最新高考数学(文科)试卷及答案3套
2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案)
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
11
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
12
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
17.(12 分)
设等比数列 an 满足 a1+a2 =4 , a3 -a1=8 (1) 求an 的通项公式; (2) 记 sn 为数列 log3 a n 的前 n 项和.若 sm +sm+1=sm+3 ,求 m.
18.(12 分)
某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,
为代表);
(3) 若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的空气质量等
级为 3 或 4,则称这天“空气质量不好”。根据所给数据,完成下面的 2 2 列联表,
并根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天
的空气质量有关?
人次 400
人次>400
A. 5
B.2 5
C.4 5
D.8 5
12. 已知函数 f (x) sin x 1 ,则 sin x
A. f (x) 的最小值为 2
B. f (x) 的图像关于 y 轴对称 C. f (x) 的图像关于直线 x 对称 D. f (x) 的图像关于直线 x 对称
2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
A. 圆
B. 椭圆
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)
2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2020年全国高考(新课标I、II、III卷)真题 文科数学试卷(+答案+全解全析,共3套)
(2)设 DO= 2 ,圆锥的侧面积为 3π ,求三棱锥 P−ABC 的体积.
20.已知函数 f (x) = ex − a(x + 2) .
(1)当 a = 1 时,讨论 f (x) 的单调性;
(2)若 f (x) 有两个零点,求 a 的取值范围.
21.已知
1
A.
5
1
C. 2
2
B.
5
4
D.
5
【答案】A
【分析】列出从 5 个点选 3 个点的所有情况,再列出 3 点共线的情况,用古典概型的概率计算公式运算即可.
【详解】如图,从 O,A,B,C,D 5 个点中任取 3 个有
{O, A, B},{O, A,C},{O, A, D},{O, B,C}
{O, B, D},{O,C, D},{A, B,C},{A, B, D}
由此散点图,在 10°C 至 40°C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型
的是( ) A. y = a + bx
B. y = a + bx2
C. y = a + bex
D. y = a + b ln x
【答案】D
【分析】 根据散点图的分布可选择合适的函数模型.
2020 年普通高等学校招生全国统一考试
文科数学
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干 净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.
2023年全国统一高考数学试卷(文科)(甲卷)(解析版)
2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
2022年全国统一高考数学试卷(文科)(甲卷)【含解析】
2022年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{2A =-,1-,0,1,2},5{|0}2B x x =< ,则(AB =)A.{0,1,2}B.{2-,1-,0}C.{0,1}D.{1,2}2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.若1z i =+,则|3|(iz z +=)A.45B.42C.25D.224.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.205.将函数()sin(0)3f x x πωω=+>的图像向左平移2π个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.126.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.237.函数()(33)cos x x f x x -=-在区间[2π-,2π的图像大致为()A.B.C.D.8.当1x =时,函数()bf x alnx x =+取得最大值2-,则f '(2)(=)A.1-B.12-C.12D.19.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则()A.2AB AD=B.AB 与平面11AB C D 所成的角为30︒C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若2S S =甲乙,则(VV =甲乙)B.D.411.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,1A ,2A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y +=B.22198x y +=C.22132x y +=D.2212x y +=12.已知910m =,1011m a =-,89m b =-,则()A.0a b>>B.0a b >>C.0b a >>D.0b a>>二、填空题:本题共4小题,每小题5分,共20分。
四川省2024年高考文科数学真题及参考答案
四川省2024年高考文科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4B.{}3,2,1 C.{}4,3D.{}9,2,12.设z =,则z z ⋅=()A.i-B.1C.1-D.23.若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,则5z x y =-的最小值为()A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()10,4F 、()20,4F -,且经过点()6,4P -,则双曲线C 的离心率是()A.4B.3C.2D.27.曲线()136-+=x x x f 在()0,1-处的切线与坐标轴围成的面积为()A.61B.2C.12D.23-8.函数()()2e esin xxf x x x -=-+-在区间[]8.2,8.2-的大致图像为()9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.132+B.1-C.23D.31-10.已知直线02=-++a y ax 与圆01422=-++y y x C :交于B A ,两点,则AB 的最小值为()A.2B.3C.4D.611.已知m 、n 是两条不同的直线,α、β是两个不同的平面,且m =βα .下列四个命题:①若m n ∥,则n α∥或n β∥;②若m n ⊥,则n α⊥,β⊥n ;③若n α∥且n β∥,则m n ∥;④若n 与α和β所成的角相等,则m n ⊥,其中所有真命题的编号是()A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=()A.13B.13C.2D.13二、填空题:本题共4小题,每小题5分,共20分.13.函数()sin f x x x =-在[]0,π上的最大值是______.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为()122r r -,()123r r -,则圆台甲与乙的体积之比为.15.已知1a >,8115log log 42a a -=-,则a =______.16.曲线33y x x =-与()21y x a =--+在()0,+∞上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.18.(12分)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率5.0=p .设p 为升级改造后抽取的n 件产品的优级品率.如果()np p p p -+>165.1,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为产品线智能化升级改造后,该工厂产品的优级品率提高了?(247.12150≈)19.(12分)如图,在以F E D C B A ,,,,,为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,4,=AD AD EF AD BC ,∥∥,2===EF BC AB ,且10=ED ,32=FB ,M 为AD 的中点.(1)证明:∥BM 平面CDE ;(2)求点M 到ABF 的距离.20.(12分)已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立.21.(12分)已知椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)过点()0,4P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与直线MF 交于Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若2AB =,求a 的值.23.[选修4-5:不等式选讲](10分)实数a ,b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案一、选择题1.A 解析:由题意可得{}843210,,,,,=B ,∴{}4,3,2,1=B A .2.D解析:∵i z 2=,∴i z 2-=,∴222=-=⋅i z z .3.D 解析:实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,作出可行域如图:由y x z 5-=可得z x y 5151-=,即z 的几何意义为z x y 5151-=的截距的51-,则该直线截距取最大值时,z 有最小值,此时直线z x y 5151-=过点A,联立⎩⎨⎧=-+=--09620334y x y x ,解得⎪⎩⎪⎨⎧==123y x ,即⎪⎭⎫ ⎝⎛1,23A ,则271523min -=⨯-=z .4.D解析:法一:利用等差数列的基本量由19=S ,根据等差数列的求和公式1289919=⨯+=d a S ,整理得13691=+d a ,又()92369928262111173=+=+=+++=+d a d a d a d a a a .法二:特殊值法不妨取等差数列公差0=d ,则有1991a S ==,∴911=a ,故有922173==+a a a .5.B解析:当甲排在排尾,乙排在第一位,丙有2种排法,丁有1种排法,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁有1种排法,共2种;于是甲排在排尾共4种方法,同理,乙排在排尾共4种排法,于是共8种排法,基本事件总数显然是2444=A ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为31248=.6.C解析:由题意,()4,01F ,()402-,F ,()4,6-P,则()()6446,10446,8222222121=-+==++===PF PF c F F ,则4610221=-=-=PF PF a ,24822===a c e .7.A解析:()365+='x x f ,则()30='f ,∴该切线方程为x y 31=-,即13+=x y ,令0=x ,则1=y ,令0=y ,则31-=x ,故该切线与两坐标轴所围成的三角形面积6131121=-⨯⨯=S .8.B解析:()()()()()x f x e e x x e ex x f x x x x=-+-=--+-=---sin sin 22,又函数定义域为[]8.2,8.2-,故函数为偶函数,可排除A,C,又()021*******sin 111sin 111>->--=⎪⎭⎫ ⎝⎛-+->⎪⎭⎫ ⎝⎛-+-=e e e e e e e f π,故排除D.9.B 解析:∵cos cos sin ααα=-,∴3tan 11=-α,解得331tan -=α,∴132tan 11tan 4tan -=-+=⎪⎭⎫ ⎝⎛+ααπα.10.C 解析:由题意可得圆的标准方程为:()5222=++y x ,∴圆心()20-,C ,半径为5,直线02=-++a y ax 可化为()()021=++-y x a ,∴直线过定点()21-,D ,当AB CD ⊥时,AB 最小,易得1=CD ,故()415222=-⨯=AB .11.A 解析:对①,当α⊂n ,∵n m ∥,β⊂n ,则β∥n ,当β⊂n ,∵n m ∥,α⊂m ,则α∥n ,当n 既不在α也不在β内,∵n m ∥,βα⊂⊂m m ,,则α∥n 且β∥n ,故①正确;对②,若n m ⊥,则n 与βα,不一定垂直,故②错误;对③,过直线n 分别作两平面与βα,分别相交于直线s 和直线t ,∵α∥n ,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知s n ∥,同理可得t n ∥,则t s ∥,∵⊄s 平面β,⊂t 平面β,则∥s 平面β,∵⊂s 平面α,m =βα ,则m s ∥,又∵s n ∥,则n m ∥,故③正确;对④,若m =βα ,n 与βα,所成的角相等,如果βα∥,∥n n ,则n m ∥,故④错误;综上,①③正确.12.C 解析:∵3π=B ,294b ac =,则由正弦定理得31sin 94sin sin 2==B C A .由余弦定理可得:ac ac c a b 49222=-+=,即ac c a 41322=+,根据正弦定理得1213sin sin 413sin sin 22==+C A C A ,∴()47sin sin 2sin sin sin sin 222=++=+C A C A C A ,∵A,C 为三角形内角,则0sin sin >+C A ,则27sin sin =+C A .二、填空题13.2解析:()⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=-=3sin 2cos 23sin 212cos 3sin πx x x x x x f ,当[]π,0∈x 时,⎥⎦⎤⎢⎣⎡-∈-32,33πππx ,当23ππ=-x 时,即65π=x 时()2max =x f .14.46解析:由题可得两个圆台的高分别为:()[]()()1221221232r r r r r r h -=---=甲,()[]())12212212223r r r r r r h -=---=乙∴()()()()462233131121212121212=--==++++=r r r r h h h S S S S h S S S S V V 乙甲乙甲乙甲.15.64解析:由25log 21log 34log 1log 1228-=-=-a a a a ,整理得()06log 5log 222=--a a ,可得1log 2-=a 或6log 2=a ,又1>a ,∴6log 2=a ,∴6426==a .16.()1,2-解析:令()a x x x +--=-2313,即1523+-+=x x x a ,令()()01523>+-+=x x x x x g ,则()()()1535232-+=-+='x x x x x g ,令()()00>='x x g 得1=x ,当()1,0∈x 时,()0<'x g ,()x g 单调递减;当()+∞∈,1x 时,()0>'x g ,()x g 单调递增,()()21,10-==g g ,∵曲线x x y 33-=与()a x y +--=21在()∞+,0上有两个不同的交点,∴等价于a y =与()x g 有两个交点,∴()1,2-∈a .三、解答题17.解:(1)∵3321-=+n n a S ,∴33221-=++n n a S ,两式相减可得121332+++-=n n n a a a ,即1253++=n n a a ,∴等比数列{}n a 的公比35=q ,当1=n 时有35332121-=-=a a S ,∴11=a ,∴135-⎪⎭⎫⎝⎛=n n a .(2)由等比数列求和公式得2335233513511-⎪⎭⎫ ⎝⎛=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯=nn n S ,∴数列{}n S 的前n 项和nS S S S T nn n 23353535352332321-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=++++= 4152335415233513513523--⎪⎭⎫ ⎝⎛⋅=--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅⋅=n n n n.18.解:(1)根据题意可得列联表:可得()6875.416755496100507024302615022==⨯⨯⨯⨯-⨯⨯=K ,∵635.66875.4841.3<<,∴有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲、乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为64.015096=,用频率估计概率可得64.0=p ,又因为升级改造前该工厂产品的优级品率5.0=p ,则()()568.0247.125.065.15.01505.015.065.15.0165.1≈⨯+≈-⨯⨯+=-+n p p p ,可知()np p p p -+>165.1,∴可以认为产品线智能化升级改造后,该工厂产品的优级品率提高了.19.解:(1)∵AD BC ∥,2=EF ,4=AD ,M 为AD 的中点,∴MD BC MD BC =,∥,则四边形BCDM 为平行四边形,∴CD BM ∥,又∵⊄BM 平面CDE ,⊂CD 平面CDE ,∴∥BM 平面CDE .(2)如图所示,作AD BO ⊥交AD 于点O ,连接OF .∵四边形ABCD 为等腰梯形,4,=AD AD BC ∥,2==BC AB ,∴2=CD ,结合(1)可知四边形BCDM 为平行四边形,可得2==CD BM ,又2=AM ,∴ABM ∆为等边三角形,O 为AM 的中点,∴3=OB .又∵四边形ADEF 为等腰梯形,M 为AD 中点,∴MD EF MD EF ∥,=,四边形EFMD 为平行四边形,AF ED FM ==,∴AFM ∆为等腰三角形,ABM ∆与AFM ∆底边上中点O 重合,3,22=-=⊥AO AF OF AM OF ,∵222BF OFOB =+,∴OF OB ⊥,∴OF OD OB ,,互相垂直,由等体积法可得ABM F ABF M V V --=,233243213121312=⋅⋅⋅⋅=⋅⋅⋅=∆-FO S V ABM ABM F ,由余弦定理,()()10212102322102cos 222222=⋅⋅-+=⋅-+=∠ABF A FB AB F A F AB ,∴10239cos 1sin 2=∠-=∠F AB F AB .则2391023921021sin 21=⋅⋅⋅=∠⋅⋅=∆F AB AB F A S F AB ,设点M 到面ABF 的距离为d ,则有232393131=⋅⋅=⋅⋅==∆--d d S V V F AB ABM F ABF M ,解得13133=d ,即点M 到面ABF 的距离为13133.20.解:(1)由题意可得()x f 定义域为()∞+,0,()xax x a x f 11-=-=',当0≤a 时,()0<'x f ,故()x f 在()∞+,0上单调递减;当0>a 时,令()0='x f ,解得ax 1=,当⎪⎭⎫⎝⎛+∞∈,1a x 时,()0>'x f ,()x f 单调递增;当⎪⎭⎫⎝⎛∈a x 1,0时,()0<'x f ,()x f 单调递减;综上所述:当0≤a 时,()x f 在()∞+,0上单调递减;当0>a 时,()x f 在⎪⎭⎫⎝⎛+∞,1a 上单调递增,在⎪⎭⎫⎝⎛a 1,0上单调递减.(2)当2≤a 且1>x 时,()()x x e x x a e x f ex x x ln 121ln 1111+++≥-+--=----,令()()1ln 121>++-=-x x x ex g x ,则()()1121>+-='-x xe x g x ,令()()x g x h '=,则()()1121>-='-x xex h x ,显然()x h '在()∞+,1上单调递增,则()()0110=-='>'e h x h ,因()()x h x g =',则()x g '在()∞+,1上单调递增,故()()01210=+-='>'e g x g ,即()x g 在()∞+,1上单调递增,故()()01ln 1210=++-=>e g x g ,即()()()01ln 111>≥-+--=---x g x x a e x f ex x ,∴当1>x 时,()1-<x ex f 恒成立.21.解:(1)设()0,c F ,由题设有1=c ,且232=a b ,故2312=-a a ,解得2=a ,故3=b ,故椭圆方程为:13422=+y x .(2)由题意知,直线AB 额斜率一定存在,设为k ,设()()()2211,,,,4:y x B y x A x k y AB -=,由()⎪⎩⎪⎨⎧-==+413422x k y y x 可得()0126432432222=-+-+k x k x k ,∵()()012644341024224>-+-=∆kkk ,∴2121<<-k ,由韦达定理可得22212221431264,4332kk x x k k x x +-=+=+,∵⎪⎭⎫ ⎝⎛0,25N ,∴直线⎪⎭⎫ ⎝⎛--=252522x x y y BN :,故52325232222--=--=x y x y y Q,∴()()()()524352452352523222122212211--+-⋅-=-+-=-+=-x x k x x k x y x y x y y y y Q()0528433254312642528522222222121=-++⨯-+-⨯=-++-=x k k k k k x x x x x k 故Q y y =1,即AQ y ⊥轴.22.解:(1)由1cos +=θρρ,将⎪⎩⎪⎨⎧=+=xy x θρρcos 22代入1cos +=θρρ,可得122+=+x y x ,两边平方后可得曲线的直角坐标方程为122+=x y .(2)对于直线l 的参数方程消去参数t ,得直线的普通方程为a x y +=.法一:直线l 的斜率为1,故倾斜角为4π,故直线的参数方程可设为⎪⎪⎩⎪⎪⎨⎧+==s a y s x 2222,R s ∈.将其代入122+=x y 中得)()01212222=-+-+a s a s .设B A ,两点对应的参数分别为21,s s ,则()()12,12222121-=--=+a s s a s s ,且()()01616181822>-=---=∆a a a ,故1<a ,∴()()()218184222122121=---=-+=-=a a s s s s s s AB ,解得43=a .法二:联立⎩⎨⎧+=+=122x y ax y ,得()012222=-+-+a x a x ,()()088142222>+-=---=∆a a a ,解得1<a ,设()()2211,,,y x B y x A ,∴1,2222121-=-=+a x x a x x ,则()()()21422241122212212=---⋅=-+⋅+=a a x x x x AB ,解得43=a .23.解:(1)∵()()0222222222≥-=+-=+-+b a b ab a b a b a ,当b a =时等号成立,则()22222b a b a +≥+,∵3≥+b a ,∴()b a b a b a +>+≥+22222.(2)()b a b a a b b a ab b a +-+=-+-≥-+-222222222222()()()()()623122222=⨯≥-++=+-+≥+-+=b a b a b a b a b a b a .。
高考文科数学全国3卷试题及答案(Word版)(20200618130547)
( C)三月和十一月的平均最高气温基本相同
( D)平均最高气温高于 20℃的月份有 5 个
( 5)小敏打开计算机时 , 忘记了开机密码的前两位 , 只记得第一位是 M, I,N 中的一个字
母 , 第二位是 1,2,3,4,5 中的一个数字 , 则小敏输入一次密码能够成功开机的概率是
8
1
1
1
( A) 15 ( B) 8 ( C) 15 ( D) 30
.
所以预测 2016 年我国生活垃圾无害化处理量将约 1.82 亿吨 . .........12 分
19 、(Ⅰ) 由已知得
, 学 .科网取 的中点 , 连接
,由 为
中点知
,
. ......3 分
又
, 故 平行且等于
, 四边形
为平行四边形 , 于是
.
因为
平面
,
平面
, 所以
平面
. ........6 分
(II )证明当 x (1, ) 时 , 1 x 1 x ; ln x
(III )设 c
1 , 证明当 x
(0,1)时 , 1 (c 1)x
x
c.
请考生在 22、23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分 , (22)(本小题满分 10 分)选修 4— 1:几何证明选讲
如图 , ⊙ O 中 的中点为 P, 弦 PC, PD 分别交 AB 于 E, F 两点。 (Ⅰ)若∠ PFB =2∠ PCD, 求∠ PCD 的大小; (Ⅱ)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G, 证明 OG ⊥ CD 。 (23)(本小题满分 10 分)选修 4— 4:坐标系与参数方程 在直线坐标系 xoy 中 , 曲线 C1的参数方程为 错误 ! 未找到引用源。 ( 错误 ! 未找到引用源。 为参数) 。以坐标原点为极点 , x 轴正半轴为极轴 , 建立极 坐标系 , 曲线 C2 的极坐标方程为 ρsin (错误 ! 未找到引用源。 ) =错误 !未找到引用源。 . (I )写出 C1 的普通方程和 C2 的直角坐标方程; (II )设点 P 在 C1 上, 点 Q 在 C2 上 , 求∣ PQ ∣的最小值及此时 P 的直角坐标 . (24)(本小题满分 10 分) , 选修 4—5:不等式选讲 已知函数 f(x)=∣ 2x-a∣ +a. (I )当 a= 2 时 , 求不等式 f(x)≤6 的解集; (II )设函数 g(x)=∣ 2x-1∣ .当 x∈ R 时 , f( x)+g(x)≥ 3, 求 a 的取值范围。
高考数学试卷文科及答案
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的字母填在题后的括号内。
)1. 已知函数f(x) = x^3 - 3x,若f(x)的图象关于点(0, -1)对称,则f(1)的值为:A. -1B. 1C. 3D. -32. 下列各式中,正确的是:A. log2(3) > log3(2)B. sin(π/2) = 1C. 2^0 = 1D. √(9) = 33. 若等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 50,则公差d为:A. 5B. 4C. 3D. 24. 已知圆C的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆C的半径为:A. 2B. 3C. 4D. 55. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象开口向上,且f(1) = 2,f(2) = 4,则a的值为:A. 1B. 2C. 0.5D. -16. 已知向量a = (1, 2),向量b = (2, 3),则向量a·b的值为:A. 5B. 4C. 3D. 27. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,则cosA的值为:A. 1/2B. 1/3C. 1/4D. 1/58. 下列函数中,在区间(0, +∞)上单调递增的是:A. f(x) = x^2B. f(x) = 2^xC. f(x) = log2xD. f(x) = e^x9. 若等比数列{an}的前n项和为Sn,且a1 = 1,S3 = 8,则公比q为:A. 2B. 1/2C. 4D. 1/410. 已知函数f(x) = x^3 - 3x^2 + 2x,若f(x)的图象在区间(0, 2)上单调递增,则f(2)的值为:A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,每小题5分,共25分。
高考文科数学试卷带答案
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x - 3在定义域上的最大值为:A. 1B. 2C. 3D. 42. 已知等差数列{an}的前三项分别为1, 3, 5,则该数列的公差为:A. 1B. 2C. 3D. 43. 下列命题中正确的是:A. 平方根和算术平方根都是非负数B. 所有有理数的平方根都是实数C. 所有实数的平方根都是实数D. 所有无理数的平方根都是实数4. 下列函数中,y = ax² + bx + c(a ≠ 0)的图像开口向上的是:A. a = 1, b = 2, c = 3B. a = -1, b = -2, c = 3C. a = 1, b = -2, c = -3D. a = -1, b = 2, c = -35. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点位于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则下列等式中正确的是:A. a² + b² = c²B. b² + c² = a²C. a² + c² = b²D. a² + b² + c² = 07. 下列不等式中,恒成立的是:A. x² > 0B. x³ > 0C. x² > 1D. x³ > 18. 若函数y = f(x)的图像与直线y = kx(k ≠ 0)有唯一交点,则函数f(x)的图像可能是:A. 单调递增函数B. 单调递减函数C. 周期函数D. 反比例函数9. 下列事件中,属于随机事件的是:A. 抛掷一枚硬币,正面朝上B. 抛掷一枚骰子,得到6C. 抛掷一枚骰子,得到偶数D. 抛掷一枚骰子,得到奇数10. 下列命题中,正确的是:A. 对于任意实数x,x² ≥ 0B. 对于任意实数x,x³ ≥ 0C. 对于任意实数x,x² = 0D. 对于任意实数x,x³ = 011. 若等比数列{an}的前三项分别为a₁, a₂, a₃,且a₁ + a₂ + a₃ = 6,a₁a₂a₃ = 8,则该数列的公比为:A. 2B. 4C. 8D. 1612. 下列函数中,y = f(x)的图像为一条直线的是:A. y = x²B. y = 2x + 1C. y = 3x - 2D. y = x³二、填空题(本大题共8小题,每小题5分,共40分。
2023年高考文科数学(全国乙卷)及答案
2023年高考文科数学试卷(全国乙卷)一、选择题1.232i 2i ++=()A.1B.2C.D.52.设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B.26C.28D.304.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A.10π B.5π C.310π D.25π5.已知e ()e 1xaxx f x =-是偶函数,则=a ()A.2- B.1- C.1 D.26.正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A.B.3C. D.57.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.128.函数()32f x x ax =++存在3个零点,则a 的取值范围是()A.(),2-∞- B.(),3-∞- C.()4,1-- D.()3,0-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.1310.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32B.12-C.12D.3211.已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A.3212+B.4C.1+D.712.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14.若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=________.15.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.16.已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P ABC 的体积.20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,f x 处的切线方程.(2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+-(1)求不等式()6x f x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+-≤⎩所确定的平面区域的面积.2023年高考文科数学试卷(全国乙卷)答案一、选择题【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】D【11题答案】【答案】C【12题答案】【答案】D二、填空题【13题答案】【答案】94【14题答案】【答案】5-【15题答案】【答案】8【16题答案】【答案】2三、解答题【17题答案】【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【18题答案】【答案】(1)152n a n=-(2)2214,71498,8n n n n T n n n ⎧-≤=⎨-+≥⎩【19题答案】【答案】(1)证明见解析(2)3【20题答案】【答案】(1)()ln 2ln 20x y +-=;(2)1|2a a ⎧⎫≥⎨⎬⎩⎭.【21题答案】【答案】(1)22194y x +=(2)证明见详解【选修4-4】(10分)【22题答案】【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【选修4-5】(10分)【23题答案】【答案】(1)[2,2]-;(2)6.。
高考数学(文科)试题及答案
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
高考教学全国3卷文科数学带答案
2021年普通高等学校招生全国统一考试文科数学本卷须知:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,答复非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:此题共 12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.集合 Ax|x1≥0,B0,1,2,那么AIBA .0B .1C .1,2D .0,1,22.1i2iA . 3 iB . 3iC .3iD .3i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出局部叫棒头,凹进局部叫卯眼,图中木构件右边的小长方体是棒头.假设如图摆放的木构件与某一带卯眼的木构件咬合成长方体,那么咬合时带卯眼的木构件的俯视图可以是4.假设sin1,那么cos23A .8B .7C .7 D . 89 9995.假设某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,那么不用现金支付的概率为A .B .C .D .6.函数fxtanx 的最小正周期为tan 21 xA .πB .πC .πD .2π427.以下函数中,其图像与函数ylnx的图像关于直线x1对称的是A.yln1x B.yln2x C.yln1x D.yln2x8.直线xy20分别与x轴,y轴交于A,B两点,点P在圆x22上,那么ABP面积的2y2取值范围是A.2,6B.4,8C.2,32D.22,32 9.函数y x4x22的图像大致为10.双曲线x2y224,0C:a2b21〔a0,b0〕的离心率为,那么点到C的渐近线的距离为A.2B.2C.32D.22 211.ABC的内角A,B,C的对边分别为a,b,c.假设ABC的面积为a2b2c2,那么C4A.πB.πC.πD.π234612.设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为93,那么三棱锥D ABC体积的最大值为A.123B.183C.243D.543二、填空题:此题共4小题,每题5分,共20分。
高三文科数学试卷带答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3/5C. √9/16D. √2答案:D解析:无理数是不能表示为两个整数比的实数,只有√2是无理数。
2. 函数y=2x+1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数答案:A解析:函数的斜率为正,所以是增函数。
3. 已知向量a=(2, -3),向量b=(4, 6),则向量a与向量b的夹角是()A. 0°B. 90°C. 180°D. 120°答案:D解析:向量a与向量b的点积为24 + (-3)6 = -12,向量a的模长为√(2^2 + (-3)^2) = √13,向量b的模长为√(4^2 + 6^2) = √52。
点积公式为a·b =|a||b|cosθ,所以cosθ = -12/(√13√52) ≈ -0.5,夹角θ ≈ 120°。
4. 已知函数f(x) = x^2 - 4x + 3,其对称轴是()A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:二次函数的对称轴为x = -b/2a,所以对称轴为x = -(-4)/21 = 2。
5. 已知等差数列{an}的第一项为2,公差为3,则第10项是()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,所以第10项为2 + (10-1)3 = 2 + 27 = 29。
6. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示z到点1和点-1的距离相等,因此z在实轴上。
7. 已知圆C的方程为x^2 + y^2 = 25,点P(3, 4)到圆C的最短距离是()A. 4B. 5C. 6D. 7答案:B解析:圆心到点P的距离为√(3^2 + 4^2) = 5,圆的半径为5,所以最短距离为5 - 5 = 0。
高考数学试卷文科含答案
考试时间:120分钟总分:150分一、选择题(每题5分,共50分)1. 下列函数中,定义域为全体实数的是()。
A. y = √(x - 1)B. y = |x|C. y = 1/xD. y = x^2 - 42. 已知等差数列{an}的前n项和为Sn,且S5 = 50,S9 = 90,则数列的公差d为()。
A. 2B. 3C. 4D. 53. 函数y = log2(x - 1)的图象上,过点(3, 2)的切线斜率为()。
A. 1B. 2C. 3D. 44. 在△ABC中,∠A = 60°,∠B = 45°,若BC = 6,则AC的长为()。
A. 2√3B. 4√3C. 6√3D. 8√35. 已知复数z = 1 + i,则|z - 2i|^2的值为()。
B. 4C. 6D. 86. 下列命题中,正确的是()。
A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 二项式定理的通项公式为C(n, k) a^(n-k) b^kD. 对称轴为x = a的抛物线方程为y = ax^27. 已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,则数列的通项公式an为()。
A. an = 2n - 1B. an = 2nC. an = nD. an = n + 18. 函数y = e^x在定义域内的单调性为()。
A. 单调递增B. 单调递减C. 先增后减D. 先减后增9. 在△ABC中,∠A = 90°,AB = 6,AC = 8,则BC的长为()。
A. 10B. 8C. 610. 下列函数中,为奇函数的是()。
A. y = x^2B. y = |x|C. y = x^3D. y = 1/x二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an = ________。
2022年全国高考甲卷数学(文)试题(解析版)
2022年普通高等学校招生全国统一考试(全国甲卷文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎩⎭∣,则A B = ()A.{}0,1,2 B.{2,1,0}-- C.{0,1}D.{1,2}【答案】A 【解析】【分析】根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3.若1i z =+.则|i 3|z z +=()A. B. C. D.【答案】D 【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B.5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω的最小值为13.故选:C.6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15 B.13C.25D.23【答案】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A.1-B.12-C.12D.1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则()A.2AB AD =B.AB 与平面11AB C D 所成的角为30°C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D== ,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan 2c BAE a ∠==,所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.5104【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高13h ==,乙圆锥的高23h ==,所以22112221453931122393r h l V V r h ππ⨯==甲乙.故选:C.11.已知椭圆2222:1(0)x y C a a b+=>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y += B.22198x y += C.22132x y += D.2212x y +=【答案】B 【解析】【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B.12.已知910,1011,89m m m a b ==-=-,则()A.0a b >>B.0a b >> C.0b a >> D.0b a>>【答案】A 【解析】【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【答案】34-##0.75-【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.14.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y -++=【解析】【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=15.记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求的e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==≤c e a又因为1e >,所以1e <≤,故答案为:2(满足1e <≤皆可)16.已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.【答案】1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥--,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m=.1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k 0.1000.0500.010k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算2K ,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A 共有班次260次,准点班次有240次,设A 家公司长途客车准点事件为M ,则24012()26013==P M ;B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N ,则210()27840==P N .A 家公司长途客车准点的概率为1213;B 家公司长途客车准点的概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.18.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析;(2)78-.【解析】【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n +-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 的中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,即可知四边形EMNF //EF MN ,最后根据线面平行的判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍,即可解出.【小问1详解】如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =(2143V =⨯⨯⨯==.20.已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =-,求a ;(2)求a 的取值范围.【答案】(1)3(2)[)1,-+∞【解析】【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭0()0,11()1,+∞()h x '-+0-+()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.21.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.【答案】(1)24y x =;(2):4AB x =+.【解析】【分析】(1)由抛物线的定义可得=2pMF p +,即可得解;(2)设点的坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角的正切公式及基本不等式可得2AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 的方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 12tan 11tan tan 1242k k k k αβαβαβ--===≤+++,当且仅当12k k =即2k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【答案】(1)()2620y x y =-≥;(2)31,C C 的交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 的交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 的普通方程;(2)将曲线23,C C 的方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23.已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。
全国高考文科全国卷数学试题及答案
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案) (3)
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B 中元素的个数为A. 2B. 3C. 4D. 52. 若(1)1z i i +=-,则z = A. 1i - B. 1i + C.i - D.i3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为 A .0.01 B .0.1 C .1 D .104. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t KI t e--=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(In19≈3) A.60 B.63 C.66 D.695.已知sin sin()13πθθ++=,则sin()6πθ+= A.12C.23D.26.在平面内,,A B 是两个定点,C 是动点,若1AC BC ⋅=,则点C 的轨迹为 A. 圆 B. 椭圆 C. 抛物线 D. 直线7.设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于,D E 两点,若OD OE ⊥,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)8.点(0,1)-到直线(1)y k x =+距离的最大值为 A .1 B .2 C .3 D .29.右图为某几何体的三视图,则该几何体的表面积是A. 6+42B. 4+42C. 6+23D. 4+2310.设3log 2a =,5log 3b =,23c =,则 A .a c b << B.a b c << C. b c a << D. c a b <<11. 在ABC ∆中,2cos 3C =,4,3AC BC ==,则tan B =12. 已知函数1()sin sin f x x x=+,则 A. ()f x 的最小值为2B. ()f x 的图像关于y 轴对称C. ()f x 的图像关于直线x π=对称D. ()f x 的图像关于直线2x π=对称二、填空题:本题共4小题,每小题5分,共20分。
(版)高考全国3卷文科数学与答案
绝密★启用前2021年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
考前须知:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项是符合题目要求的。
1.集合 A { 1,0,1,2},B {xx21},那么ABA. 1,0,1 B. 0,1 C. 1,1 D. 0,1,22.假设z(1 i) 2i,那么z=A.1 i B.1+i C.1 i D. 1+i3.两位男同学和两位女同学随机排成一列,那么两位女同学相邻的概率是1 1 1 1A. B. C.D.6 4 3 24.?西游记??三国演义??水浒传?和?红楼梦?是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过?西游记?或?红楼梦?的学生共有90位,阅读过?红楼梦?的学生共有80位,阅读过?西游记?且阅读过?红楼梦?的学生共有60位,那么该校阅读过?西游记?的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.函数 f(x) 2sinxsin2x 在[0,2π]的零点个数为A.2B.3C.4D.56.各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,那么a3=A.16B.8C.4D.27x1aey=2x+b.曲线y ae xlnx在点〔,〕处的切线方程为,那么-1,b=1D.a=e-1,A.a=e,b=-1B.a=e,b=1C.a=e b1文科数学试题第1页〔共9页〕8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,那么A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线为,那么输出s的值等于9.执行下边的程序框图,如果输入的1A.2241B.2251C.2261D.22710.F是双曲线C:x2y21的一个焦点,点P在C上,O为坐标原点,假设OP=OF,45那么△OPF的面积为3579A.B.C.D .222211.记不等式组xy?6,表示的平面区域为D.命题p:(x,y)D,2xy?9;命题2x y0q:(x,y)D,2x y,12.下面给出了四个命题①pq②pq③pq④p q这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④12.设fx是定义域为R的偶函数,且在0, 单调递减,那么132A.f〔log32〕>f〔23〕B.f〔log3〕>f〔2423〕>f〔23〕>f〔22〕3C.f〔22223〕>f〔23〕>f〔log31〕D.f〔23〕>f〔22〕>f〔log31〕44文科数学试题第2页〔共9页〕二、填空题:此题共4小题,每题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,若函数 y= g
( x) +2x﹣ b 有 2 个零点,则 b 的取值范围是(
)
A.( 1, 2]
B. [2 , 4)
C.(﹣∞, 4]
D.[4 , +∞)
11.已知函数 f ( x)= sin (ω x+ ) + (ω> 0), x∈ R,且 f (α)=﹣ , f (β)= .若 | α﹣
β | 的最小值为 ,则函数 f ( x)的单调递增区间为(
.
15.已知三棱锥 P﹣ ABC的外接球的球心 O在 AB上,若三棱锥 P﹣ ABC的体积为
,PA= PB=AC= BC,
∠ POC= 120°,则球 O的表面积为
.
16.已知 O为坐标原点, F 为抛物线 C:y2= 2x 的焦点,直线 l : y= m( 2x﹣ 1)与抛物线 C交于 A,B 两点,
)
A. [2 kπ﹣ , 2kπ + ] ( k∈Z)
B. [ kπ﹣ , kπ+ ] ( k∈ Z)
C. [2 kπ + ,2kπ + ] ( k∈ Z)
D. [ kπ﹣ , kx+ ] ( k∈ Z)
12.已知函数 f ( x)=( x2﹣ a) e﹣x 的图象过点(
,0),若函数 f (x)在( m, m+1)上是增函数,则
程为(
)
A. x2﹣ = 1
B. x2﹣4y2= 2
C. x2﹣ =1
D.x2﹣ 2y2= 1
5.已知 x, y 满足不等式组
,则 z=3x﹣ 2y 的最小值为(
)
A.
B.﹣
C. 2
D.﹣ 2
6.已知△ ABC的面积为 ,且 AB=2, AC= 3, A 为钝角,则 BC=( )
A.
B. 4
C.
D.5
(Ⅰ)求数列 { an} 的通项公式;
(Ⅱ)当 n 为何值时,数列 { an} 的前 n 项和最大?
18.在三棱锥 P﹣ABC中,△ PAC和△ PBC是边长为 的等边三角形, AB= 2,O,D分别是 AB, PB的中点.
(Ⅰ)求证: OD∥平面 PAC;
(Ⅱ)求证: OP⊥平面 ABC;
(Ⅲ)求三棱锥 D﹣ OBC的体积.
0.01 的前提下,认为“该学校学生的考前焦虑
(Ⅱ)若从考前心情正常的学生中按性别用分层抽样的方法抽取
7 人,再从被抽取的 7 人中随机抽取 2
页
3第
人,求这两人中有女生的概率.
附: K2=
, n=a+b+c+d.
P( K2≥ k0)
0.25
0.15
0.10
0.05
K0
1.323
2.072
2.706
3.841
0.025 5.024
0.010 6.635
20.已知椭圆 C: + = 1( a> b> 0)的离心率为
,焦距为 2c,直线 bx﹣ y+ a= 0 过椭圆的左焦
点. (Ⅰ)求椭圆 C的标准方程; (Ⅱ)若直线 bx﹣ y+2c= 0 与 y 轴交于点 P, A, B是椭圆 C上的两个动点,∠ APB的平分线在 y 轴上, | PA| ≠ | PB| .试判断直线 AB是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由. 21.已知函数 f ( x)=( a﹣ ) x2+lnx ( a∈ R)
( 1)当 a= 1 时,求 f (x)在区间 [1 , e] 上的最大值和最小值;
( 2)证明:当
时,在区间( 1, +∞)上,不等式 f (x)< 2ax 恒成立.
[ 选修 4 一 4:坐标系与参数方程 ] 22.在直角坐标系 xOy 中,以原点 O为极点, x 轴的正半轴为极轴,建立极坐标系,椭圆
点 A在第一象限,若 | AF| = 2| BF| ,则 m的值为
.
三、解答题:共 70 分 . 解答应写出文字说明、证明过程或演算步骤 . 第 17~ 21 题为必考题,每个试题考生
都必须作答 . 第 22、23 题为选考题,考生根据要求作答 .
17.已知等差数列 { an} 的前 n 项和为 Sn.且 a1= 17, 2a2﹣ a1= 11.
A. 1+2i
B. 1﹣2i
C.﹣ 1+2i
3.甲、乙两名学生在之前五次物理测试中成绩的茎叶图,如图,(
①甲的平均成绩低,方差较大
②甲的平均成绩低,方差较小
③乙的平均成绩高,方差较大
④乙的平均成绩高,方差较小
D.﹣ 1﹣ 2i )
A.①④
B.②③
C.①③
D.③④
4.已知双曲线中心为原点,焦点在 x 轴上,过点( , 2),且渐近线方程为 y=± 2x,则该双曲线的方
7.若非零向量 , 满足 | | = | | ,且( + )⊥( 3 ﹣ 2 ),则 与 的夹角为(
)
A.
B.
C.
D.
8.如图所示的程序框图,若输入 m=10,则输出的 S 值为(
)
页
1第
A. 10
B. 21
C. 33
D.47
9.某几何体的三视图如图所示,则该几何体的体积为(
)
A.
B.
C.
D.
10.已知函数 f ( x)是奇函数,且 x≥ 0 时, f ( x)= 2x+x+a, g( x)=
19.高考的成绩不仅需要平时的积累,还与考试时的状态有关系.为了了解考前学生的紧张程度与性别是 否有关系,现随机抽取某校 500 名学生进行了调查,结果如表所示:
心情
男
性别
女
总计
正常
30
40
70
焦虑
270
160
430
总计
300
200
500
(Ⅰ)根据该校调查数据,能否在犯错误的概率不超过 情况与性别有关”?
实数 m的取值范围为(
)
A. [ ﹣ 1, 2]
B. [2 , +∞)
C. [0 , +∞)
D.(﹣∞,﹣ 1] ∪ [2 , +∞)
二、填空题:本题共 4 小题,每小题 5 分,共 20 分 .
页
2第
13.若 sin (π +α)= ,则 cos2 α=
.
14.已知直线 l : x﹣ y﹣ 2=0 与圆( x﹣ 1) 2+( y﹣2) 2= 6 相交于 A,B 两点,则线段 AB的长为
C 以极坐标系中
的点( 0,0)为中心、点( 1,0)为焦点、( , 0)为一个顶点.直线 l
一、选择题(本题共 12 个小题)
1.已知集合 A= { x| x+3> 0} , B= { y| y= log 3x, x< 3} ,则 A∩ B=( )
A.(﹣ 3, 1)
B.(﹣∞, 0]
C.(﹣∞, 0)
D.( 1, +∞)
2.复数 z= 2+ai ( a< 0)满足 | z| = ,则 =( )