因式分解公式法(1)练习卷
最新因式分解分类练习(提公因式法、公式法、十字相乘法)
因式分解:提公因式法专项训练一:确定下列各多项式的公因式。
1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。
1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。
1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。
1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。
因式分解专项练习50道(公式法)
1. 因式分解:21001m -2. 因式分解:23625x -3. 因式分解: ()22a b c +-4. 因式分解:()249a b c --5. 因式分解:()()221x y x y ---+6. 因式分解:2122412x x ++7. 因式分解:2219ax ab -8. 因式分解:2341227x y x y-9. 因式分解:()()22ax y b y x -+-10. 因式分解:2296x xy y-+11. 因式分解:214p p -+12. 因式分解:214a a++13. 因式分解:222510a b ab+-14. 因式分解:322363ax y ax y ax++15. 因式分解:4224816a a b b -+16. 因式分解:22193m m++17. 因式分解:222244x x y x y-+18. 因式分解:2230225a ab b -+-19. 因式分解:221222x xy y ++20. 因式分解:224912m n mn --+21. 因式分解:221025x y xy -+22. 因式分解:228x -23. 因式分解:22ab ab a-+24. 因式分解:3222x x y xy-+25. 因式分解:()()2294a x y b y x -+-26. 因式分解:()()223227x x --+27. 因式分解:22344xy x y y--28. 因式分解:()()134a a -++29. 因式分解:2231827x xy y-+30. 因式分解: ()24343a b a b --31. 因式分解:()222224m nm n+-32. 因式分解:()()2244m n m m n m+-++33. 因式分解:2425x -34. 因式分解: 22363mx mxy my-+35. 因式分解:23a b b -36. 因式分解:()()2222629x x-+++-37. 因式分解:()()224a b a b --+38. 因式分解:()()2233x y x y +--39. 因式分解: 2269a b ab -+40. 因式分解:()()216249a b a b +-+-41. 因式分解:()()242520x y x y ++-+42. 因式分解: ()()221a b a b ++++43. 因式分解:()()2244222x y x y +-44. 因式分解:()2222224a b a b c-+-45. 因式分解:()()2249x y z x y z ++---46. 因式分解:()()2221768a b x b a ---47. 因式分解:88x y-+48. 因式分解:()2242y z x --49. 因式分解:()()242327x x y y x ---50. 因式分解:()()75a b b a -+-51. 因式分解:()222224x yxy +-52. 因式分解:()222224a b a b-+53. 因式分解:()244224p qp q+-54. 因式分解:()()245201x y x y ++-+-\。
考点12 因式分解-公式法(解析版)
考点12 因式分解——公式法一.选择题(共12小题)1.(2020·山西月考)多项式2218a -与231827a a -+的公因式是( ) A .3a -B .3a +C .9a -D .9a +【答案】A【解析】解:∵222182(9)2(3)(3)a a a a -=-=+-, 222318273(69)3(3)a a a a a -+=-+=-,∵多项式2218a -与231827a a -+的公因式是3a -;故选:A .2.(2020·湖北期末)下列从左到右的变形中,属于因式分解的是( ) A .(x +1)(x ﹣1)=x 2﹣1B .x 2﹣5x +6=(x ﹣2)(x ﹣3)C .m 2﹣2m ﹣3=m (m ﹣2)﹣3D .m (a +b +c )=ma +mb +mc【答案】B【解析】解:A 、不是因式分解,故本选不项符合题意;B 、是因式分解,故本选项符合题意;C 、不是因式分解,故本选项不符合题意;D 、不是因式分解,故本选项不符合题意;故选:B .3.(2020·广西期中)把24x y y -分解因式,结果正确的是( )A .y (x 2-4)B .y (x+4)(x -4)C .y (x+2)(x -2)D .2(2)y x -【答案】C【解析】 ()()()224422-=-=-+x y y y x y x x ;故答案选C .4.(2020·广东期末)将多项式2161m +加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是( )A .2-B .215m -C .8mD .8m -【答案】B【解析】A.()()2216121614141m m m m +-=-=+-,此选项正确,不符合题意;B.222161151m m m +-=+,此选项错误,符合题意;C.()22161841m m m ++=+ ,此选项正确,不符合题意;D.()22161841m m m +-=- ,此选项正确,不符合题意.故选B .5.(2020·广东一模)下列因式分解正确的是( )A .()2211x x -=-B .229(9)(9)x y x y x y -=-+C .2(1)-=-a a a aD .221(2)1a a a a ++=++【答案】C【解析】 解:A .()()2111x x x -=+-,故A 错误; B .229(3)(3)x y x y x y -=-+,故B 错误;C .2(1)-=-a a a a ,故C 正确;D .2221(1)a a a ++=+,故D 错误.故选:C .6.(2020·四川)将下列多项式分解因式,结果中不含因式x ﹣1的是( ) A .x 2﹣1B .x 2+2x+1C .x 2﹣2x+1D .x (x ﹣2)﹣(x ﹣2) 【答案】B【解析】A 、原式=(x+1)(x -1),含因式x -1,不合题意;B 、原式=(x+1)2,不含因式x -1,符合题意;C 、原式=(x -1)2,含因式x -1,不合题意;D 、原式=(x -2)(x -1),含因式x -1,不合题意,故选:B .7.(2020·常德期中)下列从左到右的变形,属于因式分解的是( ). A .2(1)(1)1x x x -+=- B .24(3)(2)2m m m m +-=+-+ C .22(2)x x x x +=+D .()322221x x x x x x +-=++ 【答案】C【解析】A :结果不是整式的乘积形式,错误;B :结果不是整式的乘积形式,错误;C :是因式分解,正确;D :()322221x x x x x x +-=+-,原式错误故选:C8.(2020·山西月考)将多项式42242x x y y -+分解因式,结果是( ) A .4()x y -B .()422x y -C .2()()x y x y -+D .22()()x y x y -+【答案】D【解析】 42242x x y y -+=()222x y -=22()()x y x y -+, 故选:D.9.(2020·太原月考)下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x -y),故该选项因式分解错误,不符合题意,C.xy -x=x(y -1),故该选项正确,符合题意,D.x 2+2x -1不能因式分解,故该选项因式分解错误,不符合题意, 故选:C .10.(2020·浙江期末)下列因式分解错误的是( )A .()23632x xy x x y -=-B .()()22933x y x y x y -=-+ C .()2244121x x x ++=+D .()()2221x x x x --=+- 【答案】D【解析】 解:A 、因式分解正确,故本选项不符合题意;B 、因式分解正确正确,故本选项不符合题意;C 、因式分解正确,故本选项不符合题意;D 、()()2221x x x x --=-+,故D 因式分解不正确,故本选项符合题意; 故选:D .11.(2020·内蒙古试)下列因式分解正确的是( )A .228(2)8a a a a --=--B .224(4)(4)a b a b a b -=+-C .()32224222x x x x x x -+=-D .256(2)(3)x x x x -+=--【答案】D【解析】 解:A 、228(4)(2)a a a a --=-+,故A 错误;B 、224(2)(2)a b a b a b -=+-,故B 错误;C 、()32222422212(1)x x x x x x x x -+=-+=+,故C 错误; D 、256(2)(3)x x x x -+=--,故D 正确;故选:D .12.(2020·河北)已知m 2+n 2-6m +10n +34=0,则m +n 的值是( ) A .-2 B .2 C .8 D .-8【答案】A【解析】解:∵m 2+n 2-6m+10n+34=m 2-6m+9+n 2+10n+25=(m -3)2+(n+5)2=0, ∵m -3=0,n+5=0,∵m=3,n=-5,∵m+n=3-5=-2.故选:A.二.填空题(共6小题)13.(2020·长春期中)分解因式22242a ab b -+=__________.【答案】22()a b -【解析】解:22242a ab b -+ =()2222a ab b -+=22()a b -.故答案为22()a b -.14.(2020·陕西)分解因式:2x y 4y -= .【答案】()()y x 2x 2+-.【解析】()()()22x y 4y y x 4y x 2x 2-=-=+-.15.(2020·上海期末)若1x y +=,则333x y xy ++=_________________. 【答案】1【解析】()()332233x y xy x y x xy y xy ++=+-++∵1x y +=∵原式223x xy y xy -++=222x xy y =++()2x y =+ 1=故答案为:1.16.(2020·上海期末)在有理数范围内分解因式:22652x xy y x y -++--=_________________.【答案】()()2132x y x y ---+【解析】22652x xy y x y -++--()()232x y x y x y =--+--()()()()233+222x y x y x y x y =------()()()213+221x y x y x y =-----()()2132x y x y =---+故答案为:()()2132x y x y ---+.17.(2020·上海月考)在实数范围内分解因式:2224x xy y -+=________________.【答案】)y y +-【解析】解:2224x xy y -+=222)4)xy y -+-=22)y -=)y y +--故答案为:)y y +--18.(2020·上海)因式分解:(1)(1)(2)1n n n n -+++=________.【答案】()221+-n n【解析】解:(1)(1)(2)1-+++n n n n=(1)(2)(1)1-+++n n n n=22(2)()1+-++n n n n令2+n n=x则原式=()22(2)1211-+-+-x x =x x =x将2+n n=x 代入得()21-x =()221+-n n 故答案为:()221+-n n .三.解析题(共6小题)19.(2020·山东月考)(一)因式分解(1)()()323a m n m n +++ (2)()222224a b a b +-(二)用简便方法计算(1)2222211111111...1123420182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (2)29991002998-⨯ .【答案】(一)(1)(2)(3)a m n ++;(2)22()()a b a b -+;(二)(1)10102019;(2)1995- 【解析】(一)(1)原式(2)(3)a m n =++;(2)原式2222()(2)a b ab =+-,2222(2)(2)a b ab a b ab =+-++,22()()a b a b =-+;(二)(1)原式11111111(1)(1)(1)(1)(1)(1)(1)(1)22334420192019=-⨯+⨯-⨯+⨯-⨯+⨯⋯⨯-⨯+, 1324352018202022334420192019, 1202022019=⨯, 10102019=; (2)原式2(10001)(10002)(10002)=--+⨯-,2210002000110004=-+-+,1995=-.20.(2020·甘肃期末)因式分解:(1)()()229a x y b y x -+-;(2)()()22258516x x -+-+.【答案】(1)()()()33x y a b a b -+-;(2)()()2211x x +- 【解析】(1)原式()()229x y a b =--()()()33x y a b a b =-+-.(2)原式()2254x =-+ ()()2211x x =+-.21.(2020·重庆期中)先阅读,再因式分解:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x)2=(x 2-2x +2)(x 2+2x +2),按照这种方法把多项式x 4+324因式分解.【答案】(x 2+18+6x)(x 2+18-6x).【解析】x 4+324=x 4+36x 2+324-36x 2=(x 2+18)2-36x 2=(x 2+18)2-(6x )2=(x 2+18+6x )(x 2+18-6x ).22.(2020·湖北)先因式分解,然后计算求值:(1)229124x xy y ++,其中43x =,12y ; (2)22()()22a b a b +--,其中18a =-,2b =. 【答案】(1)2(32)x y +,9;(2)ab ,14-. 【解析】解:(1)当43x =,12y 时,2222419124(32)[32()]932x xy y x y ++=+=⨯+⨯-=; (2)当18a =-,2b =时, 原式()()2222a b a b a b a b +-+-=+- ab =128=-⨯14=-. 23.(2020·河南期末)对于二次三项式222x ax a ++,可以直接用公式法分解为()2x a +的形式,但对于二次三项式2223x ax a +-,就不能直接用公式法了,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使2223x ax a +-中的前两项与2a 构成完全平方式,再减去2a 这项,使整个式子的值不变,最后再用平方差公式进步分解.于是()()()()22222222232323x ax a x ax a a a x a a x a x a +-=++--=+-=+-.像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1)2412x x +-;(2)224125x xy y -+. 【答案】(1)()()62x x +-;(2)()()225x y x y --【解析】解:(1)2412x x +-244412x x =++--()2216x =+- ()()2424x x =+++-()()62x x =+-(2)224125x xy y -+2222412995x xy y y y =-+-+()22234x y y =-- ()()232232x y y x y y =-+--()()225x y x y =--24.(2020·辽宁期末)阅读下内容,再解决问题.在把多项式m 2﹣4mn ﹣12n 2进行因式分解时,虽然它不符合完全平方公式,但是经过变形,可以利用完全平方公式进行分解:m 2﹣4mn ﹣12n 2=m 2﹣4mn +4n 2﹣4n 2﹣12n 2=(m ﹣2n )2﹣16n 2=(m ﹣6n )(m +2n ),像这样构造完全平方式的方法我们称之为“配方法”,利用这种方法解决下面问题.(1)把多项式因式分解:a 2﹣6ab +5b 2;(2)已知a 、b 、c 为∵ABC 的三条边长,且满足4a 2﹣4ab +2b 2+3c 2﹣4b ﹣12c +16=0,试判断∵ABC 的形状.【答案】(1)(a ﹣b )(a ﹣5b );(2)∵ABC 为等腰三角形【解析】(1)2265a ab b +-22226995a ab b b b =-++-223)(4a b b -=-32)(32)(a b b a b b ---=+)((5)a b a b -=-;(2)2224423412160a ab b c b c ++-+-=-22224444312120a ab b b b c c +++++--=- 222(2)(2)3(2)0a b b c +-+-=-由偶次方的非负性得:20,20,20a b b c -==-=- 解得:1,2,2a b c ===ABC ∆∴为等腰三角形.。
因式分解的常用方法及练习题
因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c) 二、公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:(a+b)(a -b) = a 2-b 2(2) 完全平方公式:(a ±b)2= a 2±2ab+b 2(3) 立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2)(4) 立方差公式:a 3-b 3=(a -b)(a 2+ab+b 2) (5)完全立方公式:(a±b)³=a ³±3a ²b +3ab ²±b ³ 下面再补充两个常用的公式: (6)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(7)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 三、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式:))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
例5、分解因式:652++x x 672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
因式分解-提公因式和公式法专项练习(原卷版)
因式分解-提公因式和公式法专项练习(一)知识点1:因式分解1.定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.2.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.3.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.【典例1】下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=(a+1)(a﹣1)【变式1-1】下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)【变式1-2】下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)知识点2:公因式的公因式是.【典例2-2】4x(m﹣n)+8y(n﹣m)2的公因式是.【变式2-1】多项式.4ab2+8a2b的公因式是.【变式2-2】多项式3x+3y与x2﹣y2的公因式是.【变式2-3】多项式4x(m﹣n)+2y(m﹣n)2的公因式是.知识点3:提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.【典例3】分解因式:(1)2y+3xy;(2)2(a+2)+3b(a+2).【变式3-1】因式分解(1)x2﹣4x;(2)8y3﹣2x2y.【变式2-2】因式分解:(1)8abc﹣2bc2;(2)2x(x+y)﹣6(x+y).【变式3-3】分解因式:x(m+n)﹣y(n+m)+(m+n).知识点4:公式法=.【变式4-1】因式分解:a2﹣169=.【变式4-2】因式分解:4a2﹣b2=.【变式4-3】把多项式a2﹣9b2分解因式结果是.【典例5】分解因式:a2+8a+16=.【变式5-1】因式分解x2﹣6ax+9a2=.【变式5-2】分解因式:a2﹣6a+9=.知识点5:提公因式与公式法综合1.提公因式:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.2.公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)【典例6】分解因式(1)x2y﹣y;(2)ax2﹣6ax+9a.【变式6-1】因式分解:(1)x3y﹣xy3;(2)8a2﹣16ab+8b2.【变式6-2】因式分解:(1)2x3y﹣2xy3(2)﹣a3+2a2﹣a.【变式6-3】分解因式:(1)5x2﹣5y2;(2)2mx2+4mxy+2my2.【变式6-4】因式分解:9a2(x﹣y)+4b2(y﹣x)【达标测评】一.选择题(共8小题)1.(2023秋•泉港区期末)多项式12a3b﹣8ab2c的公因式是()A.4a2B.4abc C.2a2D.4ab 2.(2023秋•莱西市期末)多项式3m2+6mn的公因式是()A.3B.m C.3m D.3n 3.(2023秋•纳溪区期末)因式分解(x﹣1)2﹣9的结果是()A.(x﹣10)(x+8)B.(x+8)(x+1)C.(x﹣2)(x+4)D.(x+2)(x﹣4)4.(2023秋•泰山区期末)分解因式:64﹣x2正确的是()A.(8﹣x)2B.(8﹣x)(8+x)C.(x﹣8)(x+8)D.(32+x)(32﹣x)5.(2023秋•沙坪坝区校级期末)因式分解:mx2﹣4m=()A.m(x2﹣4)B.m(x+2)(x﹣2)C.mx(x﹣4)D.m(x+4)(x﹣4)6.(2023秋•哈密市期末)下面各式从左到右的变形,属于因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣1=(x﹣1)2C.x2﹣x﹣1=x(x﹣1)﹣1D.x2﹣x=x(x﹣1)7.(2024•裕华区校级开学)若a+b=3,a﹣b=,则a2﹣b2的值为()A.1B.C.D.98.(2023秋•南沙区期末)已知多项式x2+ax+16可以用完全平方公式进行因式分解,则a的值为()A.4B.8C.﹣8D.±8二.填空题(共5小题)9.(2023秋•临潼区期末)式子x(y﹣1)与﹣18(y﹣1)的公因式是.10.(2024•榆阳区校级一模)因式分解:2x2y+10xy=.11.(2024•西山区校级模拟)分解因式:m3+6m2+9m=.12.(2023秋•哈密市期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.13.(2024•临潼区一模)因式分解:3a2﹣12=.三.解答题(共3小题)14.(2023秋•海口期末)把下列多项式分解因式:(1)4a3﹣16ab2;(2)3(x﹣1)2+12x.15.(2023秋•洪山区期末)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)16.(2023秋•寻乌县期末)因式分解:(1)﹣x3﹣2x2﹣x;(2)x2(a﹣1)+y2(1﹣a).。
初中数学用公式法进行因式分解(含问题详解)
实用文档用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是 ______ .5.把多项式4ax2-9ay2分解因式的结果是 ______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为 ______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-axy= ______ .16.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+b= ______ .19.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:(1)x+xy+xy2(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.29.分解因式:(1)3m4-48;(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.实用文档31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.实用文档46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)3.2a(a+2b)(a-2b)4.m(n+1)25.a(2x+3y)(2x-3y)6.2x2(1+4x)(1-4x)7.b(a-2)28.m(x+2)(x-2)9.a(ab-1)10.2a(x+2)(x-2)11.2(m+2)(m-2)12.m(a+b)213.b(a+b)(a-b)14.(x-y)(x+y-1)15.axy(x+)(x-)16.3(y+2)(y-2)17.n(m-3)218.b(a-)219.-a(a-b)220.b(a+2)221.解:(1)原式=a2(a-b)-4b2(a-b)=(a-b)(a2-4b2)=(a-b)(a+2b)(a-2b);(2)原式=(m2+1)(m2-1)=(m2+1)(m+1)(m-1);(3)原式=-3a(4a2-4a+1)=-3a(2a-1)2.22.解:(1)原式=3xy(2x-3);(2)原式=(2a+1)(2a-1);(3)原式=n(n2-6n+9)=n(n-3)2.23.解:(1)原式=a(p-q+m);(2)原式=(a+2)(a-2);(3)原式=(a-1)2;(4)原式=a(x2+2xy+y2)=a(x+y)2.24.解:(1)原式=x(1+4y+4y2)=x(1+2y)2;(2)原式=(m+n)[(m+n)2-4]=(m+n)(m+n+2)(m+n-2).25.解:(1)原式=x(x-2)+3(x-2)=(x-2)(x+3);(2)原式=(x-5)2.26.解:(1)原式=a(a2-6a+5)=a(a-1)(a-5);(2)原式=(x2+x+x+1)(x2+x-x-1)=(x+1)2(x+1)(x-1);(3)原式=4(x2-4xy+4y2)=4(x-2y)2.27.解:(1)原式=(x+y)(x-y);实用文档(2)原式=2(4a2-4a+1)=2(2a-1)2.29.解:(1)原式=3(m4-16)=3(m2+4)(m+2)(m-2);(2)原式=b2(b2-4ab+4a).30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).46.解:(1)原式=a(x2-2x+1)=a(x-1)2;(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。
中考数学总复习《因式分解》练习题附带答案
中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。
《因式分解》计算题专项练习
24、y2+y+ 25、25m2-80m+64
26、4a2+36a+81 27、4p2-20pq+25q2
28、 +xy+y229、25a4-40a2b2+16b4
30、36x4-12x2y+y231、a2b2-4ab+4
32、16-8xy+x2y233、(x+y)2+6(x+y)+9
5、4xy-3xz+8y-6z 6、x3+3x2+3x+9
7、3xy-2x-12y+18 8、ab-5bc-2a2+10ac
9、5ax+7ay-5bx-7by 10、x3y+3x-2x2y2-6y
11、6ax+15b2y2-6b2x-15ay212、7x2-3y+xy-21x
13、3a2+bc-3ac-ab 14、a2n+bn-an-abm
76、求证:对于自然数n,2n+4-2n能被30整除.
77、分解因式(x+1)(x+3)(x+5)(x+7)-9
78、求证:两个奇数的平方差一定能被8整除。
79、已知多项式 分解因式后,有一因式是 ,请把多项式分解因式。
80、已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n的值,并求出它的其它因式。
10、169(a-b)2-196(a+b)211、(2x+y)2-(x+2y)2
(word完整版)因式分解过关练习题及答案
因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m) (2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq; (2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x; (2)16x2﹣1;(3)6xy2﹣9x2y﹣y3; (4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m); (2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1; (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(3)x5+x+1;(4)x3+5x2+3x﹣9;(。
用公式法分解因式练习题
用公式法分解因式练习题一、一元二次方程式因式分解1. 分解因式:x^2 92. 分解因式:x^2 163. 分解因式:x^2 6x + 94. 分解因式:x^2 + 8x + 165. 分解因式:x^2 10x + 256. 分解因式:x^2 + 14x + 497. 分解因式:x^2 4x + 48. 分解因式:x^2 12x + 369. 分解因式:x^2 + 20x + 10010. 分解因式:x^2 18x + 81二、一元二次多项式因式分解1. 分解因式:x^2 5x 362. 分解因式:x^2 + 7x 303. 分解因式:x^2 3x 404. 分解因式:x^2 + 9x 225. 分解因式:x^2 8x 336. 分解因式:x^2 + 11x 287. 分解因式:x^2 13x 428. 分解因式:x^2 + 15x 349. 分解因式:x^2 6x 2710. 分解因式:x^2 + 17x 32三、含有公因式的多项式因式分解1. 分解因式:2x^2 8x2. 分解因式:3x^2 + 12x3. 分解因式:4x^2 16x4. 分解因式:5x^2 + 20x5. 分解因式:6x^2 24x6. 分解因式:7x^2 + 28x7. 分解因式:8x^2 32x8. 分解因式:9x^2 + 36x9. 分解因式:10x^2 40x10. 分解因式:11x^2 + 44x四、交叉项因式分解1. 分解因式:x^2 + 5y^22. 分解因式:2x^2 + 8y^23. 分解因式:3x^2 + 12y^24. 分解因式:4x^2 + 16y^25. 分解因式:5x^2 + 20y^26. 分解因式:6x^2 + 24y^27. 分解因式:7x^2 + 28y^28. 分解因式:8x^2 + 32y^29. 分解因式:9x^2 + 36y^210. 分解因式:10x^2 + 40y^2五、综合练习1. 分解因式:x^3 272. 分解因式:x^3 + 643. 分解因式:x^4 164. 分解因式:x^4 815. 分解因式:x^6 646. 分解因式:x^6 7297. 分解因式:2x^2 188. 分解因式:3x^2 249. 分解因式:4x^2 3610. 分解因式:5x^2 50六、差平方与和平方因式分解1. 分解因式:x^2 4y^22. 分解因式:9x^2 25y^23. 分解因式:16x^2 9y^24. 分解因式:25x^2 36y^25. 分解因式:x^2 + 4y^26. 分解因式:9x^2 + 16y^27. 分解因式:4x^2 + 25y^28. 分解因式:16x^2 + 9y^29. 分解因式:25x^2 + 36y^210. 分解因式:x^2 + 49y^2七、三项式因式分解1. 分解因式:x^3 3x^2 + 2x2. 分解因式:x^3 + 4x^2 5x3. 分解因式:x^3 6x^2 + 9x5. 分解因式:x^3 8x^2 + 12x6. 分解因式:x^3 + 9x^2 13x7. 分解因式:x^3 10x^2 + 15x8. 分解因式:x^3 + 11x^2 16x9. 分解因式:x^3 12x^2 + 18x10. 分解因式:x^3 + 13x^2 19x八、多项式因式分解1. 分解因式:x^4 162. 分解因式:x^4 813. 分解因式:x^4 2564. 分解因式:x^4 6255. 分解因式:x^4 + 166. 分解因式:x^4 + 817. 分解因式:x^4 + 2568. 分解因式:x^4 + 6259. 分解因式:x^5 3210. 分解因式:x^5 243九、特殊多项式因式分解1. 分解因式:x^3 + x^2 6x2. 分解因式:x^3 x^2 + 4x3. 分解因式:x^3 + 2x^2 3x4. 分解因式:x^3 2x^2 + 5x5. 分解因式:x^3 + 3x^2 8x7. 分解因式:x^3 + 4x^2 12x8. 分解因式:x^3 4x^2 + 9x9. 分解因式:x^3 + 5x^2 16x10. 分解因式:x^3 5x^2 + 11x十、拓展练习1. 分解因式:x^2y^2 162. 分解因式:x^2 + 8xy + 16y^23. 分解因式:x^3y xy^34. 分解因式:x^4 y^45. 分解因式:x^5 + 32x6. 分解因式:2x^3 8x^2 + 8x7. 分解因式:3x^4 24x^28. 分解因式:4x^3y^2 16xy^29. 分解因式:5x^2y^2 + 20xy^210. 分解因式:6x^3 + 18x^2 24x 答案一、一元二次方程式因式分解1. (x 3)(x + 3)2. (x 4)(x + 4)3. (x 3)^24. (x + 4)^25. (x 5)^26. (x + 7)^28. (x 6)^29. (x + 10)^210. (x 9)^2二、一元二次多项式因式分解1. (x 9)(x + 4)2. (x + 10)(x 3)3. (x 5)(x + 8)4. (x + 11)(x 2)5. (x 11)(x + 3)6. (x + 14)(x 2)7. (x 14)(x + 3)8. (x + 16)(x 2)9. (x 9)(x + 3)10. (x + 17)(x 2)三、含有公因式的多项式因式分解1. 2x(x 4)2. 3x(x + 4)3. 4x(x 4)4. 5x(x + 4)5. 6x(x 4)6. 7x(x + 4)7. 8x(x 4)8. 9x(x + 4)10. 11x(x + 4)四、交叉项因式分解1. (x + 3y)(x 3y)2. 2(x + 2\sqrt{2}y)(x 2\sqrt{2}y)3. 3(x + 2\sqrt{3}y)(x 2\sqrt{3}y)4. 4(x + 3\sqrt{2}y)(x 3\sqrt{2}y)5. 5(x + 2\sqrt{5}y)(x 2\sqrt{5}y)6. 6(x + 2\sqrt{6}y)(x 2\sqrt{6}y)7. 7(x + 2\sqrt{7}y)(x 2\sqrt{7}y)8. 8(x + 2\sqrt{2}y)(x 2\sqrt{2}y)9. 9(x + 2\sqrt{3}y)(x 2\sqrt{3}y)10. 10(x + 2\sqrt{10}y)(x 2\sqrt{10}y)五、综合练习1. (x 3)(x^2 + 3x + 9)2. (x + 4)(x^2 4x + 16)3. (x 2)(x + 2)(x^2 + 4)4. (x 3)(x + 3)(x^2 + 9)5. (x 2)(x^2 + 2x + 4)(x^2 2x + 4)6. (x 3)(x^2 + 3x + 9)(x^2 3x + 9)7. 2(x^2 9)8. 3(x^2 8)9. 4(x^2 9)10. 5(x^2 10)六、差平方与和平方因式分解1. (x 2y)(x + 2y)2. (3x 5y)(3x + 5y)3. (2x 3y)(2x + 3y)4. (5x 6y)(5x + 6y)5. (x + 2y)(x 2y)6. (3x + 4y)(3x 4y)7. (2x + 5y)(2x 5y)8. (4x + 3y)(4x 3y)9. (5x + 6y)(5x 6y)10. (x + 7y)(x 7y)七、三项式因式分解1. x(x 1)(x 2)2. x(x + 1)(x。
因式分解的常用方法及练习题
因式分解的常用方法及练习题(共13页)-本页仅作为预览文档封面,使用时请删除本页-因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c) 二、公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:(a+b)(a-b) = a 2-b 2(2) 完全平方公式:(a ±b)2= a 2±2ab+b 2(3) 立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2)(4) 立方差公式:a 3-b 3=(a-b)(a 2+ab+b 2)(5)完全立方公式:(a±b)³=a ³±3a ²b +3ab ²±b ³ 下面再补充两个常用的公式: (6)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(7)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca); 三、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式:))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
例5、分解因式:652++x x 672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
初中数学因式分解技巧及练习题附答案解析(1)
初中数学因式分解技巧及练习题附答案解析(1)一、选择题1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.2.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .3.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.4.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.5.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.6.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.7.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.8.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.9.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2 【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.10.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .11.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.12.下列各因式分解正确的是( )A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 3﹣4x=2(x ﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A .﹣x 2+(﹣2)2=(2+x)(2﹣x),故A 错误;B .x 2+2x ﹣1无法因式分解,故B 错误;C.4x 2﹣4x+1=(2x ﹣1)2,故C 正确;D 、x 3﹣4x= x(x ﹣2)(x+2),故D 错误.故选:C .【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.13.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.14.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.15.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.16.下列各式从左到右的变形中,是因式分解的为( )A .ab+ac+d =a (b+c )+dB .(x+2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x+16=(x ﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.18.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.计算(-2)2015+(-2)2016的结果是 ( )A .-2B .2C .22015D .-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。
公式法因式分解练习题及答案
公式法因式分解练习题及答案题型:把下列各式分解因式1、x2?42、9?y2、1?a24、4x2?y、1?25b26、x2y2?z27、m2?0.01b、a2?x、36?m2n210、4x2?9y211、0.81a2?16b 12、25p2?49q2 13、a2x4?b2y14、x4?115、16a4?b 16、题型:把下列各式分解因式1、2?2、 2?23、162?9、92?425、2?26、4a2?214a?16b4m814919题型:把下列各式分解因式1、x5?x2、4ax2?ay23、2ab3?2ab4、x3?16x5、3ax2?3ay、x2?47、x3?4xy、32x3y4?2x、ma4?16mb416mx2?9mx10、?8a2?2a311、?ax4?16a 12、题型:利用因式分解解答下列各题1、证明:两个连续奇数的平方差是8的倍数。
2、计算⑴7582?258 ⑵4292?1712⑶3.52?9?2.52?4⑷2222234910题训练二:利用完全平方公式分解因式题型:把下列各式分解因式1、x2?2x?12、4a2?4a?1、 1?6y?9y2m24、1?m?5、 x2?2x?1 、a2?8a?167、1?4t?4t28、m2?14m?499、b2?22b?12110、y2?y? 11、25m2?80m?612、4a2?36a?81x213、4p?20pq?25q14、?xy?y 15、4x2?y2?4xy2214 题型:把下列各式分解因式1、2?6?、a2?2a?23、4?12?92、2?4m?4m25、?46、2?4a?4a2题型:把下列各式分解因式1、2xy?x2?y2、4xy2?4x2y?y33、?a?2a2?a3题型:把下列各式分解因式1、x2?2xy?2y22、x4?25x2y2?10x3y3、ax2?2a2x?a4、?4x2y25、2?6、4?182?81题型:利用因式分解解答下列各题1、已知: x?12,y?8,求代数式x2?xy?y2的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式法(1)练习卷
一、选择题
1.因式分解x2-4的结果是()
A.x(x-4)B.x(x-2)2C.(x-2)(x+2)D.x(x+2)2
2.将x2-16分解因式正确的是()
A.(x-4)2B.(x-4)(x+4)C.(x+8)(x-8)D.(x-4)2+8x
3.下列各式中可用平方差公式分解因式的是()
A.-a2b2+16 B.-a2b2-16 C.a2b2+16 D.(ab+16)2
4.因式分解x2-9y2的正确结果是()
A.(x+9y)(x-9y)B.(x+3y)(x-3y)C.(x-3y)2D.(x-9y)2
5.若x2-y2=30,且x-y=-5,则x+y的值是()
A.5 B.6 C.-6 D.-5
6.下列各式能用平方差公式分解因式的有()
①x2+y2;②x2-y2;③-x2-y2;④-x2+y2;⑤-x2+2xy-y2.
A.1个B.2个C.3个D.4个
7. 下列各式中,能用平方差公因式分解的是()
A.x2+x B.x2+8x+16 C.x2+4 D.x2-1
8.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()
A.1.1111111×1016B.1.1111111×1027
C.1.111111×1056D.1.1111111×1017
二、填空题
9.把9m2-36n2分解因式的结果是.
10.分解因式:9a2-b2= .
11.248-1能被60~70之间的两个整数整除,这两个整数是.
12.若x+y+z=2,x2-(y+z)2=8时,x-y-z=.
13.分解因式:x2-(x-3)2= .
14.若x2-4=(x-2)(x+a),则a=.
15.若a2-b2=9,a+b=9,则a-b= .
三、解答题
16.先化简,再求值:(2a+3b)2-(2a-3b)2,其中a=1
6b
.
17.已知x-y=3,y-z=3,x+z=14,求x2-z2的值.
18.已知:|a-b-3|+(a+b-2)2=0,求a2-b2的值.
19.利用因式分解进行简便运算:582-422.
20.已知a=37
14
,b=
7
74
,则(a+b)2-(a-b)2的值.
一、选择题
1.下列四个多项式:①-a2+b2;②-x2-y2;③1-(a-1)2;④m2-2mn+n2,其中能用平方差公式分解因式的有()
A.①②B.①③C.②④D.②③
2. 下列多项式能用平方差公式因式分解的是()
A.2x2-y2B.x2-x-2 C.a2-4a+4 D.-1+a2
3.计算:752-252=( )
A .50
B .500
C .5000
D .7100
4.下列各式不能用平方差公式法分解因式的是( )
A .x 2-4
B .-x 2-y 2
C .m 2n 2-1
D .a 2-4b 2
5. 下列各式不能用平方差公式进行因式分解的是( )
A .-x 2+y 2
B .-x 2-y 2
C .x 2-y 2
D .y 2-x 2
6.对于多项式①x 2-y 2,②-x 2-y 2,③4x 2-y ,④x 2-4,能够用平方差公式进行因式分解的是(
)
A .①和②
B .①和③
C .①和④
D .②和④
7.下列各式中,不能用平方差公式因式分解的是( )
A .-a 2-4b 2
B .-1+25a 2
C .1
16-9a 2 D .-a 4+1
8.若x+y=3,x-y=1,则x 2-y 2的值为( )
A .1
B .2
C .3
D .-3
二、填空题
9.计算:20152-20142= .
10.因式分解:a 2-4= .
11.已知a 2+ab=5,ab+b 2=-2,a+b=7,那么a-b= .
12.因式分解4m 2-n 2= .
13.已知A=2x+y ,B=2x-y ,计算A 2-B 2= .
14.若a+b=2,a-b=-3,则a 2-b 2= .
三、解答题
15.分解因式:(1)9(a+b )2-4(a-b )2. (2)a 4-16.
16.先分解因式化简,再求值:2
2)()33x y x y
+--(,其中x=-9
4,y=2010.
17.已知:a=1
5
,b=25,求(a+2b)2-(a-2b)2的值.
18.已知x2-4y2=20,x+2y=5,求x,y的值.。