常用半导体器件

合集下载

什么是半导体器件常见的半导体器件有哪些

什么是半导体器件常见的半导体器件有哪些

什么是半导体器件常见的半导体器件有哪些半导体器件是指在半导体材料基础上制造的电子器件。

它具有介于导体与绝缘体之间的特性,既能够传导电流,又能够控制电流的大小和方向。

半导体器件广泛应用于电子、通信、计算机、光电等领域,是现代科技发展的基础之一。

半导体器件的种类繁多,涵盖了许多不同的功能和应用。

下面将介绍一些常见的半导体器件:1. 整流器件整流器件用于将交流电转换为直流电,常见的整流器件有二极管和整流桥。

二极管是最基础的半导体器件之一,通过正向电压使电流通路畅通,而反向电压则阻止电流流动。

整流桥由四个二极管组成,可以实现更高效的电流转换。

2. 放大器件放大器件可以将输入信号信号放大输出,常见的放大器件有晶体管和场效应晶体管(FET)。

晶体管通过控制输入电流,改变输出电流的放大倍数,广泛应用于各种放大和开关电路中。

FET则是利用场效应原理,通过控制栅极电压来调节输出电流。

3. 逻辑器件逻辑器件用于实现逻辑运算和数据处理,常见的逻辑器件有门电路、触发器和寄存器。

门电路包括与门、或门、非门等,用于实现与、或、非等逻辑运算。

触发器和寄存器则用于存储和传输数据,实现时序逻辑功能。

4. 可控器件可控器件可以通过控制信号来改变器件的电特性,常见的可控器件有可控硅(SCR)和可控开关。

可控硅是一种具有双向导电性的半导体器件,可以实现高压大电流的控制。

可控开关通过改变输入信号的状态,控制输出电路的导通和断开。

5. 光电器件光电器件将光信号转换为电信号,或将电信号转换为光信号。

常见的光电器件有光电二极管、光敏电阻和光电晶体管。

光电二极管具有较快的响应速度,可用于光电转换和光通信。

光敏电阻对光信号具有较大的灵敏度,常用于光控开关和光敏电路。

光电晶体管通过光控电流来控制电流的通断,常用于光电触发器和光电继电器。

除了以上提到的常见半导体器件,还有诸如二极管激光器、发光二极管(LED)、MOSFET、IGBT等。

这些器件在不同的应用领域发挥着重要的作用,推动着科技的不断进步和创新。

常用半导体器件

常用半导体器件

1.特点:非线性
I
反向击穿 电压U(BR)
反向电流 在一定电压 范围内保持 常数。
P– + N 反向特性
外加电压大于反向击 穿电压二极管被击穿, 失去单向导电性。
正向特性
P+ – N
导通压降
硅0.6~0.8V 锗0.1~0.3V
U
硅管0.5V, 开启电压
锗管0.1V。
外加电压大于开启 电压二极管才能通。
+ + ++ + + + + ++ + + + + ++ + +
P IF
内电场 N
外电场
+–
P接正、N接负
动画
内电场被 削弱,多子 的扩散加强, 形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
总目录 章目录 返回 上一页 下一页
PN 结加反向电压(反向偏置) P接负、N接正
掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。
总目录 章目录 返回 上一页 下一页
一、本征半导体
完全纯净的、具有晶体结构的半导体,称为本征 半导体。
价电子
Si
Si
共价健
Si
Si
晶体中原子的排列方式
硅单晶中的共价健结构
共价键中的两个电子,称为价电子。
是保证二极管不被击穿而给出的反向峰值电压, 一般是二极管反向击穿电压UBR的一半或三分之二。 二极管击穿后单向导电性被破坏,甚至过热而烧坏。

常用半导体器件

常用半导体器件

流的限流电阻!
稳压二极管的应用
稳压二极管技术数据为:稳压值UZ=10V,Izmax=12mA, Izmin=2mA,负载电阻RL=2k,输入电压ui=12V,限流电阻 R=200 ,求iZ。
若负载电阻变化范围为1.5 k -- 4 k ,是否还能稳 压?
i
iL
R ui DZ
iz UZ RL uO
i
工作原理: 无光照时,与普通二极管一样。
有光照时,分布在第三、四象限。
三、变容二极管 四、隧道二极管 五、肖特基二极管
• 作业 • 1.3 1.4 1.6 1.7
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
PN结的伏安特性
i = f (u )之间的关系曲线。
i/ mA
60
40
正向特性
20
–50 –25
反 向
0 0.5 1.0 u / V 击穿电–压0.002

U(BR–) 0.004

图 1.1.8 PN结的伏安特性
反向击穿 齐纳击穿 雪崩击穿
四、PN结的电容效应
当PN上的电压发生变化时,PN 结中储存的电荷量 将随之发生变化,使PN结具有电容效应。
ui和uo的波形如图所示
u o /V
10
t
O
讨论:解决两个问题
• 如何判断二极管的工作状态? • 什么情况下应选用二极管的什么等效电路?
对V和Ui二极管的模 型有什么不同与uD可比,则需图解: ID 实测特性
Q
uD=V-iR
UD
五、稳压二极管
限流电阻

《常用半导体器件》课件

《常用半导体器件》课件

反向击穿电压:二极管在反向电压作用下, 能够承受的最大电压
开关速度:二极管从正向导通到反向截止 的时间
反向漏电流:二极管在反向电压作用下, 流过二极管的电流
噪声系数:二极管在信号传输过程中产生 的噪声大小
晶体管的特性参数与性能指标
输出电阻:ro,表示晶体管 输出端的电阻
频率特性:fT,表示晶体管 能够工作的最高频率
使用注意事项:在使用二极 管时,需要注意二极管的极 性,避免接反导致电路损坏
散热问题:在使用二极管时, 需要注意二极管的散热问题, 避免过热导致电路损坏
晶体管的选用与使用注意事项
晶体管类型:根据电路需求选择合适的晶体管类型,如NPN、PNP、 MOSFET等。
工作频率:选择工作频率满足电路需求的晶体管,避免频率过高导致晶 体管损坏。
06
半导体器件的选用与使 用注意事项
二极管的选用与使用注意事项
选用原则:根据电路要求选 择合适的二极管类型和参数
正向导通电压:选择二极 管时,需要考虑正向导通 电压与电路电压的匹配
反向耐压:选择二极管时, 需要考虑反向耐压与电路电 压的匹配
反向漏电流:选择二极管时, 需要考虑反向漏电流与电路 要求的匹配
稳定性: 指集成电 路在正常 工作状态 下的稳定 性能
集成电路 的封装形 式:包括 DIP、 QFP、 BGA等
集成电路 的应用领 域:包括 消费电子、 通信、汽 车电子等
场效应管的特性参数与性能指标
栅极电压:控制场效应管的导通和关断 漏极电流:场效应管的输出电流 输入阻抗:场效应管的输入阻抗高,可以减少信号损失 输出阻抗:场效应管的输出阻抗低,可以减少信号损失 开关速度:场效应管的开关速度快,可以减少信号损失 功耗:场效应管的功耗低,可以减少能源消耗

常用半导体器件及应用

常用半导体器件及应用
(4)输入设备:是向计算机输入数据和信 息的设备,是计算机与用户或上其一他页 设下备一页通返回
1.1操作系统的概念
输入设备(input device)是人或外部与计 算机进行交互的一种装置,用于把原始数 据和处理这些数据的程序输入计算机中。 现在的计算机能够接收各种各样的数据, 既可以是数值型的数据,也可以是各种非 数值型的数据,如图形、图像、声音等都 可以通过不同类型的输入设备输入计算机 中,进行存储、处理和输出。
第8章 常用半导体器件及应用
8.1 半导体二极管 8.2 稳压二极管 8.3 发光二极管 8.4 二极管的应用举例(半波整流) 8.5 晶体三极管 8.6 三极管的应用举例
8.1 半导体二极管
8. 1. 1半导体基础知识
1.本征半导体 自然界的物质按其导电性能分为导体、绝缘体和半导体。半
1.1操作系统的概念
1.1.1 计算机系统
计算机系统就是按照人的要求接收和存储 信息,自动进行数据处理和计算,并输出 结果信息的机器系统。它是一个相当复杂 的系统,即使是目前非常普及的个人计算 机也是如此。计算机系统拥有丰富的硬件、 软件资源,操作系统要对这些资源进行管 理。一个计算机系统由硬件(子)系统和 软件(子)系统组成。其中,硬件系统是 借助电、磁、光、机械等原理构成的各种 物理部件的有机结合,它构成了系统下本一页身返回
1.1操作系统的概念
1.计算机硬件简介
操作系统管理和控制计算机系统中的所有 软硬件资源。由计算机系统的层次结构可 以看出,操作系统是一个运行在硬件之上 的系统软件,因此有必要对运行操作系统 的硬件环境有所了解。
计算机硬件是指计算机系统中由电子、机 械和光电元件等组成的各种物理装置的总 称。这些物理装置按系统结构的要求构成 一个有机整体,为计算机软件运行提供物 质基础。简而言之,计算机硬上件一的页 功下能一页是返回

常用半导体器件介绍

常用半导体器件介绍

基极和发射极之间 的PN结称为发射

基极和集电极之间 的PN结称为集电

发射结和集电结之 间的区域称为基区
基区非常薄,通常 只有几微米
三极管内部电流的 流动方向与PN结 的导电方向有关
三极管具有放大作 用,可以将小信号
放大成大信号
三极管的特性
01 电流放大:三极管具有电流放大作用,可以 将微弱的输入信号放大为较大的输出信号。
半导体器件可以分为两类:主动器 件和被动器件。主动器件如晶体管、 集成电路等,可以控制电流的流动; 被动器件如电阻、电容、电感等, 主要用来传输和存储信号。
半导体器件的性能和可靠性对电 子设备的性能和可靠性具有重要 影响。
半导体器件的分类
双极型晶体管(BJT): 场效应晶体管(FET):
如PNP、NPN等
事等
光电器件的发 展趋势是高速、 低功耗、集成

光电器件的分类
光电导器件:利用光电效应工作的器件,如光敏 二极管、光敏三极管等。
光电发射器件:利用外光电效应工作的器件,如 光电管、光电倍增管等。
光敏电阻:利用光敏电阻的光电导效应工作的器 件,如光敏电阻、光敏电容等。
光敏晶体管:利用光敏晶体管的光电导效应工作 的器件,如光敏晶体管、光敏场效应晶体管等。
01
由一个PN结组成
03
PN结具有单向导电性
02
P型半导体和N型半导体相 互接触形成PN结
04
电流只能从P型半导体流向N 型半导体,不能反向流动
二极管的特性
01
单向导电性:二极 管只允许电流从一 个方向通过,具有 单向导电性。
02
整流作用:二极管 可以将交流电转换 为直流电,具有整 流作用。

1.常用半导体器件

1.常用半导体器件
返回
第五节 场效应晶体管
N沟道增强型MOS管 N沟道耗尽型MOS管 MOS管的主要参数及使用注意事项
返回
场效应晶体管是用输入回路的电场效应来控 制半导体中的多数载流子,使流过半导体内的电 流大小随电场强弱而变化,形成电压控制其导电 的一种半导体器件。与晶体管相比场效应晶体管 更易于集成。
场效应晶体管有两种: 结型场效应晶体管 绝缘栅型场效应晶体管
发光二极管的发光颜色取决于使用的材料。
发光二极管只能工作在正向偏置状态,工 作 时电路中必须串接限流电阻。
返回
第四节 晶体管
晶体管的基本结构和类型 晶体管的电流分配和放大原理 晶体管的特性曲线 晶体管的主要参数 温度对晶体管特性和参数的影响
返回
一、晶体管的基本结构和类型
集电极
集电结
集电区
基极
基区
返回
例2、已知ui = 6sinωt,UZ =3V,画输出波形。
ui /V
6
ui
VS
3
uo O
ωt
uo
3
O
ωt
返回
例3、图示电路中,稳压管VS1、VS2的稳压值分
别为UZ1=5V,UZ2=7V,正向压降为0.7V,若
输入电压Ui波形如图所示,试画出输出电压波
形。
Ui
R
12V
Ui R
Uo 6V VS1 VS2 -2V
( NPN: VBC. > VNBP>NVE V C V B V E
PNP: VC<PUNB <PVE)V C V B V E
返回
例2:有三只晶体管,分别为 锗管β=150, ICBO=2μA; 硅管β=100,ICBO=1μA; 硅管β=40,ICEO=41μA;试从β和温度稳定 性选择一只最佳的管子。 解: β 值大,但ICBO也大,温度稳定性较差; β 值较大,ICBO=1μA,ICEO=101 μA ; β 值较小,ICEO=41μA, ICBO=1μA。 、 ICBO相等,但 的β 较大,故 较好。

什么是半导体器件有哪些常见的半导体器件

什么是半导体器件有哪些常见的半导体器件

什么是半导体器件有哪些常见的半导体器件半导体器件是指由半导体材料制成的用于电子、光电子、光学和微波等领域的电子元器件。

它具有半导体材料固有的特性,可以在不同的电压和电流条件下改变其电子特性,从而实现电子器件的各种功能。

常见的半导体器件有以下几种:1. 二极管(Diode):二极管是最简单的半导体器件之一。

它由一个P型半导体和一个N型半导体组成。

二极管具有单向导电性,可以将电流限制在一个方向。

常见的二极管应用包括整流器、稳压器和光电二极管等。

2. 晶体管(Transistor):晶体管是一种电子放大器和开关器件,由三层或两层不同类型的半导体材料构成。

晶体管可分为双极型(BJT)和场效应型(FET)两种。

它广泛应用于放大器、开关电路和逻辑电路等领域。

3. MOSFET(金属氧化物半导体场效应晶体管):MOSFET是一种常用的场效应晶体管。

它具有低功耗、高开关速度和可控性强等特点,被广泛应用于数字电路、功率放大器和片上系统等领域。

4. 整流器(Rectifier):整流器是一种将交流电转换为直流电的器件。

它主要由二极管组成,可以实现电能的转换和电源的稳定。

整流器广泛应用于电源供电、电动机驱动和电子设备等领域。

5. 发光二极管(LED):发光二极管是一种能够将电能转换为光能的器件。

它具有高亮度、低功耗和长寿命等特点,被广泛应用于照明、显示和通信等领域。

6. 激光二极管(LD):激光二极管是一种能够产生相干光的器件。

它具有高亮度、窄光谱和调制速度快等特点,广泛应用于激光打印、激光切割和光纤通信等领域。

7. 三极管(Triode):三极管是晶体管的前身,它由三层不同类型的半导体材料构成。

三极管可以放大电流和电压,被广泛应用于放大器、调制器和振荡器等领域。

8. 可控硅(SCR):可控硅是一种具有开关特性的器件。

它可以控制电流的导通和截止,广泛应用于交流电控制、功率调节和电能转换等领域。

9. 电压稳压器(Voltage Regulator):电压稳压器是一种用于稳定输出电压的器件。

第1章常用半导体器件

第1章常用半导体器件
1.1.1 本征半导体
纯净的具有晶体结构的半导体
一、导体、半导体和绝缘体 导体、
导体:自然界中很容易导电的物质称为导体, 导体:自然界中很容易导电的物质称为导体,金属 导体 一般都是导体。 一般都是导体。 绝缘体:有的物质几乎不导电,称为绝缘体 绝缘体, 绝缘体:有的物质几乎不导电,称为绝缘体,如橡 陶瓷、塑料和石英。 皮、陶瓷、塑料和石英。 半导体: 半导体:另有一类物质的导电特性处于导体和绝缘 半导体, 体之间,称为半导体 如锗、 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。 和一些硫化物、氧化物等。
二、P 型半导体
杂质元素, 在硅或锗的晶体中掺入少量的 3 价杂质元素,如 铟等, 型半导体。 硼、镓、铟等,即构成 P 型半导体。
+4 +4 +4
3 价杂质原子称为 受主原子。 受主原子。 空穴浓度多于电子 浓度, 浓度,即 p >> n。空穴 。 为多数载流子, 为多数载流子 , 电子为 少数载流子。 少数载流子。
五、PN结的电容效应 结的电容效应
上的电压发生变化时, 当PN上的电压发生变化时,PN 结中储存的电荷量 上的电压发生变化时 将随之发生变化, 结具有电容效应。 将随之发生变化,使PN结具有电容效应。 结具有电容效应 势垒电容 电容效应包括两部分 扩散电容 1. 势垒电容 b 势垒电容C 结的空间电荷区变化形成的。 是由 PN 结的空间电荷区变化形成的。
公式推导过程略
四、PN结的伏安特性 结的伏安特性
i = f (u )之间的关系曲线。 之间的关系曲线。
i/ mA
60 40 20 –50 –25 0 0.5 1.0 u / V – 0.002
正向特性

半导体常用器件及应用

半导体常用器件及应用

半导体常用器件及应用半导体器件是一种能够在电子器件中控制电子流动的材料。

半导体器件通常使用的材料是半导体材料,如硅、锗等。

半导体器件具有控制电流的能力,可根据电流的变化来控制电子的行为,从而实现各种电子功能。

下面将介绍一些常用的半导体器件及其应用。

1. 二极管二极管是最简单的半导体器件之一,具有两个电极,即P型半导体和N型半导体。

它具有允许电流在一个方向上流动,而在另一个方向上阻止电流流动的特性。

二极管的主要应用包括整流器,用于将交流电转换为直流电,还可用于电压稳定器、电源等。

2. 晶体管晶体管是一种可以放大和开关电信号的半导体器件。

它由三个层次的半导体材料组成,分别是基极、射极和集电极。

晶体管的操作基于两种类型的电信号:输入信号和控制信号。

它广泛应用于放大器、开关、计算机存储器、微处理器等。

3. MOSFETMOSFET(金氧半场效应晶体管)是一种常见的半导体器件,用于放大或开关电信号。

它由四个区域构成,包括漏极、源极、栅极和绝缘层。

MOSFET的主要应用包括放大器、开关、电源开关等。

4. SCR(可控硅)可控硅是一种具有触发控制能力的半导体器件,可以在接通状态下保持导通状态,只有在触发条件满足时才能断开。

SCR主要应用于电力控制中,如温度控制、电炉、电焊机等。

5. LED(发光二极管)LED是一种能够将电能转换为光能的半导体器件。

当电流通过LED时,它会发射出可见光。

由于其高效能和长寿命的特性,LED广泛应用于照明、指示灯、电子设备显示等。

6. 激光二极管激光二极管是一种半导体器件,当电流通过它时,会发射出激光光束。

激光二极管具有小尺寸、低成本和高效能的特点,被广泛应用于光通信、激光打印、激光扫描等。

7. CCD(电荷耦合器件)CCD是一种半导体器件,用于将光能转换为电荷,并通过逐行读取电荷来捕捉图像。

CCD广泛应用于数码相机、摄像机、光谱仪等图像传感器领域。

8. 太阳能电池太阳能电池是一种能够将太阳能转化为电能的半导体器件。

常用半导体器件

常用半导体器件

制造三极 管时应具 备的结构
特点
1.3.2 三极管的电流放大作用
• 1.三极管的工作条件
• 二极管的主要性能是单向导电性,三极管的主要 性能是具有电流放大作用。三极管具有放大作用 的外部条件是必须外加合适的偏置电压,使三极 管的发射结处于正向偏置,集电结处于反向偏置 。
• 2.三极管的电流放大作用
本章小结
• 1.半导体具有热敏性、光敏性和掺杂性,因而成为制造电 子元器件的关键材料。
• 2.二极管是由一个PN结构成,其最主要的特性是具有单向 导电性,该特性可由伏安特性曲线准确描述。
• 3.特殊二极管主要有稳压二极管、发光二极管、光电二极 管等。
• 4.片状二极管具有体积小,形状规整,便于自动化装配的 特点,在目前的电子产品中广泛应用。
耗尽型MOS管的结构和符号
1.4.2 绝缘栅场效应管
• 2.N沟道耗尽型MOS管 • (2)工作原理
①工作条件
②放大作用
1.4.2 绝缘栅场效应管
• 2.N沟道耗尽型MOS管 • (3)特性曲线
N沟道耗尽型MOS管的特性曲线
1.4.3 场效应管使用注意事项
• 1.结型场效应管的栅源电压不能接反,因为它工 作在反偏状态。
稳压管的伏安特性曲线
稳压管的应用
• (2)稳压管的主要参数
• 稳定电压 • 稳定电流 • 最大稳定电流 • 耗散功率 • 动态电阻 • 温度系数k反映由温度变化而引起的稳定电压变化

• 2.发光二极管
• 发光二极管是一种把 电能变成光能的半导 体器件,由磷化镓、 砷化镓等半导体材料 制成,符号如图1-14 (a)所示,发光二 极管的种类按外形可 分为:圆形、方形等 。如图1-14(b)所 示。

半导体元件有哪些

半导体元件有哪些

半导体元件有哪些一、简介半导体元件是半导体材料制成的组件,广泛应用于电子和电力领域。

半导体元件的种类繁多,不同的元件具有不同的功能和特点,下面将介绍几种常见的半导体元件。

二、二极管(Diode)二极管是一种最简单的半导体元件,通常由P型半导体和N型半导体组合而成。

它具有导通方向和截止方向两种工作状态,能够将电流限制在一个方向上流动。

二极管被广泛用于整流和电源保护电路中。

三、晶体管(Transistor)晶体管是一种主要用于放大和开关电路的半导体元件。

它通常由三个掺杂不同的半导体材料层叠而成,包括发射极、基极和集电极。

晶体管可以放大电流和控制电路的开关,是现代电子设备中不可或缺的组成部分。

四、场效应管(FET)场效应管是一种利用电场调控电流的半导体元件,通常分为MOSFET和JFET两种类型。

它具有高输入阻抗、低输入电流、低功耗等特点,被广泛用于放大、开关和调制等电路中。

五、光电子器件(Photonic Device)光电子器件是一种能够在光和电信号之间相互转换的半导体元件,包括光电二极管、光伏电池、光发射二极管等。

它在通信、光纤传输、光储存等领域发挥着重要作用。

六、集成电路(Integrated Circuit)集成电路是将多个晶体管、二极管、电容器等元件集成在一块半导体芯片上的半导体元件。

它具有体积小、功耗低、成本低等优点,被广泛应用于电子产品中。

结语以上是几种常见的半导体元件,随着科技的发展,半导体元件的种类和应用领域将会不断扩展。

半导体元件的发展对电子、通信等行业起着至关重要的作用,带动了整个科技产业的发展和进步。

常见半导体器件

常见半导体器件

常见半导体器件常见半导体器件是指广泛应用于电子电路中的一类电子器件,它们都是利用半导体材料的特性,通过控制电场和电流来实现电子元件的功能。

这些器件的种类繁多,以下是其中一些常见的半导体器件。

1. 二极管二极管是最简单的半导体器件,它由一个p型半导体和一个n型半导体组成,通过正向电压和反向电压实现电流通路的阻截。

通常应用于整流、波形修整、振荡器等电路。

2. 功放管功放管是晶体管的一种,它的输出电流与控制电压成线性关系,通常应用于音频放大器、射频放大器、模拟计算等电路。

3. 晶体管晶体管是一种三端半导体器件,它包含一个发射极、一个基极和一个集电极,通常用作开关和放大器。

晶体管有各种类型,包括NPN、PNP、场效应晶体管等。

4. MOSFETMOSFET是MOS场效应晶体管的缩写,它由一个金属氧化物半导体结构组成。

MOSFET具有高输入阻抗、低输出电阻和低电源电流等特点,通常应用于数码电路中。

5. IGBTIGBT是晶闸管与MOSFET的融合产物,它继承了晶闸管的高电流承受能力和MOSFET的高输入阻抗和低输出电阻的特点。

IGBT通常应用于高电压、高电流开关电源和变频器等电路。

6. 二极管整流桥二极管整流桥是由四个二极管组成的整流电路,它能将交流电信号转换成直流电信号。

通常应用于电源电路中。

7. 三极管三极管是晶体管的一种,它比双极管多一个控制端,通过控制控制端电流来控制三极管的电流增益。

通常应用于放大器、振荡器、开关电源等电路。

8. 稳压二极管稳压二极管是一种特殊的二极管,它具有稳定的电压降,可以将电路中的电压稳定在一个固定的值。

通常应用于功率稳压器和稳压电源中。

9. 光电耦合器光电耦合器是一种集成了发光二极管和光敏二极管的器件,它能将电信号与光信号进行转换,通常应用于隔离、调制、解调、传输等电路。

10. 可控硅可控硅是一种电压控制的半导体器件,它的主要作用是将交流电信号变为直流电信号。

通常应用于电动机调速、焊接、电力电子等领域。

常用半导体器件

常用半导体器件
外电场与内电场的 方向相反,空间电荷 区变窄,内电场被削 弱,多子扩散得到加 强,少子漂移将被削 弱,扩散电流大大超 过漂移电流,最后形 成较大的正向电流。
§1-1.半导体基础知识
2)PN结外加反向电压时 处于截止状态
外电场与内电场方向一致,空间电 荷区变宽内电场增强,不利于多子 的扩散,有利于少子的漂移。在电 路中形成了基于少子漂移的反向电 流。由于少子数量很少,因此反向 电流很小。
2)载流子
电场作用
自由电子
定向运动
形成电子电流
电场作用
空穴
填补空穴的价电子作定向运动
形成空穴电流
两种载流子:带负电荷的自由电子 电场 电子电流 极性相反 电流方向同
带正电荷的空穴
空穴电流 运动方向相反
§1-1.半导体基础知识
4.本征半导体中载流子的浓度 复合:运动中的电子重新被共价键束缚起来,电子空穴对消失。
又:IE=IC+IB
§1-3.双极型晶体管
3、晶体管的共射电流放大系数
1)定义: ICN IB
共射直流电流放大系数
IC IB (1 )ICBO IB ICEO
IC IB
IE (1 )IB
2)定义: iC i B
共射交流电流放大系数
容易证明:
§1-3.双极型晶体管
3)定义: ICN IE
结论:PN结具有单向导电性, 即正偏导通,反偏截止。
§1-1.半导体基础知识
3. PN结的电流方程
qu
i Is(e kT 1)
令: uT=kT/q 称温度电压当量
u
i Is(e UT 1)
T=300K时, uT=26mV
§1-1.半导体基础知识
4. PN结的伏安特性

常见半导体器件

常见半导体器件

常见半导体器件一、二极管(Diode)二极管是一种常见的半导体器件,具有只允许电流在一个方向通过的特性。

它由P型半导体和N型半导体组成,通过P-N结的形成来实现电流的单向导通。

二极管在电子电路中有着广泛的应用,如整流器、稳压器、放大器等。

二、三极管(Transistor)三极管是一种具有放大作用的半导体器件,由P型半导体和N型半导体构成。

它有三个电极,分别是发射极、基极和集电极。

通过控制基极电流,可以调节集电极电流的大小,实现信号的放大功能。

三极管被广泛应用于放大器、开关、振荡器等电子设备中。

三、场效应晶体管(Field Effect Transistor,FET)场效应晶体管是一种常见的半导体器件,与三极管类似,也具有放大作用。

它由栅极、源极和漏极组成。

场效应晶体管通过栅极电压的变化来控制源漏极之间的电流。

与三极管相比,场效应晶体管具有输入阻抗高、功耗低、噪声小等特点,被广泛应用于放大器、开关、模拟电路等领域。

四、集成电路(Integrated Circuit,IC)集成电路是将大量的电子器件集成在一个芯片上的器件。

它由高度集成的晶体管、二极管、电阻、电容等元件组成,通过不同的连接方式实现各种电路功能。

集成电路具有体积小、功耗低、性能稳定等优点,被广泛应用于计算机、通信、消费电子等领域。

五、光电二极管(Photodiode)光电二极管是一种具有光电转换功能的半导体器件。

它具有二极管的结构,在光照条件下产生电流。

光电二极管常用于光电传感、光通信、光电测量等领域。

通过控制光照强度,可以实现对光信号的检测和转换。

六、发光二极管(Light Emitting Diode,LED)发光二极管是一种能够发出可见光的半导体器件。

它具有二极管的结构,在正向偏置电压下,通过复合效应产生光。

发光二极管具有发光效率高、寿命长、功耗低等特点,被广泛应用于照明、显示、指示等领域。

七、太阳能电池(Solar Cell)太阳能电池是一种将太阳能转化为电能的半导体器件。

什么是半导体器件它们有哪些常见的类型

什么是半导体器件它们有哪些常见的类型

什么是半导体器件它们有哪些常见的类型半导体器件是指利用半导体材料制造的,具有特定功能的电子元件。

由于半导体材料的特殊性质,半导体器件在现代电子技术中起着至关重要的作用。

本文将介绍半导体器件的定义、常见的类型以及它们的应用。

一、半导体器件的定义半导体器件是一种基于半导体材料制造的电子元件。

半导体材料是指电阻率介于导体和绝缘体之间的材料。

在晶体管发明之前,真空管是主要的电子元件。

然而,真空管体积大、功耗高、寿命短,限制了电子设备的缩小和便携性。

半导体器件的问世极大地改变了这一现状,使得电子技术取得了飞速的发展。

二、常见的半导体器件类型1. 二极管(Diode)二极管是最简单的半导体器件之一。

它由P型半导体和N型半导体连接而成。

二极管具有单向导电性,能够将电流从P型半导体导向N型半导体,并阻止反向电流的通过。

二极管广泛应用于电源转换、无线通信和光电器件等领域。

2. 三极管(Transistor)三极管是一种由三层不同类型半导体构成的器件。

它包括了晶体管的基极、发射极和集电极。

晶体管通过控制输入电流或电压,可以起到放大信号或作为开关进行控制的作用。

三极管广泛应用于放大电路、开关电路以及逻辑电路等方面。

3. MOSFET(金属氧化物半导体场效应管)MOSFET是一种重要的场效应管,由金属氧化物半导体(MOS)结构构成。

MOSFET具有高输入阻抗和低输出阻抗的特点,功率损耗较小,并且可靠性高。

它被广泛应用于功率放大器、电源管理、调制解调器等领域。

4. 快恢复二极管(Fast Recovery Diode)快恢复二极管是一种性能优越的二极管,具有快速恢复能力。

它的特点是在导通和截止时的恢复时间很短,适用于在高频开关电路和电力变换电路中。

5. 发光二极管(LED)发光二极管是一种电流通过后可以发出光的二极管。

它使用半导体材料发出特定颜色的光,广泛应用于显示屏、照明、显示指示等领域。

6. 整流器(Rectifier)整流器是指将交流电转换为直流电的器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《模拟电子技术基础》(教案与讲稿)任课教师:谭华院系:桂林电子科技大学信息科技学院电子工程系授课班级:2008电子信息专业本科1、2班授课时间:2009年9月21日------2009年12月23日每周学时:4学时授课教材:《模拟电子技术基础》(第4版)清华大学电子学教研组童诗白华成英主编高教出版社 2009第一章常用半导体器件本章内容简介半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。

本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。

在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。

最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。

(一)主要内容:✧半导体的基本知识✧PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电路(二)基本要求:✧了解半导体材料的基本结构及PN结的形成✧掌握PN结的单向导电工作原理✧了解二极管(包括稳压管)的V-I特性及主要性能指标(三)教学要点:✧从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导电工作原理、✧二极管的V-I特性及主要性能指标1.1 半导体的基本知识1.1.1 半导体材料根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。

导电性能介于导体与绝缘体之间材料,我们称之为半导体。

在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。

其中硅是最常用的一种半导体材料。

半导体有以下特点:1.半导体的导电能力介于导体与绝缘体之间2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。

3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。

1.1.2 半导体的共价键结构在电子器件中,用得最多的半导体材料是硅和锗,它们的简化原子模型如下所示。

硅和锗都是四价元素,在其最外层原子轨道上具有四个电子,称为价电子。

由于原子呈中性,故在图中原子核用带圆圈的+4符号表示。

半导体与金属和许多绝缘体一样,均具有晶体结构,它们的原子形成有排列,邻近原子之间由共价键联结,其晶体结构示意图如下所示。

图中表示的是晶体的二维结构,实际上半导体晶体结构是三维的。

硅和锗的原子结构简化模型及晶体结构1.1.3 本征半导体本征半导体——化学成分纯净的半导体。

它在物理结构上呈单晶体形态。

空穴——共价键中的空位。

电子空穴对——由热激发而产生的自由电子和空穴对。

空穴的移动——空穴的运动是靠相邻共价键中的价电子依次充填空穴来实现的。

本征激发在室温下,本征半导体共价键中的价电子获得足够的能量,挣脱共价键的束缚进入导带,成为自由电子,在晶体中产生电子-空穴对的现象称为本征激发.由于共价键出现了空穴,在外加电场或其他的作用下,邻近价电子就可填补到这个空位上,而在这个电子原来的位置上又留下新的空位,以后其他电子双可转移到这个新的空位。

这样就使共价键中出现一定的电荷迁移。

空穴的移动方向和电子移动的方向是相反的。

本征半导体中的自由电子和空穴数总是相等的。

1.1.4 杂质半导体在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。

掺入的杂质主要是三价或五价元素。

掺入杂质的本征半导体称为杂质半导体。

N型半导体——掺入五价杂质元素(如磷)的半导体。

P型半导体——掺入三价杂质元素(如硼)的半导体。

1. N型半导体因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。

在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子, 由热激发形成。

提供自由电子的五价杂质原子因带正电荷而成为正离子,因此五价杂质原子也称为施主杂质。

1. P型半导体因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一个空穴。

在P型半导体中空穴是多数载流子,它主要由掺杂形成;自由电子是少数载流子,由热激发形成。

空穴很容易俘获电子,使杂质原子成为负离子。

三价杂质因而也称为受主杂质。

3. 杂质对半导体导电性的影响掺入杂质对本征半导体的导电性有很大的影响,一些典型的数据如下:T=300 K室温下,本征硅的电子和空穴浓度:n = p = 1.4×1010/cm3掺杂后N 型半导体中的自由电子浓度:n = 5×1016/cm3本征硅的原子浓度:4.96×1022/cm3以上三个浓度基本上依次相差106/cm3。

小结:本节主要介绍了半导体、本征半导体和杂志半导体的基本知识。

1.2 PN结的形成及特性1.1.1 PN结的形成:在P型半导体和N型半导体结合后,由于N型区内电子很多而空穴很少,而P型区内空穴很多电子很少,在它们的交界处就出现了电子和空穴的浓度差别。

这样,电子和空穴都要从浓度高的地方向浓度低的地方扩散。

于是,有一些电子要从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。

它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。

半导体中的离子不能任意移动,因此不参与导电。

这些不能移动的带电粒子在P和N区交界面附近,形成了一个很薄的空间电荷区,就是所谓的PN结。

扩散越强,空间电荷区越宽。

在空间电荷区,由于缺少多子,所以也称耗尽层。

在出现了空间电荷区以后,由于正负电荷之间的相互作用,在空间电荷区就形成了一个内电场,其方向是从带正电的N区指向带负电的P区。

显然,这个电场的方向与载流子扩散运动的方向相反它是阻止扩散的。

另一方面,这个电场将使N区的少数载流子空穴向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。

从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,因此,漂移运动的结果是使空间电荷区变窄。

当漂移运动达到和扩散运动相等时,PN结便处于动态平衡状态。

内电场促使少子漂移,阻止多子扩散。

最后,多子的扩散和少子的漂移达到动态平衡。

1.1.2 PN结的单向导电性当外加电压使PN结中P区的电位高于N区的电位,称为加正向电压,简称正偏;反之称为加反向电压,简称反偏。

(1) PN结加正向电压时:在正向电压的作用下,PN结的平衡状态被打破,P区中的多数载流子空穴和N 区中的多数载流子电子都要向PN结移动,当P区空穴进入PN结后,就要和原来的一部分负离子中和,使P区的空间电荷量减少。

同样,当N区电子进入PN 结时,中和了部分正离子,使N区的空间电荷量减少,结果使PN结变窄,即耗尽区厚变薄,由于这时耗尽区中载流子增加,因而电阻减小。

势垒降低使P区和N区中能越过这个势垒的多数载流子大大增加,形成扩散电流。

在这种情况下,由少数载流了形成的漂移电流,其方向与扩散电流相反,和正向电流比较,其数值很小,可忽略不计。

这时PN结内的电流由起支配地位的扩散电流所决定。

在外电路上形成一个流入P区的电流,称为正向电流IF。

当外加电压VF稍有变化(如O.1V),便能引起电流的显著变化,因此电流IF是随外加电压急速上升的。

这时,正向的PN结表现为一个很小的电阻。

在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。

(2) PN结加反向电压时:V 26m q kT V T ==在反向电压的作用下,P 区中的空穴和N 区中的电子都将进一步离开PN 结,使耗尽区厚度加宽,PN 结的内电场加强。

这一结果,一方面使P 区和N 区中的多数载流子就很难越过势垒,扩散电流趋近于零。

另一方面,由于内电场的加强,使得N 区和P 区中的少数载流子更容易产生漂移运动。

这样,此时流过PN 结的电流由起支配地位的漂移电流所决定。

漂移电流表现在外电路上有一个流入N 区的反向电流IR 。

由于少数载流子是由本征激发产生的其浓度很小,所以IR 是很微弱的,一般为微安数量级。

当管子制成后,IR 数值决定于温度,而几乎与外加电压VR 无关。

IR 受温度的影响较大,在某些实际应用中,还必须予以考虑。

PN 结在反向偏置时,IR 很小,PN 结呈现一个很大的电阻,可认为它基本是不导电的。

这时,反向的PN 结表现为一个很大的电阻。

PN 结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN 结加反向电压时,呈现高电阻,具有很小的反向漂移电流。

由此可以得出结论:PN 结具有单向导电性。

(3) PN 结V - I 特性表达式在常温下(T =300K ) 1.1.3 PN 结的反向击穿当PN 结的反向电压增加到一定数值时,反向电流突然快速增加,此现象称为PN 结的反向击穿。

反向击穿分为电击穿和热击穿,电击穿包括雪崩击穿和齐纳击。

PN 结热击穿后电流很大,电压又很高,消耗在结上的功率很大,容易使PN 结发热,把PN 结烧毁。

热击穿——不可逆;电击穿——可逆当PN 结反向电压增加时,空间电荷区中的电场随着增强。

这样,通过空间PN 结的伏安特性)1(-=T D V V S D e I i电荷区的电子和空穴,就会在电场作用下获得的能量增大,在晶体中运动的电子和空六将不断地与晶体原子又发生碰撞,当电子和空穴的能量足够大时,通过这样的碰撞的可使共价键中的电子激发形成自由电子–空穴对。

新产生的电子和空穴也向相反的方向运动,重新获得能量,又可通过碰撞,再产生电子–空穴对,这就是载流子的倍增效应。

当反向电压增大到某一数值后,载流子的倍增情况就像在陡峻的积雪山坡上发生雪崩一样,载流子增加得多而快,这样,反向电流剧增,PN结就发生雪崩击穿。

在加有较高的反向电压下,PN结空间电荷区中存一个强电场,它能够破坏共价键,将束缚电子分离出来造成电子–空穴对,形成较大的反向电流。

发生齐纳击穿需要的电场强度约为2×10V/cm,这只有在杂质浓度特别大的PN结中才能达到,因为杂质浓度大,空间电荷区内电荷密度(即杂质离子)也大,因而空间电荷区很窄,电场强度可能很高。

电击穿可被利用(如稳压管),而热击穿须尽量避免。

1.1.4 PN结的电容效应(1) 势垒电容C B:用来描述二极管势垒区的空间电荷随电压变化而产生的电容效应的。

PN结的空间电荷随外加电压的变化而变化,当外加正向电压升高时,N 区的电子和P区空穴进入耗尽区,相当于电子和空穴分别向CB“充电”,如图(a)所示。

当外加电压降低时,又有电子和空穴离开耗尽区,好像电子和空穴从CB 放电,如图(b)所示。

相关文档
最新文档