刀具第章切削力(ppt)

合集下载

金属切削刀具切削力

金属切削刀具切削力

图 ap、f (a) ap ; (b)f
2、 切削速度vc
切削塑性金属时,vc对切削力的影响如同对切削变形影响的 规律,是由积屑瘤与摩擦的作用所造成的。当vc<35 m/min 时,由于积屑瘤的产生和消失,使γoe增大或减小,导致切削 力的变化;当vc>35 m/min时,vc大,切削温度高,μ减小, 增大,则ξ减小,致使切削力减小。
Zw 1000 vc fa p
整理后得
Ps p 10 6
通过实验求得p后,反过来可以求得Pm,然后再计算Fz。
四、 机床电机功率
在设计机床选择电机功率PE时,应按下式计算
PE
Pm
m
式中 ηm —— 机床传动效率,通常η= 0.75~0.85
4.4 影响切削力的因素
切削力来源于工件材料的弹塑性变形及刀具与切屑、 工件表面的摩擦,因此凡是影响切削过程中材料的变形 及摩擦的因素都影响切削力。
影响因素主要为:工件材料;切削用量;刀具几何参 数;其他因素。

Fr
Ac sincos(
-o)
acaw sincos(
-o)
可知, 被加
工材料的抗剪变形、 切削面积愈大, 剪切角、 前角愈
小, 则切削力愈大。 具体分析如下:
一、工件材料
工件材料是通过材料的剪切屈服强度τs、塑性变形、
切屑与前刀面间摩擦系数μ等条件影响切削力的。
当ap、 f、κr不变时, rε增大,将使曲线部分各点的ac、 κr减小。 rε增大对Fx、Fy要比对Fz的影响大。 所以当工艺系统的刚性较差时, 宜用小rε。
刀尖圆弧半径对切削力的影响与 rε/ ap有关。
图 rε
(a) rε小;
(b) rε大

切 削 力

切  削 力
削厚度增大,切削变形系数减小,故切削力减小。若主偏角从60增加 至90,圆弧刀尖在切削刃上占切削宽度增大,使切屑流出时挤压加剧, 切削力逐渐增大。
➢ (4)刀尖圆弧半径——刀尖圆弧半径增大,刀刃上参加切削的曲线
部分越长,平均切削厚度减小,切削变形增大,使切削力增大。
前角与刃倾角对切削力的影响
主偏角对切削力的影响
➢ 通常工件材料的强度和硬度越高,剪切屈服强度越高,
产生的切削力也越大。
➢ 在强度和硬度相近的材料中,其塑性和韧性越高,切削
变形系数越大,切屑与刀具间摩擦增加,故切削力越大;
加工硬化严重的材料,切削力也越大。
➢ 切削铸铁等脆性材料时,切削层的塑性变形很小、摩擦
小,加工硬化小,故产生的切削力也小。
3.刀具几何参数的影响
切向力是设计机床主轴、齿轮和计算主运 动功率的主要依据;它决定刀杆、刀片的尺寸; 它是设计夹具和选择切削用量的重要依据。
背向力是作用在吃刀方向上的切削分力,不 消耗切削功率。
纵车外圆时,如果加工工艺系统刚性不足, 背向力是影响加工工件精度、引起切削振动的主 要原因。
轴向力是作用在进给方向上的切削分力,消 耗总功率的 1%~5%。
各 参 数 对 切 削 力 影 响 的 修 正 系 数 值
1.6 切削力计算举例
切 削 力 计 算 例
2 解 题 步 骤
金属切削加工
2.切力的分解
切向力(主切削 力)——在主运动 方向上的分力; 背向力(径向力或 切深抗力)——在 垂直于工作表面上 的分力; 进给力(轴向力 力)——在进给运 动方向上的分力。
1.2 分力 的作用
1.切向力(主切削力)
2.背向力(径向力)
3.轴向力(进给抗力)

2切削作用与切削力

2切削作用与切削力

第二章切削作用与切削力1.切削应力和应变2.刀具的切削作用3.切削力的力学模型4.影响切削力的因素5.切削力与切削功率的通用计算公式1、切削应力和应变刀具刃口与切削工件接触的同时,根据作用力的大小,工件在刀刃刀尖作用的部位先产生变形。

当这个力逐渐增大时,工件被刃口分成两部分,刃口继续向材中切进去。

从工件切下分离出去的部分,被刀具前面压缩,受剪切应力和弯曲应力作用产生变形,成为切屑。

切削过程中,作用于被切工件上的力其大小、作用方向,根据工件的性质、刀具的条件、切削参数的不同变化。

图示各应力的主要作用区域。

1为刀具刃口压入产生的集中应力;2为刀具前刀面与切屑接触产生的摩擦力;3为刀具前刀面上切屑因为弯曲产生的压缩应力;4为刀具前刀面因为切屑弯曲产生的拉应力;5为作用于切削方向的压应力或拉应力;6为为作用于垂直切削方向的剪切应力;7为大切削角切削时的压缩剪切应力;8为端向切削时使木纤维发生弯曲的弯曲应力;9为端向切削时作用在木纤维上的最大拉应力。

2、刀具的切削作用•从力学观点看,切削作用的实质实际是一种有控制的受力破坏。

其目的是为从工件上切除一部分材料,从而获得一定尺寸精度和表面质量的的制品。

•切削时刀具的刃口、前刀面和后刀面都起作用。

•切削会有阻力,这个阻力称为切削阻力。

切削力和切削阻力数值相等,方向相反。

2.1 刀具切削部分的形态任何刀具的切削部分都可简化为一楔形体,但切削刃并非一理想直线,而是一不规则过渡曲面,曲率半径大约0.005-0.1mm。

2.2刀具各部分的切削作用•刀尖 :依靠应力集中破坏木材间的联系,切入工件。

•前刀面:推挤切削层使之变形或破坏,分离成屑片,沿前刀面流出。

•后刀面:压挤切削层以下工件材料,该部材料伴随有弹性或塑性和塑性变形。

屑片分离的条件:切削厚度大于刃口圆弧半径,即a >ρ。

2.3屑片分离的条件:当a<ρ时不能分离切屑;时a >ρ时可分离切屑3、切削力的力学模型切削阻力来源于两个方面:♦a、切材料抵抗变形或破坏的阻力:取决于材料力学性质、含水率、切削层尺寸和刀具的锐钝程度。

1.4.2 切削力

1.4.2  切削力

二、总切削力的分解
1、切削力Fc
——是指总切削力在主运动方向上的正投影,它消 耗的功率最多,是计算机床动力设备强度和刚度、 刀具强度的基本依据。
2、进给力Ff
——指总切削力在进给运动方向上的正投影,它是 设计和校验走刀机构的主要依据。
3、背向力Fp
——指总切削力在垂直于进给运动方向上的分力, 它作用在工艺系统刚度最薄弱的方向,容易引起振 动和形状误差,是设计和校验工艺系统刚度和精度 的基本数据。
切削液能将切屑、金属粉尘和砂轮上脱落的磨粒等及时地 从工件、切削工具上冲走,以免其堵塞并划伤已加工表面。
4). 防锈作用 切削液能够减轻工件、机床、刀具受周围介质(空气、 水分等)的腐蚀作用。 2、切削液的种类 1). 水溶液 水溶液的主要成分是水及防锈剂、防霉剂等,主要起 冷却作用,常用于粗加工中。 2). 乳化液
是矿物油、乳化剂及添加剂预先配制好的乳化油,使用 时加水稀释而成。 乳化液中含乳化油少的(低浓度3%~5%),冷却清洗 作用好,适用范围于粗车或磨削;含乳化油多的(高浓 度10%~20%),润滑作用较好,适用于精加工。 3). 合成切削液 它是由水、各种表面活性剂和化学添加剂组成,具有 良好的冷却、润滑、清洗和防锈性能,热稳定性好, 使用周期长等特点。 4). 微乳化液 它是介于乳化液和合成液之间的新型切削液,它是微乳化 油经水高倍稀释后形成的微乳状、半透明的液体。它克服 了乳化液易腐蚀、清洗性能差及合成切削液侵蚀机床漆面、 润滑性能差等缺陷,避免了油污污染、发霉变质等弊病, 综合了乳化液和合成液的优点,有润滑、冷却、防锈和清
(2)切削用量;在切削用量三要素中,切削速度对切削温 度的影响最大,其次是进给量,背吃刀量影响最小。 (3)刀具角度;在刀具几何角度中,前角和主偏角对切削 温度的影响较大。适当增大前角,切削层金属变形减小 , 可降低切削温度。减小主偏角,切削时切削刃工作长度增加, 散热条件好,降低了切削温度,主偏角为Kr=75°的车刀比 主偏角为Kr=90°的车刀更合适 。 (4)切削液;在切削过程中,合理选用并正确加注切削液 可改善刀具和工件的润滑条件及散热条件,并能带走一部分 热量,可以有效地降低切削温度。 1.4.4 切 削 液

金属切削原理PPT课件

金属切削原理PPT课件
在切削加工中,也有用进给速度 来表示进 给运动的。所谓进给速度是刀刃选定点相对于工 件的进给运动的速度,其单位为mm/s。若进给 运动为直线运动,则进给速度在刀刃上各点是相 同的。
3. 背吃刀量 对外圆车削(图1-1) 和平面刨削(图1-2)而言,背吃刀量等于已 加工表面与待加工表面间的垂直距离;其中外圆 车削的背吃刀量:
总之,任何切削加工方法都必须有一个主运 动,可以有一个或几个进给运动。主运动和进给 运动可以由工件或刀具分别完成,也可以由刀具 单独完成(例如在钻床上钻孔或铰孔)。
二 工件上的加工表面
在切削过程中,通常工件上存在三个表面, 以图1-1的外圆车削和图1-2的平面刨削为 例,它们是:
1.待加工表面 它是工件上即将被切去的
三 切削用量
所谓切削用量是指切削速度,进给量和背吃 刀量三者的总称。它们分别定义如下:
1. 切削速度v 它是切削加工时,刀刃上选
定点相对于工件的主运动的速度.刀刃上各点的 切削速度可能是不同的。
当主运动为旋转运动时,刀具或工件最大直 径处的切削速度由下式确定:
式中 d——完成主运动的刀具或工件的最大直径 (mm);
(一)刀具在正交平面参考系中的标注角度
刀具标注角度的内容包括两个方面:一是确
定刀具上刀刃位置的角度;二是确定前刀面与后 面位置的角度。以外圆车刀为例(图1-9), 确定车刀主切削刃位置的角度有二:
主偏角 它是在基面上,主切切削忍与 基面的夹角。当刀尖在主切削刃上为最低的点时, 为负值;反之,当刀尖在主切削刃上为最高的点 时, 为正值。必须指出,这个规定是根据IS O标注,同过去某些书上关于正负号的规定恰好 相反。
实际上,除了由上述切削平面和基面组成的 参考平面系以外,还应该有一个平面作为标注和 测量刀具前,后刀面角度用的 “测量平面”。通 常根据刃磨和测量的需要与方便,可以选用不同 的平面作为测量平面。在刀刃上同一选定点测量 其角度时,如果测量平面选得不同,刀具角度的 大小也就不同。

切削力ppt课件

切削力ppt课件

(KW s / mm3 )
(3-10)
7
2.5.3 切削力的理论公式
虽然从公式上看,Fc可以计算出来, 但准确性很差。这是由于影响切削力的各 项因素难以正确找到,只好作很多假设。 为了准确计算切削力就必须依靠实验测定 方法,但切削力的理论公式也十分有用, 它能够揭示影响切削力诸因素之间的内在 联系,有助于分析问题。
10
• 测力时,当紧固在传感器刀孔内的车刀受到切削 力作用时,应变片中电阻丝的直径和长度将随弹 性元件的变形而发生变化,因而其阻值将发生微 小变化,受拉伸时阻值增大,受压缩时阻值减小, 其变化量随变形量的大小而变化。为便于测量, 通常采用电桥电路将其转化
• 为电压(或电流)信号,再由应变仪放大后,由 记录仪输出。在传感器元件允许的范围内,输出 电信号与切削力的大小成正比,通过标定可得到 切削力与电信号之间的关系曲线(标定曲线), 进行实际切削时,通过测量得到的电信号便可在 曲线上找到其对应的切削力数值。
式中
Pc Fc v 103 (KW ) Fc —— 主切削力(N); v —— 主运动速度(m/sc
(KW )
式中 η —— 机床传动效率,通常η= 0.75~0.85
(3-9)
单位切削功率
指单位时间切除单位体积 V0 材料所消耗的功率
pc
Pc V0
p 106
11
图 1-44 电阻应变片
12
图 1-43 电阻应变片
13
• (2)车削力经验公式及切削分力计算 • 1)经验公式及建立方法简介 切削力经验公式是在通过切
削实验取得大量数据的基础上,经适当的数据处理后得到 的关于切削力与可变因素(切削条件)之间的定量关系式。 由于建立这种关系的依据是经验数据,故称为经验公式。 目前,在计算一定切削条件下的切削力数值时,多采用经 验公式。 • 建立经验公式时,为便于进行数据处理并保证经验公式的 可靠性,通常多采用单因素实验法或正交实验法,而在处 理数据时采用图解法或线性回归法。 • 下面将单因素实验法建立车削力经验公式的主要过程作一 简要介绍。 • 在影响车削力的因素中,影响最大,也最直接的是切削深 度ap和进给量f。其他因素则主要通过对切屑变形和摩擦 的影响而影响切削力。因此,目前,普遍使用的车削力经 验公式的基本形式均采用各切削分力与ap、f之关系的形 式,对其他因素的影响,再通过修正系数加以考虑。

第4讲 切削力

第4讲 切削力

主偏角对切削力的影响
ac=f sin Kr Kr < 60 时:Kr ac Fz 降低; Kr> 75 时:虽然Kr ac ,但是 Kr 但刀 尖圆弧刃工作长度 ,且占主导作用 Fz增大 Kr Fy Kr Fx 对脆性材料,作用不明显,Kr Fz 降低。
机床和装夹
(一)工件材料方面
工件材料物理力学性能、化学成分、热处理状态和切削
前材料的加工状态都影响切削力的大小。 工件材料强度、硬度愈大、切削力愈大。 工件材料化学成份不同,如合碳量多少,是否含有合金 元素等,切削力不同。 热处理状态不同,硬度不同,切削力也不同(淬火、调 质、正火)。
Pm=Fzv10-3KW
由切削功率Pm可求得机床电机功率PE,即:
式中 m机床传动效率,一般为0.75~0.85。
切削力的计算
1. 测量机床功率计算切削力 2. 切削力试验的测量
3. 经验公式(查手册)
4. FEM分析计算 5. 理论公式(计算与预报)
切削力的计算方法
(1)测量机床功率
利用功率表直测量机床的功率,然后求得切削力的 大小。该方法较粗糙,误差大。
注意,Fz、Fx、Fy之间比例关系随刀具材料、几何参数、工 件材料及刀具磨损状态不同在较大范围内变化。
(3)切削功率
切削功率Pm切削力在切削过程中所作的功率。即
式中 Fz—切削力(N);v—切削速度(m/s);Fx—进给力(N) ;nw—工件转速(r/s); f—进给量(mm/r)。 式中第二项相对第一项很小(<1~2%)可忽略不计,于是,
材料硬化指数不同如不锈钢硬化指数大,切削力大,铜、
铝硬化指数小,铸铁及脆性材料硬化指数小,切削力就 小。

切削力

切削力
第二章 金属切削过程
Wang chenggang
Company Logo
第五节
切削热和切削温度
二、切削温度
切削温度一般指切削区域的 平均温度。 切削温度的高低与被加工材 料、刀具材料、刀具几何角度、 切削用量等因素有关。 最高温度
在前刀面和切屑接触长度的中间 部位,说明摩擦集中在切屑底层; 在已加工表面上,相对较高的温 度仅存在于刀刃附近很小范围内, 说明温度的升降是在极短的时间 内完成的。
Company Logo
三、影响切削力的主要因素
主要因素:工件材料、切削用量、刀具几何参数
1.工件材料
强度、硬度。工件材料的强度、硬度越高,材料的剪切
屈服强度越大,变形抗力也越大,切削力就越大。 塑性或韧性。强度、硬度相近的材料,其塑性或韧性越
大,切屑越不易折断,使切屑与前刀面之间的摩擦增加,
直接受刃口挤压的切屑底层金 属△ac变形较严重,其它部分 只受前刀面挤压,变形较小。
2.切削用量
(1)背吃刀量的影响 切削面积Ac 切削力
背吃刀量 单位切削力Fc 进给量 对比
背吃刀量增加一倍:切削层的 切削面积增加一倍,底层的严 重变形层占整个切削面积的比 例不变,故Fc不变,但Ac增加 一倍,故切削力增加一倍; 第二章 金属切削过程
第二章
金属切削过程
第一节 金属切削刀具基础 第二节 切削变形 第三节 切屑的类型及控制
第四节 切削力
第五节 切削热和切削温度 第六节 刀具磨损
第七节 刀具几何参数和切削用量的选择
第四节
切削力
一、 切削力的来源和分解
1.切削力:刀具切削时受到的阻力,称为切削力。 切削力来源 变形抗力 磨擦阻力

刀具 第4章 切削力

刀具 第4章 切削力

图为单一压电传感器原理图。压力F通过小球1及金 属薄片2传给压电晶体3。两压电晶体间有电极4,由 压力产生的负电荷集中在电极4上,通过有绝缘层的 导体5传出,而正电荷则通过金属片2或测力仪体接 地传出。导体5输出的电荷通过电荷放大器放大后用 记录仪器记录下来,在事先标定的标定曲线图上即 可查出切削力的数值。在测力仪中沿Fc、Ff和Fp三个 方向上都装有传感器,可以分别测出三向分力。
第三节、切削力的指数公式及预报与估算 第三节、
切削力的大小计算有理论公式和实验公式。理论公式通常 供定性分析用,一般使用实验公式计算切削力。 常用的实验公式分为两类:一类是用指数公式计算,另一 类是按单位切削力进行计算。 在金属切削中广泛应用指数公式计算切削力。不同的加工 方式和加工条件下,切削力计算的指数公式可在切削用量手册 中查得。
二.切削力的分解
通常将合力Fr分解 为相互垂直的三个分力: 切削力Fc(FZ)、进给力 Ff (FX)、背向力 Fp (Fy)
切削力Fz(Fc)
(旧称主切削力,用Fz表示)——总切削力在主运动方向的分力。 它切于过渡表面,并垂直于基面Pr,与切削速度vc方向一致, 它消耗机床的主要功率,是计算机床切削功率、选配机床电机、 校核机床主传动机构、设计机床部件及计算刀具强度等必不可 少的依据。
−3 Pm FZ v × 10 −3 pa p fv × 10 Ps = ≈ = = p × 10 −6 Z w 1000va p f 1000va p f
KW /(mm 3 ⋅ s −1 )
二.指数公式的建立 1.图解法
2.最小二乘法 由上述的作图法可知,实验测定各点不完全 在一条直线上,当用直线连接时必然产生误差, 而最小二乘法的指导思想是求一条直线方程:使 实验所测各点到该直线的误差平方和为最小。即 n 必须使: ε = [ y − (b + X X )]2 = 最小

机械制造技术PPT课件第二章金属切削基本原理

机械制造技术PPT课件第二章金属切削基本原理
工艺系统刚性差—大主偏角
合理副偏角值的选择
添加标题
一般较小
添加标题
—5°~10°
添加标题
精加工
添加标题
—小,0°
添加标题
加工高强高硬材料或断续切削
添加标题
—小,4°~6°
添加标题
切断刀、锯片、槽铣刀
添加标题
—小,1°~2°
过渡刃的型式
①直线刃
—粗车、强力车 κrε=κr/2
②圆弧刃
—粗糙度值小
冷却作用 清洗与防锈作用
常用切削液及其选用 =乳化油+水 切削油 = 矿物油、+动植物油 极压切削油 =切削油+硫、氯和磷极压添加剂 难加工材料的精加工
=水+防锈剂、清洗剂、油性添加剂 磨削、粗加工
①水溶液
01
车削、钻削、攻螺纹 滚齿、插齿、车螺纹、一般精加工
②乳化液
02
刀具磨损与刀具耐用度
4
磨屑形态
带状切屑
直线刃、折线刃、圆弧刃、波形刃
刀具合理几何参数选择应考虑的因素
—化学成分、制造方法、热处理状态 性能,表层情况等
①工件材料

—化学成分、性能,刀具结构形式
②刀具材料及结构
—机床、夹具,系统刚性,功率 切削用量和切削液
③加工条件


各参数间的联系 —综合考虑相互作用与影响
刀具角度的选择
大后角→减小摩擦、提高寿命、改善表面质量 强度降低、散热差、磨损加快
后角的选择原则
工艺系统刚性 刚性差—振动 → 小后角 精度要求高 —重磨 → 小后角
切削层厚度hD小 → 大后角 切削层厚度hD大 → 小后角
强度、硬度高 → 小后角 塑性大 → 大后角

金属切削基础ppt课件

金属切削基础ppt课件
21
基面
基面Pr: “通过主切削刃上选定 点垂直于主运动方向的 平面”
22
切削平面
2.切削平面Ps: 3.通过主切削刃上选定 点,与切削刃相切并垂 直于基面的平面
23
主剖面
主剖面Po: 通过主切削刃上选定点,并 同时垂直于基面和切削平面 的平面
24
法平面
法平面Pn: 通过主切削刃上选定点,并垂直 于切削刃的平面。
热塑性差,不宜制造成大截面刀具。
B、钨钼钢(将一部分钨用钼代替所制成 的钢 )典型牌号:W 6 Mo 5 Cr 4 V 2
优点:减小了碳化物数量及分布的不均匀性 。 缺点:高温切削性能和W18相比稍差。
66
高性能高速钢
在通用型高速钢的基础上,通过调整基本 化学成分并添加其他合金元素,使其常温 与高温力学性能得到显著提高
45
刀具的工作角度
•刀杆轴线安装的偏 斜的影响: •改变了主偏角和副 偏角 •(也就是说:实际的 主偏角和标注时的 主偏角不同)
46
刀具的工作角度
进给运动的 影响
进给量改变了 合成运动的方 向
(从而改变了基 面的位置以及 其他面的位置, 影响所有的角 度)
47
刀具的工作角度
刀尖的安装位 置的影响
63
高速钢
概念:
高速钢是一种含有钨、钼、铬、钒等合金元 素较多的工具钢
性质:
①、具有良好的热稳定性 ②、具有较高强度和韧性 ③、具有一定的硬度(63~70HRC)和耐磨性
64
高速钢的分类
普通高速钢 钨系高速钢 钨钼钢
高性能高速钢
65
普通高速钢
A、钨系高速钢(简称 W18) 典型牌号:W18Cr4V 优点:钢磨削性能和综合性能好,通用性强。 缺点:碳化物分布常不均匀,强度与韧性不够强,

第1章切削力1-3

第1章切削力1-3
第 一章 切削原理
第三节 切削力的来源:
• 克服切削层材料和工件表面层材料对弹性变形、塑Leabharlann 切削力性变形的抗力;
• 克服刀具与切屑、刀具与工件表面间摩擦阻力所需 的力。
一、切削力的分解
将切削合力F分解为三个互相垂直的分力Fc 、Ff 、Fp
Fc — 主切削力,与切削速度方向一致
Ff — 进给力,与进给方向平行,车外圆时为轴向力
3. 刃倾角λs的影响 (1)λs 对Fc影响很小
(2)λs对Fp、 Ff影响较大
Fp 随λs增大而减小, Ff 随λs增大而增大
4.负倒棱bγ1的影响
bγ1 与lf (切屑与前刀面接触长
度)之比增大, 切削力随之增大。 当切削钢bγ1/lf ≥5或切削铸铁
bγ1/lf ≥3时,切削力趋于稳定,
Fp — 背向力(切深抗力),与进给方向垂直,又称径 向力
F
F
2 c
Ff F
2
2 p
二、切削力与切削功率的计算
(一)用指数经验公式计算切削力
式中 KFc、 KFf、 KFp为切削条件修正系数,xFc、 yFc、 zFc等为指数,均可在切削用量手册中查到。
(二)用单位面积切削力计算切削力 由于单位切削力为
因而切削力增加但与f 不成正比。指数公式中 f 的指数
小于1。
因此,在切削层面积相同时,增大 f 比增大ap要有利 • v 对F 的影响分为有积屑瘤和无积屑瘤两种情况
1. 在积屑瘤增长阶段
随v ↑→积屑瘤高度↑
变形程度↓,F ↓
2. 在积屑瘤减小阶段 v↑→ 变形程度↑,F ↑ 3. 在无积屑瘤阶段 随v ↑,温度升高,摩擦 系数↓变形程度↓→ F ↓

金属切削原理与刀具(课)课件

金属切削原理与刀具(课)课件
切削和高硬度材料加工。
立方氮化硼
具有极高的硬度,适用于加工 高硬度材料,如淬火钢和硬质
合金。
刀具结构
切削刃
刀柄
刀槽
刀面
刀具上用于切削的锋利 部分,其形状和角度对 切削效果有很大影响。
连接刀具和机床的部分, 要求具有足够的刚性和 稳定性。
为了容纳切屑和增强排 屑效果,在刀具上设置
的凹槽。
刀具上与工件接触的部 分,要求具有较低的摩 擦系数和较高的耐磨性。
切屑的控制
切屑控制是金属切削过程中的重要环节,通过合理选择刀具 几何形状、切削用量和冷却润滑条件,可以有效地控制切屑 的形状、大小和排出方向,避免切屑对刀具和加工表面的损伤。
切削力与切削振 动
切削力
切削过程中,刀具对工件施加压力,使工件产生变形和切屑,这个力称为切削力。 切削力的大小直接影响切削效率和加工质量,是金属切削过程中的重要参数。
进给量定义
工件或刀具在单位时间内 沿进给方向相对于刀具的 移动量。
切削热与切削温度
切削热的产生
切削温度对加工的影响
切削过程中因克服工件与刀具之间的 摩擦以及工件材料的弹性变形和塑性 变形而产生大量的热量。
切削温度过高会导致刀具磨损加剧, 工件表面质量下降,甚至引起刀具和 工件的变形,影响加工精度。
切削温度的影响因素
切削温度主要受切削用量、刀具几何 参数、刀具材料和工件材料等因素的 影响。
02
金属切削刀具
刀具材料
01
02
03
04
硬质合金
具有高硬度、高耐磨性和良好 的高温性能,广泛应用于切削
刀具。
高速钢
具有较好的韧性和热稳定性, 常用于制造复杂刀具和大型刀

刀具切削过程PPT课件

刀具切削过程PPT课件

塑性变形越大,表面变形强化越严重。 (2)、残余应力:在外力消失后,残存在物体内部而总体又保持平衡的 内应力。可使工件表面产生微裂纹,降低零件的疲劳强度,引起工件 变形,影响加工精度的稳定性。
采取措施: (1)增大刀具前角
(2)使用锋利的刀具
(3)采用适宜的切削液
aP增大一倍, Fc加大一 倍;而f增大一倍, Fc增加68%~86%。 增大f,减小aP,可有效减小切削力。
③刀具几何角度:增大前角 ,切削力FZ减小。 增大主偏角 ,Ff增大,Fp减小。
2.切削热
(1)、切削热的来源:切削热是切削 过程中因变形和摩擦而产生的热量, 来源于切削过程的Ⅰ、Ⅱ、Ⅲ三个变 形区,见图1.29所示。
①第Ⅰ变形区内:切屑的变形功。 ②第Ⅱ变形区内:切屑与刀具前刀面之间的摩擦功。 ③第Ⅲ变形区内:工件与刀具后刀面之间的摩擦功。
塑性材料:主要来源于第Ⅰ变形区内切屑的变形功。 脆性材料:主要来源于第Ⅲ变形区内工件与后刀面的摩擦功。
(2)切削热的传散:切削热产生后,经 切屑、刀具、工件和周围介质传散, 如图所示,传热比例取决于工件材料 、切削速度、刀具材料及几何角度、 加工方式以及是否使用切削液等。在 不施加切削液的情况下,一般切削传 散最多,刀具次之,工件再次之,周围介 质最少。 (3)切削热对加工的影响:
②精加工:应避免积屑瘤,以保证加工质量,常采用高速(Vc> 100m/min)或低速(Vc<5/min )
4.表面变形强化(加工硬化)和残余应力
(1)表面变形强化:切削塑性金属时,工件已加工表面的硬度明显提高 而塑性下降的现象(硬度提高1.2~2倍,深度0.02~0.3mm)。
原因:切削塑性金属 时,第Ⅰ、Ⅲ变形区均扩 展到切削层以下,使即将来自 (2)产生条件:①切削塑性金属

切削力

切削力
18
1.1.4 影响切削力的因素
1. 工件材料
•影响较大的因素主要是工件材料的强度、硬 度和塑性。 •材料的强度、硬度越高,则屈服强度越高, 切削力越大。 •在强度、硬度相近的情况下,材料的塑性、 韧性越大,则刀具前面上的平均摩擦系数越 大,切削力也就越大。 •灰铸铁及其他脆性材料,切削力较小。
19
11
课堂问题?
切削力来源及分力特点?
1.3.2 切削力的计算
1. 切削力的理论公式
Fc s h D b D (1 . 4 C ) s a p f (1 . 4 C )
式中 C — 与前角有关的系数。
它反映了材料性能( s )、切屑变形( ξ)、切削用量 (ap、f)、切削层参数(hD、bD)及刀具前角的内在联系 。
工件材料的导热系数越低,通过工件和切屑传导出去
的切削热量越少,这就必然会使通过刀具传导出去的热
量增加。 例如切削航空工业中常用的钛合金时,因为它的导热
系数只有碳素钢的1/3~1/4,切削产生的热量不易传出, 切削温度因而随之增高,刀具就容易磨损。
38
1.4.1 切削热的产生与传导
2.切削热的传出
重点难点

影响切削温度的因素;
学习目标
1. 掌握切削热的产生 2. 掌握切削温度的影响因素; 3. 了解切削温度的测量方法。

33
1.4.1 切削热的产生与传导 1.切削热的产生
金属切削过程的三个变形区就是产生切削热 (cutting heat)的三个热源:
1)切削层金属发生弹性、塑性变形所产生的热 量,是切削热的主要来源; 2)切屑与刀具前刀面之间的摩擦所产生的热量; 3)工件与刀具后刀面之间的摩擦所产生的热量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档