2016—2017学年(上)厦门市九年级期末质量检测数学
厦门市九年级上学期期末质量检测数学试题及答案
厦门市九年级上学期期末质量检测数学试题一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-5+6,结果正确的是A .1B .-1C .11D .-11 2.如图1,在△ABC 中,∠C =90°,则下列结论正确的是 A . AB =AC +BC B .AB =AC ·BC C .AB 2=AC 2+BC 2 D .AC 2=AB 2+BC 2 3.抛物线y =2(x -1)2-6的对称轴是A .x =-6B .x =-1C .x =12 D .x =14.要使分式1x -1有意义,x 的取值范围是A .x ≠0B .x ≠1C .x >-1D .x >1 5.下列事件是随机事件的是A .画一个三角形,其内角和是360°B .投掷一枚正六面体骰子,朝上一面的点数小于7 C.射击运动员射击一次,命中靶心D .在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生 产零件数的统计图.与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是 A .平均数变大,方差不变 B .平均数变小,方差不变 C .平均数不变,方差变小 D .平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离s 与时间t 的函数关系如图4中的部分抛 物线所示(其中P 是该抛物线的顶点),则下列说法正确的是A .小球滑行6秒停止B .小球滑行12秒停止C .小球滑行6秒回到起点D .小球滑行12秒回到起点8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转, 设旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则 α为A .30°B .45°C .60°D .90°9.点C ,D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是 A .CD <AD -BD B .AB >2BD C .BD >AD D .BC >AD 10.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0).当该二次函数的自 变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值为y 1,y 2,且y 1=y 2.设该函数图象 的对称轴是x =m ,则m 的取值范围是A .0<m <1B .1<m ≤2C .2<m <4D .0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体骰子,投掷一次,朝上一面的点数为奇数的概率是 .12.已知x =2是方程x 2+ax -2=0的根,则a = . 13.如图5,已知AB 是⊙O 的直径,AB =2,C ,D 是圆周上的点, 且∠CDB =30°,则BC 的长为 .14.我们把三边长的比为3∶4∶5的三角形称为完全三角形.记命题A :“完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :;并写出一个例子(该例子能判断命题B 是错误的): .15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA ,OP ,将△OP A 绕点O 逆时针旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为 .16.若抛物线y =x 2+bx (b >2)上存在关于直线y =x 成轴对称的两个点,则b 的取值范围 是 . 三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=0.18.(本题满分8分)化简并求值:(1-2x +1)÷x 2-12x +2,其中x =2-1.19.(本题满分8分)已知二次函数y =(x -1)2+n ,当x =2时y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20.(本题满分8分)如图6,已知四边形ABCD 为矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB =EC ; (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC 于点D ,︵AD 的长为4π3.求证:BC 是⊙O 的切线.22.(本题满分10分) 已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD ,AB 的距离分别为m ,n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图8所示.当点P 在对角线AC 上,且m =14时,求点P 的坐标;(2)如图9,当m ,n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运 输过程中,有部分鱼未能存活.小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录. (1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的规律,① 若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ② 考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只能卖活鱼),且 售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.24.(本题满分12分)已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点 A ,B (不与P ,Q 重合),连接AP ,BP . 若∠APQ =∠BPQ , (1)如图10,当∠APQ =45°,AP =1,BP =22时,求⊙O 的半径;(2)如图11,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P ,M 重合),连接ON ,OP ,若∠NOP+2∠OPN =90°,探究直线AB 与ON 的位置关系,并证明.25.(本题满分14分)在平面直角坐标系xOy 中,点A (0,2),B (p ,q )在直线l 上,抛物线m 经过点 B ,C (p +4,q ),且它的顶点N 在直线l 上. (1)若B (-2,1),① 请在图12的平面直角坐标系中画出直线l 与抛物线m 的示意图;表一表二 图10 图11② 设抛物线m 上的点Q 的横坐标为e (-2≤e ≤0),过点Q 作x 轴的垂线,与直线l 交于点H .若QH =d ,当d 随 e 的增大而增大时,求e 的取值范围;(2)抛物线m 与y 轴交于点F ,当抛物线m 与x 轴有唯一 交点时,判断△NOF 的形状并说明理由.数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.12. 12. -1. 13.1. 14.直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为5∶12∶13的三角形等. 15.102. 16.b >3.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0. ……………………………4分 方程有两个不相等的实数根x =-b ±b 2-4ac 2a=3±52. ……………………………6分 即x 1=3+52,x 2=3−52. ……………………………8分18.(本题满分8分)解:(1-2x +1)÷x 2-12x +2=(x +1-2x +1)·2x+2x 2-1 ……………………………2分=x -1x +1·2(x +1)(x+1)(x -1) ……………………………5分 =2x +1……………………………6分当x =2-1时,原式=22= 2 …………………………8分19.(本题满分8分)解:因为当x =2时,y =2. 所以 (2−1)2 +n =2. 解得n =1.所以二次函数的解析式为:y =(x −1)2 +1…………………4分列表得:如图:…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E 即为所求.…………………3分 (2)(本小题满分5分)解法一:解:连接EB ,EC , 由(1)得,EB =EC . ∵ 四边形ABCD 是矩形,∴ ∠A =∠D =90°,AB =DC .∴ △ABE ≌△DCE . …………………6分∴ AE =ED =12AD =3. …………………7分在Rt △ABE 中,EB =AB 2+AE 2. ∴ EB =5. …………………8分解法二:如图,设线段BC 的中垂线l 交BC 于点F , ∴ ∠BFE =90°,BF =12BC .EDCBAlFEDCBAl∵ 四边形ABCD 是矩形,∴ ∠A =∠ABF =90°,AD =BC .在四边形ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形ABFE 是矩形. …………………6分 ∴ EF =AB =4. …………………7分 在Rt △BFE 中,EB =EF 2+BF 2.∴ EB =5. …………………8分21.(本题满分8分)证明:如图,连接OD , ∵ AB 是直径且AB =4, ∴ r =2.设∠AOD =n °, ∵ ︵AD 的长为4π3,∴ n πr 180=4π3.解得n =120 .即∠AOD =120° . ……………………………3分 在⊙O 中,DO =AO , ∴ ∠A =∠ADO .∴ ∠A =12(180°-∠AOD )= 30°. ……………………………5分∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90°. …………………………6分 即AB ⊥BC . ……………………………7分 又∵ AB 为直径,∴ BC 是⊙O 的切线. ……………………………8分 22.(本题满分10分)解(1)(本小题满分5分) 解法一:如图,过点P 作PF ⊥y 轴于F , ∵ 点P 到边AD 的距离为m .∴ PF =m =14.∴ 点P 的横坐标为14. …………………1分由题得,C (1,1),可得直线AC 的解析式为:y =x . …………………3分 当x =14时,y =14 . …………………4分所以P (14,14). …………………5分F解法二:如图,过点P 作PE ⊥x 轴于E ,作PF ⊥y 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m . ∴ P (m ,n ). …………………1分 ∵ 四边形ABCD 是正方形,∴ AC 平分∠DAB . …………………2分 ∵ 点P 在对角线AC 上,∴ m =n =14. …………………4分∴ P (14,14). …………………5分(2)(本小题满分5分)解法一:如图,以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系. 则由(1)得P (m ,n ).若点P 在△DAB 的内部,点P 需满足的条件是:①在x 轴上方,且在直线BD 的下方; ②在y 轴右侧,且在直线BD 的左侧.由①,设直线BD 的解析式为:y =kx +b , 把点B (1,0),D (0,1)分别代入,可得直线BD 的解析式为:y =-x+1. ……………6分 当x =m 时,y =-m+1.由点P 在直线BD 的下方,可得n <-m+1. ……………7分 由点P 在x 轴上方,可得n >0 ……………8分 即0<n <-m+1.同理,由②可得0<m <-n+1. ……………9分所以m ,n 需满足的条件是:0<n <-m+1且0<m <-n+1. ……………10分解法二:如图,过点P 作PE ⊥AB 轴于E ,作PF ⊥AD 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .在正方形ABCD 中,∠ADB =12∠ADC =45°,∠A =90°.∴ ∠A =∠PEA =∠PF A =90°. ∴ 四边形PEAF 为矩形.∴ PE =F A =n . ……………6分 若点P 在△DAB 的内部,则延长FP 交对角线BD 于点M .在Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,∴ PF <DF ……………7分 ∴ PE+ PF =F A+ PF <F A+ DF .· PEFM即m+ n <1. ……………8分 又∵ m >0, n >0,∴ m ,n 需满足的条件是m+n <1且m >0且n >0. ……………10分23.(本题满分10分) 解:(1)(本小题满分2分)估计运到的2000公斤鱼中活鱼的总重量为1760公斤.……………2分 (2)①(本小题满分3分)根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤.……………………5分②(本小题满分5分)解法一:由(2)①,若活鱼售价在50元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w ,由题得w =(50+x -2000×441760) (400-40x ) ……………………7分=-40x 2+400x=-40(x -5)2+1000.由“在8天内卖完这批活鱼”,可得8 (400-40x )≤1760,解得x ≤4.5. 根据实际意义,有400-40x ≥0;解得x ≤10. 所以x ≤4.5. ……………………9分因为-40<0,所以当x <5时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分解法二:设这8天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y =kx +b .由表二可知,当x =50时,y =400;当x =51时,y =360,所以⎩⎨⎧50k +b =40051k +b =360,解得⎩⎨⎧k =-40b =2400,可得y =-40x +2400.设批发店每日卖鱼的最大利润为w ,由题得w =(x -2000×441760) (-40x +2400) ……………………7分=-40x 2+4400x -120000 =-40(x -55)2+1000.由“在8天内卖完这批活鱼”,可得8 (-40x +2400)≤1760,解得x ≤54.5. 根据实际意义,有-40x +2400≥0;解得x ≤60.所以x ≤54.5. ……………………9分因为-40<0,所以当x <55时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分24.(本题满分12分)(1)(本小题满分6分) 解:连接AB . 在⊙O 中, ∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90°.…………1分 ∴ AB 是⊙O 的直径. ………………3分∴ 在Rt △APB 中,AB =AP 2+BP 2 ∴ AB =3. ………………5分 ∴ ⊙O 的半径是32. ………………6分(2)(本小题满分6分) 解:AB ∥ON .证明:连接OA ,OB ,OQ , 在⊙O 中,∵ ︵AQ =︵AQ ,︵BQ =︵BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ . 又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ . ……………7分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90°. ………………………8分 连接OQ ,交AB 于点C , 在⊙O 中,OP =OQ .∴ ∠OPN =∠OQP .延长PO 交⊙O 于点R ,则有2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90°. ………………………11分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON . ………………………12分25.(本题满分14分)(1)①(本小题满分3分)解:如图即为所求…………………………3分Q②(本小题满分4分)解:由①可求得,直线l :y =12x +2,抛物线m :y =-14x 2+2.……………5分因为点Q 在抛物线m 上,过点Q 且与x 轴垂直的直线与l 交于点H ,所以可设点Q 的坐标为(e ,-14e 2+2),点H 的坐标为(e ,1e +2),其中(-2≤e ≤0).当-2≤e ≤0时,点Q 总在点H 的正上方,可得 d =-14e 2+2-(12e +2) ……………6分=-14e 2-12e=-14(e +1)2+14.因为-14<0,所以当d 随e 的增大而增大时,e 的取值范围是-2≤e ≤-1.……………7分 (2)(本小题满分7分)解法一:因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2. 又因为抛物线m 与x 轴只有一个交点, 可设顶点N (p +2,0).设抛物线的解析式为y =a (x -p -2)2. 当x =0时,y F =a (p+2)2. 可得F (0,a (p+2)2). …………………9分 把B (p ,q )代入y =a (x -p -2)2,可得q =a (p -p -2)2. 化简可得q =4a ①. 设直线l 的解析式为y =kx +2, 分别把B (p ,q ),N (p +2,0)代入y =kx +2,可得 q =kp +2 ②,及0=k (p +2)+2 ③ .由①,②,③可得a =12+p.所以F (0,p +2). 又因为N (p +2,0), …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形.…………………14分解法二:因为直线过点A (0,2), 不妨设直线l :y =kx +2, 因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2.又因为抛物线的顶点N 在直线l :y =kx +2上,可得N (p +2,k (p +2)+2).所以抛物线m :y =a (x -p -2)2+k (p +2)+2.当x =0时,y =a (p +2)2+k (p +2)+2.即点F 的坐标是(0,a (p +2)2+k (p +2)+2). …………………9分 因为直线l ,抛物线m 经过点B (p ,q ),可得⎩⎨⎧kp +2=q 4a +k (p +2)+2=q, 可得k =-2a .因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx +2=a (x -p -2)2+k (p +2)+2中,△=0. 结合k =-2a ,可得k (p +2)=-2.可得N (p +2,0),F (0, p +2). …………………13分所以ON=OF ,且∠NOF =90°.所以△NOF 是等腰直角三角形. …………………14分。
九年级2016--2017期末数学试卷
人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。
2016-2017厦门市九年级数学上学期期末质量检测试卷
2016-2017学年(上)厦门市九年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分。
每小题都有四个选项,其中有且只有一个选项正确)1。
下列各式中计算结果为9的是A .(-2)+(-7)B .-32C 。
(-3)2D 。
3×3-12.如图1,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角 是同位角的是A .∠BAC 和∠ACBB 。
∠B 和∠DCEC .∠B 和∠BAD D 。
∠B 和∠ACD3。
一元二次方程x 2-2x -5=0根的判别式的值是A 。
24B . 16C 。
-16D 。
-24 4。
已知△ABC 和△DEF 关于点O 对称,相应的对称点如图2所示, 则下列结论正确的是A 。
AO =BOB . BO =EOC 。
点A 关于点O 的对称点是点D D . 点D 在BO 的延长线上 5。
已知菱形ABCD 的对角线AC 与BD 交于点O ,则下列结论正确的是 A .点O 到顶点A 的距离大于到顶点B 的距离 B 。
点O 到顶点A 的距离等于到顶点B 的距离 C .点O 到边AB 的距离大于到边BC 的距离 D .点O 到边AB 的距离等于到边BC 的距离 6.已知(4+7)·a =b ,若b 是整数,则a 的值可能是A . 错误!B 。
4+错误!C .8-2错误!D . 2-错误!7.已知抛物线y =ax 2+bx +c 和y =max 2+mbx +mc ,其中a ,b ,c ,m 均为正数,且m ≠1。
则关于这两条抛物线,下列判断正确的是A .顶点的纵坐标相同B .对称轴相同C .与y 轴的交点相同D 。
其中一条经过平移可以与另一条重合 8.一位批发商从某服装制造公司购进60包型号为L 的衬衫,由于包装工人疏忽,在包裹中 混进了型号为M 的衬衫,每包混入的M 号衬衫数及相应的包数如下表所示.E D C B A 图1一位零售商从60包中任意选取一包,则包中混入M 号衬衫数不超过3的概率是A 。
厦门市2012-2013九年级质量检测_数学参考答案
2012—2013学年(上) 厦门市九年级质量检测数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)题号 123456 7 选项A B D C BAB二、填空题(本大题共10小题,每题4分,共40分)8. x ≥2; 9. ±3; 10. 30; 11. 2; 12. 4; 13. 13;14. -3; 15. 4πx 2=π(x +5)2; 16. 60; 17. 4.说明:☆ 第9题写对1个给2分; 第15题写成4x 2=(x +5)2不扣分. 三、解答题(本大题共9小题,共89分) 18.(本题满分18分)(1)解:2³(3+2)-26;=6+2-26 ……………………………………………………4分 =2-6. …………………………………………………………6分 说明:☆ 写出正确答案,至少有一步过程,不扣分,只有正确答案,没有过程,只扣1分;☆ 没有写正确答案的,按步给分.(2)能在图中看出对称点是C 点 ……………2分 能画出对称图形是三角形 ……………4分 以上两点都有 …………………6分(3)证明:∵ ∠ACB =90°,…………………………1分 ∴ AB 是直径. …………………………3分在Rt △ABC 中, ∵BC =3,AC =4,∴ AB =5. ……………………………6分19.(本题满分7分)解法一: x 2+2x -2=0,∵ b 2-4ac =22+8=12, …………………………………………2分 ∴ x =-b ±b 2-4ac2a ………………………………………… 4分=-2±122…………………………………………5分=-1±3. ………………………………………………6分 即x 1=-1+3,x 2=-1-3. ……………………………………………7分 解法二: x 2+2x -2=0,(x +1)2=3. ………………………………………………4分O CBA BCEDAx +1=±3. ………………………………………………6分 即x 1=-1+3,x 2=-1-3. ……………………………………………7分 说明:☆ x 1=,x 2=,写错一个扣1分.☆ 写出正确答案(即写出x 1=,x 2=,)且至少有一步过程,不扣分. ☆ 只有正确答案,没有过程,只扣1分. ☆ 没有写正确答案的,按步给分.☆ 如果12没有化简(即x 1=-2+122,x 2=-2-122),只扣1分.20.(本题满分7分) (1)解: P ( 恰好是黄球) ……………………………………………1分=23. …………………………………………………………………3分 (2)解: P (两球恰好都是黄球)=29 . ………………………………………7分说明:☆ 第(2)若答案不正确,但分母写对,则只扣2分.☆ 两小题的答案正确,但格式不对,如“事件”没写或写不对,只扣1分.21.(本题满分8分) (1)解法一:(4+2)与(4-2)不是互为倒数. …………………………………1分∵(4+2)(4-2) ……………………………………………………2分=14. ………………………………………………………3分 而14≠1,∴(4+2)与(4-2)不是互为倒数.解法二:(4+2)与(4-2)不是互为倒数. …………………………………1分14+2 ……………………………………………………2分=4-214………………………………………………………3分 ≠4-2.∴(4+2)与 (4-2)不是互为倒数.说明:☆ 若没有写“(4+2)与(4-2)不是互为倒数”但最后有写“(4+2)与(4-2)不是互为倒数”,则分数可不扣,若有写“(4+2)与(4-2)不是互为倒数”但最后没有“(4+2)与(4-2)不是互为倒数”,不扣分.☆ 若写成“(4+2)不是(4-2)的倒数”亦可.(2)解:∵实数(x +y )是(x -y )的倒数, ∴(x +y )(x -y )=1. ……………4分 ∴ x -y =1. ………………………5分∴ y =x -1. ………………………6分 画出坐标系,正确画出图象 …………8分说明:若图象画成直线、或自变量的取值不对, 可得1分.22.(本题满分8分)(1)解:2a +a (a -1)2 ……………………………………………………3分说明: 若没有写全对,则写出2a 得1分,写出a (a -1)2得2分.(2)解法一:不会发生. ……………………………………………………4分设参加会议的专家有x 人.若参加会议的人共握手10次,由题意 ……………………………5分 2x +x (x -1)2=10. ……………………………………………………6分 ∴ x 2+3x -20=0.∴ x 1=-3-892,x 2=-3+892. …………………………………7分 ∵ x 1、x 2都不是正整数, …………………………………8分 ∴ 所有参加会议的人共握手10次的情况不会发生. 解法二:不会发生. ……………………………………………………4分 由题意我们知道,参加会议的专家的人数越多,则所有参加会议的人握手 的次数就越多.当参加会议的专家有3人时,所有参加会议的人共握手9次; …6分 当参加会议的专家有4人时,所有参加会议的人共握手14次; …8分故所有参加会议的人共握手10次的情况不会发生.说明:☆ 若没有写“不会发生”但最后有下结论,则分数可不扣,若有写“不会发生”但最后没有下结论,不扣分.☆ 若没有写“若参加会议的人共握手10次”但列对方程,则此分不扣,列对方程可得2分; ☆ 没有写“x 1、x 2都不是正整数,不合题意”而是写“经检验,不合题意”亦可.23.(本题满分9分)(1)解:∵ AD ∥BC ,∠ABO =120°,∴ ∠BAD =60°. …………………………………………………………1分 ∵ AO 是∠BAD 的平分线, ∴ ∠BAO =30°. ∴ ∠AOB =30°. ………………2分 ∵ BC =2,∴ BO =1. ………………3分∴︵BM =30π180=π6. ……………4分(2)证明:由题意得,四边形ABCD 是等腰梯形, ∴ 四边形ABCD 是轴对称图形.∵ 点O 、E 分别是底BC 、AD 的中点,连结OE ,∴ OE 是等腰梯形ABCD 的对称轴. ………………………………………5分 ∴ OE ⊥AD . …………………………………………………………6分在Rt △AOE 中,∵ AE =3,OA =2,∴ OE =1. …………………………………………………………7分 即OE 是⊙O 的半径. ……………………………………………………8分M OE D CBA∴ 直线AD 与⊙O 相切. …………………………………………………9分 24.(本题满分10分)(1)解:∵b =2,且2是方程的根,代入原方程得(a 2+1) 22-2(a +2) 2+1+22=0. ……………………………………1分 即 4a 2-4a +1=0. …………………………………………2分 ∴ a =12 . ………………………………………………………4分(2)解:△=4(a +b )2-4(a 2+1)(1+b 2) ……………………………………5分 =8ab -4a 2b 2-4=-4(ab -1)2. ………………………………………………6分 ∵ 方程有实数根,∴ -4(ab -1)2≥0. 即 4(ab -1)2≤0.∴ 4(ab -1)2=0. ……………………………………………………7分 ∴ ab -1=0.∴b =1a . ……………………………………………………………8分∵1>0,∴ 在每个象限,b 随a 的增大而减小. ……………………………………9分 ∴ 当-3<a <-1时,-1<b <-13. ……………………………………………………………10分25.(本题满分10分) (1)解:∵k =2,m =3,∴ 点E (3,23),点F (23,3). …………………………………………2分设直线EF 的解析式为y =ax +b , 则得,⎩⎨⎧3a +b =23,23a +b =3. ……………………………………………………………3分解得, ⎩⎪⎨⎪⎧a =-1,b =113.∴直线EF 的解析式为y =-x +113…………4分(2)解法一:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形.又MA =MB =m ,∴ 四边形OAMB 正方形.点E (m ,k m ),F (km ,m ). ……………5分∴ OA =OB ,AE =BF .连结OE ,∴ Rt △OBF ≌Rt △OAE . ………………6分 ∴ ∠EOA =∠BOF =22.5°.∴ ∠FOE =45°. 连结EF 、OM 交于点C . 又 ∵∠MOA =45°, ∴ ∠MOE =22.5°. 同理得,∠FOM =22.5°. ∵ OF =OE ,∴ OC ⊥FE ,且点C 线段EF 的中点.∴ Rt △FOC ≌Rt △EOC . ………………………………………………7分Rt △COE ≌Rt △AOE . ………………………………………………8分∴ S △AOE =14S 五边形BOAEF . …………………………………………………9分∴ 12²m ²k m =12.∴ k =1. …………………………………………………………10分解法二:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形. 又MA =MB =m ,∴ 四边形OAMB 正方形.点E (m ,k m ),F (km ,m ). ………………………………………………5分∴ OA =OB ,AE =BF .连结OE ,∴ Rt △OBF ≌Rt △OAE . ………………………………………………6分∴ ∠EOA =∠BOF =22.5°. OF =OE .将△OBF 绕点O 顺时针旋转90°,记点F 的对应点是P . ……………7分 则∠EOP =45°. ∵∠EOF =45°,∴ △EOF ≌△EOP . …………………………………………………8分 ∴ S △EOP =12S BOAEF . ……………………………………………………9分即S △EOP =1. 12²m (k m +km)=1 ∴ k =1. …………………………………………………………10分 解法三:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°, ∴ 四边形OAMB 是矩形. 又MA =MB =m ,∴ 四边形OAMB 正方形.点E (m ,k m ),F (km ,m ). ………………………………………5分∴ ME =MF =m -km.连结EF ,则△MFE 是等腰直角三角形. 连结OM 交EF 于点C .则OM ⊥EF . ∵∠BOM =45°,∠BOF =22.5° ∴∠FOC =22.5°.∴ Rt △FOB ≌Rt △FOC . …………………………………………6分 ∴ OC =OB =m .∵点E (m ,k m ),F (km,m ).∴ 直线EF 的解析式是y =-x +m +km .∵ 直线OM 的解析式是y =x ,∴ 点C (m 2+k 2m ,m 2+k2m). ……………………………………7分过点C 作CN ⊥x 轴,垂足为N . 则(m 2+k 2m )2+(m 2+k 2m)2=m 2.解得,k =(2-1) m 2. ……………………………………8分由题意得,m 2-12(m -k m )2=2. ……………………………………9分即 m 2-12[ m -(2-1) m ] 2=2.解得,(2-1) m 2=1.∴ k =1. ……………………………………10分 26.(本题满分12分)(1)证明:∵ ︵CD =︵BD , ∴ CD =BD . ………………………1分 又∵∠CDB =60°,∴△CDB 是等边三角形. …………………2分 ∴ ∠CDB =∠DBC . …………………3分 ∴ ︵CD =︵BC .∴ ∠DAC =∠CAB .∴ AC 是∠DAB 的平分线. ………………………………………………4分 (2)解法一:连结DB .在线段CE 上取点F ,使EF =AE ,连结DF . ……………………………6分∵ DE ⊥AC ,∴ DF =DA ,∠DFE =∠DAE . ……………………………………7分 ∵ ︵CD =︵BD ,ODCBA∴ CD =BD .∴∠DAC =∠DCB . ∴ ∠DFE =∠DCB .∵ 四边形ABCD 是圆内接四边形,∴ ∠DAB +∠DCB =180°.………………8分 又∵∠DFC +∠DFE =180°,∴ ∠DFC =∠DAB . ………………………9分∵∠DCA =∠ABD ,∴△CDF ≌△BDA . ……………………………………………………10分 ∴CF =AB . …………………………………………………………11分 ∵AC =7, AB =5,∴ AE =1. …………………………………………………………12分 解法二:在︵CD 上取一点F ,使得︵DF =︵DA ,…………………………………5分 连结CF ,延长CF ,过D 作DG ⊥CF ,垂足为G . ……………6分 ∵ ︵DF =︵DA ,∴ ∠GCD =∠DCE . ∵ DC =DC ,∴ Rt △CGD ≌Rt △CED . ……………7分 ∴ CG =CE . ∴ DG =DE . ∵ ︵DF =︵DA , ∴ DF =DA .∴ Rt △DGF ≌Rt △DEA . ………………………………………8分 ∴ FG =AE . ………………………………………9分 ∵ ︵CD =︵BD ,︵DF =︵DA , ∴ ︵CF =︵AB .∴ CF =AB . ………………………………………10分 ∵ CG =CE ,∴ CF +FG =AC -AE ………………………………………11分 即 AB +AE =AC -AE ∵ AC =7, AB =5,∴ AE =1. …………………………………………………………12分FOEDCB AGA FOE DCB。
2017—2018学年(上)厦门市九年级质量检测及答案
2017—2018学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列算式中,计算结果是负数的是( )A .(-2)+7B .-1C .3×(-2)D .(-1)22.对于一元二次方程x 2-2x +1=0,根的判别式b 2-4ac 中的b 表示的数是( ) A .-2 B .2 C .-1 D .13.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,E 是BC 边上的一点,连接AE ,OE , 则下列角中是△AEO 的外角的是( ) A .∠AEB B .∠AOD C .∠OEC D .∠EOC4.已知⊙O 的半径是3,A ,B ,C 三点在⊙O 上,∠ACB =60°, 则︵AB 的长是( )A .2πB .πC .32πD .12π5.某区25位学生参加魔方速拧比赛,比赛成绩如图2所示, 则这25个成绩的中位数是( ) A .11 B .10.5 C .10 D .66.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是( )A .年平均下降率为80% ,符合题意B .年平均下降率为18% ,符合题意C .年平均下降率为1.8% ,不符合题意 D.年平均下降率为180% ,不符合题意 7.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该 二次函数的解析式可以是( ) A .y =2(x +1)2 B .y =2(x -1)2 C .y =-2(x +1)2D .y =-2(x -1)28.如图3,已知A ,B ,C ,D 是圆上的点,︵AD =︵BC ,AC ,BD 交于点E ,则下列结论正确的是( )A .AB =AD B .BE =CDC .AC =BD D .BE =AD 9.我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断 增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先一千多年.依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .2.9B .3C .3.1D .3.1410.点M (n ,-n )在第二象限,过点M 的直线y =kx +b (0<k <1)分别交x 轴,y 轴于点A ,B .过点M 作MN ⊥x 轴于点N ,则下列点在线段AN 上的是( )A .((k -1)n ,0)B . ((k +3)n ,0) C . ((k +2)n ,0) D .((k +1)n ,0)ABDCE EODCBA图1图2学生数正确速 拧个数图3二、填空题(本大题有6小题,每小题4分,共24分)11.已知x =1是方程x 2-a =0的根,则a = .12.一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若 P (摸出红球)=14,则盒子里有 个红球.13.如图4,已知AB =3,AC =1,∠D =90°,△DEC 与△ABC 关于点C 成中心对称,则AE 的长是 .14.某二次函数的几组对应值如下表所示.若x 1<x 2<x 3<x 4<x 5, 则该函数图象的开口方向是 .15.P 是直线l 上的任意一点,点A 在⊙O 上.设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是 .16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元.演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 . 三、解答题(本大题有9小题,共86分)17.(本题满分8分) 解方程x 2-4x =1.18.(本题满分8分)如图5,已知△ABC 和△DEF 的边AC ,DF 在一条直线上, AB ∥DE ,AB =DE ,AD =CF ,证明BC ∥EF .19.(本题满分8分)如图6,已知二次函数图象的顶点为P ,且与y 轴交于点A . (1)在图中再确定该函数图象上的一个点B 并画出; (2)若P (1,3),A (0,2),求该函数的解析式.如图7,在四边形ABCD 中,AB =BC ,∠ABC =60°,E 是CD 边上一点,连接BE ,以BE 为一边作等边三角形BEF .请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.21.(本题满分8分)某市一家园林公司培育出新品种树苗,为考察这种树苗的移植成活率,公司进行了统计, 结果如下表所示.现该市实施绿化工程,需移植一批这种树苗,若这批树苗移植后要有28.5万棵成活,则需一次性移植多少棵树苗较为合适?请说明理由.22.(本题满分10分)已知直线l 1:y =kx +b 经过点A (-12,0)与点B (2,5).(1)求直线l 1与y 轴的交点坐标;(2)若点C (a ,a +2)与点D 在直线l 1上,过点D 的直线l 2与x 轴的正半轴交于点E ,当AC =CD =CE 时,求DE 的长. F A B C D E 图7阅读下列材料:我们可以通过下列步骤估计方程2x 2+x -2=0的根所在的范围.第一步:画出函数y =2x 2+x -2的图象,发现函数图象是一条连续不断的曲线,且与x 轴的一个交点的横坐标在0,1之间.第二步:因为当x =0时,y =-2<0;当x =1时,y =1>0,所以可确定方程2x 2+x -2=0的一个根x 1所在的范围是0<x 1<1.第三步:通过取0和1的平均数缩小x 1所在的范围:取x =0+12=12,因为当x =12时,y <0,又因为当x =1时,y >0, 所以12<x 1<1.(1)请仿照第二步,通过运算,验证方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1;(2)在-2<x 2<-1的基础上,重复应用第三步中取平均数的方法,将x 2所在的范围缩小至m <x 2<n ,使得n -m ≤14.24.(本题满分11分)已知AB 是半圆O 的直径,M ,N 是半圆上不与A ,B 重合的两点,且点N 在︵MB 上. (1)如图8,MA =6,MB =8,∠NOB =60°,求NB 的长;(2)如图9,过点M 作MC ⊥AB 于点C ,P 是MN 的中点,连接MB ,NA ,PC ,试探究∠MCP ,∠NAB ,∠MBA 之间的数量关系,并证明.N MA B 图8在平面直角坐标系xOy 中,已知点A 在抛物线y =x 2+bx +c (b >0)上,且A (1,-1), (1)若b -c =4,求b ,c 的值;(2)若该抛物线与y 轴交于点B ,其对称轴与x 轴交于点C ,则命题“对于任意的一个k (0<k <1),都存在b ,使得OC =k ·OB .”是否正确?若正确,请证明;若不 正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过(1,-1),点A 的对应点A 1为(1-m ,2b -1).当m ≥-32时,求平移后抛物线的顶点所能达到的最高点的坐标.2017—2018学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10选项 C A D A A D B C B D二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1.13.13.14.向下.15. m≤OA.16. 252<x≤368(x为整数)或253≤x≤368(x为整数)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x2-4x+4=5.………………4分(x-2)2=5.由此可得x-2=±5.………………6分x1=5+2,x2=-5+2.………………8分18.(本题满分8分)证明:如图1,∵AB∥DE,∴∠BAC=∠EDF. ………………2分∵AD=CF,∴AD+DC=CF+DC.即AC=DF. ………………4分又∵AB=DE,∴△ABC≌△DEF.………………6分∴∠BCA=∠EFD.∴BC∥EF. ………………8分19.(本题满分8分)解:(1)如图2,点B即为所求. ………………3分(2)由二次函数图象顶点为P(1,3),可设解析式为y=a(x-1)2+3. ………………6分把A(0,2)代入,得a+3=2.解得a=-1. ………………7分所以函数的解析式为y=-(x-1)2+3. ………………8分图1F ABCDEA··P图2·B20.(本题满分8分)解:如图3,连接AF . ………………3分 将△CBE 绕点B 逆时针旋转60°,可与△ABF 重合. …………8分 21.(本题满分8分)解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时, 成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分 则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分22.(本题满分10分)(1)(本小题满分5分)解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得解析式为y =2x +1. ……………… 3分 当x =0时,y =1.所以直线l 1与y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分 则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分 ∵ AC =CE , ∴ AF =EF 又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分 23.(本题满分11分) (1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. ……………… 4分(2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0,又因为当x =-1时,y =-1<0,所以-32<x 2<-1. ……………… 7分F A B CDE 图3取x =(-32)+(-1)2=-54,因为当x =-54时,y <0,又因为当x =-32时,y >0,所以-32<x 2<-54. ……………… 10分又因为-54-(-32)=14,所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分24.(本题满分11分)(1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分 ∴ AB =10.∴ OB =5. ………………3分 ∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分 ∴ NB =OB =5. ………………5分 (2)(本小题满分6分) 证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB . ∵ MC ⊥AB , 又∵ OM =OQ ,∴ MC =CQ . ………………6分 即 C 是MN 的中点 又∵ P 是MQ 的中点,∴ CP 是△MQN 的中位线. ………………8分 ∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON ,∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分图5∵ P 是MN 中点, 又∵ OM =ON ,∴ OP ⊥MN , ………………6分 且 ∠MOP =12∠MON .∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°. ∴ 设OM 的中点为Q , 则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上. ………………8分 在该圆中,∠MCP =∠MOP =12∠MQP .又∵ ∠MOP =12∠MON ,∴ ∠MCP =12∠MON .在半圆O 中,∠NBM =12∠MON .∴ ∠MCP =∠NBM . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分25.(本题满分14分) (1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分 (2)(本小题满分4分)解:由b +c =-2,得c =-2-b . 对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b2.所以B (0,-2-b ),C (-b2,0).因为b >0,所以OC =b2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意.所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)图7方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b2-1)2.所以1+b 2+m =±(b2-1).当1+b 2+m =b2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b . 则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分 即y =(x +b 2+m )2-b 24-2+b . 把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1. 可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分因为m ≥-32,所以b ≤32. 所以0<b ≤32. ………………11分 所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b . 即顶点为(b 2,-b 24-2+b ). ………………12分 设p =-b 24-2+b ,即p =-14(b -2)2-1. 因为-14<0,所以当b <2时,p 随b 的增大而增大. 因为0<b ≤32, 所以当b =32时,p 取最大值为-1716. ………………13分 此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分。
2017-2018上学期九年级数学期末试卷
2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。
2017年厦门市初中毕业班质量检查数学试卷及答案(K12教育文档)
2017年厦门市初中毕业班质量检查数学试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年厦门市初中毕业班质量检查数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年厦门市初中毕业班质量检查数学试卷及答案(word版可编辑修改)的全部内容。
2017年厦门市初中毕业班质量检查试卷数学试题(满分:150分;考试时间:120分钟)一、选择题(每小题4分,共40分.每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得4分,答错或不答的一律得0分)1. 4 的绝对值可表示为()A.-4B. |4| C。
错误! D .错误!2。
若∠A 与∠B 互为余角,则∠A+∠B=( )A.180° B。
120° C。
90° D .60°3.把a2-4a 分解因式,结果是( )A.a(a-4)B. (a+2) (a-2)C.a (a+2) (a-2)D. (a-2) 2 -4 4。
如图1,D,E 分别是△ABC 的边BA,BC 延长线上的点,连接DC。
若∠B=25°,∠ACB=50°,则下列角中度数为75°的是( )A。
∠ACD B。
∠CAD C. ∠DCE D . ∠BDC5.我们规定一个物体向右运动为正,向左运动为负。
如果该物体向左连续运动两次,每次运动3 米,那么下列算式中,可以表示这两次运动结果的是()A. (-3)2B. (-3)-(-3) C。
2×3 D . 2×(-3)6。
2017-2018学年九年级(上)期末数学模拟试卷(解析版)
2017-2018学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1084.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.245.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.210.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2017-2018学年九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=108【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.2【分析】首先解方程求得方程的两个解,根据已知条件可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:由方程x2+x﹣2=0得到(x+2)(x﹣1)=0,解得x1=﹣2,x2=1,∵,∴x1*x2=1.故选:A.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b (a<b).10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2.【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为20πcm,∴L=αr=20π,解得r=30,∴AB=30cm,贴纸的面积=大扇形的面积﹣小扇形的面积,==cm2.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是①②④(填写正确结论的序号).【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.【点评】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2;(2)∵(x﹣1)(x+1)﹣(x+1)=0,∴(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得:x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点A、B绕点C逆时针旋转90°得到其对应点,再顺次连接可得,绕后利用弧长公式计算可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义和性质及弧长公式.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.【点评】本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE ∥AC是解决问题的关键.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.【点评】本题考查了函数关系式以及其最大值的求解问题.23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【分析】(1)先利用勾股定理得出CE,再判断出△CEF∽△CAE,得出比例式即可得出结论;(2)先判断出∠ECA=∠ABF,进而得出△CEA∽△BFA,即可得出结论;(3)由(2)得出△CEA∽△BFA,即可表示出AB,最后利用锐角三角函数建立方程求出x,即可得出结论.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.【点评】此题是四边形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出△CEF∽△CAE,解(2)(3)的关键是判断出△CEA∽△BFA.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。
2016-2017第一学期九年级数学期末试卷(含答案)
2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题(含解析)
2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题一、选择题(本大题共10小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1.下列计算正确的是()2=3=-C.=D.)213=2.若37m n =,则m n n +的值为()A.107 B.710 C.37 D.473.下列事件中,是随机事件的是()A.在一副扑克牌中抽出一张,抽出的牌是黑桃6B.在一个只装了红球的袋子里,摸出一个白球C.投掷一枚质地均匀的骰子,朝上一面的点数小于7D.画一个三角形,其内角和是180°4.用配方法解方程22470x x --=,下列变形结果正确的是()A.()2712x -=B.()2912x -=C.()223x -=D.2172x ⎛⎫-= ⎪⎝⎭5.已知关于x 的一元二次方程()22230m x mx m -+++=有实根,则m 的取值范围是()A.2m ≠ B.6m ≥-且0m ≠ C.6m ≤ D.6m ≤且2m ≠6.已知12p <<2+=()A.1 B.3C.32p -D.12p -7.如图,一枚运载火箭从地面L 处发射,雷达站R 与发射点L 距离6km ,当火箭到达A 点时,雷达站测得仰角为43︒,则这枚火箭此时的高度AL 为()A.6sin 43︒B.6cos 43︒C.6tan 43︒ D.6tan 43︒8.如图,D 是ABC 边AB 延长线上一点,添加一个条件后,仍不能使ACD ABC 的是()A.ACB D∠=∠ B.ACD ABC ∠=∠C.CD AD BC AC = D.AC AD AB AC=9.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为()A.()()402301686x x --=⨯ B.3040230401686x x ⨯-⨯-=⨯C.()()30240168x x --= D.()()40230168x x --=10.如图,四边形ABCD 中,AD CD ⊥于点D ,2BC =,8AD =,6CD =,点E 是AB 的中点,连接DE ,则DE 的最大值是()A.5B.42C.6D.2二、填空题(本大题共6小题,共24分)11.要使代数式3x -有意义,则x 的取值范围是__________.12.福建省体育中考的抽考项目为:篮球绕杆运球、排球对墙垫球、足球绕杆运球.2025年泉州市体育中考的抽考项目抽中“排球对墙垫球”的概率为__________.13.已知α、β是方程2210x x +-=的两个实数根,则23ααβ++的值为__________.14.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的项点均是格点,则sin BAC ∠的值是__________.15.如图,ABD 中,60A ∠=︒.点B 为线段DE 的中点,EF AD ⊥,交AB 于点C ,若3AC BC ==,则AD =__________.16.若关于x 的一元二次方程20x bx c ++=有两个不相等的实数根1x ,212()x x x <,且110x -<<.则下列说法正确的有__________.(将正确选项的序号填在横线上)①若20x >,则0c <;②12x x +=③若212x x -=,则112426b c b c b c -+-++>++-;④若441222127x x x x +=⋅,则2b c =-.三、解答题(本大题共9小题,共86分)17.(8112tan 45sin 602-⎛⎫+︒-︒- ⎪⎝⎭18.(8分)解方程:2620x x ++=19.(8分)定义:如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程是“邻根方程”.例如:一元二次方程20x x +=的两个根是120,1x x ==-,则方程:20x x +=是“邻根方程”.(1)通过计算,判断下列方程220x x +-=是否是“邻根方程”(2)已知关于x 的一元二次方程2(3)30x k x k ---=(k 是常数)是“邻根方程”,求k 的值.20.(8分)如图,点C 是ABD 边AD 上一点,且满足CBD A ∠=∠.(1)证明:BCD ABD ;(2)若:3:5BC AB =,16AC =,求BD 的长.21.(8分)某景区在2022年春节长假期间,共接待游客达20万人次,预计在2024年春节长假期间,将接待游客达28.8万人次.(1)求该景区2022至2024年春节长假期间接待游客人次的年平均增长率;(2)该景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2024年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22.(10分)某校为了了解九年级男生的体质锻炼情况,随机抽取部分男生进行1000米跑步测试,按照成绩分为优秀、良好、合格与不合格四个等级,其中良好的学生人数占抽取学生总数的40%,学校绘制了如下不完整的统计图:(1)求被抽取的合格等级的学生人数,并补全条形统计图;(2)为了进一步强化训练,学校决定每天组织九年级学生开展半小时跑操活动,并准备从上述被抽取的成绩优秀的学生中,随机选取1名担任领队,小明是被抽取的成绩优秀的一名男生,求小明被选中担任领队的概率;(3)学校即将举行冬季1000米跑步比赛,预赛分为A ,B ,C 三组进行,选手由抽签确定分组,求某班甲、乙两位选手在预赛中恰好分在同一组的概率是多少?请画出树状图或列表加以说明.23.(10分)如图,在Rt ABC 中,90,ACB A B ∠∠∠=︒<.(1)在AB 的延长线上,求作点D ,使得CBD ACD (要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若5,5ABC AB S == ,求tan CDB ∠的值.24.(12分)如图,在ABC 中,90BAC ∠=︒,42AB AC ==,点D ,E 是边AB ,AC 的中点,连接DE ,DC ,点M ,N 分别是DE 和DC 的中点,连接MN .图1图2备用(1)如图1,MN 与BD 的数量关系是_________;(2)如图2,将ADE 绕点A 顺时针旋转,连接BD ,写出MN 和BD 的数量关系,并就图2的情形说明理由;(3)在ADE 的旋转过程中,当B ,D ,E 三点共线时,根据以上结论求线段MN 的长.25.(14分)问题背景:(1)如图1,点E 是ABC 内一点,且ABC DEC ,连接AD ,BE ,求证.ADC BEC (2)如图2,点C 是线段AB 垂直平分线上位于AB 上方的一动点,PCB 是位于AB 上方的等腰直角三角形,且PB BC =,则,①PA PC CB +________1(填一个合适的不等号);②PA PB 的最大值为________,此时CBA ∠=________°.问题组合与迁移:(3)如图3,AD 是等腰ABC 底边BC 上的高,点E 是AD 上的一动点,PEC 位于BC 的上方,且ABC PEC ,若2cos 5ABC =∠,求PA PB的最小值.图1图2图3答案和解析一.选择题(共10小题,40分)1.C2.A3.A4.B5.D6.A7.D8.C9.A 10.C 二.填空题(共6小题,24分)11.2x ≥-且3x ≠12.1313.1-14.5515.9216.①③16.【详解】解:(1)110x -<< ,20x >,120c x x c a∴==<,故①正确;110x -<< ,12x x <,1a =,112b x x ∴=-=,22b x -=,当20x >时,222b x x -==,1221x x x x ∴+=-=当20x <时,222b bc x x =-=,1221x x x x b ∴+=--=,故②错误;110x -<< ,12x x <,212x x -=,212x ∴<<,022b b x a --∴==>,0b ∴<,当=1x -时,10y b c =-+>,11b c b c ∴-+=-+,当1x =时,10y b c =++<,1(1)b c b c ∴++=-++,当2x =时,420y b c =++>,4242b c b c ∴++=++,1122b c b c c ∴-+-++=+,2426422b c b c ++-=++,22422c b c +>++ ,112426b c b c b c ∴-+-++>++-,故③正确;12x x b +=- ,12x x c =,22212x x c ∴=,44222222212121212[()2]2(2)2x x x x x x x x b c c ∴+=+--=--, 441222127x x x x +=⋅,2222(2)27b c c c ∴--=,222(2)90b c c ∴--=,22(23)(23)0b c c b c c ∴-+--=,22()(5)0b c b c ∴+-=,2b c ∴=-或25b c =,故④错误;故①③;三.解答题(共86分)17.(8分)【详解】112tan 45sin 602222-⎛⎫︒-︒-=-- ⎪⎝⎭32=-332= (8)分18.(8分)【详解】(1)解:2620x x ++=∴1,6,2a b c ===,2436828b ac ∆=-=-=,∴622b x a -±-±==,…………………………………6分解得:13x =-23x =-…………………………………………8分19.(8分)【详解】(1)解:∵()()2212x x x x +-=-+∴()()120x x -+=∴121,2x x ==-∵12>-,()121--≠,故该方程不是“邻根方程”……………………………4分(2)解:()()2(3)33x k x k x k x ---=-+∴()()30x k x -+=∴12,3x k x ==-由题意得:31k =-+或31k -=+解得:2k =-或4k =-……………………………8分20.(8分)【详解】(1)证明:在BCD 与ABD 中CBD A ∠=∠,D D ∠=∠,∴BCD ABD ;……………………4分(2)解:∵BCD ABD ,∴BC CD BD AB BD AD ==,即35CD BD BD AD ==,53AD BD =35CD BD =又∵AD AC CD =+,且16AC =∴15BD =……………………8分21.(8分)【详解】(1)解:设年平均增长率为x ,根据题意得:()220128.8x +=,解得:10.220%x ==,2 2.2x =-(不符合题意,舍去),∴年平均增长率为20%;……………………4分(2)解:设当每杯售价定为y 元时,店家在此款奶茶实现平均每天6300元的利润额,由题意得:()()630030256300y y -+-=⎡⎤⎣⎦,整理得:241420y y -+,解得:120y =,221y =,∵让顾客获得最大优惠,20y ∴=,∴当每杯售价定为20元时,店家在此款奶茶实现平均每天6300元的利润额.……………………8分22.(10分)【详解】(1)解:合格等级的人数为1640%121648÷---=,补全条形统计图如图:……………………2分(2)解:∵被抽取的成绩优秀的学生有12人,∴小明被选中担任领队的概率为112.……………………6分(3)解:根据题意画树状图如下:∵共有9种等可能的结果数,其中甲、乙两人恰好在同一组的结果数为3,∴甲、乙两人恰好分在同一组的概率是3193=.……………………10分23.(10分)【详解】(1)利用尺规作图如图,点D 为所求.依据:有作图,DCB A ∠=∠,∵BDC CDA ∠=∠,∴CBD ACD ;……………………5分(2)法一:如图,过点C 作CM AB ⊥于点M ,过点B 作BN CD ⊥于点N .5,5ABC AB S == ,152AB CM ∴⋅=,2CM ∴=.90,90BCM CBA A CBA ∠=-∠∠=-∠ ,BCM A ∴∠=∠,tan tan BCM A ∴∠=,即BM CM CM AM=,225BM BM ∴=-,解得1BM =,(5BM =舍去).设,BD x CD y ==,,BCD A CDB ADC ∠=∠∠=∠ ,CBD ACD ∠∴ ,CD BD AD CD∴=,2CD BD AD ∴=⋅,()25y x x ∴=+,在Rt CDM 中,222CD DM CM =+,222(1)2y x ∴=++,()225(1)2x x x ∴+=++,解得53x =,58133DM ∴=+=,23tan 843CM CDB DM ∴∠===.……………………10分法二:如图,过点C 作CM AB ⊥于点M ,取AB 的中点O ,连接OC.5,5ABC AB S == ,152AB CM ∴⋅=,2CM ∴=.90,90BCM CBA A CBA ∠=-∠∠=-∠ ,BCM A ∴∠=∠,tan tan BCM A ∴∠=,即BM CM CM AM=,225BM BM ∴=-,解得1,(5BM BM ==舍去).ABC 是直角三角形,AO BO =,1522OC AB OA OB ∴====,ACO A ∴∠=∠,BCD A ∠=∠ ,ACO BCD ∴∠=∠,90ACO OCB ∠+∠= ,90BCD OCB ∴∠+∠= ,即90DCO ∠= .90CDB COD ∴∠+∠= ,90OCM COD ∠+∠= ,CDB OCM ∴∠=∠,53122OM OB BM =-=-= ,332tan tan 24OM CDB OCM CM ∴∠=∠===24(12分)【详解】(1)解:∵点D ,E 是边AB ,AC 的中点,12CE AC ∴=,12BD AB =, AB AC ==,CE BD ∴=,∵点M ,N 分别是DE 和DC 的中点,MN ∴是DCE 的中位线,12MN CE ∴=,12MN BD ∴=,故答案.12MN BD =……………………2分(2)解:12MN BD =,理由如下:如图,连接EC ,由(1)同理可得:AD AE =,由旋转得:90BAC DAE ∠=∠=︒,DAB BAE EAC BAE ∴∠+∠=∠+∠,DAB EAC ∴∠=∠,在DAB 和EAC 中AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,ABD ACE ∴≅ (SAS ),BD CE ∴=,∵点M ,N 分别是DE 和DC 的中点,12MN CE ∴=,12MN BD ∴=.…………………6分(3)解:①如图,当点E 在线段BD 上时,过点A 作AP BD ⊥于点P ∴90APD ∠=︒,90BAC ∠=︒,42AB AC ==45ABC ACB ∴∠=∠=︒,在(1)中:∵点D ,E 是边AB ,AC 的中点,DE BC ∴∥,12AD AB ==∴45ADE AED ABC ∠=∠=∠=︒,90DAE ∠=︒ ,AD AE =,PD PA ∴=,222PD PA AD ∴+=,(222PD ∴=,2PD ∴=,在Rt ADB 中,PB ∴===2BD BP PD ∴=+=+;112MN BD ==……………………9分②如图,当点D 在线段BE 上时,过点A 作AQ BE ⊥于点Q ,在Rt ADQ 中,90AQD ∠=︒,45ADE ∠=︒,12AD AB ==,由①同理可求2AQ DQ ==,在Rt AQB 中,90AQB ∠=︒,AB =,2AQ =,BQ ∴=2BD BQ DQ ∴=-=;112MN BD ==.综上所述,1MN =+1-.……………………12分25(14分)【详解】解:(1)ABC DEC ,AC DC BC EC∴=,BCA ECD ∠=∠,,BCE BCA ECA ACD DCE ECA ∠=∠-∠∠=∠-∠ ,BCE ACD ∠∠∴=,ADE BEC ∴ ; (3)(2)①连接AC ,如图所示,图2∵点C 是线段AB 垂直平分线上位于AB 上方的一动点,AC BC ∴=,PA PA PC BC PC AC∴=++,AC PC PA +≥ ,1PA PC BC ∴≤+,故≤;……………………5分②由①得AC BC =,AC PC PA +>,PB BC =,PB BC AC ∴==,111PA PA AC PC PC PCPB AC AC AC PB+∴=<=+=+=+,……………………7分∴当点C 在AP 上时,此时AP 最大,为AC PC +,此时PA PB 也最大,为1+,如图所示,∵点C 是线段AB 垂直平分线上位于AB 上方的一动点,AC BC ∴=,CAB CBA ∴∠=∠,PCB 是等腰直角三角形,45BCP ∴∠=︒,BCP CAB CBA ∠=∠+∠ ,22.5CBA ∴∠=︒,……………………9分21+,22.5︒;(3)连接BE ,如图所示,图3AD 是等腰ABC 底边上的高,2,BC BD BE EC ∴==,2cos 5ABC ∠=,25BD AB ∴=,,2AB AC BC BD == ,54AC BC ∴=,ABC PEC ,AC PC BC EC ∴=,BCA ECP ∠=∠,,BCE BCA ECA ACP PCE ECA ∠=∠-∠∠=∠-∠ ,BCE ACP ∴∠=∠,APC BEC ∴ ,54AP AC BE BC ∴==,得:45BE EC AP ==,54PE AB EC BC == ,PE AP ∴=,PE BE PB +≥ ,4955AP AP AP PB ∴+=≥,59PA PB ∴≥,PA PB ∴最小值为59.……………………14分。
数学2016-2017学年度第一学期期末考试试题
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
福建省厦门市2022-2023学年九年级上学期期末质量检测数学试卷 (原卷版)
2022-2023学年第一学期初中毕业班期末考试数 学(试卷满分:150分 考试时间:120分钟)注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息,核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号,非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.全卷三大题,25小题,试卷共6页.4.可以直接使用2B 铅笔作图.一、选择题(本大题有84分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1. ⊙O 的半径为4,点A 在⊙O 内,则OA 的长可以是( )A. 3B. 4C. 5D. 62. 抛物线()213y x =-+的对称轴是( )A. 1x =B. =1x -C. 3x =D. 3x =-3. 如图,圆上依次有A ,B ,C ,D 四个点,AC ,BD 交于点P ,连接AB ,CD ,则图中与C Ð相等的角是( )A. A ÐB. B ÐC. D ÐD. APDÐ4. 如图,正方形ABCD 的对角线,AC BD 交于点O ,点M 在AOD △内,将点M 绕点O 逆时针旋转90°,则M 的对应点M ¢在()A. AOB V 内B. BOC V 内C. COD △内D. DOA △内5. 某园林公司购进某种树苗,为了解该种树苗的移植成活率,现对购进的第一批树苗进行随机抽样并统计,结果如图所示.若该公司第二批还需移植成活1800棵该种树苗,根据统计结果,则第二批树苗购买量较为合理的是( )A . 1620棵 B. 1800棵C. 2000棵D. 2093棵6. 点()0,5A,()4,5B 是抛物线2y axbx c =++上的两点,则该抛物线的顶点可能是( )A .()2,5 B. ()2,4 C. ()5,2 D. ()4,27. 将一个关于x 的一元二次方程配方为()2x m p +=,若23±是该方程的两个根,则p 的值是( )A. 2B. 4D. 38. 在平面直角坐标系xOy 中,ABC V 是以BC 为底边的等腰三角形,()1,A a ,(),3B b ,(),3C b t +,其中24t <<.关于点B 的位置,下列描述正确的是( )A. 在y 轴上B. 在第一象限C. 在第二象限D. 随a 的变化而不同二、填空题(本大题有8小题,每小题4分,共32分)9. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率是________.10. 已知1x =是方程230x mx -+=的解,则m 的值为____________.11. 在⊙O 中有两个三角形:V 和COD V ,点A ,B ,C ,D 依次在⊙O 上,如图所示.若这两个三角形关于过点O 的直线l 成轴对称,则点B 关于直线l 的对称点是____________.12. 如图,在ACB V 中,90C Ð=°,10AB =,8AC =,D 是AC 的中点,点B ,E 关于点D 成中心对称,则AE 的长为____________.13. 某小区有1300个住户,为了解小区居民的生活垃圾量(单位:kg),物业公司某日在该小区内随机抽取4栋楼的住户进行调查,结果如表一所示.表一根据表一,估计该小区居民当日生活垃圾总量为____________.14. 小桐竖直向上抛出一个小球,小球只在重力作用下的高度h(单位:m)随时间t(单位:s)变化的图象是抛物线的一部分,如图所示.小球出手时的高度是____________.15. 我国东汉初年的数学典籍《周髀算经》中总结了对几何工具“矩”(即直角形状的曲尺,如图1所示)的使用之道,其中就有“环矩以为圆”的方法.我国许多数学家对该方法作了如下更具体的描述:如图2所示,在平面内固定两个钉子A,B,保持“矩”的两边始终紧靠两钉子的内侧,转动“矩”,则“矩”的顶点C的运动路线将会是一个圆.依此描述,请用你学过的一个数学概念或定理解释“环矩以为圆”这种方法的道理:________________.16. 已知b >,抛物线21y ax bx c =-+与x 轴交于A ,B 两点(A 在B 的左侧),抛物线22y ax bx c=++与x 轴交于C ,D 两点(C 在D 的左侧),其中A ,B ,C ,D 的横坐标分别为A x ,B x ,C x ,Dx ,若当0B x x <<时,120y y <<,则当210y y <<时,x 的取值范围是____________.三、解答题(本大题有9小题,共86分)17. 解方程:2250x x +-=.18. 如图,四边形ABCD 是平行四边形,点E F 、在对角线BD 上,AE CF ,分别平分BAD Ð和DCB Ð,证明BE DF =.19. 先化简,再求值;2241244a a a a a -æö-¸ç÷+++èø,其中2a =.20. 某市为减少汽车尾气污染,改善空气质量,鼓励市民选择新能源汽车作为出行的交通工具,并大力推进新能源汽车充电基础设施建设.据统计,该市2020年新建100座充电站,2022年新建169座.求该市这两年新建充电站的数量的年平均增长率.21. 小梧是某校一名七年级新生,新学期开始,他打算每天早上和同小区里的几位新同学一起上学.小梧和同学计划每天早上7:00出发搭乘公共交通工具前往该学校,并在7:50前入校.几位同学通过查询出行软件,发现有三条路线可供选择,他们约定开学后的两周内分三组体验不同的路线并进行记录,结果如表二所示.表二(1)根据表二,求体验路线一的同学这10天平均每天上学路上所用的时间;(2)请你为小梧和他的同学选择一条较为合理的上学路线,并说明理由.22. 在ABC V 中,90C Ð=°,()045CAB a aÐ=°<<°,将ABC V 绕点A 逆时针旋转,旋转角为()0180b b °<<°,记点B ,C 的对应点分别为D ,E.(1)若ABC V 和线段AD 如图所示,请在图中作出ADE V (要求;尺规作图,不写作法,保留作图痕迹);(2)M 是AB 的中点,N 是点M 旋转后的对应点,连接MN ,CD ,BD ,则是否存在β与α的某种数量关系,使得无论α取何值时,都有MN CD =?若存在,请说明理由,并直接写出此时BC 与BD 的数量关系;若不存在,也请说明理由.23. 如果一个矩形有两个顶点在某抛物线上,那么称该矩形是该抛物线的“半接矩形”.矩形ABCD 在第一象限,点(),B m n 在抛物线2y x bx c =++(记为抛物线T )上.(1)矩形ABCD 是正方形,()1,3A ,1m =,3b =-,4c =,直接写出点C ,D 的坐标,并证明:矩形ABCD 是抛物线T 的“半接矩形”;(2)(),1A m n +,点C 在AB 边的右侧,3BC =,矩形ABCD 是抛物线T 的“半接矩形”,若矩形ABCD 的一条对称轴是2b x =-,将该矩形平移,使得平移后的矩形1111DC B A 仍是抛物线T 的“半接矩形”,请探究矩形ABCD 如何平移.24. 如图,ABC V 内接于O e ,AC =,67.5ABC Ð=°,»BC 的长为2,点P 是射线BC 上的动点()2BP m m =≥.射线OP 绕点O 逆时针旋转45°得到射线OD ,点Q 是射线OD 上的点,点Q 与点O 不重合,连接PQ ,PQ n =.(1)求O e 的半径;(2)当2222n m m =-+时,在点P 运动的过程中,点Q 的位置会随之变化,记1Q ,2Q 是其中任意两个位置,探究直线12Q Q 与O e 的位置关系.25. 某景区正在修建一条到主景点的步行道及步行道两侧的游客休息区、沿途小观景点等附属设施.把步行道的入口记为A ,步行道上某点P 到入口A 的道路长度记为l (单位:m ),把从入口A 处到P 处的步行道面积与此段步行道两侧的所有附属设施的占地面积之和记为S (单位:2m ).设P 处的步行道宽度为x (单位:m ),根据景区对主景点的规划,步行道出口的宽度为2m .用矩形面积估计不规则图形的面积是一种比较有效的方法.因此,景区管委会近似地用一边长为l ,另一边长为()x n +(n 为常量,0n >,n 的单位为m )的矩形的面积表示S .景区管委会在目前已修建的720m 的步行道上选取了部分有代表性的地点进行测算,数据如表三所示.表三根据以上信息,在合理估计的基础上,解决下列问题:(1)写出当450l =时S l的值,并说明理由;(2)当2n =时,求l 与x 的函数解析式(不需要写出x 的取值范围);(3)若景区可按此方式继续修建步行道及附属设施,请你通过计算说明常量n 至少为多少.第9页/共9页。
2016-2017年九年级上数学期末试题及答案
2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。
)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。
)A。
y=-3(x-2)^2+1B。
y=-3(x+2)^2+1C。
y=-3x^2+2D。
y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。
)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。
)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。
)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。
)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。
)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。
)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。
)A。
2B。
1C。
√2D。
1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。
)12、正六边形的边长为10cm,那么它的边心距等于(。
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷
新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
九年级数学第一学期第二次质量检测试题 (新人教版 第75套)
高桥初中教育集团第一学期第二次质量检测九年级数学试题卷请同学们注意:1、考试卷分试题卷和答题卷两部分,满分120分,考试时间为90分钟.2、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.3、考试结束后,只需上交答题卷。
祝同学们取得成功! 一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.下列各点中在反比例函数的图象上的点是( ) A .(-1,-2)B .(1,-2)C .(1,2)D .(2,1)2.抛物线的对称轴是( ) A .直线B .直线C .直线D .直线 3.有三个二次函数,甲:;乙:;丙:。
则下列叙述中正确的是( ) A .甲的图形经过适当的平行移动后,可以与乙的图形重合 B .甲的图形经过适当的平行移动后,可以与丙的图形重合 C .乙的图形经过适当的平行移动后,可以与丙的图形重合 D .甲,乙,丙3个图形经过适当的平行移动后,都可以重合 4.下列函数:①;②;③;④中,随的增大而减小的函数有( )A .1个B .2个C .3个D .4个 5.在反比例函数的图像上有两点(-1,y 1),(-,y 2),则y 1-y 2的值是( )A .负数B .非正数C .正数D .不能确定 6.二次函数的图象可能是( )xy 2-=242+-=x y 2-=x 41-=x 0=x 41=x 12-=x y 12+-x 122-+=x x y 12-=x y ()01<-=x x y ()01682>--=x x x y 34x y =y x ()0<=k xky 41122-++=a x ax yA B CD7.二次函数的图象如图所示,则的值是( ) A .-8 B .8 C . ±8 D .68.已知二次函数中,其函数与自变量之间的部分对应值如下表所示:… 0 1 2 3 4 ……4114…点A (,)、B (,)在函数的图象上,则当,时,与的大小关系正确的是( )A .B .C .D . 9.如图,Rt △OAB 的顶点A (-2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为( ) A .(,) B .(2,4) C .(,2)D .(2,)10.如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( ) A . 1 B . 2 C . 3 D . 4二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.若双曲线的图象经过第二、四象限,则的取值范围是 822++=mx x y m c bx ax y ++=2y x x y 1x 1y 2x 2y 211<<x 432<<x 1y 2y 21y y ≥21y y ≤21y y >21y y <2222xk y 12-=k (第7题)(第10题) (第9题)12.若函数与轴的一个交点坐标是(2,0),则它与轴的另一个交点坐标是 13.已知,当时,的取值范围是 14.将抛物线的图象先向右平移个单位,再向上平移个单位,得到的抛物线经过点(1,3),(4,9)则= ,=15.已知函数的图象与轴有一个交点,则的值是 .16.如图,是二次函数的图象的一部分,图象过A 点(3,0),对称轴为,给出三个结论:①;②;③的两根分别为-1和3;④。
2016—2017学年厦门市九年级上期末考试数学试卷含答案
2016—2017学年厦门市九年级上期末考试数学试卷含答案(试卷满分:150分 考试时刻:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.能够直截了当使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列各式中运算结果为9的是 A.(-2)+(-7) B.-32 C.(-3)2 D . 3×3-12.如图1,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是A.∠BAC 和∠ACBB.∠B 和∠DCEC.∠B 和∠BAD D .∠B 和∠ACD 3.一元二次方程x2-2x -5=0根的判不式的值是A. 24B. 16C. -16 D . -24 4.已知△ABC 和△DEF 关于点O 对称,相应的对称点如图2所示, 则下列结论正确的是A. AO =BOB. BO =EOC.点A 关于点O 的对称点是点D D . 点D 在BO 的延长线上5.已知菱形ABCD 的对角线AC 与BD 交于点O ,则下列结论正确的是 A.点O 到顶点A 的距离大于到顶点B 的距离 B.点O 到顶点A 的距离等于到顶点B 的距离 C.点O 到边AB 的距离大于到边BC 的距离 D.点O 到边AB 的距离等于到边BC 的距离EDCBA图1图2 OF EDCBA6.已知(4+7)·a =b ,若b 是整数,则a 的值可能是A. 7B. 4+7C.8-27 D . 2-7 7.已知抛物线y =ax2+bx +c 和y =max2+mbx +mc ,其中a ,b ,c ,m 均为正数,且m ≠1.则关于这两条抛物线,下列判定正确的是A.顶点的纵坐标相同B.对称轴相同C.与y 轴的交点相同 D .其中一条通过平移能够与另一条重合8.一位批发商从某服装制造公司购进60包型号为L 的衬衫,由于包装工人疏忽,在包裹中混进了型号为M 的衬衫,每包混入的M 号衬衫数及相应的包数如下表所示.一位零售商从60包中任意选取一包,则包中混入M 号衬衫数不超过3的概率是A. 120B. 115C. 920 D . 4279.已知甲、乙两个函数图象上的部分点的横坐标x 与纵坐标y 如下表所示.若在实数范畴内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于那个交点的横坐标a下列判定正确的是A. a <-2B. -2<a <0C. 0<a <2 D .2<a <410. 一组割草人要把两块草地上的草割掉,大草地的面积为S ,小草地的面积为12S.上午,全体组员都在大草地上割草.下午,一半人连续留在大草地上割草,到下午5时将剩下的草割完;另一半人到小草地上割草,到下午5时还剩下一部分没割完.若上、下午的劳动时刻相同,每个割草人的工作效率也相等,则没割完的这部分草地的面积是A. 19SB. 16SC. 14S D . 13S二、填空题(本大题有6小题,每小题4分,共24分) 11. -3的相反数是 .12.甲、乙两人参加某商场的聘请测试,测试由语言和商品知识两个项目组成,他们各自的成绩(百分制)如下表所示.该商场按照成绩在两人之间录用了乙,则此次聘请测试中权重较大的是 项目.13.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°得到点B ,则点B 的坐标是 .14.飞机着陆后滑行的距离s (单位:米)关于滑行的时刻t (单位:秒)的函数解析式是s =60t -1.5t2,则飞机着陆后从开始滑行到完全停止所用的时刻是 秒.15.如图3,AB 为半圆O 的直径,直线CE 与半圆O 相切于点C ,点D 是︵AC 的中点,CB =4,四边形ABCD 的面积为22AC ,则圆心O 到直线CE 的距离是 .16.如图4,在菱形ABCD 中,∠B =60°,AB =a ,点E ,F 分不 FEDCBA图3O ED CBA是边AB ,AD 上的动点,且AE +AF =a ,则线段EF 的最小 值为 .三、解答题(本大题有9小题,共86分) 17. (本题满分8分) 解方程x2+2x -2=0.18. (本题满分8分)如图5,在四边形ABCD 中,AB =AD =5,BC =12,AC =13,∠AD C =90°.求证:△ABC ≌△ADC.19. (本题满分8分)2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图6所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识讲明理由.图5DCB A图6图420.(本题满分8分)如图7,在平面直角坐标系中,已知某个二次函数的图象通过点A (1,m ),B (2,n ),C (4,t ),且点B 是该二次函数图象的顶点.请在图7中描出该函数图象上另外的两个点,并画出图象.21. (本题满分8分)如图8,圆中的弦AB 与弦CD 垂直于点E ,点F 在︵BC 上, ︵AC =︵BF ,直线MN 过点D ,且∠MDC =∠DFC ,求证:直线MN 是该圆的切线.22. (本题满分10分)在平面直角坐标系中,一次函数y =kx +4m (m >0)的图象通过点B (p ,2m ),其中m >0.(1)若m =1,且k =-1,求点B 的坐标;图8NMFED C BAxyOACB图7(2)已知点A (m ,0),若直线y =kx +4m 与x 轴交于点C (n ,0),n +2p =4m ,试判定线段AB 上是否存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线段OB 的长,并讲明理由.23. (本题满分11分)如图9,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 动身,沿△AED 的边按照A →E →D →A 的顺序运动一周.设点P 从A 动身经x (x >0)秒后,△ABP的面积是y.(1)若AB =6厘米,BE =8厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;(2)已知点E 是BC 的中点,当点P 在线段ED 上时,=12x 当点P 在线段AD 上时,y =32-4x.求y 关于x24. (本题满分11分)在⊙O 中,点C 在劣弧︵AB 上,D 是弦AB 上的点,∠ACD =40°.(1)如图10,若⊙O 的半径为3,∠CDB =70°,求︵BC的长; (2)如图11,若DC 的延长线上存在点P ,使得PD=PB , 试探究∠ABC 与∠OBP 的数量关系,并加以证明.25. (本题满分14分)图9图10O DCBA 图11ABC DO已知y1=a1(x-m)2+5,点(m,25)在抛物线y2=a2 x2+b2 x+c2上,其中m>0.(1)若a1=-1,点(1,4)在抛物线y1=a1(x-m)2+5上,求m 的值;(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M.若c2=0,点A(2,0)在此抛物线上,∠OMA=90°求点M的坐标;(3)若y1+y2=x2+16 x+13,且4a2c2-b22=-8a2,求抛物线y2=a2 x2+b2 x+c2的解析式.2016—2017学年(上) 厦门市九年级质量检测数学参考答案讲明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评重量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 3. 12.语言. 13. (-5,4). 14. 20.15. 42-4. 16. 32a.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:∵ a =1,b =2,c =-2, ∴ △=b2-4ac=12. ……………………………4分∴ x =-b ±b2-4ac2a=-2±232. ……………………………6分∴ x1=-1+3,x2=-1-3. ……………………………8分18.(本题满分8分) 证明: 在Rt △ADC 中, ∵ ∠D =90°, ∴ DC =AC2-AD2=12. ………………………4分 ∴ DC =BC . ………………………5分 又∵ AB =AD ,AC =AC ,∴ △ABC ≌△ADC . ……………………………8分D CBA19.(本题满分8分)(1)(本小题满分4分)解:223+2172=220(棵).答:这批工人前两天平均每天种植220棵景观树木.……………………4分(2)(本小题满分4分)解:这批工人前五天平均每天种植的树木为: 223+217+198+195+2025=207(棵). ……………………6分估量到3月10日,这批工人可种植树木2070棵. ……………………7分由于2070<2200因此我认为公司还需增派工人. ……………………8分(也可应用前五天种植量的中位数202估量十天种植量为2020,在数据基础上,对是否需要增派工人进行合明白得释即可)20.(本题满分8分) 解:如图:……………………8分 21.(本题满分8分)证明:设该圆的圆心为点O ,在⊙O 中,∵ ︵AD =︵BF , ∴ ∠AOC =∠BOF.··A ' C 'NMFEDCB A又∠AOC=2∠ABC,∠BOF=2∠BCF,∴∠ABC=∠BCF. …………………2分∴AB∥CF. …………………3分∴∠DCF=∠DEB.∵DC⊥AB,∴∠DEB=90°.∴∠DCF=90°.…………………4分∴DF为⊙O直径. …………………5分且∠CDF+∠DFC=90°.∵∠MDC=∠DFC,∴∠MDC+∠DFC=90°.即DF⊥MN. …………………7分又∵MN过点D,∴直线MN是⊙O的切线. …………………8分22.(本题满分10分)(1)(本小题满分4分)解: ∵一次函数y=kx+4m(m>0)的图象通过点B(p,2m),∴2m =kp+4m. …………………2分∴kp=-2m.∵m=1,k=-1,∴p=2. …………………3分∴B(2,2). …………………4分(2)(本小题满分6分)答:线段AB上存在一点N ,使得点N到坐标原点O与到点C的距离之和等于线段OB的长. …………………5分理由如下:由题意,将B(p,2m),C(n,0)分不代入y=kx+4m,得kp+4m=2m且kn+4m=0.可得n=2p.∵ n +2p =4m ,∴ p =m . …………………7分 ∴ A (m ,0),B (m ,2m ),C (2m ,0). ∵ xB =xA ,∴ AB ⊥x 轴, …………………9分 且 OA =AC =m. ∴ 关于线段AB 上的点N ,有NO =NC.∴ 点N 到坐标原点O 与到点C 的距离之和为NO +NC =2NO. ∵ ∠BAO =90°,在Rt △BAO ,Rt △NAO 中分不有OB2=AB2+OA2=5m2,NO2=NA2+OA2=NA 2+m2. 若2NO =OB , 则4NO2=OB2.即4(NA 2+m2)=5m2.可得NA =12m.即NA =14AB. …………………10分因此线段AB 上存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线段OB 的长,且NA =14AB.23.(本题满分11分)(1)(本小题满分5分)解:∵ 四边形ABCD 是矩形, ∴ ∠ABE =90°. 又 AB =8,BE =6,∴ AE =82+62=10. ……………………1分 设△ABE 中,边AE 上的高为h ,∵ S △ABE =12AEh =12ABBE ,∴ h =245 . ……………………3分又 AP =2x ,∴ y =245x (0<x ≤5). ……………………5分BN(2)(本小题满分6分) 解: ∵ 四边形ABCD 是矩形,∴ ∠B =∠C =90°,AB =DC, AD =∵ E 为BC 中点, ∴ BE=EC. ∴ △ABE ≌△DCE.∴ AE =DE. ……………………6分当点P 运动至点D 时,S △ABP =S △ABD ,由题意得 125x =32-4x ,解得x =5. ……………………7分当点P 运动一周回到点A 时,S △ABP =0,由题意得32-4x =0,解得x =8. ……………………8分 ∴ AD =2×(8-5)=6. ∴ BC =6. ∴ BE =3.且AE +ED =2×5=10. ∴ AE =5.在Rt △ABE 中,AB =52-32=4. ……………………9分 设△ABE 中,边AE 上的高为h ,∵ S △ABE =12AEh =12ABBE ,∴ h =125. 又 AP =2x ,∴ 当点P 从A 运动至点D 时,y =125x (0<x ≤2.5).…………10分 ∴ y 关于x 的函数表达式为:当0<x ≤5时,y =125x ;当5<x ≤8时,y =32-4x. ………………11分24.(本题满分11分) (1)(本小题满分4分)解:连接OC,OB.∵∠ACD=40°,∠CDB=70°,∴∠CAB=∠CDB-∠ACD=70°-40°=30°.…………1分∴∠BOC=2∠BAC=60°,………………2分∴︵BDl=180n rπ=603180π⨯⨯=π. ………………4分(2)(本小题满分7分)解:∠ABC+∠OBP=130°.证明:设∠CAB=α,∠ABC=β,∠OBA连接OC.则∠COB=2α.∵OB=OC,∴∠OCB=∠OBC=β+γ.∵△OCB中,∠COB+∠OCB+∠OBC=180°,∴2α+2(β+γ)=180°.即α+β+γ=90°. ………………………8分∵PB=PD,∴∠PBD=∠PDB=40°+β. ………………………9分∴∠OBP=∠OBA+∠PBD=γ+40°+β=(90°-α) +40°=130°-α. ………………………11分即∠ABC+∠OBP=130°.25.(本题满分14分)(1)(本小题满分3分)解:∵a1=-1,∴y1=-(x-m)2+5.将(1,4)代入y1=-(x-m)2+5,得4=-(1-m)2+5. …………………………2分m=0或m=2 .∵m>0,∴m=2 . …………………………3分(2)(本小题满分4分)解:∵c2=0,∴抛物线y2=a2 x2+b2 x.将(2,0)代入y2=a2 x2+b2 x,得4a2+2b2=0.即b2=-2a2.∴抛物线的对称轴是x=1. …………………………5分设对称轴与x轴交于点N,则NA=NO=1.又∠OMA=90°,∴MN=12OA=1. …………………………6分∴当a2>0时,M(1,-1);当a2<0时,M(1,1).∵25>1,∴M(1,-1)……………………7分(3)(本小题满分7分)解:方法一:由题意知,当x=m时,y1=5;当x=m时,y2=25,∴当x=m时,y1+y2=5+25=30.∵y1+y2=x2+16 x+13,∴30=m2+16m+13.解得m1=1,m2=-17.∵m>0,∴m=1. ……………………………9分∴y1=a1 (x-1)2+5.∴y2=x2+16 x+13-y1=x2+16 x+13-a1 (x-1)2-5.即y2=(1-a1)x2+(16+2a1)x +8-a1. ………………………12分 ∵ 4a2 c2-b22=-8a2,∴ y2 顶点的纵坐标为 4a2 c2-b224a2=-2.∴ 4(1-a1) (8-a1)-(16+2a1)24(1-a1)=-2.化简得56+25a11-a1=-2.解得a1=-2.经检验,a1是原方程的解.∴ 抛物线的解析式为y2=3x2+12x +10. ……………………14分方法二:由题意知,当x =m 时,y1=5;当x =m 时,y2=25; ∴ 当x =m 时,y1+y2=5+25=30. ∵ y1+y2=x2+16 x +13, ∴ 30=m2+16m +13. 解得m1=1,m2=-17.∵ m >0,∴ m =1. ………………………………9分∵ 4a2 c2-b22=-8 a2,∴ y2 顶点的纵坐标为 4a2 c2-b224a2=-2 . ……………………10分设抛物线y2的解析式为y2=a2 (x -h)2-2. ∴ y1+y2=a1 (x -1)2+5+a2 (x -h)2-2. ∵ y1+y2=x2+16 x +13,∴ 121221212216313a a a a h a a h ⎧+=⎪--=⎨⎪++=⎩解得h =-2,a2=3.∴ 抛物线的解析式为y2=3(x +2)2-2. ……………………………14分(求出h =-2与a2=3各得2分)方法三:∵ 点(m ,25)在抛物线y2=a2 x2+b2x +c2上, ∴ a2 m 2+b2 m +c2=25. (*)∵ y1+y2=x2+16 x +13, ∴ 12122121216 513a a ma b m a c +=⎧⎪-+=⎨⎪++=⎩ 由②,③分不得b2 m =16m +2 m 2 a1,c2=8-m 2 a1. 将它们代入方程(*)得a2 m 2+16m +2 m 2 a1+8-m 2 a1=25. 整理得,m 2+16m -17=0. 解得m1=1,m2=-17.∵ m >0,∴ m =1. ………………………………………9分∴ 121212 1216 8a a a b a c +=⎧⎪-+=⎨⎪+=⎩解得b2=18-2 a2,c2=7+a2.………………………12分∵ 4a2 c2-b22=-8a2,∴ 4a2(7+a2)-(18-2 a2)2=-8a2. ∴ a2=3.∴ b2=18-2×3=12,c2=7+3=10.∴ 抛物线的解析式为y2=3x2+12x +10. ……………………………14分2016—2017学年(上) 厦门市九年级质量检测 数学评重量表 二、填空题12. 横、纵坐标都对才能得分.三、解答题17. 解方程x2+2x -2=0. ① ②③18.如图5,在四边形ABCD 中,AB =AD =5,BC =12,AC =13, ∠ADC =90°.求证:△ABC ≌△ADC.图5DCB A准3.得3分要求:不能通过完整推断正确应用勾股定理求出DC,但能正确写出勾股定理的结论.方法二:证明∠B=90°1.本环节得分为4分,3分,0分.2.得4分要求:仅通过完整推断,正确证明∠B=90°3.得3分要求:仅正确讲明△ABC的三边满足勾股定理逆定理的数量关系判定三角形全等(3分)1.本环节得分为3分,2分,0分.2.得2分要求:仅正确写出两个三角形除环节一以外的另一对相等的对应量.(若有推断过程,推断必须完整)19.2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图6所示.(1)这批工人前两天平均每天种植多少棵景观树木?测量目标能正确求简单算术平均数(4分).(运算技能)总体要求1.写出正确答案,至少有一步过程,不扣分,只有正确答案,没有过程,只扣1分.2.没有写出正确答案的,若过程不完整,按步给分.图6(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识讲明理由.20.如图7,在平面直角坐标系中,已知某个二次函数的图象通过点A (1,m),B(2,n),C (4,t ),且点B是该二次函数图象的顶点.请在图7中描出该函数图象上另外的两个点,并画出图象.xy OACB图721.如图8,圆中的弦AB 与弦CD 垂直于点E,点F 在︵BC 上, ︵AC =︵BF ,直线MN 过点D ,且∠MDC =∠DFC , 求证:直线MN 是该圆的切线.图8NMF ED C BA22.在平面直角坐标系中,一次函数y=kx+4m(m>0)的图象通过点B(p,2m),其中m>0.(1)若m=1,且k=-1,求点B的坐标;测量目标会用代入法求已知一次函数图象上一点的坐标(4分).(运算技能)总体要求1.写出正确答案,至少有一步过程,不扣分,只有正确答案,没有过程,只扣1分.2.没有写出正确答案的,若过程不完整,按步给分.3.若显现错误,则该步不得分,除正确代入点B坐标外,其余步骤均不得分.各子目标及评分标准正确代入(2分)1.本环节得分为2分,1分,0分.2.得1分的要求:仅正确代入点B的横坐标或纵坐标正确求p(1分)1.本环节得分为1分,0分.正确写出点B的坐标(1分)1.本环节得分为1分,0分.横纵坐标都正确才可得分.(2)已知点A(m,0),若直线y=kx+4m与x轴交于点C(n,0),n+2p=4m,试判定线段AB上是否存在一点N ,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,并讲明理由.测量目标能依据平面直角坐标系中点的坐标的数量特点,研究几何图形的形状以及位置关系.(6分)(运算能力、推理能力、空间观念)总体要求若显现一个字母一次写错,然而思路正确且结合上下文能够认定是笔误的,不扣分;否则,不仅该步不得分,而且本题所有的后继部分都不得分,评卷终止.各子目标获得三个参数n,p,m之1.本环节得分为2分,1分,0分.●本环节若得0分,则评卷终止.BN23.如图9,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 动身,沿△AED 的边按照A →E →D →A 的顺序运动一周x(x >0)秒后,△ABP 的面积是y.(1)若AB =8厘米,BE =6厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;图9(2)已知点E 是BC 的中点,当点P 在线段ED=125x 当点P 在线段AD 上时,y =32-4x.求y 关于x图924.在⊙O 中,点C 在劣弧︵AB 上,D 是弦AB40°.(1)如图10,若⊙O 的半径为3,∠CDB =70(2)如图11,若DC 使得PD =PB ,试探究∠的数量关系,并加以证明.图10图11(3)图11(2)图11(1)25. 已知y1=a1(x-m)2+5,点(m,25)在抛物线y2=a2 x2+b2 x+c 2上,其中m>0.(1)若a1=-1,点(1,4)在抛物线y1=a1(x-m)2+5上,求m 的值;(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M.若c 2=0,点A(2,0)在此抛物线上,∠OMA=90°求点M的坐标;(3)若y1+y2=x2+16 x+13,且4a2c2-b22=-8a2,求抛物线y 2=a2 x2+b2 x+c2的解析式.。
2016—2017学年厦门市九年级上期末考试数学试卷含答案
都在大草地上割草.下午,一半人继续留在大草地上割草,到下午 5 时将剩下的草割完;另一半
人到小草地上割草,到下午 5 时还剩下一部分没割完.若上、下午的劳动时间相同,每个割草人
的工作效率也相等,则没割完的这部分草地的面积是
A. 19S
B. 16S
C. 14S
D . 13S
二、填空题(本大题有 6 小题,每小题 4 分,共 24 分)
……………………………8 分
(1)(本小题满分 4 分)
解:223+2 217=220(棵).
答:这批工人前两天平均每天种植 220 棵景观树木.……………………4 分
(2)(本小题满分 4 分) 解:这批工人前五天平均每天种植的树木为:
223+217+1598+195+20=2207(棵).
……………………6 分
画出图象.
y
B
A
O
x
C
图7
21. (本题满分 8 分)
如图
8,圆中的弦
AB
与弦
CD
垂直于点
E,点
F
︵ 在BC上,
∠MDC=∠DFC,求证:直线 MN 是该圆的切线.
︵ = ︵ ,直线 MN 过点 D,且 AC BF
M
D
N
AE
B
C
22. (本题满分 10 分)
F 图
在平面直角坐标系中,一次函数 y=kx+4m(m>0)的图象经过点 B(p,2m),其中
13. (-5,4).
8 9 10 C DB
14. 20.
15. 4 2-4.
16. 2 a.
三、解答题(本大题有 9 小题,共 86 分)
17.(本题满分 8 分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016—2017学年(上)厦门市九年级质量检测
数 学
(试卷满分:150分 考试时间:120分钟)
准考证号 姓名 座位号
注意事项:
1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.
一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有
一个选项正确)
1.下列各式中计算结果为9的是
A .(-2)+(-7)
B .-32
C .(-3)2
D . 3×3-
1 2.如图1,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角 是同位角的是
A .∠BAC 和∠ACB
B .∠B 和∠DCE
C .∠B 和∠BA
D D .∠B 和∠ACD
3.一元二次方程x 2-2x -5=0根的判别式的值是
A . 24
B . 16
C . -16
D . -24 4.已知△ABC 和△DEF 关于点O 对称,相应的对称点如图2所示, 则下列结论正确的是
A . AO =BO
B . BO =EO
C .点A 关于点O 的对称点是点
D D . 点D 在BO 的延长线上 5.已知菱形ABCD 的对角线AC 与BD 交于点O ,则下列结论正确的是 A .点O 到顶点A 的距离大于到顶点B 的距离 B .点O 到顶点A 的距离等于到顶点B 的距离 C .点O 到边AB 的距离大于到边BC 的距离 D .点O 到边AB 的距离等于到边BC 的距离 6.已知(4+7)·a =b ,若b 是整数,则a 的值可能是
A . 7
B . 4+7
C .8-27
D . 2-7
7.已知抛物线y =ax 2+bx +c 和y =max 2+mbx +mc ,其中a ,b ,c ,m 均为正数,且m ≠1. 则关于这两条抛物线,下列判断正确的是
A .顶点的纵坐标相同
B .对称轴相同
C .与y 轴的交点相同
D .其中一条经过平移可以与另一条重合
8.一位批发商从某服装制造公司购进60包型号为L 的衬衫,由于包装工人疏忽,在包裹中 混进了型号为M 的衬衫,每包混入的M 号衬衫数及相应的包数如下表所示.
E D C B A
图1
一位零售商从603的概率是 A .
120 B . 115 C . 920 D . 427
9.已知甲、乙两个函数图象上的部分点的横坐标x 与纵坐标y 如下表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a ,下列判断正确的是
A . a <-2
B . -2<a <0
C . 0<a <2
D .2<a <4
10.上午,全体
组员都在大草地上割草.下午,
一半人继续留在大草地上割草,到下午5时将剩下的草割完;另一半人到小草地上割草,到下午5时还剩下一部分没割完.若上、下午的劳动时间相同,每个割草人的工作效率也相等,则没割完的这部分草地的面积是
A . . . .
二、填空题(本大题有6小题,每小题4分,共24分)
11. -3的相反数是 .
12.甲、乙两人参加某商场的招聘测试,测试由语言和商品知识两个项目组成,他们各自的成绩(百分制)如下表所示.该商场根据成绩在两人之间录用了乙,则本次招聘测试中权重较大的是 项目.
13.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°得到点B ,则点B 的坐标是 .
14.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是 s =60t -1.5t 2,则飞机着陆后从开始滑行到完全停止所用的时间是 秒.
15.如图3,AB 为半圆O 的直径,直线CE 与半圆O 相切于点C , 点D 是︵
AC 的中点,CB =4,四边形ABCD 的面积为22AC , 则圆心O 到直线CE 的距离是 .
16.如图4,在菱形ABCD 中,∠B =60°,AB =a ,点E ,F 分别
是边AB ,AD 上的动点,且AE +AF =a ,则线段EF 的最小
值为
.
F
E
D
B A 图3
三、解答题(本大题有9小题,共86分)
17. (本题满分8分) 解方程x 2+2x -2=0.
18. (本题满分8分)
如图5,在四边形ABCD 中,AB =AD =5,BC =12,AC =13,∠ADC =90°.
求证:△ABC ≌△ADC .
19. (本题满分8分)
2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图6所示.
(1)这批工人前两天平均每天种植多少棵景观树木?
(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请
运用统计知识说明理由.
20.(本题满分8分)
如图7,在平面直角坐标系中,已知某个二次函数的图象经过点A (1,m ),B (2,n ), C (4,t ),且点B 是该二次函数图象的顶点.请在图7中描出该函数图象上另外的两个点,并画出图象.
图5
D
C B A 图
6
图7
21. (本题满分8分)
如图8,圆中的弦AB 与弦CD 垂直于点E ,点F 在︵BC 上, ︵AC =︵
BF ,直线MN 过点D ,且∠MDC =∠DFC ,求证:直线MN 是该圆的切线.
22. (本题满分10分)
在平面直角坐标系中,一次函数y =kx +4m (m >0)的图象经过点B (p ,2m ),其中 m >0.
(1)若m =1,且k =-1,求点B 的坐标; (2)已知点A (m ,0),若直线y =kx +4m 与x 轴交于点C (n ,0),n +2p =4m ,试判断
线段AB 上是否存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线 段OB 的长,并说明理由.
23. (本题满分11分)
如图9,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 出发,沿 △AED 的边按照A →E →D →A 的顺序运动一周.设点P 从A 出发经x (x >0)秒后,△ABP 的面积是y .
(1)若AB =6厘米,BE =8厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;
(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y =12
5
x ;
当点P 在线段AD 上时,y =32-4x .求y 关于x 的函数表达式.
24. (本题满分11分)
在⊙O 中,点C 在劣弧︵
AB 上,D 是弦AB 上的点,∠ACD =40
(1)如图10,若⊙O 的半径为3,∠CDB =70°,求︵
BC (2)如图11,若DC 的延长线上存在点P ,使得PD =PB ,
试探究∠ABC 与∠OBP 的数量关系,并加以证明.
25. (本题满分14分)
已知y 1=a 1(x -m )2+5,点(m ,25)在抛物线y 2=a 2 x 2+b 2 x +c 2上,其中m >0.
图9
图10 图11
图8 N
M
F E
D
C
B
A
(1)若a1=-1,点(1,4)在抛物线y1=a1(x-m)2+5上,求m的值;
(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M.若c2=0,点A(2,0)在此抛物线上,∠OMA=90°求点M的坐标;
(3)若y1+y2=x2+16 x+13,且4a2c2-b22=-8a2,求抛物线y2=a2 x2+b2 x+c2的解析式.。