用导数求函数最大值与最小值
导数与函数的极值、最值(经典导学案及练习答案详解)
![导数与函数的极值、最值(经典导学案及练习答案详解)](https://img.taocdn.com/s3/m/9b0c2d36876fb84ae45c3b3567ec102de2bddfca.png)
§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。
高三数学利用导数求最值和极值试题答案及解析
![高三数学利用导数求最值和极值试题答案及解析](https://img.taocdn.com/s3/m/ed58700e591b6bd97f192279168884868762b8eb.png)
高三数学利用导数求最值和极值试题答案及解析1.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值2.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)=f(1)=0,∴a≤0,故a最大值为0.min3.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O 为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.5.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.【答案】(-1,0)【解析】根据函数极大值与导函数的关系,借助二次函数图象求解.因为f(x)在x=a处取到极大值,所以x=a为f′(x)的一个零点,且在x=a的左边f′(x)>0,右边f′(x)<0,所以导函数f′(x)的开口向下,且a>-1,即a的取值范围是(-1,0).6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.7.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴f(1)不是极值,故A,B错;当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且x在1的左侧附近f′(x)<0,x在1的右侧附近f′(x)>0,∴f(x)在x=1处取到极小值.故选C.8.设函数,则函数的各极小值之和为()A.B.C.D.【答案】D【解析】,令,则,令,则,所以当时,取极小值,其极小值为所以函数的各极小值之和,故选D.【考点】1.函数的极值求解;2.数列的求和.9.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析10.已知函数在处取得极值,则取值的集合为 .【答案】.【解析】,,依题意有,从而有,且有,即,解得或,当时,,此时,此时函数无极值,当时,,此时,此时函数有极值,故.【考点】函数的极值11.函数最小值是___________.【答案】【解析】函数求导得.当时,,即在上单调递减;当时,,即在上单调递增,因此函数在处取得最小值,即.【考点】利用导数求函数的最值.12.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.13.设函数,(1)求函数的极大值;(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.【答案】(1);(2) .【解析】(1)由导函数或求得函数的单调区间,再找极大值;(2) 的导函数是一元二次函数,转化为一元二次函数在上的最值,再满足条件即可.试题解析:(1)令,且当时,得;当时,得或∴的单调递增区间为;的单调递减区间为和,故当时,有极大值,其极大值为 6分(2)∵ 7分①当时,,∴在区间内单调递减∴,且∵恒有成立∵又,此时, 10分②当时,,得因为恒有成立,所以,即,又得, 14分综上可知,实数的取值范围 . 15分【考点】1.函数的极值;2.一元二次函数的最值.14.已知函数.(Ⅰ)若在上的最大值为,求实数的值;(Ⅱ)若对任意,都有恒成立,求实数的取值范围;(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.【答案】(Ⅰ).(Ⅱ).(Ⅲ)对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上.【解析】(Ⅰ)由,得,令,得或.当变化时,及的变化如下表:由,,,即最大值为,. 4分(Ⅱ)由,得.,且等号不能同时取,,即恒成立,即. 6分令,求导得,,当时,,从而,在上为增函数,,. 8分(Ⅲ)由条件,,假设曲线上存在两点,满足题意,则,只能在轴两侧,不妨设,则,且.是以为直角顶点的直角三角形,,,是否存在,等价于方程在且时是否有解. 10分①若时,方程为,化简得,此方程无解;②若时,方程为,即,设,则,显然,当时,,即在上为增函数,的值域为,即,当时,方程总有解.对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上. 14分【考点】利用导数研究函数的单调性、最值。
高中数学讲义:利用导数解函数的最值
![高中数学讲义:利用导数解函数的最值](https://img.taocdn.com/s3/m/0632f44e26d3240c844769eae009581b6bd9bd23.png)
函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x £,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x ³,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。
例如:()[)ln ,1,4f x x x =Î,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。
()f x 没有最大值。
(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z pp =+Î,有无穷多个。
2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x (1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ³=,即不等式ln 1x x £-二、典型例题:例1:求函数()x f x xe -=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值解:()()'1x fx x e -=-,令()'0f x >,解得:1x <()f x \的单调区间为:x (),1-¥()1,+¥'()f x +-()f x Z ]()()max 11f x f e\==,无最小值小炼有话说:函数()xf x xe-=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。
高考复习-利用导数研究函数的单调性及极值和最值
![高考复习-利用导数研究函数的单调性及极值和最值](https://img.taocdn.com/s3/m/5310efb5f71fb7360b4c2e3f5727a5e9846a2749.png)
利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。
利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)
![利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)](https://img.taocdn.com/s3/m/e55d4db7dc88d0d233d4b14e852458fb770b3888.png)
利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
导数的应用--函数的最大值与最小值
![导数的应用--函数的最大值与最小值](https://img.taocdn.com/s3/m/30304e0a551810a6f424861b.png)
L 1 q 21
令
L
,0 即
4
1 4
q
21
,0 求得唯一的极值点
q 84
答:产量为84时,利润L最大。
课堂练习
1.下列说法正确的是( D )
A.函数的极大值就是函数的最大值
B.函数的极小值就是函数的最小值
C.函数的最值一定是极值
D.在闭区间上的连续函数一定存在最值
2. 函 数 y=f(x) 在 区 间 [ a,b ] 上 的 最 大 值 是 M , 最 小 值 是 m,若
(3)检查f ′(x)在方程f ′(x)=0的根的左右的符号,
并根据符号确定极大值与极小值. 口诀:左负右正为极小,左正右负为极大。
3、f x
=
0是可导函数
f
(x)在x
=
x
处取极值的必
0
要而不充分条件。
4、f x
在x
0两侧的导数异号是x
为极值点的充要条件。
0
新课讲授
1.函数的最大值和最小值
值点,从图象角度理解即只有一个波峰,是单峰的,因而 这个极值点就是最值点,不必考虑端点的函数值
例4圆柱形金属饮料罐的容积一定时,它的高与底与半径 应怎样选取,才能使所用的材料最省?
解:设圆柱的高为h,底半径为R,则表面积
S=2πRh+2πR2
由V=πR2h,得
S(R)= 2πR V
h
V ,则 R2 2V
y
f (x)
a
x1
O x2
x3
bx
例题讲解
例1、求函数f(x)=x2-4x+6在区间[1,5]内的最大值 和最小值 法一 (利用二次函数单调性)、 将二次函数f(x)=x2-4x+6配方,结合二次函数图像来解决。
高中数学根据导数求函数的最值问题解题技巧总结
![高中数学根据导数求函数的最值问题解题技巧总结](https://img.taocdn.com/s3/m/4b440a364b7302768e9951e79b89680203d86bbf.png)
高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,根据导数求函数的最值是一个常见的考点。
这类问题要求我们通过求函数的导数,找到函数的极大值或极小值点,从而确定函数的最值。
下面我将总结一些解题技巧,帮助高中学生和他们的父母更好地应对这类问题。
一、寻找函数的极值点在解决根据导数求函数最值问题时,首先需要找到函数的极值点。
一般来说,函数的极值点就是函数的导数等于零的点,即函数的驻点。
我们可以通过以下步骤来找到函数的极值点:1. 求函数的导数。
根据问题给出的函数,我们可以先对其求导数。
例如,对于函数f(x),我们可以求得它的导函数f'(x)。
2. 解方程f'(x) = 0。
将求得的导函数f'(x)置零,解方程求得函数的驻点。
这些驻点就是函数的极值点。
需要注意的是,有时候函数的极值点可能还存在于函数的定义域的边界处,所以我们还需要将边界处的点也考虑进去。
二、判断极值点的性质找到函数的极值点后,我们需要进一步判断这些点的性质,即确定它们是极大值点还是极小值点。
这里有两种常见的方法:1. 使用导数的符号表。
我们可以通过绘制导数的符号表来判断极值点的性质。
具体做法是,在函数的定义域上选择几个代表性的点,代入导数f'(x)的值,然后根据导数的正负确定函数在这些点附近的增减性。
如果导数从正变负,那么这个点就是极大值点;如果导数从负变正,那么这个点就是极小值点。
2. 使用二阶导数。
二阶导数可以帮助我们更准确地判断极值点的性质。
具体做法是,求得函数的二阶导数f''(x),然后将极值点代入二阶导数。
如果二阶导数大于零,那么这个点就是极小值点;如果二阶导数小于零,那么这个点就是极大值点。
三、举一反三根据导数求函数的最值问题不仅仅局限于求解极值点,还可以应用到其他类型的函数中。
下面举一个例子来说明。
例题:求函数f(x) = x^3 - 3x^2 + 2x的最大值和最小值。
函数的最大值和最小值教案
![函数的最大值和最小值教案](https://img.taocdn.com/s3/m/8b96c29dab00b52acfc789eb172ded630b1c98e5.png)
函数的最大值和最小值教案一、教学目标1. 让学生理解函数最大值和最小值的概念。
2. 让学生掌握利用导数求函数最大值和最小值的方法。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 函数最大值和最小值的概念。
2. 利用导数求函数最大值和最小值的方法。
三、教学重点与难点1. 教学重点:函数最大值和最小值的概念,利用导数求函数最大值和最小值的方法。
2. 教学难点:利用导数求函数最大值和最小值的方法。
四、教学方法1. 采用讲解法,引导学生理解函数最大值和最小值的概念。
2. 采用案例分析法,让学生通过实际案例掌握利用导数求函数最大值和最小值的方法。
3. 采用练习法,巩固学生对函数最大值和最小值的求解能力。
五、教学准备1. 教学课件。
2. 相关案例题。
3. 粉笔、黑板。
教案内容:一、导入(5分钟)1. 引入函数最大值和最小值的概念。
二、新课讲解(15分钟)1. 讲解函数最大值和最小值的概念。
2. 讲解利用导数求函数最大值和最小值的方法。
3. 通过案例分析,让学生理解并掌握利用导数求函数最大值和最小值的方法。
三、课堂练习(10分钟)1. 让学生独立完成相关案例题,巩固所学知识。
四、课堂小结(5分钟)1. 总结本节课所学内容,强调函数最大值和最小值的概念及求解方法。
五、作业布置(5分钟)1. 布置相关作业,巩固学生对函数最大值和最小值的求解能力。
六、教学拓展(10分钟)1. 讲解函数在区间上的最大值和最小值的存在性定理。
2. 介绍利用拉格朗日中值定理和柯西中值定理证明函数最大值和最小值的存在性。
七、实际应用(10分钟)1. 介绍函数最大值和最小值在实际问题中的应用,如最优化问题、经济管理问题等。
2. 让学生举例说明函数最大值和最小值在实际问题中的应用。
八、课堂互动(10分钟)1. 学生分组讨论:如何求解多元函数的最大值和最小值。
2. 各组汇报讨论成果,教师点评并总结。
九、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结函数最大值和最小值的求解方法。
导数法求最大最小值
![导数法求最大最小值](https://img.taocdn.com/s3/m/03bb67e6783e0912a3162a11.png)
令V(x)60x3x20,解得x=0(舍去),x=40.且V(40)=
16000.
2
由题意可知,当x过小(接近0)或过大(接近60)时,箱子
的容积很小,因此,16000是最大值.
答:当x=40cm时,箱子容积最大,最大容积是16000cm3.
类题:圆柱形金属饮料罐的容积一定时,它的高与底半径 应怎样选取,才能使所用的材料最省?
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
注:可以进一步讨论,当AB的距离大于15千米时,要找的 最优点总在距A点15千米的D点处;当AB之间的距离 不超过15千米时,所选D点与B点重合.
练习:已知圆锥的底面半径为R,高为H,求内接于这个圆 锥体并且体积最大的圆柱体的高h.
答:设圆柱底面半径为r,可得r=R(H-h)/H.易得当h=H/3 时, 圆柱体的体积最大.
函数的最大值 与最小值
一、复习与引入
1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方 法是: ①如果在x0附近的左侧 f(x)0 右侧 f(x)0,那么,f(x0) 是极大值; ②如果在x0附近的左侧 f(x)0右侧 f(x)0 ,那么,f(x0) 是极小值.
2.导数为零的点是该点为极值点的必要条件,而不是充 分条件.极值只能在函数不可导的点或导数为零的点 取到.
例2:如图,铁路线上AB段长
C
100km,工厂C到铁路的
距离CA=20km.现在要
在AB上某一处D,向C修 一条公路.已知铁路每吨 B
D
A
千米与公路每吨千米的运费之比为3:5.为了使原料
从供应站B运到工厂C的运费最省,D应修在何处?
解:设DA=xkm,那么DB=(100-x)km,CD= 202 x2 400 x2km.
极大值的解题技巧
![极大值的解题技巧](https://img.taocdn.com/s3/m/1c0ce03fa7c30c22590102020740be1e650ecc1e.png)
极大值的解题技巧在我们的生活中,数学是一门必修课,也是一门非常重要的学科。
在数学中,常常涉及到极值问题,如一个物体的最大或最小速度、一个函数的最大或最小值等等。
如何求解极值问题呢?下面给大家介绍一些常用的解题技巧。
一、求一元函数的最值对于一个一元函数 $y=f(x)$,在其定义域内,求其最大值或者最小值,一般可以通过以下两种方法来解决:1.导数法首先,我们需要求出函数的导数 $f'(x)$,然后令 $f'(x)=0$,解出 $x$ 值,再代入原函数中得到最大或最小值。
例如,对于函数 $y=x^3-3x^2+2$,我们求取其最大值和最小值的过程如下:(1) 求出 $f'(x)=3x^2 - 6x$;(2) 令 $f'(x)=0$,解得 $x=0$ 或 $x=2$;(3) 将 $x=0$ 和 $x=2$ 代入原函数,得到 $f(0)=2$,$f(2)=-2$。
因此,最大值为 $f(0)=2$,最小值为 $f(2)=-2$。
2.二次函数法如果函数 $y=f(x)$ 是一个二次函数,可以采用以下方法求其最值:(1) 首先,将 $y=f(x)$ 化为标准型,即 $y=ax^2+bx+c$;(2) 根据二次函数的图像,我们可以知道函数的最值要么是在顶点处实现,要么是在定义域的两端实现;(3) 如果函数的开口向上,说明顶点是最小值,反之则是最大值。
因此,我们可以求出函数的顶点坐标 $(x_0,y_0)$,然后判断它是最大值还是最小值。
例如,对于函数 $y=2x^2-8x+7$,首先化为标准型:$y=2(x-2)^2+3$。
由于开口向上,可知顶点处是函数的最小值,因此,最小值为 $y=3$,此时 $x=2$。
二、求二元函数的最值对于一个二元函数 $z=f(x,y)$,在其定义域内,求其最大值或者最小值,一般可以采用以下两种方法:1.偏导数法偏导数法是一种非常常用的方法,尤其是在高维空间中,求解复杂函数最值问题时,几乎都是采用这种方法。
函数fx最大值最小值公式
![函数fx最大值最小值公式](https://img.taocdn.com/s3/m/dedca2965122aaea998fcc22bcd126fff7055de7.png)
函数f(x)最大值最小值公式函数在数学中起着重要的作用,通过函数可以描述自然界和人类活动中的各种现象。
在数学中,我们常常需要找到函数的最大值和最小值,这对于解决实际问题具有重要意义。
下面将介绍函数f(x)的最大值和最小值的计算方法。
函数最大值最小值的定义对于函数f(x),我们称f(x)在区间[a,b]上的最大值为$\\max{f(x)}$,最小值为$\\min{f(x)}$。
如果f(x)在该区间内取得最大值和最小值,则$\\max{f(x)}$ 和$\\min{f(x)}$ 就是函数f(x)的最大值和最小值。
求函数最大值最小值的方法在实际问题中,有些函数可以通过求导数来得到最大值和最小值。
我们可以通过以下步骤来计算函数f(x)在区间[a,b]内的最大值和最小值:1.首先,求出函数f(x)在区间[a,b]内的导数f′(x)。
2.然后,找出导数f′(x)的零点和间断点,并计算这些点对应的函数值。
3.将区间[a,b]的端点a和b处的函数值也计算出来。
4.将以上所有点的函数值进行比较,其中最大值即为函数f(x)在区间[a,b]内的最大值,最小值即为函数f(x)在区间[a,b]内的最小值。
通过上述方法,我们可以求得函数f(x)在给定区间内的最大值和最小值,从而更好地理解函数的性质和特点。
总结函数的最大值和最小值是我们在数学分析和实际问题中常常需要研究的内容。
通过求导数和比较函数值的方法,我们可以找到函数在给定区间内的最大值和最小值。
这对于优化问题、极值问题等具有重要意义,帮助我们更好地理解和利用函数的性质。
希望通过本文的介绍,读者能够更加清晰地理解函数的最大值和最小值的概念和计算方法。
考点 利用导数求函数的单调性、极值、最值
![考点 利用导数求函数的单调性、极值、最值](https://img.taocdn.com/s3/m/8620c67401f69e3143329429.png)
考点:利用导数求函数的单调性、极值、最值知识点1.求函数单调区间的步骤:①确定f(x)的定义域;②求导数y ′;③令y ′>0(y ′<0),解出相应的x 的范围。
当y ′>0时,f(x)在相应区间上是增函数;当y ′<0时,f(x)在相应区间上是减函数2.求极值常按如下步骤:① 确定函数的定义域;② 求导数;③ 求方程/y =0的根及导数不存在的点,这些根或点也称为可能极值点;④通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。
3.设函数f(x)在[a,b]上连续,在(a,b )内可导,求f(x)在[a,b]上的最大(小)值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
4.最值(或极值)点必在下列各种点之中:导数等于零的点、导数不存在的点、端点。
5.求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x );②求方程f ′(x )=0的根 ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查f ′(x )在方程根左右的值的符号,若左正右负,则f (x )在这个根处取得极大值;若左负右正,则f (x )在这个根处取得极小值;若左右不改变符号即都正或都负,则f (x )在这个根处无极值例题1. 函数()ln (0)f x x x x =>的单调递增区间为_______________.2. 讨论下列函数的单调性:(1)x x a a x f --=)((0>a 且1≠a );(2))253(log )(2-+=x x x f a (0>a 且1≠a );3.求下列函数的极值:(1)x x x f 12)(3-=;(2)x ex x f -=2)(;(3).212)(2-+=x x x f练习1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=02.函数y =216x x +的极大值为( ) A.3 B.4 C.2 D.53.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0B.1C.2D.44.y =ln 2x +2ln x +2的极小值为( )A.e -1B.0C.-1D.15.函数y=xsinx+cosx 在下面哪个区间内是增函数( ) A.(,) B.(π,2π) C.(,) D.(2π,3π)6.已知函数y=xf′(x)的图象如下图所示(其中f′(x )是函数f (x )的导函数).下面四个图象中y=f (x )的图象大致是( )7.函数⎪⎭⎫ ⎝⎛+=x y 11log 21在区间),0(+∞上是( ) A .增函数,且0>y B .减函数,且0>yC .增函数,且0<yD .减函数,且0<y8.函数f (x )=x 3-3x 2+7的极大值为___________.9. 求下列函数的单调区间:(1)32)(24+-=x x x f ; (2)22)(x x x f -=; (3)).0()(>+=b xb x x f10.已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .(1)试求常数a 、b 、c 的值;(2)试判断1±=x 是函数的极小值还是极大值,并说明理由.11.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间(2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围.。
中考知识点函数的最大值与最小值
![中考知识点函数的最大值与最小值](https://img.taocdn.com/s3/m/fd0747b39f3143323968011ca300a6c30c22f1ea.png)
中考知识点函数的最大值与最小值函数的最大值和最小值是中考数学中的一个重要知识点。
在解题过程中,我们需要运用一些方法来求解函数的最大值和最小值。
本文将介绍三种常见的方法:图像法、导数法和附加条件法,以帮助大家更好地理解和应用这一知识点。
一、图像法使用图像法求解函数的最大值和最小值,一般需要绘制函数的图像。
在中考中,我们通常采用手绘图像的方式进行计算。
下面以一个例题来说明图像法的具体步骤。
例题:已知函数$f(x)=x^2-6x+5$,求$f(x)$的最大值和最小值。
解题步骤:(1)首先,我们绘制出函数$f(x)=x^2-6x+5$的图像。
为了方便计算,我们可以计算出函数的顶点坐标。
由二次函数的性质可知,函数的顶点坐标为$(p,q)$,其中$p$的值等于二次项系数的相反数的一半,$q$的值等于函数在$p$处的取值。
可以求得顶点坐标为$p=3$,$q=-4$。
将这个顶点坐标标在函数图像上。
(2)根据图像,我们可以看出函数$f(x)$的最大值为$q=-4$,对应的$x$值为$p=3$;最小值为$q=-\infty$(无穷小),对应的$x$值为$x\to \infty$。
因此,函数$f(x)=x^2-6x+5$的最大值为$-4$,最小值为$-\infty$。
二、导数法使用导数法求解函数的最大值和最小值,可以利用函数的导数来判断函数的增减性。
下面以一个例题来说明导数法的具体步骤。
例题:已知函数$g(x)=3x^2+4x+2$,求$g(x)$的最大值和最小值。
解题步骤:(1)首先,我们需要求出函数$g(x)$的导函数$g'(x)$。
对于一次或二次函数,我们可以通过对函数的表达式进行求导来得到导函数。
对函数$g(x)$进行求导,得到$g'(x)=6x+4$。
(2)根据导数的定义,导数表示函数在某一点的变化率。
根据函数的导数可以判断函数的增减性。
当导数大于$0$时,函数递增;当导数小于$0$时,函数递减。
怎么用函数求出最大值最小值
![怎么用函数求出最大值最小值](https://img.taocdn.com/s3/m/8bf094f5c67da26925c52cc58bd63186bceb92d3.png)
怎么用函数求出最大值最小值在数学中,寻找函数的最大值和最小值是一个常见的问题。
通过计算函数的导数可以找到函数的极值点,进而确定最大值和最小值。
以下是一些常见的方法和步骤来解决这个问题。
寻找最大值和最小值的一般步骤1.求导数:首先,对给定的函数进行求导。
导数表示了函数在不同点的变化率,极值点一般对应导数为0的点。
2.解导数为0的方程:找到导数等于0的方程,并解出其根,这些根就是函数可能的极值点。
3.排除无关点:对于导数等于0的点,需要验证其是否确实是极值点。
排除掉在潜在的极值点处二阶导数不等于0的点。
4.确定最大值和最小值:对剩余的点,通过比较函数在这些点上的取值,确定最大值和最小值。
通常,最大值对应极大值点,最小值对应极小值点。
示例:使用函数求出最大值和最小值假设有一个函数f(x)=x2+3x+2,我们来求解其最大值和最小值。
1.求导数:计算f′(x)=2x+3。
2.解导数为0的方程:解方程2x+3=0,得到 $x = -\\frac{3}{2}$,这是一个极值点。
3.排除无关点:计算二阶导数f″(x)=2,在 $x = -\\frac{3}{2}$ 处二阶导数不等于0,说明这是一个极值点。
4.确定最大值和最小值:分别计算 $f(-\\frac{3}{2})$ 和 $f(-\\infty),f(\\infty)$ 的取值,比较得到最小值和最大值。
因此,函数f(x)=x2+3x+2在 $x = -\\frac{3}{2}$ 处取得最小值为$\\frac{1}{4}$,无最大值。
总结通过对函数进行求导,找到导数为0的点,再通过二阶导数的符号来排除无关点,最终确定函数的最大值和最小值。
这一过程是数学分析中常见的一种方法,可以帮助我们在解决实际问题时准确找到函数的极值点。
用导数求函数的最大值与最小值_2022年学习资料
![用导数求函数的最大值与最小值_2022年学习资料](https://img.taocdn.com/s3/m/41033334fbd6195f312b3169a45177232e60e44f.png)
一般地,在闭区间[α ,b]上的连续函数fx必有最大值与最小值-在开区间a,b内的连续函数fx不一定有最大值 最小值.-=x-y=f-若函数x在所给的区间I内有唯一的极值,则它是函数的-最值
例2求函数f=1x2-4x+40,3上的最大值与最小值-解:-令f'x=x2-4=0,x∈[0,3]-解得 =2.-当0sx<2时,fx<0;当2<x≤3时,f”☒>0-所以当x=2时,函数fx有极小值f2=一-又 于f0=4,f3=1,-所以,函数f=1x3-4x+4在0,3上的最大值是4,-最小值是一
观察下面函数y=fc在区间[a,b]上的图象,回答:-1在哪一点处函数y=fx有极大值和极小值?-极大:x x1x=X3x=x5-极小:x=x2x=x4-2函数y=fx在[a,b]上有最大值和最小值吗?如果有,-最 值和最小值分别是什么?-ymnx =fx3-y=fo-ymin =fx-:-1x29x3-xsb
练习-y=Ix+-x-1-3-函数-十-x2,在-4-[-1,1]上的最小值为A-A.0-B.-2-0.-D.13/12
4x-2、函数y=-c-x2+1-A.有最大值2,无最小值-B.无最大值,有最小值-2-C.最大值为2,最 值-2-D.无最值-3、函数fx=2x-cosx在-0,+0上-A.是增函数-B.是减函数-C有最大值-D 最小值
求函数y=fx在[a,b]上的最大值与-最小值的步骤如下:-1求函数y=fx在a,b内的极值;-2将函数y fx的各极值点与端-点处的函数值fa,fb比较,其中最-大的一个是最大值,最小的一个是最-小值.
例1、求函数fx=x2-4x+6在区间[1,-5]内的最大值和最小值-解:f′x=2x-4-令f′x=0, 2x-4=0,得x=2-X-1,2-2,5-f'x-f x-3-11-故函数fx在区间[1,5]内的最大值 为11,最小值为2
数学解决函数极值的三种方法
![数学解决函数极值的三种方法](https://img.taocdn.com/s3/m/70859ca3534de518964bcf84b9d528ea81c72ff0.png)
数学解决函数极值的三种方法函数的极值指的是函数在某个区间内取得的最大值或最小值。
求解函数的极值是数学中的重要问题之一,有着广泛的应用。
本文将介绍三种常用的数学方法来解决函数的极值问题。
一、导数法导数法是求解函数极值最常用的方法之一。
该方法基于导数的性质,通过求函数的导数来研究函数在不同点的变化情况。
假设函数f(x)在[a, b]区间内连续可导。
下面是求解函数极值的步骤:1. 求出函数f(x)的导数f'(x)。
2. 求出导数f'(x)的零点,即解方程f'(x) = 0。
3. 求出[a, b]区间内导数f'(x)的极值点,即对导数f'(x)求导,得到f''(x),再求出f''(x) = 0的解。
4. 将[a, b]区间内得到的所有解代入原函数f(x)中,得出这些点对应的函数值。
5. 比较得出的函数值,找出最大值和最小值。
导数法求解函数极值的优点是简单易懂,只需要求导和解方程,相对较快。
但该方法的缺点是依赖函数的可导性,对于非连续或不可导的函数不适用。
二、一元二次函数法一元二次函数法是解决函数极值问题的另一种常用方法。
该方法适用于形如f(x) = ax² + bx + c的二次函数。
下面是使用一元二次函数法求解函数极值的步骤:1. 将函数f(x)化为顶点形式,即使用平方完成或配方法将函数转化为f(x) = a(x-h)² + k的形式。
2. 根据一元二次函数的性质,当a>0时,函数在顶点(h, k)处取得最小值;当a<0时,函数在顶点(h, k)处取得最大值。
3. 找出顶点的横坐标h,即x = -b/2a。
代入f(x),求得函数的极值。
一元二次函数法的优点是适用范围广,并且可以直观地得到函数的极值点。
但对于不是二次函数的情况,该方法并不适用。
三、二阶导数法二阶导数法是一种更加精确的求解函数极值的方法。
函数的最大值和最小值(教案与课后反思
![函数的最大值和最小值(教案与课后反思](https://img.taocdn.com/s3/m/dadb01327f21af45b307e87101f69e314332faa7.png)
函数的最大值和最小值教学内容:本节课主要讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值。
教学目标:1. 理解函数的最大值和最小值的概念。
2. 学会使用图像法求解函数的最大值和最小值。
3. 学会使用导数法求解函数的最大值和最小值。
教学准备:1. 教学课件。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入函数的最大值和最小值的概念。
2. 举例说明函数的最大值和最小值的意义。
二、函数的最大值和最小值的概念(10分钟)1. 讲解函数的最大值和最小值的定义。
2. 给出函数的最大值和最小值的判定条件。
三、图像法求解函数的最大值和最小值(10分钟)1. 讲解图像法求解函数的最大值和最小值的方法。
2. 举例说明图像法求解函数的最大值和最小值的步骤。
四、导数法求解函数的最大值和最小值(10分钟)1. 讲解导数法求解函数的最大值和最小值的方法。
2. 举例说明导数法求解函数的最大值和最小值的步骤。
五、练习题讲解(10分钟)1. 讲解练习题的解题思路。
2. 逐个解答学生提出的疑问。
教学反思:本节课通过讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值,使学生掌握了这一重要知识点。
在教学过程中,采用图像法和导数法两种方法进行讲解,使得学生能够更好地理解和运用。
通过练习题的讲解,巩固了学生所学的知识,并解答了学生提出的疑问。
总体来说,本节课的教学效果较好,学生对函数的最大值和最小值的概念和求解方法有了较为深入的理解。
但在教学过程中,仍需注意引导学生主动思考和探索,提高学生的学习兴趣和参与度。
六、案例分析:实际问题中的最大值和最小值(10分钟)1. 引入实际问题,如成本最小化、收益最大化等。
2. 展示如何将实际问题转化为函数的最大值和最小值问题。
3. 引导学生运用所学的图像法和导数法解决实际问题。
七、练习与讨论:小组合作求解复杂函数的最大值和最小值(15分钟)1. 分配练习题,要求学生以小组合作的形式进行求解。
导数的应用最大值与最小值
![导数的应用最大值与最小值](https://img.taocdn.com/s3/m/3a1b174d51e79b8969022644.png)
一.教学内容导数的应用(二) 最大值与最小值一般地,在闭区间[a,b]上连续的函数f (x)在[a , b]上必有最大值与最小值;在开区间f (x)=丄(a,b)内连续的函数f(x)不一定有最大值与最小值,例如X在(O,-::)内的图象连续,但无最大值和最小值。
设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a , b)内的极值;(2)将f (x)的各极值与f (a),f (b)比较,其中最大的一个是最大值,最小的一个是最小值。
【典型例题】4 2[例1]求函数y - X - 2x 5在区间[_2,2]上的最大值与最小值。
3解:y” = 4x -4x,令y”=O,有4x3 -4^0 x「1,0,1当x变化时,y, y的变化情况如下表:从上表可知,函数y = X -2X在区间[-2 , 2]上最大值为13,最小值为4,利用此表可画出函数的图象如下:1410--2 -1 03 2[例2]已知f (x)二ax -6ax b, x ・[-1,2]的最大值为3,最小值-29,求a 、b 的值。
解:依题意a=0,否则f(x)二b 与已知矛盾。
2f (x) = 3ax -12ax = 3ax(x - 4)令「(x) =0解得x =0或x =4「(x) > 0(1 )当a >0时,由.一1兰x兰2解得一 1兰x v 0 令f(x) ::: 0,解得0 ::: x _2,列表如下:由f(x)连续,则当x = 0时,f(x)有最大值,即f(0) = b= 3 ,又由f(T) =「7a b f(2) =「16a b,则 f(2)为最小值,故-16a 3 一29二 a =2y_x 4-2x 2+5r- x所以,当a 0时,a =2,b =3 (2 )当a ::: 0时,列表如下:故f(x)最小值为f (0) =b = -29 , f (x)最大值为f ⑵二J6a -29 =3二a = -2所以,当a :::0 时,a - -2, b - -292 3 2[例3]已知两个函数f(x) =8x ^x-k ,g(x)=2x 5x *x,其中「R(1 )对任意的[-3,3],都有f(x)'g(x)成立,求k的取值范围。
导数最大值最小值求法
![导数最大值最小值求法](https://img.taocdn.com/s3/m/3f0a1091f424ccbff121dd36a32d7375a417c618.png)
导数最大值最小值求法在数学中,导数是一个非常重要的概念。
它可以用来确定函数的斜率、变化率以及最值。
在本文中,我们将重点讨论导数最大值最小值的求法。
一、导数的定义和性质在初中数学中,我们学习了导数的定义:设函数y=f(x)在点x0附近有定义,则函数在点x0处的导数f′(x0)可以表示为:f′(x0) = lim (f(x) - f(x0)) / (x - x0) (x → x0)其中,f(x)表示函数在点x处的函数值,x0表示点的位置。
导数可以理解为函数在某一点上的变化率。
导数有一些性质,例如:- 导数表示的是函数在某一点上的瞬时变化率;- 函数在某一点的导数值等于切线的斜率;- 导数可以用来判断函数是否单调,即导数的正负决定了函数的单调性。
二、求导法则为了求解导数最大值最小值,我们首先需要掌握求导法则。
求导法则是指一系列公式,可以用来求取各类函数的导数值。
常见的求导法则包括:- 常数求导法则:常数的导数为0;- 幂函数求导法则:y = x^n,其导数为 y' = nx^(n-1);- 指数函数求导法则:y = a^x,其导数为 y' = a^x ln(a);- 对数函数求导法则:y = loga x,其导数为 y' = 1 / (xln(a));- 三角函数求导法则:sinx的导数是cosx,cosx的导数是-sinx,tanx的导数是sec^2 x。
对于复合函数,我们可以使用链式法则来求导。
链式法则可以表示为:若h(x)=g(f(x)), 且g'(f(x))和f′(x)存在,则h′(x)=g′(f(x))f′(x)也就是说,复合函数的导数等于外层函数在内层函数的导数的基础上乘以内层函数的导数。
三、求导实例在上述基础上,我们可以来看看如何求导最值。
以下是一个实例,假设我们要求函数y=x^2在区间[0,2]上导数的最大值和最小值。
首先,我们需要求出函数的导数y'=2x。
函数最值的求解方法及应用
![函数最值的求解方法及应用](https://img.taocdn.com/s3/m/f971ee20dcccda38376baf1ffc4ffe473368fdc2.png)
函数最值的求解方法及应用函数最值问题是数学中常见且重要的问题。
函数的最值包括最大值和最小值,通常涉及函数的图像及其性质。
本文将介绍几种常见的函数最值的求解方法,并通过实例说明其应用。
一、函数最值的求解方法1.导数法导数法是求函数最值的常用方法。
对于定义在闭区间[a,b]上的函数f(x),其最值一定发生在函数的驻点或者区间的端点处。
-首先,求出f(x)的导数f'(x)。
-然后,求出f'(x)=0的解,即找到函数的驻点。
-最后,比较函数在驻点及端点处的取值,找到最大值和最小值。
2.二次函数的最值对于二次函数f(x)=ax^2+bx+c(a≠0),可以通过求导数的方法得到它的最值。
- 首先,求出f'(x)=2ax+b=0的解,即找到函数的驻点。
-如果a>0,则驻点为极小值点,此时f(x)的最小值为f(驻点)。
-如果a<0,则驻点为极大值点,此时f(x)的最大值为f(驻点)。
3.梯度下降法梯度下降法是一种可用于求解无约束最优化问题的迭代算法。
它的基本思想是通过迭代的方式逐步接近函数的最值。
-首先,选择任意一个起始点x_0。
-然后,根据函数的梯度(即导数的向量),沿着梯度的反方向更新参数x。
-重复上述步骤,直到满足停止条件为止。
二、函数最值的应用1.经济学中的应用函数最值在经济学中有重要的应用。
例如,生产函数描述了产出与生产要素之间的关系,通过求函数最值可以确定生产要素的最佳配置方案,实现最大化的产出。
供求函数描述了市场上商品的供给和需求关系,通过求函数最值可以确定市场的平衡价格和数量。
2.优化问题的求解优化问题是数学中的一个重要分支,涉及到在一定约束条件下求解一些目标函数的最值。
例如,在资源有限的情况下,如何合理分配资源以最大化利润或最小化成本是一个常见的优化问题。
3.最大似然估计最大似然估计是概率统计中的一种参数估计方法,通过求解似然函数的最值来选择模型的参数。
似然函数描述了给定参数下观测数据出现的可能性,通过求似然函数的最大值可以得到最优的参数估计值。