数字带通滤波器
简述数字滤波的概念及方法

简述数字滤波的概念及方法数字滤波是一种在数字信号处理领域中广泛使用的算法,用于对数字信号进行滤波、降噪、去基线等处理。
本文将简要介绍数字滤波的概念及方法。
一、数字滤波的概念数字滤波是指在数字信号处理系统中,使用计算机算法对数字信号进行滤波的方法。
数字信号是指用二进制数字表示的音频、视频等信号,这些信号在传输、处理过程中常常受到噪声、失真等影响,需要进行滤波来去除这些干扰。
数字滤波的方法可以分为两大类:基于差分的和基于频域的。
1. 基于差分的滤波基于差分的滤波是指使用一组基线差分信号作为滤波器输入,输出是一个差分信号。
该方法的优点是不需要对信号进行采样,缺点是在频率响应上可能存在局部噪声。
2. 基于频域的滤波基于频域的滤波是指使用频域表示信号的方法,通过对信号进行傅里叶变换,得到滤波器的频率响应。
该方法的优点是可以在保留基线信息的同时,去除噪声和失真,缺点是需要对信号进行采样,并且计算量较大。
二、数字滤波的方法数字滤波的方法可以分为以下几种:1. 带通滤波器带通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和基线,但可能会丢失高频信息。
2. 高通滤波器高通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和高频信息,但可能会丢失低频信息。
3. 带阻滤波器带阻滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和基线,并且可以保留高频信息。
4. 低通滤波器低通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和高频信息,并且可以保留低频信息。
5. 中心频率加权滤波器中心频率加权滤波器是指根据信号的中心频率进行加权的滤波器。
该方法适用于去除高频噪声和失真,但可能会丢失基线信息。
三、数字滤波的应用数字滤波在音频处理中的应用包括均衡器、压缩器、降噪器等;在视频处理中的应用包括去噪、去斑、去雾等。
此外,数字滤波也被广泛应用于信号处理、图像处理、通信等领域。
带通滤波器的设计和实现

带通滤波器的设计和实现随着科技的不断发展和应用场景的不断拓宽,信号处理在各个领域中扮演着重要的角色。
而滤波器作为信号处理的重要组成部分,其设计和实现对于信号处理的效果起到至关重要的作用。
本文将详细介绍带通滤波器的设计原理和实现方法。
一、带通滤波器的基本概念带通滤波器是一种对信号进行频率选择的滤波器,它能够将某一频率范围内的信号通过,而将其他频率范围内的信号抑制或削弱。
在信号处理中,常常需要对特定频率范围的信号进行提取或滤除,此时带通滤波器的应用便显得尤为重要。
二、带通滤波器的设计原理1. 滤波器的传输函数滤波器的传输函数是描述滤波器输入和输出之间关系的数学表达式。
带通滤波器的传输函数通常采用有理函数形式,例如巴特沃斯、切比雪夫等形式。
2. 频率响应带通滤波器的频率响应描述了滤波器对不同频率信号的处理效果。
通常采用幅度响应和相位响应两个参数来描述频率响应。
3. 滤波器的阶数滤波器的阶数表示滤波器的复杂程度,阶数越高,滤波器的频率选择性越强。
根据实际需求和应用场景,选择合适的滤波器阶数非常重要。
三、带通滤波器的实现方法1. 模拟滤波器的实现模拟滤波器是指基于传统电子电路的滤波器实现方法。
常见的模拟滤波器包括RC滤波器、RL滤波器、LC滤波器等。
模拟滤波器的设计需要考虑电路参数和元器件选择等因素,涉及到模拟电路设计的相关知识。
2. 数字滤波器的实现数字滤波器是指利用数字信号处理技术实现的滤波器。
常见的数字滤波器包括FIR滤波器、IIR滤波器等。
数字滤波器的实现采用离散系统的理论分析和数字信号处理算法的设计,需要掌握相关的数学知识和算法掌握。
四、带通滤波器的应用案例带通滤波器在实际应用中有着广泛的应用场景。
例如,在音频处理中,可以利用带通滤波器实现音乐频谱的提取和信号的降噪;在图像处理中,可以利用带通滤波器进行图像边缘检测和图像增强等处理;在通信系统中,带通滤波器可以用于信号调制和解调等关键环节。
五、总结本文对带通滤波器的设计原理和实现方法进行了详细介绍,并给出了相关的应用案例。
通信电子中的数字带通滤波器设计

通信电子中的数字带通滤波器设计数字带通滤波器是数字信号处理中的一种重要滤波器类型。
它在通信电子中被广泛应用,能够对信号进行频带选择,增强目标信号的信息,抑制噪声和干扰。
因此,数字带通滤波器的设计对于实现高性能通信系统至关重要。
一、数字信号处理基础在深入探讨数字带通滤波器之前,我们需要了解一些数字信号处理(DSP)的基础知识。
数字信号是利用离散时间采样的方式对模拟信号进行数字化处理的结果。
数字信号通常由采样率、量化位数和信号长度三部分组成。
数字信号处理可以分为两大类,即时域处理和频域处理。
时域处理直接操作时间信息,包括滤波、平移、卷积等。
频域处理则需要将时域信号变换成频域信号进行处理,最常用的变换方式是傅里叶变换和离散傅里叶变换。
二、数字带通滤波器原理数字带通滤波器是一种具有窄通带和高阻带的数字滤波器,能够选择指定频带内的信号而抑制其它频带的信号。
它的设计要求基于信号的选择性和阻带抑制能力,同时还要考虑设计所需的复杂度和稳定性等因素。
数字带通滤波器的常见设计方法包括有限冲激响应(FIR)和无限冲激响应(IIR)两种。
FIR滤波器具有线性相位和稳定性等优良特性,但是需要较长的滤波器阶数才能达到很高的通带选择性。
而IIR滤波器具有较高的通带选择性和更少的滤波器阶数,但是可能会因为零极点分布的不稳定性导致系统不稳定。
三、数字带通滤波器设计数字带通滤波器的设计目标是选择指定频带内的信号并增强其信息,同时抑制其它频带的信号。
设计过程中需要考虑滤波器阶数、通带带宽、阻带带宽、阻带衰减和通带波纹等重要因素。
设计FIR数字带通滤波器的常用方法包括窗函数法、最小二乘法和频率抽样法等。
其中,窗函数法是最为常用的一种设计方法,将离散时间傅里叶变换(DTFT)的理想频率响应与实际可实现的窗函数卷积,从而实现数字带通滤波器的设计。
IIR数字带通滤波器的设计常用的方法包括零极点法、双线性变换法和频率变换法等。
其中,零极点法和双线性变换法是最为常用的两种设计方法,零极点法通过选择合适的零极点分布实现数字带通滤波器的设计;而双线性变换法则将模拟滤波器的传输函数通过双线性变换转化为数字滤波器的传输函数。
带通滤波器设计 (2)

带通滤波器设计1. 引言在信号处理中,滤波器是一种重要的工具,用于去除或改变信号的特定频率成分。
带通滤波器是一种常用的滤波器,它可以传递一定范围内的频率成分,而抑制其他频率成分。
本文将介绍带通滤波器的基本原理和设计方法。
2. 带通滤波器的原理带通滤波器是一种频率选择性滤波器,它可以传递一定范围内的频率信号,而将其他频率信号抑制。
其基本原理是利用滤波器的频率响应特性,对输入信号进行滤波处理。
带通滤波器通常由一个低通滤波器和一个高通滤波器级联连接而成。
低通滤波器用于抑制高于截止频率的频率成分,而高通滤波器用于抑制低于截止频率的频率成分,从而实现带通滤波效果。
3. 带通滤波器的设计方法带通滤波器的设计通常包括以下几个步骤:在设计带通滤波器之前,需要确定滤波器的一些规格参数,包括中心频率、通带宽度、阻带宽度等。
这些参数决定了滤波器的性能和应用范围。
步骤二:选择滤波器的类型常见的带通滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
根据具体的应用要求和设计指标,选择适合的滤波器类型。
步骤三:计算滤波器的阶数滤波器的阶数决定了滤波器的陡峭程度和相频特性。
根据设计要求和滤波器类型,计算滤波器的阶数。
步骤四:确定滤波器的传输函数根据滤波器的类型和阶数,使用滤波器设计方法计算滤波器的传输函数。
常用的设计方法包括频率折叠法、零极点法等。
根据滤波器的传输函数,采用模拟滤波器的设计方法,设计滤波器的电路结构和参数。
常用的设计方法包括电压法、电流法等。
步骤六:数字滤波器的设计对于数字信号处理系统,需要将模拟滤波器转换为数字滤波器。
常用的设计方法包括脉冲响应法、频率采样法等。
根据系统的采样率和滤波器的性能要求设计数字滤波器。
4. 带通滤波器的应用带通滤波器在信号处理领域有着广泛的应用。
例如,音频处理中常用带通滤波器对音频信号进行频率选择性处理,去除噪声和杂音。
图像处理中常用带通滤波器对图像进行频率域滤波,增强或抑制特定频率成分,实现图像增强、去噪等功能。
数字滤波器的主要技术指标

数字滤波器的主要技术指标数字滤波器是一种对数字信号进行滤波处理的设备或算法,通过改变信号的频率成分,实现信号的去噪、增强或调整的目的。
主要技术指标是指用于评估数字滤波器性能的一些重要参数,下面将从频率响应、通带特性、截止频率、滤波器类型和滤波器阶数等几个方面介绍数字滤波器的主要技术指标。
1. 频率响应:频率响应是描述数字滤波器对不同频率信号的响应程度的指标。
常见的频率响应包括低通、高通、带通和带阻等。
低通滤波器能够通过低于截止频率的信号,而高通滤波器则能通过高于截止频率的信号。
带通滤波器可以通过位于两个截止频率之间的信号,而带阻滤波器则能阻止位于两个截止频率之间的信号。
2. 通带特性:通带特性是指数字滤波器在通带内的频率响应特点。
通带特性可以用来描述数字滤波器在通带内的增益、相位响应和群延迟等参数。
通带特性的好坏决定了数字滤波器对信号的处理效果,通常要求通带内的增益保持平坦,相位变化小,群延迟均匀。
3. 截止频率:截止频率是指数字滤波器在频率响应中的一个重要参数,用来区分不同类型的滤波器。
低通滤波器的截止频率是指能通过信号的最高频率,而高通滤波器的截止频率则是指能通过信号的最低频率。
带通和带阻滤波器的截止频率则是指能通过信号的上下截止频率。
4. 滤波器类型:滤波器类型是指数字滤波器根据不同的响应特性进行分类的方式。
常见的滤波器类型有FIR(有限脉冲响应)滤波器和IIR(无限脉冲响应)滤波器。
FIR滤波器的特点是稳定、线性相位和易于设计,但计算复杂度较高。
而IIR滤波器的特点是计算复杂度低,但可能不稳定且具有非线性相位。
5. 滤波器阶数:滤波器阶数是指滤波器中的延迟单元数目,用来描述滤波器的复杂度和性能。
滤波器阶数越高,滤波器的响应特性越陡峭,但同时也会增加滤波器的计算复杂度。
选择适当的滤波器阶数能够平衡滤波器的性能和计算复杂度。
数字滤波器的主要技术指标包括频率响应、通带特性、截止频率、滤波器类型和滤波器阶数等。
数字高通带通带阻滤波器设计

2
数字带通滤波器设计实例
模拟带通滤波器程序: wp1=2*pi*[0.2,0.3];ws1=2*pi*[0.1,0.4]; Matlab 求解: [N1,wc1]=buttord(wp1,ws1,rp,rs,'s'); [B1,A1]=butter(N1,wc1,'s'); [h1,w1]=freqs(B1,A1);
3
6.8393 4.6206
数字带通滤波器设计实例
模拟带通滤波器:
Matlab 结果 B1 = 0 0 0 0
0 0
0 0
0 0
0 0.1502 0
3
A1 = 1.0000 2.8170 18.1801 36.9069 123.8656 184.0321 409.5245 435.9179 694.9809 490.5022 572.3218 210.0627 176.6306
数字带通滤波器设计实例
low anolog filter Magnitude Response 1 0.5
0
0
0.5
1
1.5
2
2.5
3
3.5
Matlab 结果
high anolog filter Magnitude Response 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5
数字技术指标: 通带边界频率:wp(低通) wph (高通) wpt(带通) wpz (带阻) 阻带截止频率:ws(低通) wsh (高通) wst(低通) wsz (高通) 模拟技术指标: 通带边界频率:Ωp (低通) Ωph (高通) Ωpt (低通) Ωpz (高通) 阻带截止频率:Ωs (低通) Ωsh (高通) Ωst (低通) Ωsz (高通) 通带内允许的最大衰减:αp 阻带内允许的最大衰减:αs
带通滤波器的特点与应用案例

带通滤波器的特点与应用案例一、引言在现代电子通信和信号处理领域中,滤波器是一种非常重要的设备,它可以根据特定的频率范围对信号进行处理。
带通滤波器是滤波器的一种常见形式,它具有许多独特的特点和广泛的应用。
本文将详细介绍带通滤波器的特点,并结合实际应用案例进行说明。
二、带通滤波器的特点1. 频率选择性:带通滤波器可以选择特定的频率范围通过,而将其他频率范围的信号削弱或者完全阻断。
这种特点使得它可以用来消除噪声、提取特定频率的信号等。
2. 幅频响应曲线:带通滤波器的幅频响应曲线可以清楚地显示出其工作的频率范围,有助于我们理解滤波器的工作原理和选择合适的参数。
通常情况下,带通滤波器在其通带内有较大的增益,并在截止频率处呈现出明显的衰减。
3. 相频响应曲线:带通滤波器的相频响应曲线则表示信号传输延迟与频率之间的关系。
在某些特定应用场景中,对于信号的相位信息要求非常严格,因此带通滤波器的相频响应曲线也是需要关注的重要因素。
4. 传递函数:带通滤波器的传递函数可以用来描述输入信号和输出信号之间的关系。
我们可以通过对传递函数进行分析,来了解滤波器对于不同频率的信号的处理情况,从而根据需要进行参数的调整。
5. 滤波器的类型:带通滤波器有很多不同的类型,比如无源滤波器和有源滤波器、模拟滤波器和数字滤波器等。
每种类型的滤波器都有其独特的特点和适用范围,需要根据具体的应用需求进行选择。
三、带通滤波器的应用案例1. 语音信号处理:在语音信号处理中,带通滤波器常被用于语音信号的前端处理,以提取出特定频段的语音信号。
例如,在电话通信中,通过带通滤波器可以提取出人声的频率范围,减少环境噪声的干扰,从而提高通信质量。
2. 音频设备:在音频设备中,带通滤波器常被用于音频信号的调节和增强。
例如,在音响系统中,通过带通滤波器可以选择特定的频率范围,增加低频或高频的音响效果,使音乐更加丰富和逼真。
3. 图像处理:在图像处理中,带通滤波器可以用于图像增强和噪声去除。
数字带通滤波器

课程设计报告专业班级课程题目学号学生姓名指导教师年月一、设计题目:IIR 数字带通滤波器设计 二、设计目的1、巩固所学理论知识。
2、提高综合运用所学理论知识独立分析和解决问题的能力。
3、更好地将理论与实践相结合。
4、掌握信号分析与处理的基本方法与实现。
5、熟练使用MATLAB 语言进行编程实现。
三、设计要求采用适当方法基于MATLAB 设计一个IIR 带通滤波器,其中带通的中心频率为ωp0=0.5π,;通带截止频率ωp1=0.4π,ωp2=0.6π;通带最大衰减αp =3dB;阻带最小衰减αs =15dB;阻带截止频率ωs2=0.7π. 四、设计原理1.用脉冲相应不变法设计IIR 数字滤波器利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。
脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足 h (n )=h a (nT )式中,T 是采样周期。
如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的Z 变换与模拟信号的拉普拉斯变换的关系得(1-1)则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。
⎪⎭⎫ ⎝⎛-=Ω-=∑∑∞-∞=∞-∞==k T j s X T jk s X Tz X k a s k a ez sTπ21)(1)(图1-1脉冲响应不变法的映射关系由(1-1)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为(1-2)这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。
正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即(1-3)才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即|ω|<π (1-4)但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图7-4所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告专业班级课程题目学号学生姓名指导教师年月一、设计题目:IIR 数字带通滤波器设计 二、设计目的1、巩固所学理论知识。
2、提高综合运用所学理论知识独立分析和解决问题的能力。
3、更好地将理论与实践相结合。
4、掌握信号分析与处理的基本方法与实现。
5、熟练使用MATLAB 语言进行编程实现。
三、设计要求采用适当方法基于MATLAB 设计一个IIR 带通滤波器,其中带通的中心频率为ωp0=0.5π,;通带截止频率ωp1=0.4π,ωp2=0.6π;通带最大衰减αp =3dB;阻带最小衰减αs =15dB;阻带截止频率ωs2=0.7π. 四、设计原理1.用脉冲相应不变法设计IIR 数字滤波器利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。
脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足 h (n )=h a (nT )式中,T 是采样周期。
如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的Z 变换与模拟信号的拉普拉斯变换的关系得(1-1)则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。
⎪⎭⎫ ⎝⎛-=Ω-=∑∑∞-∞=∞-∞==k T j s X T jk s X Tz X k a s k a ez sTπ21)(1)(图1-1脉冲响应不变法的映射关系由(1-1)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为(1-2)这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。
正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即(1-3)才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即|ω|<π (1-4)但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图7-4所示。
这时数字滤波器的频响就不同于原模拟滤波器的频响,而带有一定的失真。
当模拟滤波器的频率响应在折叠频率以上处衰减越大、越快时,变换后频率响应混叠失真就越小。
这时,采用脉冲响应不变法设计的数字滤波器才能得到良好的效果。
对某一模拟滤波器的单位冲激响应h a (t )进行采样,采样频率为f s ,若使fs增加,即令采样时间间隔(T =1/f s )减小,则系统频率响应各周期延拓分量之间⎪⎭⎫ ⎝⎛-=∑∞-∞=T k j H T eH k a j πωω21)(2||s TΩ=≥Ωπ)(=Ωj H a ⎪⎭⎫ ⎝⎛=T j H T eH a j ωω1)(相距更远,因而可减小频率响应的混叠效应。
脉冲响应不变法优缺点:从以上讨论可以看出,脉冲响应不变法使得数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,也就是时域逼近良好,而且模拟频率Ω和数字频率ω之间呈线性关系ω=ΩT。
因而,一个线性相位的模拟滤波器(例如贝塞尔滤波器)通过脉冲响应不变法得到的仍然是一个线性相位的数字滤波器。
脉冲响应不变法的最大缺点是有频率响应的混叠效应。
所以,脉冲响应不变法只适用于限带的模拟滤波器(例如,衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小。
至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。
如果要对高通和带阻滤波器采用脉冲响应不变法,就必须先对高通和带阻滤波器加一保护滤波器,滤掉高于折叠频率以上的频率,然后再使用脉冲响应不变法转换为数字滤波器。
当然这样会进一步增加设计复杂性和滤波器的阶数。
2.用双线性变换法设计IIR数字滤波器脉冲响应不变法的主要缺点是产生频率响应的混叠失真。
这是因为从S平面到Z平面是多值的映射关系所造成的。
为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=e sT转换到Z平面上。
也就是说,第一步先将整个S平面压缩映射到S1平面的-π/T~π/T一条横带里;第二步再通过标准变换关系z=e s1T将此横带变换到整个Z平面上去。
这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1-3所示。
图1-3双线性变换的映射关系为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现(1-5)Z平面S1平面S平面⎪⎭⎫⎝⎛Ω=Ω2tan21TT式中,T 仍是采样间隔。
当Ω1由-π/T 经过0变化到π/T 时,Ω由-∞经过0变化到+∞,也即映射了整个j Ω轴。
将式(1-5)写成将此关系解析延拓到整个S 平面和S1平面,令j Ω=s ,j Ω1=s 1,则得再将S1平面通过以下标准变换关系映射到Z 平面z =e s 1T从而得到S 平面和Z 平面的单值映射关系为:(1-6)(1-7)式(1-6)与式(1-7)是S 平面与Z 平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换式(1-5)与式(1-6)的双线性变换符合映射变换应满足的两点要求。
首先,把z =e j ω,可得(1-8)即S 平面的虚轴映射到Z 平面的单位圆。
其次,将s =σ+j Ω代入式(1-8),得 因此由此看出,当σ<0时,|z |<1;当σ>0时,|z |>1。
也就是说,S 平面的左半平面映射到Z 平面的单位圆内,S 平面的右半平面映射到Z 平面的单位圆外,2/2/2/2/11112T j T j T j T j eee e T j Ω-ΩΩΩ+-⋅=ΩT s Ts T s T s T s T s ee T T s T e e e e T s 1111111122tanh 2212/2/2/2/----+-⋅=⎪⎭⎫ ⎝⎛=+-⋅=11112--+-=zz T s sTs T sT s T z -+=-+=222121Ω=⎪⎭⎫⎝⎛=+-=--j T jee T s j j 2tan 2112ωωωΩ--Ω++=j Tj Tz σσ22222222||Ω+⎪⎭⎫ ⎝⎛-Ω+⎪⎭⎫ ⎝⎛+=σσT T zS 平面的虚轴映射到Z 平面的单位圆上。
因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。
双线性变换法优缺点双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象。
这是因为S 平面与Z 平面是单值的一一对应关系。
S 平面整个j Ω轴单值地对应于Z 平面单位圆一周,即频率轴是单值变换关系。
这个关系如式(1-8)所示,重写如下:上式表明,S 平面上Ω与Z 平面的ω成非线性的正切关系,如图7-7所示。
由图7-7看出,在零频率附近,模拟角频率Ω与数字频率ω之间的变换关系接近于线性关系;但当Ω进一步增加时,ω增长得越来越慢,最后当Ω→∞时,ω终止在折叠频率ω=π处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。
图1-4双线性变换法的频率变换关系但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如式(1-8)及图1-4所示。
由于这种频率之间的非线性变换关系,就产生了新的问题。
首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;其次,这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图1-5所示。
⎪⎭⎫⎝⎛=Ω2tan 2ωT图1-5双线性变换法幅度和相位特性的非线性映射对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以校正。
也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上。
3、IIR数字带通滤波器设计过程:根据以上IIR数字滤波器设计方法,下面运用双线性变换法基于MATLAB 设计此IIR带通滤波器。
(1)根据任务,确定性能指标:在设计带通滤波器之前,首先根据工程实际的需要确定滤波器的技术指标:带通滤波器的阻带边界频率关于中心频率ωp0几何对称,因此ws1=wp0- (ws2-wp0)=0.3π通带截止频率wc1=0.4π,wc2=0.6π;阻带截止频率wr1=0.3π,wr2=0.7π;阻带最小衰减αs=3dB和通带最大衰减αp=15dB;(2)用Ω=2/T*tan(w/2)对带通数字滤波器H(z)的数字边界频率预畸变,得到带通模拟滤波器H(s)的边界频率主要是通带截止频率ωp1,ωp2;阻带截止频率ωs1,ωs2的转换。
为了计算简便,对双线性变换法一般T=2s通带截止频率wc1=(2/T)*tan(wp1/2)=tan(0.4π/2)=0.7265wc2=(2/T)*tan(wp2/2)=tan(0.6π/2)=1.3764 阻带截止频率wr1=(2/T)*tan(ws1/2)=tan(0.3π/2)=0.5095wr2=(2/T)*tan(ws2/2)=tan(0.7π/2)=1.9626 阻带最小衰减αs=3dB和通带最大衰减αp=15dB;(3)运用低通到带通频率变换公式λ=(((Ω^2)-(Ω0^2))/(B*Ω))将模拟带通滤波器指标转换为模拟低通滤波器指标。
B=wc2-wc1=0.6499normwr1=(((wr1^2)-(w0^2))/(B*wr1))=2.236normwr2=(((wr2^2)-(w0^2))/(B*wr2))=2.236normwc1=(((wc1^2)-(w0^2))/(B*wc1))=1normwc2=(((wc2^2)-(w0^2))/(B*wc2))=1得出,normwc=1,normwr=2.236模拟低通滤波器指标:normwc=1,normwr=2.236,αp=3dB,αs=15dB (4)设计模拟低通原型滤波器。
用模拟低通滤波器设计方法得到模拟低通滤波器的传输函数Ha(s);借助巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭圆(Cauer)滤波器、贝塞尔(Bessel)滤波器等。