热力学统计物理_第5章
《热力学与统计物理》第四版(汪志诚)课后题答案
若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。
热力学统计物理_第五版_汪志诚_完整ppt课件
t 0C
T K
273.15
国际通 用
t 0F
9 5
T 459.67 K
英美等 国使用
TR 1.8T
英美等 国使用
2021/7/27
精选ppt
30
§1.3 物态方程
物态方程
简单系统平衡态 T T (p ,V )或 f(T ,p ,V ) 0
把处于平衡态的某种物质的热力学参量(如压强、体积、温度)之间 所满足的函数关系称为该物质的物态方程或称状态方程。
在热力学中,物态方程的具体形式一般要由实验来确定。与物态方 程密切相关的几个重要物理量:
1 V
V T p
体胀系数
1 p
p T V
压强系数
T
1 V
V p
T
等温压缩系数
三者关系,由:
2021/7/27
V p T T p V V T 1 =Tp
精选ppt
31
p
b. 理想气体温标:
T ( p) 273.16K lim ptr 0
ptr
首先保持体积不变,有 然后保持温度不变,则
p2'
p2' V1
p1
T2
T1
p2V2
联立,得
p1V1 p2V2
Ctr
T1
T2
273.16K
2021/7/27
精选ppt
33
其中
C tr ptrVtr n ptr Vm,tr
pV Ctr T n ptr Vm,tr T
273.16K
273.16K
c. 阿伏伽德罗定律: 同温同压下,1mol气体的体积相同
令
R ptr Vm,tr
工程热力学 第五章 思考题
工程热力学第五章思考题工程热力学第五章思考题 5-1 热力学第二定律的下列说法能否成立 1功量可以转换成热量但热量不能转换成功量。
答违反热力学第一定律。
功量可以转换成热量热量不能自发转换成功量。
热力学第二定律的开尔文叙述强调的是循环的热机但对于可逆定温过程所吸收的热量可以全部转换为功量与此同时自身状态也发生了变化。
从自发过程是单向发生的经验事实出发补充说明热不能自发转化为功。
2自发过程是不可逆的但非自发过程是可逆的。
答自发过程是不可逆的但非自发过程不一定是可逆的。
可逆过程的物理意义是一个热力过程进行完了以后如能使热力系沿相同路径逆行而回复至原态且相互作用中所涉及到的外界也回复到原态而不留下任何痕迹则此过程称为可逆过程。
自发过程是不可逆的既不违反热力学第一定律也不违反第二定律。
根据孤立系统熵增原理可逆过程只是理想化极限的概念。
所以非自发过程是可逆的是一种错误的理解。
3从任何具有一定温度的热源取热都能进行热变功的循环。
答违反普朗克-开尔文说法。
从具有一定温度的热源取热才可能进行热变功的循环。
5-2 下列说法是否正确 1系统熵增大的过程必须是不可逆过程。
答系统熵增大的过程不一定是不可逆过程。
只有孤立系统熵增大的过程必是不可逆的过程。
根据孤立系统熵增原理非自发过程发生必有自发补偿过程伴随由自发过程引起的熵增大补偿非自发过程的熵减小总的效果必须使孤立系统上增大或保持。
可逆过程只是理想化极限的概念。
2系统熵减小的过程无法进行。
答系统熵减小的过程可以进行比如系统的理想气体的可逆定温压缩过程系统对外放热熵减小。
3系统熵不变的过程必须是绝热过程。
答可逆绝热过程就是系统熵不变的过程但系统熵不变的过程可能由于熵减恰等于各种原因造成的熵增不一定是可逆绝热过程。
4系统熵增大的过程必然是吸热过程它可能是放热过程吗答因为反应放热所以体系的焓一定减小。
但体系的熵不一定增大因为只要体系和环境的总熵增大反映就能自发进行。
热力学与统计物理学第五章 玻耳兹曼统计
等
能
2m
0
面
px
( ) ... dxdydzdp x dp y dp z dxdydz dp x dp y dp z
H ε
V
H ε
等能面:
p
2 x
p
2 y
p
2 z
2m
2
2m
所以 , ( ε ) V 4 π 2 m ε 3 L 3 4 2 m 3 / 2
3
3
d 能壳之间的相体积等于
最辉煌!
4)导出能量均分理论;
5)最先把热力学原理应用于辐射,导出热辐射定律,
称斯忒藩-波尔兹曼定律; 6)建立了稀薄气体分子的输运方程:玻耳兹曼方程
和H定理。
因此而自杀!
6
科学史话(5) “普朗克定律”(一个现代科学的绊脚石)
其表述如下:“一个新的科学真理照例不能用说服对手,等他们表示意见 说‘得益匪浅’这个办法来实行。恰恰相反,只能是等到对手们渐渐死 亡,使得新的一代开始熟悉真理时才能贯彻。”对普朗克来说,学术争论 没有多少诱惑力,因为他认为它们不能产生什么新东西。 由于上述说法 后来又被学界有重大影响的其他学者,如托马斯·库恩等多次引证,它似 乎成了一条自明的真理。
果真如此吗?如果普朗克所言不虚,那么科学争论在科学思想发展史上 的意义就要大打折扣了。普朗克为人平和、正直,被誉为“学林古柏”, 其高尚的人品是值得人们敬仰的,但并不是他所说的每一句话都是正确 的,哪怕这句话多次被人们引用。
由此可见,玻耳兹曼就是他自己发明的“孤立系统的熵增加
原理”的牺牲品。
7
第五章 玻耳兹曼统计
动机和目的 一、玻耳兹曼统计 二、配分函数技术 三、能量均分定理 四、玻耳兹曼统计的应用
2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案
第一章测试1【多选题】(1分)杨振宁认为中国大学生的学习方法有利有弊,最大的弊端是:A.讲课循序渐进B.他不能对整个物理学,有更高超的看法C.课外活动较少D.它把一个年轻人维持在小孩子的状态,老师要他怎么学,他就怎么学2【多选题】(1分)杨振宁认为“我一生中最重要的一年,不是在美国做研究,而是当时和黄昆同住一舍的时光。
”原因是:A.黄昆会做饭并经常和杨振宁共享B.杨振宁和黄昆都喜欢争论物理问题C.黄昆经常把听课笔记借给杨振宁参考D.黄昆对物理学的理解常常有独到之处,对杨振宁有启发3【多选题】(1分)杨振宁说:“我们学校里有过好几个非常年轻、聪明的学生,其中有一位到我们这儿来请求进研究院,那时他才15岁的样子,后来他到Princeton去了。
我跟他谈话以后,对于他前途的发展觉得不是那么最乐观。
”原因是这位学生:A.学到一些知识,学到一些技术上面的特别的方法,而没有对它的意义有深入的了解和欣赏B.只是学了很多可以考试得该高分的知识,不是真正做学问的精神C.对量子力学知识茫茫一片,不知道哪里更加好玩D.尽管吸收了很多东西,可是没有发展成一个taste4【多选题】(1分)梁启超的“智慧日浚则日出,脑筋日运则日灵”说明如下道理:A.人的智慧需要挖掘才会涌现出来B.大学生一开始接受教育的时候,就要弄清楚事物的本质C.人脑越用会越聪明D.认为初学之人不能穷凡物之理,而这种观点是不对的5【判断题】(1分)因为1=0.999…,所以对任何函数f(x),总有f(1)=f(0.999…)。
A.错B.对6【判断题】(1分)液态的水从100°C下降到0°C的过程中,密度单调下降。
A.对B.错7【判断题】(1分)温度和热是一个概念。
A.对B.错8【判断题】(1分)在冰箱中放一瓶纯净水,这瓶水在零下10°时依然不能结冰。
A.错B.对9【判断题】(1分)理想气体就是满足方程pV=nRT的气体。
A.错B.对10【判断题】(1分)所有相变都类似气液相变或者固液相变,总会有伴随相变潜热。
热力学与统计物理第五章知识总结
热⼒学与统计物理第五章知识总结§5.1 热⼒学量的统计表达式我们根据Bolzman分布推导热⼒学量的统计表达式⼀、配分函数粒⼦的总数为令(1)名为配分函数,则系统的总粒⼦数为(2)⼆、热⼒学量1、内能(是系统中粒⼦⽆规则运动的总能量的统计平均值)由(1)(2)得(3)此即内能的统计表达式2、⼴义⼒,⼴义功由理论⼒学知取⼴义坐标为y时,外界施于处于能级上的⼀个粒⼦的⼒为则外界对整个系统的⼴义作⽤⼒y为(4)此式即⼴义作⽤⼒的统计表达式。
⼀个特例是(5)在⽆穷⼩的准静态过程中,当外参量有dy的改变时,外界对系统所做的功为(6)对内能求全微分,可得(7)(7)式表明,内能的改变分为两项:第⼀项是粒⼦的分布不变时,由于能级的改变⽽引起的内能变化;地⼆项是粒⼦能级不变时,由于粒⼦分布发⽣变化⽽引起的内能变化。
在热⼒学中我们讲过,在⽆穷⼩过程中,系统在过程前后内能的变化dU等于在过程中外界对系统所作的功及系统从外界吸收的热量之和:(8)与(6)(7)式相⽐可知,第⼀项代表在准静态过程中外界对系统所作的功,第⼆项代表在准静态过程中系统从外界吸收的热量。
这就是说,在准静态过程中,系统从外界吸收的热量等于粒⼦在其能级上重新分布所增加的内能。
热量是在热现象中所特有的宏观量,它与内能U和⼴义⼒Y不同。
3、熵1)熵的统计表达式由熵的定义和热⼒学第⼆定律可知(9)由和可得⽤乘上式,得由于引进的配分函数是,的函数。
是y的函数,所以Z是,y的函数。
LnZ的全微分为:因此得(10)从上式可看出:也是的积分因⼦,既然与都是的积分因⼦,我们可令(11)根据微分⽅程关于积分因⼦的理论,当微分式有⼀个积分因⼦时,它就有⽆穷多个积分因⼦,任意两个积分因⼦之⽐是S的函数(dS是⽤积分因⼦乘微分式后所得的全微分)⽐较(9)、(10)式我们有积分后得(12)我们把积分常数选为零,此即熵的统计表达式。
2)熵函数的统计意义由配分函数的定义及得由玻⽿兹曼分布得所以(13)此式称为Boltzman关系,表明某宏观状态的熵等于玻⽿兹曼k乘以相应的微观状态数的对数。
热力学与统计物理答案第五章
第五章不可逆过程热力学简介5.1带有小孔的隔板将容器分为两半.容器与外界隔绝,其中盛有理想气体.两侧气体存在小的温度差.汀和压强差.沖,而各自处在局部平衡.以J n二dn和J.二dU表示单位时间内从左侧转移到右侧的气体的物质的dt dt量和内能.试导出气体的熵产生率公式,从而确定相应的动力解:以下标1,2标志左、右侧气体的热力学量.当两侧气体物质的量各有dq, dn2,内能各有dU i, dU2的改变时,根据热力学基本方程,两侧气体的熵变分别为1 叫dS dU11dn1,T i T1(1)1 巴dS2 dU 22dr fe.T2 T2由熵的相加性知气体的熵变为dS 呻dS2.(2)容器与外界隔绝必有dri| dn2二0, dU1 dU^0.值得注意,在隔板带有小孔的情形下,物质和内能都会发生双向的传递,dn,和dU1是物质的量和内能双向传递的净改变,dn2和dU?亦然.我们令dU 二dS - -dU2, dn = dn^ - -dn2.在两侧气体只存在小的温度差订和压强差邛的情形下,我们令T1 T T, T2 二T;已=卩+ AP 巴=41 2 ・气体的熵变可以表示为(1 1)沖7叮dS dU dn,I T "T T 丿T 丿形式5.2 承前5.1题,如果流与力之间满足线性关系,即J =L X +L X u uu u un n ,J =L X +L Xnnuu‘nnn ,L nu = L un (昂萨格关系).(a ) 试导出J n 和J u 与温度差T 和压强差:p 的关系.(b ) 证明当•汀=o 时,由压强差引起的能流和物质流之间满足下 述关系:unnu(C )证明,在没有净物质流通过小孔,即Jn=0时,两侧的压强差与温度差满足其中H m 和V m 分别是气体的摩尔焓和摩尔体积.以上两式所含直可 Lnn由统计物理理论导出(习题7.14, 7.佝.热力学方法可以把上述两效应联系 起来.解:如果流与力之间满足线性关系熵产生率为dS f 11)dU 4+也4 「d ndt J T +A T T 丿 dt J T +A T T 丿dt.T dU 4T-T.d dn产T —d"以J udU dt表示内能流量, X u 二-〒表示内能流动力,J n =如表示物dt质流量, X nT T表示物质流动力,T 2熵产生率即可表示为标准dS dt=J u X u J n X n .(5)H 巾__T _ L un L nnTV mJ u二 U uu X u L un X n,Jn 二 ^-nu XuL nn X将习题5.1式(5)的X u ,X n 代入可得.. TJ u = L uu- T 2式(4)给出了 J u , J n 和两侧气体的温度差 T 和压强差-:p 的关系,其中H m =・TS m 是气体的摩尔焓.(b )当•汀=0时,由式(4)得J u L un J n L nn式(5)给出,当两侧气体有相同的温度•汀=0但存在压强差:p 时, 在压强驱动下产生的能流与物质流的比值(c )令式(4)的第二式为零,可得L nu[ [ L un m _H m _P _ _______ 二 L nn订一如 一 V m T最后一步利用了昂萨格关系L un ^L nu .这意味着,当两侧的压强差与 温度差之比满足式(6)时,将没有净物质流过小孔,即J n=O ,但却 存在能流,即J u =0.昂萨格关系使式(6)和式(5)含有共同的因子Lun而将两个效应联 LnnHL M T -T AP'L un|2J n = L nu_ 」:T -T.v 1Lnn |2(2)(a )根据式 (3.2.1),有■' - -S m T VmP ,(3)代入式(2)可得 n nuH m :T-V m 「:P T 2H m :T-V m「:P (4)T 2(5)(6)系起来了 .统计物理可以进一步求出比值-Lun 从而得到虫和 空 的具L nnJ n^T体表达式,并从微观角度阐明过程的物理机制(参看习题 7.14和7.15).5.3 流体含有k 种化学组元,各组元之间不发生化学反应 .系统保持恒温恒压,因而不存在因压强不均匀引起的流动和温度不均匀 引起的热传导.但存在由于组元浓度在空间分布不均匀引起的扩散 .试导出扩散过程的熵流密度和局域熵产生率.解:在流体保持恒温恒压因而不存在流动和热传导且k 种化学组元不发生化学反应的情形下,热力学基本方程(5.1.4)简化为(1)局域熵增加率为由于不发生化学反应,各组元物质的量保持不变,满足守恒定律 迥「J i=0 i =1,2, ,k . .:t代入式(2),有学-' J i 飞辛. (4).iTiT系统的熵增加率为dS( 4J 、、 dt ' I i T 丿’iI T 丿44 1— J ig —疋 J j V-1£S讥(2)(3)i T ;:ti T i l T丿与式(5.1.6 )比较,知熵流密度为局域熵产生率为(7)5.4承前5.3题,在粒子流密度与动力呈线性关系的情形下,试就扩散过程证明最小熵产生定理.解:5.3题式(7)已求得在多元系中扩散过程的局域熵产生率为㊀J i-. (1)i T系统的熵产生率为P—U -d.. (2)i T在粒子流密度与动力呈线性关系的情形下,有( 叮J i=L "寸, (3)I 1丿所以,有( 厂P l J Li T「ds (4)i I T丿则f a科寸"冲、=2E N J i 丄」M+2E 丄J i d「(5)「[\T i “T 醴丿i'丿上式第一项可化为边界上的面积分.在边界条件下随时间变化的情形下,此项为零.在恒温恒压条件下,有:tj :n ::t' =2'i J i 十¥d再利用扩散过程的连续性方程(习题 5.3式(3)),可将式(5)表为dP 5 九(6)—=-一12 --- ----------------dt T b i,j cn j c t c t现在讨论式(6)中被积函数的符号.由于系统中各小部分处在局域平衡,在恒温恒压条件下,局域吉布斯函数密度g应具有极小值, 即它的一级微分、g 八叫、m =0,二级微分i、g- n r n j _0, (7)i,j州其中用了式(4.1.").应当注意,〜作为T, p, n 1,…,n的函数,是m, , n的零次齐函数,因此式(6)和式(7)中的二不是完全独立的,要满足零次齐函数的条cn j件(习题4.2 )—各=0.(8)j : n j比较式(6)和式(7),注意它们都同样满足式(8),知式(6)的被各函数不为负,故有空 5(9)dt这是多元系中扩散过程的最小熵产生定理.5.5系统中存在下述两个化学反应:占AX' 2X,k2k3B X > C.假设反应中不断供给反应物A和B,使其浓度保持恒定,并不断将生成物C排除.因此,只有X的分子数密度氐可以随时间变化.在扩散可以忽略的情形下,n x 的变化率为dn x2k 1 n A n X - k 2n X - k 3n B n x・ dt引入变量’ k 1 k 3t = k ?t, a - n A , b - n B , X = n x , k 2 k 2上述方程可以表为dX2a -b X -X . dt并分析解的稳定性.将式(5)代入式(2),准确到占X 的一次项,有n x dn x试求方程的定常解,的反应速率与 的反应速率与的反应速率与以忽略的情形 A X —k1> 2Xk i , n A 和破成正比,反应后增加一个X 分子;反应2X — k2> A Xk 2和n X 成正比,反应后减少一个X 分子.反应B X — J Ck 3, n B 和成正比,反应后减少一个X 分子.在扩散可 吸的变化率为(1)引入变量t *仁 a '氐,b 出 rB, Xk 2 k 2 k 2二 n x ,式(1)可以表为必-b X - X 2. dt方程(2)的定常解X o 满足些=0,即dtX o ^a -b -X o =0.方程(3)有两个解:(2)(3) X °i = 0,X °2 二 a - b.下面用线性稳定性分析讨论这两个定常解的稳定性 涨落,解由X o 变为(4) .假设发生X = X oX.(5)d—X = a-b X -2X0Xdt 0二a-b-2X。
热力学统计物理学课程教学大纲
热力学统计物理学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;热力学统计物理【Thermodynamics and Statistical Physics】,兰州大学物理科学与技术学院物理学专业专业基础课,4学分。
(二)课程简介、目标与任务;《热力学统计物理》从宏观及微观角度理解大量粒子组成的物理系统的基本性质及其微观基础,该课程的任务是让学生掌握热力学和统计物理的基本原理和研究方法。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:高等数学、普通物理(包括力学、热学、光学、电磁学及原子物理)、理论力学。
与理论力学、量子力学、电动力学共同构成物理类专业基础课。
(四)教材与主要参考书。
教材:热力学•统计物理(第五版);作者:汪志诚;高等教育出版社。
参考书目:1)王竹溪,《热力学简程》,高教出版社,19642)王竹溪,《统计物理学导论》,第二版,高教出版社,19653)龚昌德,《热力学与统计物理学》,,高教出版社,19824)苏汝铿,《热力学与统计物理基础》,,复旦大学出版社,19905)Landau L.D. and Lifshitz E.M., Statistical Physics, Pergamon Press, 1958 6)Reif F., Fundamental of Statistical and Thermal Physics, McGraw Hill Book Company, 19657)L.E.雷克著,黄昀等校译,统计物理现代教程,上册,北京大学出版社二、课程内容与安排(一)章节详细内容第一章热力学的基本规律第一节热力学系统的平衡状态及其描述;第二节热平衡定律和温度;第三节物态方程;第四节准静态过程及其功表达式;第五节内能、热量和热力学第一定律;第六节热容量和焓;第七节理想气体的内能;第八节理想气体的绝热过程;第九节理想气体的卡诺循环;第十节热力学第二定律;第十一节卡诺定律;第十二节热力学温标;第十三节克劳修斯等式和不等式;第十四节熵和热力学基本方程;第十五节理想气体的熵;第十六节热力学第二定律的普遍表述;第十七节熵增加原理的简单应用。
热力学统计物理
《热力学统计物理》复习资料热力学部分第一章 热力学的基本定律基本概念:平衡态,热力学参量,热平衡定律,温度,三个实验系数(、、),转换关系,物态方程,功及其计算,热力学第一定律(数学表述式),热容量(C 、C V 、C P 的概念及定义),理想气体的内能,焦耳定律,绝热过程特征,热力学第二定律(文学表述、数学表述),克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵,熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(S )计算。
第二章 均匀物质的热力学性质基本概念:焓H ,自由能F ,吉布斯函数(自由焓)G 的定义,全微分式,热力学函数的偏导数关系、麦克斯韦关系及应用,能态公式,焓态公式,节流过程的物理性质,焦汤系数定义及热容量(C P )的关系,绝热膨胀过程及性质、特性函数F 、G ,辐射场的物态方程,内能、熵,吉布函数的性质、辐射通量密度的概念。
综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程)。
第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系平衡条件,复相多元系的平衡条件,多元系的热力学函数及热力学方程,相变的分类、一级与二级相变的特点及相平衡曲线斜率的推导、吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律的标准表述,绝对熵的概念。
统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态代表点,三维自由粒子的μ空间,德布罗意关系(=,=),相格,量子态数、等概率原理,对应于某种分布的玻尔兹曼系统,玻色系统,费米系统的微观态数(热力学概率)的计算公式,最概然分布,玻尔兹曼分布律(),配分函数(),用配分函数表示的玻尔兹曼分布(),f s ,P λ, P s的概念,经典配分函数(),麦克斯韦速度分布律。
综合运用:能计算在体积V 内,在动量范围p —p+dp 内,或能量范围+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。
第5章 热力学第一定律
[例题] 在定压下,气体体积从V1 变被压缩到V2 (1)设过程为 准静态过程,试计算外界对系统所做的功。(2)若为非静态过
程结果如何?
[解]
(1)
A
V2 V1
pdV
p
V2 dV
V1
p(V2
V1 )
A 外界对系统做正功
(2)
A V2 pdV V1
在一定的过程中,系统改变单位温度时吸收或放出的热量叫做 系统的热容。
质量为m的系统,热容的定义
Q C lim
T 0 T
•常用的也是基本的有体积不变的等体过程和压强不变的等压过程
等容(定容)热容
等容过程,外界对系统所做的功为零。由热力学第一定律可知
(Q)V U U U (T ,V )
CV
lim (Q)V T 0 T
S1
V1
p1
p1 T1
l1
S1
p1
S2 p2
V2 p2 T2
l2
S2 p2
做功 吸热
A AL AR p1S1l1 p2S2l2 p1V1 p2V2
Q0
U 2 U1 p1V1 p2V2 即: U1 p1V1 U 2 p2V2
即H1 H 2
绝热节流过程前后的焓不变
引入焦汤系数描述
U U (T )
CV
(
U T
)V
dU dT
dU CV dT
CV CV ,m ,
CV ,m
dU m dT
U U0
T T0
CV
dT
dU CV ,mdT
T
U U0 T0 CV ,mdT
H U pV U (T ) vRT
热力学和统计物理
热力学和统计物理一、基本概念1. 热力学- 系统与外界- 热力学研究的对象称为系统,系统以外与系统有相互作用的部分称为外界。
例如,研究气缸内气体的性质时,气缸内的气体就是系统,气缸壁、活塞以及周围的环境等就是外界。
- 平衡态- 一个孤立系统经过足够长的时间后,宏观性质不再随时间变化的状态称为平衡态。
例如,将一个盛有热水的容器放在绝热环境中,经过一段时间后,水的温度不再变化,水就达到了平衡态。
平衡态可以用一些宏观参量来描述,如压强p、体积V、温度T等。
- 状态参量- 用来描述系统平衡态的宏观物理量称为状态参量。
- 几何参量:如体积V,它描述了系统的几何大小。
对于理想气体,体积就是气体分子所能到达的空间范围。
- 力学参量:压强p是典型的力学参量,它是垂直作用于容器壁单位面积上的力。
- 热学参量:温度T是热学参量,它反映了物体的冷热程度。
从微观角度看,温度与分子热运动的剧烈程度有关。
2. 统计物理- 微观态与宏观态- 微观态是指系统内每个粒子的微观状态(如每个粒子的位置、动量等)都确定的状态。
而宏观态是指由一些宏观参量(如压强、体积、温度等)确定的状态。
一个宏观态往往包含大量的微观态。
例如,对于一个由N个粒子组成的气体系统,给定气体的压强、体积和温度,这就是一个宏观态,但这些粒子的具体位置和动量有多种可能组合,每一种组合就是一个微观态。
- 等概率原理- 对于处于平衡态的孤立系统,系统各个可能的微观态出现的概率相等。
这是统计物理的一个基本假设。
二、热力学定律1. 热力学第零定律- 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统彼此也必定处于热平衡。
这一定律为温度的测量提供了依据。
例如,我们可以用温度计(第三个系统)去测量不同物体(两个系统)的温度,当温度计与物体达到热平衡时,就可以确定物体的温度,并且如果两个物体与同一温度计达到热平衡,那么这两个物体之间也处于热平衡,它们具有相同的温度。
热力学与统计物理学1.1-1.9
热· 统
热力学
热运动的宏观理论。 基础是热力学三个定律。
研究的对象 与任务相同
统计物理
热运动的微观理论。 认为宏观系统由大量的微观粒 子所组成,宏观物理量就是相 应微观量的统计平均值。 能把热力学的基本规律归结于 一个本的统计原理;可以解 释涨落现象;可以求得物质的 具体特性。
统计物理学所得到的理论结论 往往只是近似的结果。
导
言
一.热力学与统计物理学的研究对象和任务是什么? 热力学与统计物理学所研究的对象与任务相同 对象:由大量微观粒子组成的宏观物质系统。 任务:研究热运动规律及热运动对物质宏观性质的影响。 二.热力学与统计物理学的研究方法有什么特点? 1. 热力学方法—热运动的宏观理论 热力学方法是从热力学三个定律出发,通过数学演 绎,得到物质的各宏观性质之间的关系、宏观物理过程 进行的方向和限度等一系列理论结论。 特点:具有普遍性、可靠性。
三、热力学平衡态的描述
1.状态参量——几何参量、力学参量、
电磁参量、化学参量
2.状态函数
3.简单系统
四、相 一个物理性质均匀的系统称为一个相。根据相的数量,可以 分为单相系和复相系。 五、热力学量的单位
牛(N) =kg · m· s-2 压强:帕斯卡Pa (N · m-2) 1大气压强 (pn)= 101325 Pa 能量: 焦耳(J) 1J = 1N · m
1811年,阿氏定律: PV nRT
b.理想气体物态方程: c.实际气体的状态方程:
PV C T
an2 范德瓦耳斯方程: ( p 2 )(V nb) nRT V
pV A Bp Cp 2 Dp 3 昂尼斯方程: 位力系数 B C D 或: pV A 2 3 V V V
热力学与统计物理答案
第一章热力学的基本规律习题试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ; 解:由得:nRT PV=V nRTP P nRT V ==; 所以,TP nR V T V V P 11)(1==∂∂=α习题试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ=,试求物态方程;解:因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=,因为T T p p VV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dVT T κακα-=-=,所以,⎰-=dp dT VT καln ,当p T T /1,/1==κα.习题测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C;问1压强要增加多少np才能使铜块体积不变 2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:所以,410*07.4,622-=∆=V p xn习题描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略;线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数;假设金属丝两端固定;试证明,当温度由1T 降2T 时,其张力的增加为)(12T T YA --=∆αη解:),(,0),,(T L L T L f ηη==所以,dT TLd L dL T ηηη)()(∂∂+∂∂= 因AY L L L L T T T =∂∂∂∂=∂∂)(;)(1)(ηηη所以,)(12T T YA --=∆αη习题在C ︒25下,压强在0至1000n p 之间,测得水的体积13263)10046.010715.0066.18(---⨯+⨯-=mol cm p p V 如果保持温度不变,将1mol 的水从1n p 加压至1000n p ,求外界所做的功;解:外界对水做功: 习题解:外界所作的功:习题抽成真空的小匣带有活门,打开活门让气体充入;当压强达到外界压强p 0时将活门关上;试证明:小匣内的空气在没有与外界交换热量之前,它的内能U 与原来大气中的0U 之差为000V p U U =-,其中0V 是它原来在大气中的体积;若气体是理想气体,求它的温度和体积;解:假设先前的气体状态是P 0,dV 0,T 0内能是u 0,当把这些气体充入一个盒子时,状态为P 0,dV,T 这时的内能为u,压缩气体所做的功为:00dV p ,依绝热过程的热力学第一定律,得()000000=+-⎰dV P U U V积分得000V p U U=-对于理想气体,上式变为()001vRT T T vc V=-故有()01T R c T c V V +=所以001V T c c T VPγ==对于等压过程0101V T T V V γ==习题热泵的作用是通过一个循环过程将热量从温度较低的环境传送扫温度较高的物体上去;如果以理想气体的逆卡诺循环作为热泵的循环过程,热泵的效率可以定义为传送到高温物体的热量与外界所作的功的比值;试求热泵的效率;如果将功直接转化为热量而令高温物体吸收,则“效率”为何解:A →B 等温过程B →C 绝热过程 C →D 等温吸热D →A 绝热,2111Q Q Q A Q -==η由绝热过程泊松方程:1211--=r Cr B V T V T ;1112--=r Ar DV T V T∴D AC B V V V V =;CDB A V V V V =∴212212212111T T T T T T T T T T T -+=-+-=-=η将功A 直接转化为热量1Q ,令高温物体吸收;有A=Q 1∴11==AQ η; 习题假设理想气体的C p 和C V 之比γ是温度的函数,试求在准静态绝热过程中T 和V 的关系;该关系试中要用到一个函数FT ,其表达式为: 解:准静态绝热过程中:0=dQ,∴pdV dU -=1对于理想气体,由焦耳定律知内能的全微分为dT C dU v =2物态方程VnRT P nRT pV =⇒=32,3代入1得:dV VnRTdTC V -=其中1-=γnR C V ()dTVdV⎰⎰-=-11γ关系式γ为T 的函数∴V -1为T 的函数;∴VT F 1)(=1)(=V T F ; 第二章均匀物质的热力学性质习题已知在体积保持不变的情况下,一气体的压强正比于其绝对温度.试证明在温度保持不变时,该气体的熵随体积而增加; 解:由题意得:)()(V f T V k p +=;因V 不变,T 、p 升高,故kV >0T V S )(∂∂=V Tp)(∂∂=k VkV >0 由于kV >0,当V 升高时或V 0→V ,V >V 0,于是⇒T 不变时,S 随V 的升高而升高;设一物质的物态方程具有以下形式T V f P)(=,试证明其内能与体积无关;解:T V f P)(=,V T V U ∂∂),(T =T V T P)(∂∂-p =)()(V Tf V Tf -=0得证;习题求证:ⅰHP S )(∂∂<0ⅱU VS)(∂∂>0证VdP TdS dH +=等H 过程:H HVdP TdS )()(-=⇒PS ∂∂H=-TV <0V >0;T >0由基本方程:PdV TdS dU-=dV T pdU T dS +=⇒1;⇒VS ∂∂U =Tp>0.习题已知T VU)(∂∂=0,求证T p U )(∂∂=0;解T V U )(∂∂=T V T p )(∂∂-p ;⇒T V U )(∂∂=0;V TpT p )(∂∂= T VU )(∂∂=),(),(T V T U ∂∂=),(),(T p T U ∂∂),(),(T V T p ∂∂=0=T p U )(∂∂T Vp)(∂∂ ∵T Vp)(∂∂≠0;⇒T p U )(∂∂=0;习题试证明一个均匀物体在准静态等过程中熵随体积的增减取决于等压下温度随体积的增减;解:F =U-TS ,将自由能F 视为P ,V 的函数;F =Fp ,V=⎪⎭⎫⎝⎛∂∂p V S ()()p V p S ,,∂∂=()()⋅∂∂p T p S ,,()()p V p T ,,∂∂()()()()p T p V p T p S ,,,,∂∂∂∂==pp T V T S ⎪⎭⎫⎝⎛∂∂⎪⎭⎫⎝⎛∂∂由关系T C p=p T S ⎪⎭⎫ ⎝⎛∂∂;⇒=⎪⎭⎫⎝⎛∂∂pV S ⋅T C p pV T ⎪⎭⎫ ⎝⎛∂∂; 习题试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落;提示:证明S p T ⎪⎪⎭⎫⎝⎛∂∂-Hp T ⎪⎪⎭⎫⎝⎛∂∂>0证:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==dS S H dp p H H T dp p T dH H T dp p T dT H p T T dS S T dp p T dT S p T T p S p H p Hp S),(1),(联立1,2式得:Sp T ⎪⎪⎭⎫⎝⎛∂∂-H p T ⎪⎪⎭⎫ ⎝⎛∂∂=p H T ⎪⎭⎫ ⎝⎛∂∂S p H ⎪⎪⎭⎫ ⎝⎛∂∂=pST H p H ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫⎝⎛∂∂=pS C p H ⎪⎪⎭⎫⎝⎛∂∂据:pdV TdS dU-=熵不变时,dS =0,pdV dU -=Vdp TdS dH +=Sp H ⎪⎪⎭⎫⎝⎛∂∂=V⇒S p T ⎪⎪⎭⎫ ⎝⎛∂∂-Hp T ⎪⎪⎭⎫ ⎝⎛∂∂=0>p C V;原题得证;习题一弹簧在恒温下的恢复力X 与其伸长x 成正比,即.X =-Ax ;今忽略弹簧的热膨胀,试证明弹簧的自由能F 、熵S 和内能U 的表达式分别为; 解:),();(,x T U U T A A Ax X==-==dU dT T U x ⎪⎭⎫ ⎝⎛∂∂+dx x U T⎪⎭⎫⎝⎛∂∂⇒+-=;)(xdx T A SdT dF S T F x -=⎪⎭⎫ ⎝⎛∂∂;=x T A )(Tx F ⎪⎭⎫ ⎝⎛∂∂-=⇒S XT F ⎪⎭⎫⎝⎛∂∂=dT T dB x dT T dA )()(212--由于TS U F-=,)(2 dS S T dp p H H T p T p S p H ⎪⎭⎫⎝⎛∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂⋅⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-dT dB T T B x dT T dA T T A )()()(212∵X =0时,U =0,即不考虑自身因温度而带来的能量;实际上,dT dB TT B -)(=0或dTdBT T B -)(=)0,(T U 即得:2)()(21)0,(),(x dT T dA T T A T U X T U ⎥⎦⎤⎢⎣⎡-=-221)0,(),(Ax T F T X F +=;dT dA x T S T X S 2)0,(),(2-= 进而求U ∆略;代入abd c V V V V V aT uV U=⇒==;4习题如下图所示,电介质的介电常数EDT =)(ε与温度有关,试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差;解:当电路闭合时,电容器电场恒定 当电路断开时,电容器电荷恒定D T TED S )()(∂∂-=∂∂,因而 习题已知顺磁物质的磁化强度为:H TCm =,若维持物质温度不变,使磁场由0增至H,求磁化热;解:;H TCm =mV M =;TH S ⎪⎭⎫ ⎝⎛∂∂⇒=0μV H T m ⎪⎭⎫ ⎝⎛∂∂=H T C ⎪⎭⎫⎝⎛-20μ等T 下:22000H T CV HdH T C V S T Q H μμ⋅-=-=∆=∆⎰习题已知超导体的磁感应强度()00=+=m H B μ;求证:ⅰC m 与m 无关,只是T 的函数,其中C m 是在磁化强度m 保持不变时的热容量;ⅱ0202U m dT C U m +-=⎰μ;ⅲ0S dT TC S m+=⎰解:超导体()m H m H M B-=⇒=+=00ⅰT C H=HT S ⎪⎭⎫ ⎝⎛∂∂∵m H-=;T C C m H ==⇒HT S ⎪⎭⎫⎝⎛∂∂ⅱHdM TdS dU0μ+=;mV M =代入m C 表达式,其中U 0 为0K 时的内能;ⅲ由ii 中已应用了dT C TdSm =⇒T C T S mm=⎪⎭⎫⎝⎛∂∂;⇒0S dT TC S m+=⎰〈忽略因体积变化带来的影响〉; 习题实验测得顺磁介质的磁化率)(T χ;如果忽略其体积的变化,试求特性函数fm,t,并导出内能和熵;解:显然χ只与T 有关;)(T χ=TH m ⎪⎭⎫⎝⎛;()T H m m ,=HdMTdS dU 0μ+=;TS U f -=;SdT TdS dU df --=⇒HdM SdT df 0μ+-=;⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=dT T m dH H m V dM H T()H T V H f χμ0=⎪⎭⎫⎝⎛∂∂;()()()T f m V T f H T V f 02002022+=+=⇒χμχμ f 既已知:-=S ()02202S dT T d m V T f m+⋅=⎪⎭⎫⎝⎛∂∂χχμ HdMTdS dU 0μ+=;TS U f -=第三章单元系的相变习题试由0>vC 及0)(<∂∂T V p 证明0>p C 及0)(<∂∂S Vp; 证T C C V p =-⇒VT p ⎪⎭⎫⎝⎛∂∂pT V ⎪⎭⎫ ⎝⎛∂∂ =P C p T H ⎪⎭⎫ ⎝⎛∂∂=pT S T ⎪⎭⎫⎝⎛∂∂;=V C V T U ⎪⎭⎫⎝⎛∂∂V T S T ⎪⎭⎫ ⎝⎛∂∂= ⇒=⎪⎭⎫ ⎝⎛∂∂T V p V S p ⎪⎭⎫ ⎝⎛∂∂T V S ⎪⎭⎫ ⎝⎛∂∂+SV p ⎪⎭⎫⎝⎛∂∂1=⎪⎭⎫ ⎝⎛∂∂V T p VS p ⎪⎭⎫ ⎝⎛∂∂TT S ⎪⎭⎫⎝⎛∂∂2 ⇒=⎪⎭⎫ ⎝⎛∂∂S V T -VS p ⎪⎭⎫⎝⎛∂∂⇒V C V T S T ⎪⎭⎫ ⎝⎛∂∂=;即0>=⎪⎭⎫⎝⎛∂∂VV C T S T . 于是:0>=⎪⎭⎫⎝⎛∂∂T V p +⎪⎭⎫⎝⎛∂∂SV p 正数 于是:SV p ⎪⎭⎫⎝⎛∂∂<0 0>V C ;因而0>P C习题求证:1-=⎪⎭⎫⎝⎛∂∂n V T ,μV T n S ,⎪⎭⎫ ⎝⎛∂∂;2-=⎪⎪⎭⎫ ⎝⎛∂∂nT p ,μp T n V ,⎪⎭⎫⎝⎛∂∂ 证:1开系吉布斯自由能dn Vdp SdT dG μ++-=,),(T V p p =⇒VS T G n V +-=⎪⎭⎫⎝⎛∂∂,VT p ⎪⎭⎫⎝⎛∂∂① V V G nT =⎪⎭⎫⎝⎛∂∂,T V p ⎪⎭⎫⎝⎛∂∂② μ=⎪⎭⎫⎝⎛∂∂VT n G ,③ 由式①⇒n V n V T G T p V S ,⎪⎭⎫ ⎝⎛∂∂-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂=V T n S ,⎪⎭⎫ ⎝⎛∂∂nV T ,⎪⎭⎫ ⎝⎛∂∂-=μ第1式得证;习题试证明在相变中物质摩尔内能的变化为:⎪⎪⎭⎫⎝⎛⋅-=∆dp dT T p L u1如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简; 解V p S T U∆-∆=∆VT L dT dp ∆=;S T L ∆=;dp dT T p L L U ⋅⋅-=∆⇒⎪⎪⎭⎫⎝⎛⋅-=dp dT T p L 1 习题在三相点附近,固态氨的蒸气压单位为a P 方程为:Tp 375492.27ln -= 液态氨的蒸气压方程为:Tp 306338.24ln -=,试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热;解:1固态氨的饱和蒸气压方程决定了固态-气态的相平衡曲线;液态氨的饱和蒸气压方程决定了氨的液态-气态的相平衡曲线;三相点是两曲线的交点,故三相点温度3T 满足方程:TT 306338.24375492.27-=-;由此方程可解出3T ,计算略; 2相变潜热可由RTLA p -=ln与前面实验公式相比较得到: 3754=RL S,从而求出S L ;类似可求出Q L ;计算略; 3在三相点,有r Q SL L L +=,可求得r L ,计算略;习题蒸汽与液相达到平衡;以dTdv 表在维持两相平衡的条件下,蒸汽体积随温度的变化率;试证明蒸汽的两相平衡膨胀系数为⎪⎭⎫ ⎝⎛-=⋅RT L T dT dv v 111; 解αV ~0.方程近似为:TVLT p ≈∆∆,V —气相摩尔比容;Vp T L T V V 11⋅∆=∆⋅⇒①气相作理想气体,pV=RT ②T R V p pV ∆=∆+∆⇒③联立①②③式,并消去△p 、P 得:TL TV VVP T R ∆=⋅∆-∆21RT LRT T V V -=⎪⎭⎫ ⎝⎛∆∆⇒;⎪⎭⎫ ⎝⎛-=-=⎪⎭⎫ ⎝⎛∂∂=⇒RT L T RT T T V V P 111112α 习题证明爱伦费斯公式:()()()()1212k k dT dp --=αα;()()()())(1212αα--=Tv c c dT dpp p 证:对二级相变0)(=∆dS ;即()2dS -()1dS =00)(=∆dV ;即()2dV -()1dV =0()2dS()dT T S ⎪⎪⎭⎫ ⎝⎛∂∂=2()dp p S ⎪⎪⎭⎫ ⎝⎛∂∂+1;()1dS ()dT T S ⎪⎪⎭⎫ ⎝⎛∂∂=1()dp p S ⎪⎪⎭⎫ ⎝⎛∂∂+1 )(0dS ∆=()2dS=-()1dS⇒()()=⎥⎦⎤⎢⎣⎡∂∂-∂∂dT T S TS 12()()dp p S p S ⎥⎦⎤⎢⎣⎡∂∂-∂∂-12 ()()()()⎥⎦⎤⎢⎣⎡∂∂-∂∂⎥⎦⎤⎢⎣⎡∂∂-∂∂-=⇒p S p S T S T S dT dp 1212;将pp T S T C ⎪⎭⎫ ⎝⎛∂∂=代入得;()()[]()()pS p S C C T dT dppP ∂∂-∂∂--=12121①即为:()-∂∂p S 2()()()()121αα--=∂∂V pS ;代入①得:()()()()1212αα--=TV C C dT dp p P类似地,利用0)(=∆dV 可证第二式;略第四章多元系的复相平衡和化学平衡习题若将U 看作独立变数T ,V ,n 1,…n k 的函数,试证明:1VUV n U n Ui ii∂∂+∂∂=∑;2VUv n U u i i i∂∂+∂∂=证:1),,,(),,,(11k k n n V T U n n V T U λλλλ=根据欧勒定理,f x fx iii=∂∂∑,可得 2i ii i i i i i iiu n V Uv n U n V U V n U n U∑∑∑=∂∂+∂∂=∂∂+∂∂=)( 习题证明),,,(1k i n n p T μ是k n n ,1的零次齐函数,0=⎪⎪⎭⎫⎝⎛∂∂∑j ij j n n μ; 证:),,,(),,,(11k m k n n p T n n p T μλλλμ=,化学势是强度量,必有m =0,习题二元理想溶液具有下列形式的化学势:其中g i T ,P 为纯i 组元的化学势,x i 是溶液中i 组元的摩尔分数;当物质的量分别为n 1、n 2的两种纯液体在等温等压下合成理想溶液时,试证明混合前后 1吉布斯函数的变化为)ln ln (2211x n x n RT G+=∆2体积不变0=∆V3熵变)ln ln (2211x n x n R S +-=∆4焓变0=∆H ,因而没有混合热;5内能变化如何解: 1222211112211ln ),(ln ),( x RT n p T g n x RT n p T g n n n n G i ii +++=+==∑μμμ所以22110ln ln x RT n x RT n G G G+=-=∆2p G V ∂∂=;0)(=∂∆∂=∆∴pG V ; 3T G S ∂∂-= ;2211ln ln )(x R n x R n TG S --=∂∆∂-=∆∴ 4TSH G -=50=∆-∆=∆V p H U习题理想溶液中各组元的化学势为:i i ix RT P T g ln ),(+=μ;(1) 假设溶质是非挥发性的;试证明,当溶液与溶剂蒸发达到平衡时,相平衡条件为其中'1g 是蒸汽的摩尔吉布斯函数,g 1是纯溶剂的摩尔吉布斯函数,x 是溶质在溶液中的摩尔分数; (2) 求证:在一定温度下,溶剂的饱和蒸汽压随溶液浓度的变化率为 (3) 将上式积分,得)1(0x p p x -=其中p 0是该温度下溶剂的饱和蒸汽压,p x 是溶质浓度为x 时的饱和蒸汽压;该公式称为拉乌定律; 解:1设“1”为溶剂,())1ln(,'111x RT P T g g -+==μ2由⇒=∂∂v p g Tp x x RT p g p g ⎪⎪⎭⎫⎝⎛∂∂--⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂)1(1'1Tp x ⎪⎪⎭⎫⎝⎛∂∂ -=⇒v v ')1(x RT-Tp x ⎪⎪⎭⎫ ⎝⎛∂∂;v’—蒸汽相摩尔热容 v —凝聚相摩尔热容故有v’-v ≈v’,又有pv’=RT 代入⇒ Tx p ⎪⎭⎫⎝⎛∂∂x p --=1 3积分2式得拉乌定律习题的气体A 1和n 0v 2mol 的气体A 2的混合物在温度T 和压强p 下所占体积为V 0,当发生化学变化,0A A A A 22114433=--+νννν;并在同样的温度和压强下达到平衡时,其体积为V e ;试证明反应度为 证:未发生化学变化时,有当发生化学变化时,原来有n 0v 1mol 的气体A 1,反应了n 0v 1εmol,未反应1-εn 0v 1mol,n 0v 2mol 的气体A 2,反应了εn 0v 2mol,未反应1-εn 0v 2mol,生成εn 0v 3molA 3和εn 0v 4molA 4,有习题根据第三定律证明,在T →0时;表面张力系数与温度无关;即0→dTd σ; 证:表面膜系统,dA SdT Fσ+-=S T F A -=⎪⎭⎫ ⎝⎛∂∂⇒;σ=⎪⎭⎫⎝⎛∂∂T A F=⎪⎭⎫ ⎝⎛∂∂T A S AT ⎪⎭⎫⎝⎛∂∂-σ;而实际上σ与A 无关,即=⎪⎭⎫⎝⎛∂∂TA S dT d σ-T →0时,根据热力学第三定律;()0lim 0=∆→TT S于是得:dT d σ0=⎪⎭⎫⎝⎛∂∂-=TA S ;原式得证; 习题试根据第三定律证明,在T →0时,一级相变两平衡曲线的斜率dTdp为零;证:VS dT dp ∆∆=;T →0;000=⎪⎭⎫⎝⎛∆∆=⎪⎭⎫⎝⎛→→T T V S dT dp ()0lim 0=∆→TT S ;原式得证;习题设在压强p 下,物质的熔点为T 0,相变潜热为L ,固相的定压热容量为C p ,液相的定压热容量为C p ’.试求液体的绝对熵表达式;解:为计算T 温度,p 压强下,液体绝对熵,可假想如下图过程;p液相 ABC 固相T 0T①A →B,等压过程:⎰=∆→0T p BA TdT C S②B 点相变过程.0T L S B =∆相变③B →C,等压过程:⎰=∆→TT p CB TdT C S 0'于是∑=∆+=S S S)0(⎰T p TdT C 0T L+⎰+TT p T dT C 0'习题试根据第三定律讨论图ab 两图中哪一个是正确的 图上画出的是顺磁性固体在H =0和H=H i 时的S-T 曲线;解:图b 正确;拒热力学第三定律;T →0;S 0=0;且T →0,0=⎪⎭⎫⎝⎛∂∂Tx S ; 即0K 附近,S 在等温过程中的变化与任何其它参量无关;第五章不可逆过程热力学简介习题带有小孔的隔板将容器分为两半,容器与外界隔绝,其中盛有理想气体,两侧气体存在小的温差ΔT 和压强差Δp 而各自处于局域平衡;以dt dn J n=和dtdUJ u =表示单位时间内通过小孔从一侧转移到另一侧的气体的物质的量和内能;试导出熵产生率公式,从而确定相应的动力; 解:根据热力学基本方程∑-=iii dn dU Tdsμ得dtdn T dt dU T dt ds i i i ∑-=μ11设温度为T +ΔT 的一侧熵为s 1;温度为T 的一侧熵为s 2,则 因为0 ;0='+='+n d dn U d dU所以dn n d dU U d -='-=';,dtdnT dt dU T dt ds μ+-=12熵产生率 dt ds dt ds dt s d i 21+==dtdnT dt dU T dt dn T T dt dU T T μμμ+-∆+∆+-∆+11 =dtdn T T T dt dU T T T ⎪⎭⎫ ⎝⎛-∆+∆+-⎪⎭⎫⎝⎛-∆+μμμ11=⎪⎭⎫ ⎝⎛∆-⎪⎭⎫⎝⎛∆T J T J n u μ1 相应的动力22 ,1T T T T X T T T X n u μμμ∆-∆=⎪⎭⎫ ⎝⎛∆-=∆-=⎪⎭⎫ ⎝⎛∆=第六章近独立粒子的最概然分布习题试证明,对子一维自由粒子,再长度L 内,在ε到εεd +的能量范围内,量子态数为:证:一维自由粒子,x P 附近的量子态为x dP hLdn =;x x x x x dP m dP m m m dP P d m P εεεε21222+=⋅+==⇒= 于是;()εεεεd mh Ld D2+=而±P x对应同一能量ε,于是:()mh L m h L D εεε2222=⎪⎪⎭⎫ ⎝⎛⨯=习题试证明,对于二维自由粒子,在长度L 2内,在ε到εεd +的能量范围内,量子态数为证:二维;在P x ,P y 附近dP x dP y 区间上内的粒子数;ϕPdPd hSdP dP h S dn y x 22==s -面积 因mP 22=ε只与P 有关P >0,故对ϕ积分可得:()⎪⎪⎭⎫ ⎝⎛==m P h S PdP h S d D 222222ππεε,επd h mSm 22= ()22hmS D πε=⇒s=L 2习题在极端相对论情形下,粒子的能量动量关系为cp =ε;试求在体积V 内,在ε到εεd +的能量范围内能量范围内三维粒子的量子态数; 解:φθθd dpd p hV dp dp dp h V dn z y x sin 233==由于cp =ε只与p 有关,与θ、φ无关,于是以上已经代入了cdp d cp =⇒=εε于是,32)(4)(hc V D επε=习题设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很弱,可 看作是近独立的;假设粒子可分辨,处在一个个体量子态的粒子数不受限制;试证明, 在平衡态下两种粒子的最概然分布分别为:le a l lβεαω--=和'--'='l e a l lβεαω;其中l ε和'l ε是两种粒子的能级,l ω和'l ω是能级简并度;证:粒子A 能级,粒子数分布:l ε——{a l }——简并度l ω 粒子B 能级,粒子数分布:'l ε——{a ’l }——简并度'l ω由21Ω⋅Ω=Ω21ln ln ln Ω+Ω=Ω即使Ω最大,()11ln ΩΩ,()22ln ΩΩ达到最大;l e a l l εβαω''-'-'='注:'l a δ与l a δ在此情况下独立讨论,若将一系作为子系统,意味总能守恒,于是参照教材玻尔兹曼分布证明……0ln ln =⎪⎭⎫ ⎝⎛''+-''-'⎪⎪⎭⎫ ⎝⎛''+-⎪⎪⎭⎫ ⎝⎛⇒∑∑∑∑∑∑l l l l l l l l l llla a a a a a a a δεδεβδαδωδαδω同一0β,原题得证;这也是满足热平衡的要求;第七章玻耳兹曼统计习题根据公式∑∂∂-=lllVa Pε证明,对于非相对论粒子:)()2(21222222z y x n n n Lm m p s ++== π,z y x n n n ,,=0,±1,±2,…有VU p 32=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立;证:∑∂∂-=lllVa Pε=⎥⎦⎤⎢⎣⎡++∂∂-∑)()2(212222z y x lln n n L m V a π=⎥⎦⎤⎢⎣⎡++∂∂-∑)()2(222223z y x l l n n n L m L V a π 其中Va ul l ε∑=;V ~3L 对同一l ,222zy x n n n ++=m a ll21∑-2)2( π)(222z y x n n n ++)32(35--V =m a ll21∑-22222)()2(L n n n z y x ++ π)32(3532--V V =V U32习题试根据公式∑∂∂-=lllVa Pε证明,对于极端相对论粒子:21222)(2z y x n n n L c cp ++== πε,z y x n n n ,,=0,±1,±2,…有VU p 31=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立;证:∑∂∂-=ll lVa Pε;对极端相对论粒子21222)(2z y x n n n Lc cp ++== πε类似得31212)()2(-∑∂∂-=∑V n V a P i ll π=VUVV a ll l 31)31(3431-=---∑ε 习题当选择不同的能量零点时,粒子第l 个能级的能量可以取为ll *εε或,以∆表示二者之差=∆l l εε-*;试证明相应的配分函数存在以下关系11Z e Z ∆-*=β,并讨论由配分函数Z 1和Z 1求得的热力学函数有何差别; 证:配分函数∑-=le Z l βεω1以内能U 为例,对Z 1:1ln Z NUβ∂∂-=对Z 1:()U N e N Z NU Z +∆=∂∂-=∂∂-=-1ln ln 1**βββ习题试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为式中P s是总粒子处于量子态s 的概率,1Z e N e P ss s βεβεα---==,∑s对粒子的所有量子态求和;证法一:出现某状态s ψ几率为P s设S 1,S 2,……S k 状态对应的能级s 'ε;设S k+1,S k+2,……S w 状态对应的能级s 'ε;类似………………………………;则出现某微观状态的几率可作如下计算:根据玻尔兹曼统计Ne P sS βεα--=;显然NP s 代表粒子处于某量子态S 下的几率,Se NP Sβεα--=;于是Se βεα--∑代表处于S 状态下的粒子数;例如,对于s 'ε能级⎪⎪⎭⎫⎝⎛∑=--'K S S S S e 1βεα个粒子在s 'ε上的K 个微观状态的概率为: 类似写出:()⎪⎪⎭⎫ ⎝⎛''∑=''=''--k S S S s e S PS P1βεα ………………………………………………等等; 于是N 个粒子出现某一微观状态的概率; 一微观状态数P1=Ω,基于等概率原理将Se NP Sβεα--=带入S SS P P kN S ln ∑-=⇒;习题固体含有A 、B 两种原子;试证明由于原子在晶体格点的随机分布引起的混 合熵为k S=㏑[][][])1ln()1(ln !)1(!!x x x x N x N N N x --+-=-κ其中N 是总原子数,x 是A原子的百分比,1-x 是B 原子的百分比;注意x<1,上式给出的熵为正值; 证:显然[]!)1()!(!!!!21x N Nx N n n N -==ΩS=k ㏑Ω=-N k [])1ln()1(ln x x x x --+=)1()1(ln x x x x Nk ---;由于)1()1(x xx x--<1,故0〉S ;原题得证;习题气体以恒定的速度沿方向作整体运动;试证明,在平衡状态下分子动量的最 概然分布为证:设能级l ε这样构成:同一l ε中,P z 相同,而P x 与P y 在变化,于是有:∑==0p a p p l z参照教材玻耳兹曼分布证明;有E N βδαδδ--Ωln -z p γ,其中)(22221Z y x lp p p m++=ε 由1知:N dp dp dp ehV z y x p z=⎰---γβεα3 将l ε代入并配方得:=N dp dp dp e hV z y x m p mm z y x =⎰+-+---2)(2)()22(3βγβεεββγα其中mp m p y y xx 2,222==εε整个体积内,分布在z z z y y y x x x dp p p dp p p dp p p +→+→+→,,内分子数为:由条件3知⎰=0),,(Np dp dp dp p p p f pz y x z y x z计算得 =z m p my x dp em dp dp emkTz y x ⎰⎰+-+--2)(2)(23)()21(βγβεεββγπ=0p Ndp dp fdp m zy x =-⎰βγ0p m -=⇒βγ代入得出分布:[]3)(22022"hdp dp Vdp ezy x p p p p mz y x-++--βα其中βγαα22'm -=,0p m -=βγ习题试根据麦克斯韦速度分布率导出两分子的相对速度12v v v r-=和相对速率rr v v =的概率分布,并求相对速率的平均值r v ;解:两分子的相对速度r v在rz ry rx dv dv dv 内的几率2122111])()()()[(23211)()2()()()(2212121212121--∞∞-+++++++-===⎰⎰⎰⎰kTm edv dv dv e kT m v V v V v d v V rx rz z ry y rx x z y x v kT m zy x v v v v v v v v v kT mr r ππ 同理可求得z y v v 11,分量为2122)(2--kTm ery v kT m π和2122)(2--kTm er v kT m π引进2m=μ,速度分布变为r r v kT mdv v e kT r 22232)2(-πμ 利用球极坐标系可求得速率分布为:r r v kT m dv v e kTr22232)2(4-πμπ 相对速率平均值v kT dv v e v kT v r r v kT m r r r28)2(4220232===-∞⎰πμπμπ习题试证明,单位时间内碰到单位面积上,速率介于v 与dv v +之间的分子数为:dv v e kTm n d kTmv 322/32)2(-=Γππ证:在斜圆柱体内,分速度为z v 的v 方向的分子数为:对于:0,,积分得从对从+∞→+∞→∞-z y x v v vdt 时间碰撞到ds 面积上的分子数dv v v +→=dsdt d dvd v ekTm n kTmv ϕθθπππcos )2(2/032202\32⎰⎰-得到:若只计算介于dv v v +→分子数则为:只对φθ,积分习题分子从器壁小孔射出,求在射出的分子束中,分子平均速度和方均根速度;解:dvv e kT m n dvv e kT m n v kT nv v kT m3022/30422/322)2()2(⎰⎰∞+-+∞-=ππππ;变量代换⇒==dx mkTdv x n kT m2;2 习题已知粒子遵从经典玻耳兹曼分布,其能量表达式为:bx ax p p p mz y x ++++=2222)(21ε其中b a ,是常数,求粒子的平均能量; 解:ab a b a bx x a m p 4)4(222222-+++=ε习题气柱的高度为H ,截面为S ,在重力场中;试求解此气柱的内能和热容量;解:配分函数⎰-++-=z y x mgz p p p mdp dp dxdydzdp ehZ z y x ββ)(232221 设⎥⎦⎤⎢⎣⎡=mg m hS A 1)2(2/33π;[]mgH e A Z ββ--+-=1ln ln )2/5(ln ln习题试求双原子理想气体的振动熵;解:振动配分函数ωβωβ ---=e e Z V 12/1代入式)1ln(2/ln 1ωβωβ ----=⇒e Z代入熵计算式V V k T Nk Nk S θωθ=+=⇒其中)./ln(;习题对于双原子分子,常温下kT 远大于转动的能级间距;试求双原子分子理 想气体的转动熵; 解转动配分函数212 βI Z r=);/ln(;/1ln ;2ln ln 121r T Nk Nk S Z I Z θβββ+=⇒-=∂∂=其中r k I h θ=22习题气体分子具有固有电偶极矩0d ,在电场ε下转动能量的经典表达式为:θεθεφθcos )sin 1(210222d p p I r -+=,证明在经典近似下转动配分函数: 解:经典近似下,rε视为准连续能量配分函数⎰⎰⎰⎰⎰⋅==∞∞-+⋅---πφθεβθβθβφθβεφθφθθ20cos sin 21222102211d dp d edp ehd d dp dpe hZ d I p Ir利用π=⎰∞∞--dx ex 2习题同19题,试证在高温10≤εβd 极限下,单位体积电偶极矩电极化强度为:εξkT d 320=; 解:电极化强度)1(1ln 0000001εβββεβξεβεβεβεβ--+=∂∂=--d d d d ee e d e d Z N 高温极限下,0→β,保留至20)(εβd εεβkTnd d 222020=⇒;其中VN n =习题试求爱因斯坦固体的熵;解:将ωβωβh h eeZ ---=121,代入至S 表达式即得,注意N 取3N;略第九章系综理论习题证明在正则分布中熵可表为∑-=ss s k S ρρln 其中sE s e Zβρ-=1是系统处在s 态的概率; 证:)ln (ln ββ∂∂-=Z Z k S多粒子配分函数)1(1ss E s E e Z e Z ββρ--=⇒=∑由1知[]s s s s s E Z E Z E Z esρβρβρβln ln 1;ln ln +=-+=-⇒=-代至2得[]∑∑+=+=∂∂ssss s s Z Z Z ρρββρρββln 1ln 1ln ln 1ln ;于是∑-=⎪⎪⎭⎫⎝⎛∂∂-=s ss k Z Z k Sρρββln ln ln习题试用正则分布求单原子分子理想气体的物态方程,内能和熵 证:()222121;iziy ix Ni s sE p p p mE eZs++==∑∑=-β符号∏=i iz iy ix dp dp dp dp符号∏=i ii i dz dy dx dq 利用式V NTk V Z Z Z P =∂∂=∂∂=⇒βββ1ln 1类似求S U ,;习题体积内盛有两种组元的单原子混合理想气体,其摩尔数为1n 和2n ,温度为T ; 试由正则分布导出混合理想气体的物态方程,内能和熵;解:习题利用范氏气体的配分函数,求内能和熵;解:Q m N Z N 2/32!1⎪⎪⎭⎫ ⎝⎛=βπ()⎰⎰⎰-----++=-=∂∂⇒dr f V N V dr e V N NTk U dr e V N Q N N N N 12121212122/3;22βφβφφφβ一般认为dr f VN 1222较小; 习题利用德拜频谱求固体在高温和低温下配分函数对数Z ln ,从而求内能和熵; 解:式 德拜频谱B ND 93=ω 对于振动())(1ln 1ln ln ln 2020020x d e e B d D e e e Z D D =⎪⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎪⎭⎫ ⎝⎛-+=⎰⎰-----ωβωωβφωωωωβωβωωβωββφ 代换 S 计算略高温近似,∞→T ,0→ωβ()N N +--=ωββφ ln 30计算略习题用巨正则分布导出单原子分子理想气体的物态方程,内能,熵和化学势; 解:参照关于玻耳兹曼体系配分函数的处理过渡到连续能量分布得: 利用热力学式可求得kT N pV =,kT N U 23=等略 注:l ε--------单粒子处于l 能级的能量;习题利用巨正则分布导出玻耳兹曼分布; 解:∑∑--=ΞN S E N s eβα;由于玻耳兹曼系,粒子可分辨,从而为简单起见,考虑无简并有简并情况完全可类似处理 于是:(){}∏∞=+-=Ξ0ex p l a l l eβα即对无简并情况()l e a l βεα+-=对有简并者,类似处理可得()l e a l lβεαω+-=略 l ω——简并度。
热力学与统计物理课件 统计物理部分 第五章 涨落理论
对现有大系统,相对涨落都是可忽略的,但对于小系统,涨落就是可观察的了。
一、布朗运动和研究布朗运动的意义1827年,植物学家布朗观察到悬浮在液体中的花粉或其他小颗粒不停地做无规则运动,颗粒愈小,其运动就愈激烈,这就是布朗运动。
在此后很长一段时间内,人们并不了解这种运动的原因,直到1904年斯莫陆绰斯基才给出了统计解释,同时爱因斯坦和朗之万(Lang Evin )等给出了最终的理论结果。
1908年皮兰完成了实验上的观测,从而使布朗运动的性质和它的正确解释才得到完全的确认。
§5.2 布朗运动(Brownian Motion )布朗粒子通常很小,直径约m 6710~10−−要在显微镜下才能看到。
由于粒子很小,它受到周围流体介质分子的碰撞一般是不平衡的,这个净作用力足以让粒子产生运动,粒子愈小,布朗运动就愈显著。
由于分子热运动变化剧烈,产生的力涨落不定,其大小和方向也不断地发生变化,因而粒子的运动是无规则的。
布朗粒子与分子碰撞所产生的能量交换过程,类似于分子间的碰撞过程,所以可以把布朗运动看成分子运动的一个宏观表示。
(微米量级),研究布朗运动的意义:1. 为分子运动论提供有力的证据。
在关于物质微观结构的认识过程中,以罗蒙诺索夫为首的分子运动论思想和经化学家奥斯瓦尔德为首的唯能论者曾经历漫长的争论。
因为人类的眼力尚未深入到微观世界,因而争论正确方得不到有力的证据。
而布朗运动可以间接看到介质分子的无规则、毫不停止的运动。
2. 在精密测量中也有意义。
如微电流的测量,精密度要受到布朗运动的限制。
电流计及其他带有悬丝和反射镜的仪器,由于反射镜受到周围空气分子的碰撞而施加的力矩一般来说是不平衡的,因而会产生无规则的涨落摆动。
上将与更多的介质分子碰撞,因此平均而言,将受到与其速度方向相反的粘滞阻力。
当二、朗之万方程和爱因斯坦公式:布朗运动作为一个大分子的热运动性质,已为皮兰实验完全证实。
皮兰实验分为三类:一是布朗粒子在重力场中的平衡分布,发现其密度完全遵守玻尔兹曼分布;皮兰的第二类实验是观测粒子位移的散差。
第5章 热力学(1)
Q E2 E1 W
热力学第一定律数学表达式
实质:包括热现象在内的能量守恒与转换定律
数学表达式中各量值的意义: 第一定律的符号规定
Q
E2 E1
内能增加 内能减少
W
系统对外界做功 外界对系统做功
+
系统吸热 系统放热
§5-2 热力学第一定律
第一类永动机:外界不供给能量而可以不断地对外作功 循环水
adb adb
b
42 208 250J
e a
0 d
V
例1. 如图所示,系统从状态a沿acb变化到状态b ,有334J的热 量传递给系统,而系统对外作的功为126J.
(2)当系统从状态b沿曲 线bea 返回到状态a时,外界对系统
作功 84 J ,问系统是吸热还是放热?传递了多少热量?
Qbea Wbea ( E ) 84 208 p 292J
准静态过程(理想化的过程)
准静态过程 系统状态变化所经历的所有中间状态 都无限接近平衡状态的过程。
各部分压强、温 度等相同
各部分密度、压 强等不同
活塞无限缓慢地压缩 可视为准静态过程
活塞快速地压缩 非准静态过程
准静态过程可以用 p —V 图上的连续曲线表示。
准静态过程(理想化的过程)
1、定义:准静态过程是指在过程中 任意时刻,系统都以一种无限缓慢的、接
过程不同,曲线下面积不同
(可正、可负、可零)
气体在一准静态过程中作功的计算
示功图: p - V 图上过程曲线下的面积
W
V2
p dV
V1
若
dV 0 dW 0
p
dV 0 dW 0 dV 0 dW 0
热力学统计物理各章重点总结
热力学统计物理各章重点总结3.准静态过程和非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
非准静态过程,系统的平衡态受到破坏4.内能、焓和熵内能是状态函数。
当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。
这是态函数焓的重要特性克劳修斯引进态函数熵。
定义:5.热容量:等容热容量和等压热容量及比值定容热容量:定压热容量:6.循环过程和卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。
系统经历一个循环后,其内能不变。
理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。
7.可逆过程和不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。
可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。
8.自由能:F和G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB3-W1定律及推论1.热力学第零定律-温标如果物体A和物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。
三要素:(1)选择测温质;(2)选取固定点;(3)测温质的性质与温度的关系。
(如线性关系)由此得的温标为经验温标。
2.热力学第一定律-第一类永动机、内能、焓热力学第一定律:系统在终态B和初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律.UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
热力学统计物理课后习题答案
1. 1试求理想气体的体胀系数 :,压强系数:和等温压缩系数:T解:已知理想气体的物态方程为 pV 二nRT 由此得到体胀系数-貯。
诵冷,1. 2证明任何一种具有两个独立参量 T ,P 的物质,其物态方程可由实验测量的体胀系数和 等温压缩系数,根据下述积分求得 InV =:・dT -:T dp ,如果:•二丄「.T -,试求物态方TP程。
解:体胀系数:=-—V 5丿p等温压缩系数K T =--—]V 2P 人这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得根据题设,若〉=丄,冷=丄T p则有InV =ln T C , PV=CTp要确定常数C,需要进一步的实验数据。
1. 4描述金属丝的几何参量是长度 L ,力学参量是张力£,物态方程是(£丄,T )=0,实验通 1 r 鬥)常在大气压下进行,其体积变化可以忽略。
线胀系数定义为a =丄丄| ,等温杨氏模量L 5丿F定义为Y -L 「匚 ,其中A 是金属丝的截面。
一般来说,:和Y 是T 的函数,对£仅有微A I^L 人第一章热力 学 的 基 本压强系数1 仔、_ n R _ 1 B JT 厂而=T等温压缩系数'-T =以T ,P 为自变量, 物质的物态方程为V =V T,p其全微分为 dV =eVdp 二 V : dT -V T dp i印」n RT ) T~) p所以C n = C Vn -1弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
试证明,当 温度由T1降至T2时,其张力的增加为厶£ = -YA/T 2-TJ 。
解:f ( £ 丄,T)=0, £ =F £ (L,T)d £=空;dT +( dL — i dT (dL=0)©丿Li 此丿T &T .丿L所以:£= -YA MT ? -TJ1. 6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体 所做的功和所吸收的热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U T
V
3 Nk 2
F
(T
,V
)
NkT
ln
ez N
NkT
3 ln 2
kT
ln
V N
3 ln 2
2m
h2
1.
S
(T
,V
)
F T
V
Nk
3 2
ln
kT
ln V N
j
5 2
(T
,V
)
F N
T
,V
kT
ln
N V
3 ln kT 2
17
j
j (3/ 2)ln(2m / h2)
§5.3 理想气体分子的速度分布律和速率分布律
Therefore,
We are ready to go!
3
后面的任务:
近独立粒子系统的宏观性质的计算: 一、玻尔兹曼统计 二、玻色统计 三、费米统计
4
5
§5.1 玻尔兹曼系统 一、粒子配分函数
al
e l l
al
e l l
N
l
l
Z1
el l
l
粒子配 分函数
e N Z1
al
a e 玻尔兹曼统计 l
l
l
S k[N ln N al lnal al lnl ]
l
l
对比
ln N ln N al lnal al lnl
l
l
SMB k ln MB
12
这样,熵就有了它的统计意义:它是系统的微观状 态数目的对数乘以k。同时熵也有了一个绝对的数值。
S k ln
我们已经学习了什么?
1、粒子运动状态的描述
经典粒子:-空间、相轨道的概念、 量子粒子:量子数、可能量子状态数目的计算
2、系统微观状态的经典和量子描述
经典系统:-空间中的N个点 量子系统:定域和非定域、全同性、统计特性
3、等几率原理
平衡状态下系统的任何微观状态出现的几率都相等
4、系统的微观状态数 目的计算及其关系
)
其中令 1
kT
熵
S
Nk
ln
Z
ln Z
S'
S是积分常数,熵常数
10
三. 熵S的统计意义:
经过一系列推导,我们得 到了服从玻耳兹曼分布的 系统的熵S与粒子数N、温 度T、内能U之间的关系。 其中,熵常数S待定。
N eα Z ln Z ln N
S
Nk
ln
Z
ln Z
S
'
S
Nk
ln
N Z1
l
e
l
1
kT
6
二、热力学量
1. 内能
U
e l ll
l 0
e (
l0
l e l )
2. 功
N ( Z1 ) N ln Z1
Z1
dU dW dQ
l
统计表达式 能级不变
al ' 分布变
l
1
al
0
1
l'
0
U al l l0
1' 0'
al 能级变 分布不变
y
所以 Z1 Z1( , y)
9
求全微分
d
ln
Z1
ln Z1
d
ln Z1 y
dy
之前求得
(dU Ydy ) Nd( ln Z1 ) N ln Z1 dy
y
d(N
ln
Z1
N
ln Z1
)
由
dQ dU Ydy dS
T
T
得到
dS
N
T
d (ln
Z1
ln Z1 )
Nkd (ln
Z1
ln Z1
四、内能
p NkT V
U
N
ln Z1
N
[lnV
3 2m
ln( 2
h2
)]
U 3 NkT 2
16
对于单原子理想气体,其他的物理量的导出:
3
Z
V
2πm h3 β
2
ln
z
3 ln 2
lnV
3 2
ln
2m
h2
PV NkT
U N ln Z 3 N 3 NkT
2 2
CV
玻耳兹曼关系式
熵是混乱度的量度。如果某个宏观状态的微光状态数目愈多,
它的混乱度就愈大,熵也愈大。在理想的绝对零度下,系统 处于基态,状态数很小,所以熵近似为0或者等于0。
孤立系统的熵增原理:系统总是朝着微观状态数目增加的 方向过渡,那样的状态有更大的几率出现。
熵是一种统计性质,对少数几个粒子组成的系统谈不到熵。 因此,热力学第二定律适用于粒子数非常多的系统。
玻尔兹曼:定域、粒子可以分辨 玻色系统:非定域、全同性、统计特性 费米系统:非定域、全同性、统计特性
5、三类系统的最可几分布
玻尔兹曼、玻色、费米三种分布之间的关系
1
玻尔兹曼、玻色、费米系统之间的关系
玻色粒子,玻色分布
=
e+
1
非兼并条件
e》1 l l
费密粒子,费密分布
=e+ 1
注意:全同性带 来的微观状态
l
l
y
a
l
aldl
l
8
3. 熵
由
dQ dU Ydy dS
T
T
得 dQ dU Ydy
Nd ( ln Z1 ) N 1 ln Z1 dy
y
等式两边同乘β:
(dU Ydy ) Nd( ln Z1 ) N ln Z1 dy
y
而
Z1
e l l
且
l0
fl
l
r3
二、配分函数
Z1
e
2m
(
pdzdpx dp y dpz
h3
1
h3
p
2 x
p2y
pz2
dxdydz e 2m dpx e 2m dpy e 2m dpz
Z1
V
(
2m h2
)
3
/
2
15
三、物态方程
p
N
ln Z1 V
N
V
[lnV
3 2m 2 ln( h2 )]
13
§5.2 经典理想气体的热力学性质
一般气体满足经典极限条件,遵从玻尔兹曼分布。 考虑单分子理想气体
P=N lnZ
v
关键在于求得配分函数Z
Z= e-
需要知道能级及其简并度
系统的l, l
如何求得能级及其简并度
14
一、理想气体
气体分子之间的相互作用势能被忽略。
1 2m
( px2
p2y
pz2 )
数目的差异
BE=NM!B
可分辨粒子,玻尔兹曼分布
= e--
e
注意:全同性带 来的微观状态
数目的差异
FD=NM!B
全同性对微观状态数目的影响:粒子之间的交换能否引起系统微观状态的改变!
(N!)
2
现在,我们已经知道:
1、微观粒子运动状态的描述 2、可能状态数目(态密度)的计算方法 3、系统微观状态数目的计算 4、处于平衡态的系统的分布公式等
Z
ln Z
S'
Nk ln N U S '
N
k N ln N N U S '
目前还是看不出熵 的统计意义是什么。
11
我们现在来比较一下各种系统的微观状态数目的对数与系统的熵的 统计表达式,以图发现它们之间的联系,并得到熵常数S。
熵S的表达式:
S k N ln N N U S'
7
dU al d l l dal
l0
l0
能级变
能级不变
分布不变 分布变
每个粒子受力:
fl
l
y
外界对系
统的力
Y
l
l
y
al
l
l
y
l
e
l
e ( 1
y l
l e l )
N1
Z1 y Z1
N 1 ln Z1
y
功
p N ln Z1
V
广义力统计表达式
Ydy dy