=∠,再根据切线的性质可知∠=∠,再根据等角对等边得到∠=∠=︒,由等量减等量差相等得EDB EBDODE OBE90∠=∠,推出DE EF=,由=,然后根据平行线的性质及对顶角相等可得EDF EFDED EB此得出结论;(3)过E点作EL AM⊥于L,根据勾股定理可求出BE的长,即可求出tan BOE∠的值,再利用倍角公式即可求出tan BHE∠的值.【解答】解:(1)如图1中,连接OD,CD CA=,∴∠=∠,CAD CDA=OA OD∴∠=∠,OAD ODA直线AM与O相切于点A,∴∠=∠+∠=︒,CAO CAD OAD9090ODC CDA ODA∴∠=∠+∠=︒,CE∴是O的切线.(2)如图2中,连接BD,OD OB=,ODB OBD∴∠=∠,CE是O的切线,BF是O的切线,90OBD ODE∴∠=∠=︒,EDB EBD∴∠=∠,ED EB∴=,AM AB⊥,BN AB⊥,//AM BN∴,CAD BFD∴∠=∠,CAD CDA EDF∠=∠=∠,BFD EDF∴∠=∠,EF ED∴=,BE EF∴=.(3)如图2中,过E点作EL AM⊥于L,则四边形ABEL是矩形,设BE x=,则4CL x=-,4CE x=+,222(4)(4)6x x∴+=-+,解得:94x=,∴934tan 34BE BOE OB ∠===, 2BOE BHE ∠=∠,∴22tan 3tan 1tan 4BHE BOE BHE ∠∠==-∠, 解得:1tan 3BHE ∠=或3(3--不合题意舍去), 1tan 3BHE ∴∠=. 补充方法:如图2中,作HJ EB ⊥交EB 的延长线于J .34BE tab BOE OB ∠==, ∴可以假设3BE k =,4OB k =,则5OE k =,//OB HJ ,∴OB OE EB HJ EH EJ ==, ∴4539k k k HJ k EJ==, 365HJ k ∴=,275EJ k =, 2712355BJ EJ BE k k k ∴=-=-= 1tan 3BJ BHJ HJ ∴∠==, BHE OBE BHJ ∠=∠=∠,1tan 3BHE ∴∠=.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明ABC ∆是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45︒,因此设直线EF 的解析式为y x b =+,设点M 的坐标为(,0)m ,推出点(,6)F m m -,直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,设点M 的坐标为(,0)m ,由2PC =EHM MGP ∆≅∆,得到点E 的坐标为(1,5)m m --,再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把(1,5)E m m --代入抛物线解析式,解出m 的值,进而求出CM 的长.【解答】解:(1)点(6,0)C 在抛物线上, ∴103664b c =-⨯++, 得到69b c +=,又对称轴2x =, ∴2122()4b b x a =-=-=⨯-, 解得1b =,3c ∴=,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如图21-中:抛物线的解析式为2134y x x =-++,对称轴为2x =,(6,0)C ∴点(2,0)A ,顶点(2,4)B ,4AB AC ∴==,ABC ∴∆是等腰直角三角形,145∴∠=︒;将MPC ∆逆时针旋转90︒得到MEF ∆,FM CM ∴=,2145∠=∠=︒,设点M 的坐标为(,0)m ,∴点(,6)F m m -,又245∠=︒,∴直线EF 与x 轴的夹角为45︒,∴设直线EF 的解析式为y x b =+,把点(,6)F m m -代入得:6m m b -=+,解得:62b m =-, 直线EF 的解析式为62y x m =+-,直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴△240b ac =-=,解得32m =, 点M 的坐标为3(2,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45︒,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为3(2,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,2PC=,由(2)知45BCA∠=︒,1PG GC∴==,∴点(5,0)G,设点M的坐标为(,0)m,将MPC∆逆时针旋转90︒得到MEF∆,EM PM∴=,90HEM EMH GMP EMH∠+∠=∠+∠=︒,HEM GMP∴∠=∠,在EHM∆和MGP∆中,EHM MGPHEM GMPEM MP∠=∠⎧⎪∠=∠⎨⎪=⎩,()EHM MGP AAS∴∆≅∆,5EH MG m∴==-,1HM PG==,∴点(1,0)H m-,∴点E的坐标为(1,5)m m--;222(12)(50)21634 EA m m m m∴=--+--=-+,又D为线段BC的中点,(2,4)B,(6,0)C,∴点(4,2)D,222(14)(52)21634 ED m m m m∴=--+--=-+,EA ED∴=.当点M在点C的右侧时,如下图:同理,点E 的坐标仍为(1,5)m m --,因此EA ED =.②当点E 在(1)所求的抛物线2134y x x =-++上时, 把(1,5)E m m --代入,整理得:210130m m -+=,解得:5m =+5m =-,1CM ∴=或1CM =+.。