“秒表测时”实验报告

合集下载

实验:用秒表测量时间

实验:用秒表测量时间

• 经典考题 • 1、图中秒表的示数是多少分多少秒?
答案:3分48秒7
实验:秒表的使用 双击下面按钮
打开人机互动动画
1.1秒表.exe
• 实验目的
• 1、了解秒表的原理以及学习它的使用方法。
• 2、学会秒表的读数方法。
• 实验原理
• 1、一般的秒表(停表)有两根针,长针是秒针,每转一圈是30S;短 针是分针,每转一圈是15 min。
• 2、图中所示的最小分度是0.1s.
• 注意事项
• 1、 使用方法: 首先要上好发条,它上端的按钮用来开启和止动秒 表。第一次按压,秒表开始记时,第二次按压,指针停止走动,指示 出两次按压之间的时间。第三次按压两指针均返回零刻度处。
• 2、 读数: 所测时间超过半分钟时,半分钟的整数部分由分针读出, 不足半分钟的部分由秒表读出,总时间为两针之数之和。
• 实验结论 • 机械秒表的读数:机械秒表的长针是秒针,转一周是30s。因为机
械表采用的是齿轮传动,指针不可能停留在两小格之间;所以不能 估读出比0.1 s更短的时间。位于秒表上部中间的小圆圈里面的短针 是分针,表针走一周是15 min,每小格为0.5 min。秒表的读数方法 是:短针读数(t1)+长针读数(t2)。秒表分为内外两个刻度盘, 内盘每格是30s,外盘一周是30s,只要把两个的读数加起来就可以了。 • 实验考点 • 关于秒表的使用,目前单独考查的很少。作为一个测量时间的工具ห้องสมุดไป่ตู้ 一般只要会读数即可。

秒表实验报告_2

秒表实验报告_2

实验八秒表一、实验目的:1、了解数字秒表的工作原理。

2、进一步熟悉用VHDL语言编写驱动七段数码管的代码。

3、掌握VHDL编写中的一些小技巧。

二、实验要求:实现数字秒表功能,要求有分,秒,1%秒显示,该秒表能够随时控制启/停,清零重新计时功能。

三、实验原理秒表的工作原理与多功能数字电子钟大致相同,唯一不同的是,由于秒表的分辨率为0.01秒。

所以整个秒表的工作时钟是在100HZ的时钟信号下完成的。

假设该秒表的应用场合小于1小时,秒表的显示格式为mm~~ss~~xx(mm表示分钟:0~59;ss表示秒:0~~59;xx表示百分之一秒:0~~99)。

四、实验步骤1、用VHDL语言编写出秒表电路程序,通过QuartusII 进行编辑、编译、综合、适配、仿真测试。

给出其所有信号的时序仿真波形。

2、按实验要求锁定管脚,重新综合。

3、在EDA6000软件中建立实验模式。

4、下载设计文件,硬件验证秒表工作性能。

五、实验结果1、调试的过程记录在仿真图正确后开始用EDA6000进行检验,所有的管脚都连接好后,通入100Hz的脉冲,秒表开始工作2、实验结果经过调试得到了正常工作的秒表,每一个环节的跳转过程都是正常的最终的波形图:3、实验程序library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity stopwatch isport(clk,rst,en:in std_logic;minh,minl,sech,secl,msh,msl:out std_logic_vector(3 downto 0)); end entity;architecture behav of stopwatch issignal minhi,minli,sechi,secli,mshi,msli:std_logic_vector(3 downto 0); signal clk1,clk2:std_logic;beginprocess(clk,en,rst)beginif rst='1' then mshi<="0000";msli<="0000";elsif clk'event and clk='1' thenif en='1' thenif (mshi="1001" and msli="1001") thenmshi<="0000";msli<="0000";clk1<='1';elsif msli="1001" thenmsli<="0000"; mshi<=mshi+1;else msli<=msli+1;clk1<='0';end if;end if;end if;end process;process(clk1,en,rst)beginif rst='1' then sechi<="0000";secli<="0000";elsif clk1'event and clk1='1' thenif en='1' thenif (sechi="0101" and secli="1001") thensechi<="0000";secli<="0000";clk2<='1';elsif secli="1001" thensecli<="0000"; sechi<=sechi+1;else secli<=secli+1;clk2<='0';end if;end if;end if;end process;process(clk2,en,rst)beginif rst='1' then minhi<="0000";minli<="0000";elsif clk2'event and clk2='1' thenif en='1' thenif (minhi="0101" and minli="1001") thenminhi<="0000";minli<="0000";elsif minli="1001" thenminli<="0000"; minhi<=minhi+1;else minli<=minli+1;end if;end if;end if;end process;msh<=mshi;msl<=msli;sech<=sechi;secl<=secli;minh<=minhi;minl<=minli; end behav;。

物理实验报告1(用停表测量时间)

物理实验报告1(用停表测量时间)
物理实验报告
指导教师
评分
实验名称
用表测量时间
实验目的
会使用秒表测量时间
验数据
三、实验步骤:
1.看清秒表的量程和最小分度值,并观察检验秒表的按钮和指针是否正常,秒表调零;
2.在水平桌面上确定小车运动的起点和终点并做标记,终点处要有障碍物;
3.将小车放在水平桌面上,用手推动小车在水平桌面上从起点开始运动并通过终点,同时利用秒表开始测量小车从起点开始运动并通过终点所用的时间(不需估读)并读数、记录;
4.仿照步骤3,改变小车运动的快慢,再做两次,并记录测量结果;
5.整理实验器材。
四、实验数据记录表
实验数据记录表:测量小车运动的时间
测量次数
第一次所用时间(s)
第二次所用时间(s)
第三次所用时间(s)
测量结果
实验结论
级班学生:学号:时间:

人教版物理《用秒表测量时间》实验报告单

人教版物理《用秒表测量时间》实验报告单

《用秒表测量时间》实验报告单一、实验目的1、学会正确使用秒表测量时间。

2、探究不同活动中时间的长短变化。

二、实验原理利用秒表测量时间的实验原理是基于秒表的精确计时功能,通过对不同活动时间的测量,来研究各种物理现象和活动的时间特性。

三、实验器材秒表、活动道具(如小球、跳绳等)。

四、实验步骤1、检查秒表:(1)观察秒表的外观,确保无损坏。

(2)按下启动 / 停止按钮,检查秒表是否能正常启动和停止。

(3)按下复位按钮,将秒表归零。

2、测量单摆摆动一次的时间:(1)制作一个简单的单摆,将摆线长度调整到合适的长度。

(2)启动秒表,当单摆摆动一次后,立即停止秒表,记录时间。

(3)重复测量三次,取平均值。

3、测量小球从高处落下的时间:(1)将小球放在一定高度处。

(2)启动秒表,同时释放小球,当小球落地时,停止秒表,记录时间。

(3)重复测量三次,取平均值。

4、测量跳绳 100 次所需的时间:(1)准备好跳绳。

(2)启动秒表,开始跳绳,当跳绳次数达到 100 次时,停止秒表,记录时间。

(3)重复测量三次,取平均值。

五、实验数据记录六、实验现象分析1、单摆摆动一次的时间相对较短且较为稳定,其时间长短主要取决于摆长和重力加速度。

2、小球从高处落下的时间较短,受到高度和重力加速度的影响。

3、跳绳 100 次所需的时间较长,且会因个人跳绳速度的不同而有所差异。

七、实验结论1、秒表可以准确地测量各种活动的时间。

2、不同活动的时间长短不同,受到多种因素的影响。

八、误差分析1、人为操作误差:启动和停止秒表的时机可能存在误差。

2、测量次数较少:可能导致平均值不够准确。

3、环境因素:如空气阻力等可能对小球落下的时间产生微小影响。

九、注意事项1、操作秒表时要准确、迅速,避免误操作。

2、在测量小球落下时间时,要确保小球释放的同时启动秒表。

3、跳绳时要保持稳定的节奏,以便准确测量时间。

4、实验结束后,将秒表妥善保管,避免损坏。

数字秒表设计实验报告(一)

数字秒表设计实验报告(一)

数字秒表设计实验报告(一)数字秒表设计实验报告Introduction•实验目的:设计并实现一个数字秒表•实验时间:2021年10月10日至2021年10月15日•实验对象:本科计算机专业学生•实验设备:计算机、编程软件Experiment Procedure1.寻找合适的编程语言和开发工具2.设计秒表的用户界面3.编写代码实现秒表的计时功能4.测试并调试代码5.完善用户界面,添加重置和暂停功能6.进行性能测试,并分析结果Experimental Findings•选用Python编程语言和PyQt图形库进行开发•按照用户界面设计,实现了秒表的计时功能•通过测试,发现秒表计时准确性较高,误差范围小于0.1秒•添加了重置和暂停功能,提高了秒表的实用性•性能测试表明,在处理大数据量时,秒表的响应速度仍然较快Conclusion通过本次实验,我们成功设计并实现了一个功能完善的数字秒表。

通过合理的编程语言选择和用户界面设计,实验结果表明,我们的秒表具有准确的计时功能、良好的用户体验和较高的性能。

这对于计算机专业学生来说,具有较高的实用价值。

Future Work尽管我们已经取得了较好的实验结果,但仍有一些改进的空间。

在未来的工作中,我们计划:•进一步提高秒表的计时准确性,减小误差范围•探索更多的用户界面设计方案,增加更多便利的功能•优化性能,提高秒表在处理大数据量时的响应速度•结合云服务,实现秒表数据的备份和同步功能Acknowledgements感谢实验组的所有成员共同努力,以及指导老师的支持和指导,使得本次实验取得了圆满成功。

Reference无抱歉,关于数字秒表设计实验报告的文章已经终止。

实验报告时间知觉(3篇)

实验报告时间知觉(3篇)

第1篇一、实验目的本实验旨在探究时间知觉的影响因素,包括生理因素、心理因素和环境因素等,以期为时间知觉的深入研究提供理论依据。

二、实验方法1. 实验对象:随机选取30名年龄在18-25岁之间的健康志愿者,男女比例均衡。

2. 实验材料:实验仪器包括秒表、计时器、计时软件等;实验材料包括图片、音频、视频等。

3. 实验步骤:(1)将志愿者分为三组,每组10人,分别进行生理因素、心理因素和环境因素实验。

(2)生理因素实验:要求志愿者在安静的环境下,观察秒表,记录自己感知到的时间长度。

(3)心理因素实验:要求志愿者在观察秒表的同时,思考一个与时间相关的问题,记录自己感知到的时间长度。

(4)环境因素实验:要求志愿者在嘈杂的环境下,观察秒表,记录自己感知到的时间长度。

4. 数据收集:实验结束后,收集每组志愿者的实验数据,包括感知时间长度和实际时间长度。

三、实验结果与分析1. 生理因素对时间知觉的影响通过对比生理因素实验组和对照组的数据,发现生理因素对时间知觉有一定的影响。

生理因素实验组志愿者感知到的时间长度与实际时间长度存在一定的偏差,而对照组志愿者感知到的时间长度与实际时间长度较为接近。

2. 心理因素对时间知觉的影响通过对比心理因素实验组和对照组的数据,发现心理因素对时间知觉有显著影响。

心理因素实验组志愿者感知到的时间长度与实际时间长度存在较大偏差,而对照组志愿者感知到的时间长度与实际时间长度较为接近。

3. 环境因素对时间知觉的影响通过对比环境因素实验组和对照组的数据,发现环境因素对时间知觉有显著影响。

环境因素实验组志愿者感知到的时间长度与实际时间长度存在较大偏差,而对照组志愿者感知到的时间长度与实际时间长度较为接近。

四、结论1. 生理因素、心理因素和环境因素均对时间知觉有显著影响。

2. 生理因素对时间知觉的影响主要体现在感知时间长度与实际时间长度的偏差上。

3. 心理因素对时间知觉的影响主要体现在感知时间长度与实际时间长度的偏差上,且心理因素对时间知觉的影响程度较大。

秒表分析报告

秒表分析报告

秒表分析报告1. 引言秒表是一种常用的工具,用来测量时间的流逝。

在体育比赛、科学实验以及日常生活中,我们经常使用秒表来计时。

秒表的准确性对于确保比赛公平性和实验结果的可靠性非常重要。

因此,本文将对秒表进行分析,探讨其准确性和误差来源,以及如何提高准确性。

2. 秒表的工作原理秒表由一个计时手指和一套数字或模拟显示器组成。

当启动秒表时,计时手指开始运动,并且显示器开始计时。

当需要停止计时时,手指停止运动,计时器停止并显示所经过的时间。

秒表通常具有额外的功能,如分割计时和计次功能。

3. 秒表的准确性秒表的准确性是指其所显示的时间与真实时间之间的偏差。

秒表的准确性受到多个因素的影响,包括秒表本身的设计和制造质量,以及使用者的操作技巧。

3.1 秒表的设计和制造质量秒表的设计和制造质量对其准确性起着决定性的作用。

高质量的秒表通常采用精密的计时机制和高精度的计时芯片,以确保时间的准确性。

而低质量的秒表可能存在一些缺陷,如计时机制不稳定或计时芯片精度低,导致时间的误差增大。

3.2 使用者的操作技巧秒表的准确性还受到使用者的操作技巧的影响。

使用者需要准确地启动和停止秒表,并确保手指在计时过程中的稳定性。

不正确的操作可能导致时间的误差增加。

因此,使用者需要进行适当的培训和练习,以提高操作技巧。

4. 秒表误差的来源秒表的误差可以分为系统误差和随机误差两种来源。

4.1 系统误差系统误差是由于秒表本身的设计和制造质量问题而导致的误差。

这种误差是固定的,会在每次计时时产生相同的偏差。

系统误差可以通过校正来消除或减小,例如通过校准秒表或使用更准确的秒表。

4.2 随机误差随机误差是由于使用者的操作技巧或外部环境因素导致的误差。

这种误差是不可预测的,会在不同的计时中产生不同的偏差。

随机误差可以通过多次计时并取平均值来减小,以减少其对结果的影响。

5. 提高秒表准确性的方法为了提高秒表的准确性,可以采取以下几种方法:•选择高质量的秒表:选择具有精密计时机制和高精度计时芯片的秒表,以确保时间的准确性。

数字式秒表实验报告

数字式秒表实验报告

数字式秒表 摘 要如今,信息正是一个高度发展的产业,而数字技术是信息的基础,数字技术是目前发展最快的技术领域之一,数字技术在数字集成电路集成度越来越高的情况下,开发数字系统的使用方法和用来实现这些方法的工具已经发生了变化,但大规模集成电路中的基本模块结构仍然需要基本单元电源电路的有关概念,因此用基本逻辑电路来组成大规模或中规模地方法仍然需要我们掌握。

二进制数及二进制代码是数字系统中信息的主要表示形式,与,或,非三种基本逻辑运算是逻辑代数的基础,相应的逻辑门成为数字电路中最基本的元件。

数字电路的输入,输出信号为离散数字信号,电路中电子元器件工作在开关状态。

除此之外,由与,或,非门构成的组合逻辑功能器件编码器,译码器,数字分配器,数字选择器,加法器,比较器以及触发器是常用的器件。

与模拟技术相比,数字技术具有很多优点,这也是数字技术取代模拟技术被广泛使用的原因。

本设计所实现的数字式秒表是电子设计技术中最基本的设计实验之一。

该数字计数系统的逻辑结构较简单,是由脉冲信号发生器,分频器,计数器,译码器,数码管组成。

本设计报告由内容摘要、设计任务要求、元件清单、电路图、设计成果的评价及课程设计心得体会组成,力求将整个系统的设计过程、原理、以及心得体会完整的呈现出来。

关键词:计数器 译码器 数码管 JK 触发器 D 触发器 谐振电路装 订 线目 录一 设计任务要求…………………………………………………… 二 元件清单……………………………………………………………×2.1 计数器74LS192……………………………………………………… 2.2 译码器74LS47……………………………………………………… 2.3 D 触发器74LS74……………………………………………………… 2.4 JK 触发器74LS112……………………………………………………2.5 与非门74LS00………………………………………………………… 2.6 电阻、电容、二极管………………………………………………… 三 电路图………………………………………………………………… 四 设计成果评价…………………………………………………………… 五 课程设计心得体会………………………………………………………附录………………………………………………………………………装 订 线一 设计任务要求1.1 设计任务用TTL 或CMOS 集成电路设计数字式秒表逻辑控制电路并实验验证。

数字秒表实验报告

数字秒表实验报告

数字秒表实验报告数字秒表实验报告引言数字秒表在实验中起着至关重要的作用。

它不仅可以精确地测量时间,还可以记录多个时间点,提供数据分析的依据。

本次实验旨在探究数字秒表的使用方法和准确性,并对其在实验中的应用进行评估。

实验方法本次实验采用了两种不同的数字秒表进行对比。

实验员分别使用了A型和B型数字秒表,记录了同一事件的时间。

每个事件的时间记录了十次,以消除可能的误差。

结果与讨论通过对实验结果的分析,我们发现A型数字秒表的准确性要高于B型数字秒表。

在同一事件的十次记录中,A型数字秒表的时间差异较小,而B型数字秒表的时间差异较大。

这表明A型数字秒表在时间测量方面更加可靠。

进一步分析显示,A型数字秒表的准确性可能与其采用的技术有关。

A型数字秒表采用了高精度的晶体振荡器,能够提供更准确的时间测量。

而B型数字秒表则采用了普通的振荡器,其精度较低。

此外,实验员的使用方法也可能对结果产生影响。

我们发现,实验员在使用A型数字秒表时更加熟练,操作更加稳定。

而在使用B型数字秒表时,实验员可能存在一定的误差。

因此,实验员的技术水平也是影响数字秒表准确性的重要因素。

实验的局限性尽管本次实验结果显示A型数字秒表的准确性较高,但我们也要意识到实验存在一定的局限性。

首先,我们仅使用了两种数字秒表进行对比,样本量较小,可能无法代表所有数字秒表的准确性。

其次,实验员的技术水平也可能对结果产生影响,不同实验员的使用方法和操作习惯可能不同。

实验应用数字秒表在实验中的应用非常广泛。

它可以用于测量实验的持续时间,记录不同事件的时间点,进行数据分析等。

在科学研究、医学实验、体育训练等领域,数字秒表都扮演着重要的角色。

结论通过本次实验,我们得出了一些关于数字秒表的结论。

A型数字秒表在准确性方面表现更好,可能与其采用的技术和实验员的使用方法有关。

然而,我们也要意识到实验存在一定的局限性。

在实际应用中,我们应选择适合具体实验需求的数字秒表,并注意实验员的技术水平。

“秒表测时”实验报告

“秒表测时”实验报告

“秒表测时”实验报告一、实验任务利用秒表对电脑主机主要元件装配作业进行测时,计算标准时间二、实验目的1、掌握秒表测时技术;2、掌握标准时间的制定原理、方法、程序和步骤;3、学会正确划分各测时单元及其计时点,并学会确定正确的宽放率;4、掌握必要的软件工具。

三、实验原理1、秒表测时的定义2、秒表测时的用途3、测时单元的划分四、实验设备、仪器、工具及资料1、电脑主机2、计算机3、装拆工具、笔、纸、记录表格4、秒表、计算器五、实验过程1、实验分组,每四人一组,两人负责装配产品,两人负责观测记录2、收集资料,实验准备,布置工作地3、划分操作单元,确定计时点4、测时采用连续法记录时间研究,在现场记录时用铅笔填写秒表读数“W.R”,见附件:时间研究表(一)。

计算基本时间“B.T”。

4、填写时间研究表(二),剔除异常值,用三倍标准法决定正常值范围(正常值范围在x±3σ内)。

5、决定宽放时间取宽放率为:15%。

宽放时间=正常时间×宽放率6、计算标准时间:标准时间=平均操作时间×评比系数+宽放时间六、整理时间研究表(一)和时间研究表(二)时间研究表(一)(现场记录)时间研究表(二)(统计表)七、绘制管制界限图对每一个操作单元进行异常值剔除,选取其中一个操作单元绘制其管制界限图 1、剔除异常值 (1)、操作单元1:nXX ni i∑==111(其中n=8) 计算得69.71=XnX Xni i∑=-=12111)(σ 计算得=1σ 1.48正常值为σ3±X 之内,即在(3.25,12.13)之间,所以操作单元1无异常值 (2)、操作单元2:nXX ni i∑==122(其中n=8) 计算得=2X 6.79nX Xni i∑=-=12222)(σ 计算得=2σ0.28正常值为σ3±X 之内,即在(5.95,7.63)之间,所以操作单元2无异常值 (3)、操作单元3:nXX ni i∑==133(其中n=8) 计算得=3X 6.42nX Xni i∑=-=12333)(σ 计算得=3σ0.32正常值为σ3±X 之内,即在(5.46,7.38)之间,所以操作单元3无异常值 (4)、操作单元4:nXX ni i∑==144(其中n=8) 计算得=4X 6.55nX Xni i∑=-=12444)(σ 计算得=4σ0.90正常值为σ3±X 之内,即在(3.85,9.25)之间,所以操作单元4无异常值 (5)、操作单元5:nXX ni i∑==155(其中n=8) 计算得=5X 6.12nX Xni i∑=-=12555)(σ 计算得=5σ0.46正常值为σ3±X 之内,即在(4.74,7.5)之间,所以操作单元5无异常值 (6)、操作单元6:nXX ni i∑==166(其中n=8) 计算得=6X 6.46nX Xni i∑=-=12666)(σ 计算得=6σ 1.6正常值为σ3±X 之内,即在(1.66,11.26)之间,所以操作单元6无异常值 (7)、操作单元7:nXX ni i∑==177(其中n=8) 计算得=7X 8.47nX Xni i∑=-=12777)(σ 计算得=7σ 1.99正常值为σ3±X 之内,即在(2.5,14.44)之间,所以操作单元7无异常值 (8)、操作单元8:nXX ni i∑==188(其中n=8) 计算得=8X 9.42nX Xni i∑=-=12888)(σ 计算得=8σ0.64正常值为σ3±X 之内,即在(7.5,11.34)之间,所以操作单元8无异常值 (9)、操作单元9:nXX ni i∑==199(其中n=8) 计算得=9X 6.21nX Xni i∑=-=12999)(σ 计算得=9σ 2.03正常值为σ3±X 之内,即在(0.12,12.3)之间,所以操作单元9无异常值2、绘制管制界限图对于操作单元1,管制界限图如下: 平均值=7.69 标准差=1.48管制上限UCL=7.69+3*1.48=12.13 管制下限LCL=7.69-3*1.48=3.25操作单元1的数据都在管制界限之内,所以没有值被剔除。

数字秒表实验报告

数字秒表实验报告

数字秒表一、实验目的1、理解计时器的原理与Verilog/VHDL 的编程方法;2、掌握多模块设计及层次设计的方法。

二、实验原理秒计时器是由计数器和译码器、显示器组成,其核心是计数器与译码器。

60 秒计时器可由二个计数器分别完成:个位为十进制计数器,十位为6 进制计数。

个位计数器的计数信号由实验开发板上主频20MHZ分频产生的1Hz 时钟信号提供, 十位计数器的计数信号由个位的进位信号提供。

然后由译码器对计数结果进行译码,送LED 数码管进行显示。

Clr为清零,se t为开始。

三、源程序十进制计数器:module CNT10(clr,clk,ena,q,cout);input clr,clk,ena;output[3:0] q;output cout;reg[3:0] q;reg cout;always @(posedge clk or posedge clr)beginif(clr)begin q=4'b0000;cout=0;endelse if(ena)if(q==4'b1001)begin q=4'b0000;cout=1;endelsebegin q=q+1;cout=0;endendendmodule六进制计数器:module CNT6(clr,clk,ena,q,cout);input clr,clk,ena;output[3:0] q;output cout;reg[3:0] q;reg cout;always @(posedge clk or posedge clr)beginif(clr)begin q=4'b0000;cout=0;endelse if(ena)if(q==4'b0101)begin q=4'b0000;cout=1;endelsebegin q=q+1;cout=0;endendendmodule分频器:module FPQ(clk0,clk1);input clk0;output clk1;reg[26:0] Q1;reg clk1;always@(posedge clk0)if(Q1<9999999)Q1<=Q1+1;elsebegin Q1<=0;clk1<=~clk1;endendmodule四、实验任务1、采用层次设计的方法,设计一个包括顶层及底层模块的60 秒计时器,底层模块用Verilog/VHDL 设计(或者选用原理图输入法中宏功能元件),顶层用原理图设计。

电子秒表 实验报告

电子秒表 实验报告

目录1绪论 (1)1、1课题背景 (1)1、2秒表的发展趋势 (1)1、3本课题研究内容 (2)2研究方案与预期成果 (2)2、1研究方案 (2)2、2预期成果 (2)3设计任务与思想 ........................................................................... 错误!未定义书签。

3、1设计任务 .......................................................................... 错误!未定义书签。

3、2设计目的 .......................................................................... 错误!未定义书签。

3、3设计总体思想 ......................................................................... 错误!未定义书签。

4系统硬件设计 (4)4、1系统硬件设计框图 (4)4、2 LED显示电路 .......................................................................... 错误!未定义书签。

4、3时钟分频计数电路 ............................................................ 错误!未定义书签。

4、4秒脉冲电路....................................................................... 错误!未定义书签。

4、5 控制开关电路................................................................... 错误!未定义书签。

数字式秒表实验报告

数字式秒表实验报告

数字式秒表实验报告摘要本次设计任务是设计一个数字式秒表经查阅资料后我把实验分为1.脉冲产生部分。

2.电路控制部分。

3.计数部分4.译码部分。

5显示部分。

脉冲产生部分我选择555多谐振荡器,产生100Hz的脉冲。

经参考资料,电路控制部分:启动和暂停控制开关使用由RS触发器组成的无抖动开关。

使用74ls160计数器计数,7447译码器驱动共阳极七段显示器。

实验要求1.秒表最大计时值为99分59.99秒;2. 6位数码管显示,分辨率为0.01秒;3 .具有清零,启动计时,暂停及继续计数等控制功能;4.控制操作间不超过二个。

实验分析数字式秒表,所以必须有一个数字显示。

按设计要求,须用七段数码管来做显示器。

题目要求最大记数值为99,59,99,那则需要六个数码管。

要求计数分辨率为0.01秒,并且需要相应频率的信号发生器。

选择信号发生器时,有两种方案:一种是用晶体震荡器,另一种方案是采用集成电路555定时器与电阻和电容组成的多谐振荡器。

经过查询资料,555多谐振荡器性能稳定,故采用555多谐振荡器。

数字式秒表是一个频率(100HZ)进行计数的计数电路。

由于数字式秒表计数的需要,故需要在电路上加一个控制电路,该控制电路清零、启动计时、暂停及继续计数等控制功能,同时100HZ的时间信号必须做到准确稳定。

数字电子钟的总体图如图所示。

由图可见,数字电子钟由以下几部分组成:555振荡器秒脉冲发生器,防抖开关;秒表控制开关;一百进制秒、分计数器、六十进制秒计数器;以及秒、分的译码显示部分等七段显示器译码器译码器译码器1005551. 555构成的多谐振荡器555构成的多谐振荡器电路图555多谐振荡器工作波形多谐振荡器工作波形周期计算2.多谐振荡器仿真图根据设计要求,需要产生一个频率为100HZ的信号,由于f=1/T,带入可以算出R1=R1=4.7KΩ,在仿真软件上仿真的时候可以设置电阻为4.7KΩ,加上一个50Ω的电位器来调节脉冲信号的精确度。

电子秒表的设计实验报告

电子秒表的设计实验报告

电子秒表的设计实验报告
《电子秒表的设计实验报告》
摘要:本实验旨在设计一款简单易用的电子秒表,通过实验验证其准确性和稳定性。

实验结果表明,所设计的电子秒表具有较高的准确性和稳定性,能够满足实际使用需求。

引言:电子秒表是一种用于测量时间的工具,广泛应用于实验室、体育比赛和工业生产等领域。

设计一款准确可靠的电子秒表对于提高工作效率和数据准确性具有重要意义。

因此,本实验旨在设计一款简单易用的电子秒表,并通过实验验证其性能。

实验方法:首先,我们选取了一款常用的电子元件,包括计时电路、显示屏和按键等。

然后,我们根据设计要求,进行了电路连接和程序编写。

接着,我们对设计的电子秒表进行了一系列的实验,包括准确性测试、稳定性测试和耐用性测试等。

实验结果:经过实验验证,我们设计的电子秒表具有较高的准确性和稳定性。

在准确性测试中,我们对比了设计的电子秒表与标准秒表的计时结果,发现两者基本一致。

在稳定性测试中,我们对设计的电子秒表进行了长时间计时,结果显示其计时稳定性良好。

在耐用性测试中,我们对设计的电子秒表进行了反复按键操作,发现其按键灵敏度和耐用性均符合设计要求。

结论:通过本实验,我们成功设计了一款简单易用的电子秒表,并验证了其准确性和稳定性。

该电子秒表具有较高的性能表现,能够满足实际使用需求。

未来,我们将进一步改进设计,提高电子秒表的功能和性能,以满足更广泛的应用需求。

致谢:感谢实验室的老师和同学们对本实验的支持和帮助,感谢他们的耐心指导和建设性意见。

同时,也感谢所有参与本实验的人员,他们的辛勤劳动为本实验的顺利进行提供了保障。

数字秒表试验报告

数字秒表试验报告

基于LCD显示的秒表设计--------------- EDA电子综合设计姓名:班级:学号:指导老师:时间:2012.6.28基于LCD 显示的秒表设计一:设计目的:1、设计的秒表具有清零、暂停/继续技术功能,清零通过拨码开关控制,暂 停/继续通过按键控制,按下一次暂停,按下两次继续。

2、秒表计时范围0—9999.999秒,精度到ms 。

2、LCD 实施显示秒表计时状态。

3、系统时钟采用实验板上提供的50MHz 时钟信号源。

4、设计成同步电路模式。

二:设计原理本实验主要分为四大模块(按键处理,分频,计数,显示)。

下面我将分块阐述: 1:按键处理模块此模块是为了让key1按键即pause 没按下一次有不同的状态。

清零(clear=0)通过拨码开关控制,暂停/继续(pause)通过按键控制,按下一次(pause=1)暂停,按下两次(pause=0)继续。

同步复位键由按键开关控制。

Key D[1] clk主要思想是:通过两个D 触发器使按键通过D[0],和D[1]时产生一个时钟的延时,其目的是没按下一次按键产生一个延时一个时钟的脉冲en_tmp ,通过对en_tmp 的判断是否为高电平实现输出脉冲en 的翻转。

2.分频模块:因为计数模块精确到1ms 所以需将20ns 的系统时钟(clk )分频为1ms 时钟(clk_out);否是开始 Posedge clk? i++D 触发器 D 触发器否是3:计数模块:设计要求显示9999.999,所以每一位用4为二进制表示从0-9的显示,共有4x7=28位二进制数,为方便叙述和代码的书写我将这七个数从高到低定义为4位的Q,B,S,G ,P1,P2,P3。

是否否是i=24999? clk_out=~clk_out 结束 开始Rst=0? Pause=0? 计数 清零 clear=0? 复 位计数小部分:否 是否是否.... ...............结束 赋 值 Posedge clk_out?P3++ P3=9? P2++ 结束开 始 P2=9? P3++4.lcd显示模块:关键点在于ASCII码中数字0为30,1为31,······,因此只需将4b'0011赋值给lcd_data_out的高四位,Q,B,S,G,P1,P2,P3赋值给lcd_data_out的低四位即可显示Q,B,S,G,P1,P2,P3上对应的数值。

单片机秒表实验报告

单片机秒表实验报告

单片机秒表实验报告实验目的:本实验旨在通过使用单片机搭建一个简单的秒表,掌握单片机的基本输入输出方法和定时器的使用,提高对单片机的编程能力。

实验器材:1. STC89C52单片机开发板2. 4位共阳数码管3. 74HC595移位寄存器4. 按钮开关5. 连接线实验原理:秒表是一种测量时间的工具,通常用于计时。

在本实验中,我们将使用单片机来实现一个简单的秒表功能。

通过使用定时器中断,每隔一定的时间更新数码管上显示的时间,实现秒表的计时功能。

同时,通过按下按钮开关,可以控制秒表的启动、暂停和复位。

实验步骤:1. 将STC89C52单片机开发板与4位共阳数码管、74HC595移位寄存器和按钮开关连接。

2. 将开发板上的相应引脚与数码管和移位寄存器的引脚连接,确保连接正确。

3. 在单片机的主函数中初始化定时器和外部中断,并设置定时器的中断时间为1秒。

4. 在定时器中断函数中,每隔1秒更新数码管上的显示时间。

可以使用循环方式实现时间的累加和更新。

5. 在外部中断函数中,根据按钮开关的状态,实现秒表的启动、暂停和复位功能。

6. 编译、下载程序到单片机开发板,并将开发板上电。

7. 按下按钮开关开始计时,再次按下暂停计时,再次按下继续计时,再次按下复位计时。

8. 观察数码管上显示的时间是否正确,并测试秒表功能是否正常。

实验结果:经过测试,本实验搭建的单片机秒表功能正常,能够准确计时,并可以通过按钮开关实现启动、暂停和复位功能。

结论:通过本实验,我们成功地使用单片机搭建了一个简单的秒表,并实现了基本的计时功能。

同时,通过掌握单片机的定时器和外部中断的使用,我们提高了对单片机的编程能力。

这对于进一步深入学习和应用单片机具有重要的意义。

秒表设计报告

秒表设计报告

实验设计报告题目:专业:姓名:目录一、绪论 (3)二、课程设计任务与要求 (3)三、实验设计所需硬件 (4)四、实验设计原理图 (4)五、汇编实验程序 (5)六、实物图照片 (8)参考文献 (9)单片机秒表实验报告一、绪论秒表计时器是电器制造,工业自动化控制、国防、实验室及科研单位理想的计时仪器,它广泛应用于各种继电器、电磁开关,控制器、延时器、定时器等的时间测试。

在现在的体育竞技比赛中,随着运动员的水平不断提高,差距也在不断缩小。

有些运动对时间精度的要求也越来越高,有时比赛冠亚军之间的差距只有几毫秒,因此就需要高精度的秒表来记录成绩。

二、课程设计任务与要求(1)让一只LED灯自由闪烁(即间歇式亮灭)。

(2)让数码管的低两位显示一个两位数50。

(3)使用一按键控制上述数字的加1,每按一下数字加1,当加到59时,再按一下,则从0开始,即在0到59循环加。

(4)使用另一按键控制上述数字的减1,每按一下数字减1,当减到0时,再按一下,则从59开始,即在0到59循环减。

(5)做一顺时计时秒表,以一秒为单位计时,分和秒之间用一小数点作间隔(6)用一个按键控制该计时秒表的暂停与继续,另一个按键使秒表复位(即数码管归位到0)。

(7)能用按键设定某一时刻,当计时到达这一时刻时,LED灯闪烁,且秒表停止变为0。

三、实验设计所需硬件6 脚自锁式开关1 个STC89C52 1 个74HC573H 1 个20 脚芯片座子1 个MAX232 1 个16 脚芯片座子1 个9 针串口公头1 个晶振12M 1 个电解电容10uF 6 个瓷片电容30pF 2 个共阴数码管 1 个40 脚芯片座子1 个按键 5 个电阻10k欧 2 个电阻500欧 1 个四、实验设计原理图五、汇编实验程序#include<reg52.h>#define uchar unsigned charcode uchar tab[]= {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //共阴数码管0-9 uchar miao,num=51,count,smg,m ,mshi,mge,fshi ,fge;sbit key1 = P1^4; //控制秒钟加sbit key2 = P1^5; //控制秒钟减sbit key3 = P1^6; //控制按键切换sbit key4 = P1^7; //控制分钟加减sbit led = P2^0; //控制LED等闪烁sbit P1_0 = P1^0; //控制第一位数码管sbit P1_1 = P1^1; //控制第二位数码管sbit P1_2 = P1^2; //控制第三位数码管sbit P1_3 = P1^3; //控制第四位数码管void delay(uint z) //延时函数,z的取值为这个函数的延时ms数,如delay(200);大约延时ms.{ //delay(500);大约延时ms.uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}EA = 1;TMOD= 0X11;TH0 = 0X3C;TL0 = 0XB0;TH1 = 0X3C;TL1 = 0XB0;ET0 = 1;TR0 = 1;ET1 = 1;void TIME0() interrupt 1{TH0=(65535-50000)/255;TL0=(65535-50000)%255;count++;if(count==20){ count=0;num++;}if(num==60)num=0;}void display(uchar num) {P1=0xff;P1_2=0;P0=tab[num%10];delay(1);P1=0xff;P1_1=0;P0=tab[num/10];delay(1);P1=0xff;}void keyscanf(){if(key1==0){delay(20);if(key1==0);{num++;if(num==59)num=0;while(!key1);}}if(key2==0){delay(20);if(key2==0);{num--;if(num==-1)num=59;while(!key2);}}if(key3==0){delay(20);if(key3==0);{ss++;if(ss%2==1)TR0=1;elseTR0=0;while(!key3);}}if(key4==0){delay(20);if(key4==0);num=0;while(!key4);}}void stopwatch(){TR1 = 1;if(m == 20){m = 0;smg++;if(smg == 60){smg = 0;num++;if(num == 60)num = 0;}mshi = smg/10;mge = smg%10;fshi = num/10;fge = num%10;}}void main(){TIME0init();while(1){keyscanf();display(num);}}六、实物图照片参考文献[1]张毅刚主编.《单片机原理及应用》.高教出版社.2003[2] 严洁主编,《单片机原理及其接口技术》机械工业出版社.2010[3] 申忠如主编,《MCS-51单片机原理及系统设计》西安交通大学出版社.2008。

秒表 实验报告

秒表 实验报告

秒表实验报告秒表实验报告一、引言秒表是一种常用的计时工具,广泛应用于科学实验、体育竞技、工业生产等领域。

本次实验旨在通过使用秒表进行计时,探究其精确度和可靠性,并对实验结果进行分析和讨论。

二、实验方法1. 实验材料:秒表、实验器材(如小球、弹簧等)。

2. 实验步骤:a. 准备实验器材,并将秒表置于易于观察的位置。

b. 进行实验前的校准,确保秒表的准确性。

c. 进行实验,使用秒表记录实验过程中的时间。

d. 重复实验多次,以提高结果的可靠性。

e. 记录实验数据,并进行数据分析。

三、实验结果在本次实验中,我们进行了多个实验项目,包括计时小球下落时间、测量弹簧振动周期等。

以下是实验结果的一部分:1. 计时小球下落时间:实验1:0.82秒实验2:0.83秒实验3:0.81秒2. 测量弹簧振动周期:实验1:1.24秒实验2:1.26秒实验3:1.25秒四、数据分析通过对实验结果的观察和分析,我们可以得出以下结论:1. 在同一实验条件下,多次重复实验的结果相对稳定,显示了秒表的可靠性。

2. 实验结果的微小差异可能是由于实验器材的误差或操作的不精确造成的。

3. 秒表的精确度可能受到外界因素的干扰,如温度、湿度等。

五、讨论与改进1. 在实验过程中,我们注意到秒表的操作要求较高,需要手指的灵敏度和反应速度。

因此,操作者的技巧和经验对实验结果可能产生一定影响。

2. 为了提高实验结果的准确性,可以采取以下改进措施:a. 使用更高精度的秒表,以减小误差。

b. 进行更多次的重复实验,以提高结果的可靠性。

c. 控制实验环境的稳定性,减少外界因素的干扰。

d. 提高操作者的技能水平,以减少人为误差的发生。

六、结论通过本次实验,我们对秒表的精确度和可靠性有了更深入的了解。

秒表作为一种常用的计时工具,在科学实验和其他领域中具有重要的应用价值。

然而,我们也认识到实验结果的准确性受到多种因素的影响,需要在实验设计和操作过程中进行合理的控制和改进。

数字秒表设计实验报告

数字秒表设计实验报告

数字秒表设计实验报告数字秒表设计实验报告1. 引言•简要介绍实验的目的和意义2. 设计原理•介绍数字秒表的基本原理和工作流程3. 实验步骤•列出实验的具体步骤和操作流程4. 实验结果分析•分析实验过程中的数据和观测结果•对实验结果进行解释和讨论5. 实验结论•给出实验的总结和结论6. 实验改进•提出对实验的改进建议和优化方案7. 参考资料•引用相关的文献和资料来源8. 附录•将实验过程中的数据、图表等附加在文末作为附录以上为一个大致的框架,具体内容根据实验的实际情况进行填写。

本实验报告使用Markdown格式,通过使用标题和列表等语法,使文章更加清晰易读。

注意,为了遵守规则,本文中不包含实际的字母、图片或网址。

希望这份指导对你有所帮助!数字秒表设计实验报告1. 引言•实验目的:本实验旨在设计一个数字秒表,用于测量时间,并掌握数字电路的设计原理和实践技能。

•实验意义:准确测量时间是科学研究和生产实践中的重要要求,数字秒表作为计时测量的常用工具,具有广泛的应用价值。

2. 设计原理•数字秒表的基本原理是利用稳定的时钟信号源产生时间基准,通过计数器、时钟分频电路和显示模块实现对时间的测量和显示。

3. 实验步骤1.首先确定秒表的最高位数,根据实际需求选择适当的位数。

2.设计计数器电路,使用计数器芯片进行计数,根据最高位数确定计数器的范围。

3.设置时钟分频电路,通过将时钟信号分频得到适合计数器工作的时钟频率。

4.连接计数器和时钟分频电路,确保二者能够正确配合。

5.设计显示模块,将计数器的输出转换为数字形式,用于显示具体的时间数值。

6.连接显示模块和计数器,进行正确的信号传递和信息显示。

7.进行测量和验证,检查秒表的测量准确性并进行调整。

4. 实验结果分析•对实验过程中的数据和观测结果进行分析•通过比较测量结果与标准时间的差异,评估秒表的准确性•分析秒表存在的潜在问题并提出解决方案5. 实验结论•总结实验设计和实验过程•归纳出实验结果和分析的要点•得出对设计的数字秒表的结论,包括准确性、可靠性和实用性等方面的评价6. 实验改进•针对实验中发现的问题,提出改进的建议和优化方案•探讨可能的改进措施,包括电路设计、算法优化、显示方式等方面的改进7. 参考资料•[1] 电子技术实验教程,XXX出版社•[2] 数字电路原理与设计,XXX出版社8. 附录•实验数据表格•电路图和连接图•实验中使用的元器件清单以上为数字秒表设计实验报告的大致框架,实验的具体内容和结果分析部分需要根据实际情况进行填写。

实验 秒表测时及工时评定

实验 秒表测时及工时评定

实验秒表测时及工时评定
一、实验任务
利用秒表测定将一副扑克牌分发成四堆的标准时间。

二、实验目的
(1)掌握秒表测时技术。

(2)掌握标准时间的定制原理、方法和程序步骤。

(3)建立“正常工作速度”的概念。

(4)训练学生工时评价的技能。

三、实验设备
(1)扑克牌(每组一副牌)
(2)秒表
(3)观测板、纸、笔
(4)记录表格
(5)计算器
四、实验内容及步骤
通过实际动手发扑克牌,使学生逐渐建立
起标准速度的概念。

实验者将52张扑克牌按规定平均分成四摞。

(1)实验分组:3-4人一组,其中一人发牌、一人测时、一人评价打分(记录数据)(2)划分操作单元,确定计时点
(3)确定观测次数(15次)
(4)开始实际观测和记录
(5)计算发一副牌(52张)的总观测时间。

(6)对发牌者进行速度评定计算正常时间(7)给定作业的宽放率为10%,计算标准时间。

五、思考题
1、你是如何进行工时评价的?在评价的过
程中,如何做到较为公正的进行评分?
2、何为宽放?为什么要进行宽放?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“秒表测时”实验报告
一、实验任务
利用秒表对电脑主机主要元件装配作业进行测时,计算标准时间
二、实验目的
1、掌握秒表测时技术;
2、掌握标准时间的制定原理、方法、程序和步骤;
3、学会正确划分各测时单元及其计时点,并学会确定正确的宽放率;
4、掌握必要的软件工具。

三、实验原理
1、秒表测时的定义
2、秒表测时的用途
3、测时单元的划分
四、实验设备、仪器、工具及资料
1、电脑主机
2、计算机
3、装拆工具、笔、纸、记录表格
4、秒表、计算器
五、实验过程
1、实验分组,每四人一组,两人负责装配产品,两人负责观测记录
2、收集资料,实验准备,布置工作地
3、划分操作单元,确定计时点
4、测时
采用连续法记录时间研究,在现场记录时用铅笔填写秒表读数“W.R”,见附件:时间研究表(一)。

计算基本时间“B.T”。

4、填写时间研究表(二),剔除异常值,用三倍标准法决定正常值范围(正常值范围在x±3σ内)。

5、决定宽放时间
取宽放率为:15%。

宽放时间=正常时间×宽放率
6、计算标准时间:标准时间=平均操作时间×评比系数+宽放时间
六、整理时间研究表(一)和时间研究表(二)
时间研究表(一)(现场记录)
时间研究表(二)(统计表)
七、绘制管制界限图
对每一个操作单元进行异常值剔除,选取其中一个操作单元绘制其管制界限图 1、剔除异常值 (1)、操作单元1:
n
X
X n
i i
∑==
1
11(其中n=8) 计算得69.71=X
n
X X
n
i i
∑=-=
1
2
111)(σ 计算得=1σ 1.48
正常值为σ3±X 之内,即在(3.25,12.13)之间,所以操作单元1无异常值 (2)、操作单元2:
n
X
X n
i i
∑==
1
22(其中n=8) 计算得=2X 6.79
n
X X
n
i i
∑=-=
1
2
222)(σ 计算得=2σ0.28
正常值为σ3±X 之内,即在(5.95,7.63)之间,所以操作单元2无异常值 (3)、操作单元3:
n
X
X n
i i
∑==
1
33(其中n=8) 计算得=3X 6.42
n
X X
n
i i
∑=-=
1
2
333)(σ 计算得=3σ0.32
正常值为σ3±X 之内,即在(5.46,7.38)之间,所以操作单元3无异常值 (4)、操作单元4:
n
X
X n
i i
∑==
1
44(其中n=8) 计算得=4X 6.55
n
X X
n
i i
∑=-=
1
2
444)(σ 计算得=4σ0.90
正常值为σ3±X 之内,即在(3.85,9.25)之间,所以操作单元4无异常值 (5)、操作单元5:
n
X
X n
i i
∑==
1
55(其中n=8) 计算得=5X 6.12
n
X X
n
i i
∑=-=
1
2
555)(σ 计算得=5σ0.46
正常值为σ3±X 之内,即在(4.74,7.5)之间,所以操作单元5无异常值 (6)、操作单元6:
n
X
X n
i i
∑==
1
66(其中n=8) 计算得=6X 6.46
n
X X
n
i i
∑=-=
1
2
666)(σ 计算得=6σ 1.6
正常值为σ3±X 之内,即在(1.66,11.26)之间,所以操作单元6无异常值 (7)、操作单元7:
n
X
X n
i i
∑==
1
77(其中n=8) 计算得=7X 8.47
n
X X
n
i i
∑=-=
1
2
777)(σ 计算得=7σ 1.99
正常值为σ3±X 之内,即在(2.5,14.44)之间,所以操作单元7无异常值 (8)、操作单元8:
n
X
X n
i i
∑==
1
88(其中n=8) 计算得=8X 9.42
n
X X
n
i i
∑=-=
1
2
888)(σ 计算得=8σ0.64
正常值为σ3±X 之内,即在(7.5,11.34)之间,所以操作单元8无异常值 (9)、操作单元9:
n
X
X n
i i
∑==
1
99(其中n=8) 计算得=9X 6.21
n
X X
n
i i
∑=-=
1
2
999)(σ 计算得=9σ 2.03
正常值为σ3±X 之内,即在(0.12,12.3)之间,所以操作单元9无异常值
2、绘制管制界限图
对于操作单元1,管制界限图如下: 平均值=7.69 标准差=1.48
管制上限UCL=7.69+3*1.48=12.13 管制下限LCL=7.69-3*1.48=3.25
操作单元1的数据都在管制界限之内,所以没有值被剔除。

八、分析秒表测时法确定电脑主机主要元件装配过程的标准时间的结果
因为标准时间=平均操作时间×评比系数+宽放时间,即标准时间=正常时间+宽放时间。

秒表测时法测定的时间是操作者完成某单元的实际时间,表二中已算出操作者完成操作所需的标准时间,由于是选取2个同学的8项操作数据,数值存在着些许差异,操作者的操作速度可能比标准动作快(正常速度操作),也可能比标准动作慢,所以,不能直接将表二中算的的平均值认为是操作者以正常速度操作所需的时间,因此我们要对操作者的作业进行评定,并以此对观测时间进行修正,即将求得的平均值乘上评定系数。

使操作所需的时间变为不快不慢的正常时间。

这样才能保证制定的标准时间的科学性。

在计算标准时间的时候,我们还计算了宽放时间,因为正常时间并未考虑操作者个人需要和各种不可避免的延迟因素所耽误的时间。

如果以正常时间为标准时间,则会使操作者从早到晚的工作。

显然这是不合理的,所以我们在秒表测时法确定标准时间以前,还必须找出操作者
3.25
管制上限(UCL )
中心线(平均)(CL )
管制处限(LCL )
7.69
12.13
所需的停顿和休息的时间,即宽放时间。

这样才符合实际需要。

因此我们在用秒表测时法确定电脑主机装配过程的标准时间的时候,计算了正常时间及宽放时间,以保证标准时间的科学性。

九、思考题
1. 秒表测时的步骤?
1)获取充分资料;
2)作业分解-----划分操作单元;
3)确定观测次数;
4)测时;
5)剔除异常值并计算各单元实际操作时间;
6)计算正常时间;
7)确定宽放时间;
8)确定标准时间。

2. 如何划分操作单元?
1)单元之间界限清楚。

每一单元应有明显易辨认的起点和终点;
2)各单元时间长短适度。

一般来说,单元时间越短越好,一般认为以0.04min为宜,这是由经验研究人员所能观测记录的极限;
3)人工操作单元应与机器操作单元分开;
4)不变单元应与可变单元分开;
5)规则单元、间歇性单元和外来单元应分开,否则在观测记录上将引起极大困惑;
6)物料搬运时间应与其他单元时间分开。

3. 连续测时如何进行?
在整个研究持续时间内,秒表不停地连续走动,直到整个研究结束为止。

观测者将每个操作单元的终点时间读出,记录在表格内。

研究结束后,将相邻两个操作单元的终点时间相减,即得到操作单元实际持续时间。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待
你的好评与关注!)。

相关文档
最新文档