大学物理实验《用拉伸法测金属丝的杨氏弹性模量》
大学物理设计性实验用拉伸法测定金属丝的杨氏弹性模量
教学章节:实验7 用拉伸法测定金属丝的杨氏弹性模量教学内容:1、讲述“用拉伸法测定金属丝的杨氏弹性模量”实验的实验原理2、介绍实验的操作要领、数据处理等3、指导学生进行实验操作、观察实验现象、测量并记录实验数据。
教学学时:3学时教学目的:1、使学生了解“用拉伸法测定金属丝的杨氏弹性模量”的实验原理2、使学生学会用光杠杆法测量长度的微小变化量3、使学生掌握本实验的仪器调节和实验数据的测量4、使学生学会用逐差法处理实验数据教学重点、难点:1、光杠杆放大原理2、实验仪器的调节3、逐差法处理实验数据教学方法、方式:讲解、演示、学生操作教师指导。
教学过程:(引入、授课内容、小结、作业布置等)用拉伸法测定金属丝的杨氏弹性模量一、引入杨氏弹性是描述固体材料抵抗形变的能力的物理量,它与固体材料的几何尺寸无关,与外力大小无关,只决定于金属材料的性质,它的国际单位为:牛/米2(N/m2),它是表征固体材料性质的重要物理量,是选择固体材料的依据之一,是工程技术中常用的参数。
杨氏弹性模量测量的常用方法:1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。
所以它不能很真实地反映出材料内部结构的变化。
②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。
在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。
此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。
本实验学会用拉伸法测定金属丝的杨氏弹性模量。
二、实验原理1、弹性形变:物理在外力作用下都要或多或少地发生形变。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》精编版
用拉伸法测金属丝的杨氏弹性模量一、 实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。
二、 实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、 实验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E L L=∆我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg xL n D x L ∆⋅=∆⇒2 (02n n n -=∆)nx d FLDLnDx dFL L S F E ∆⋅=∆=∆=228241ππ 四、 实验内容 <一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。
<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
拉伸法测金属丝的杨氏弹性模量
拉伸法测金属丝的杨氏弹性模量弹性模量是衡量材料受力后发生形变大小的重要参数之一,弹性模量越大,越不易发生形变。
本实验采用拉伸法测量杨氏弹性模量。
实验中,涉及到较多长度量的测量,根据不同测量对象,选用不同的测量仪器。
本实验要求能通过1.掌握用光杠杆法测量微小长度的原理和方法。
2.用杨氏弹性模量仪,掌握拉伸法测定金属丝的杨氏弹性模量。
3.学会用逐差法处理实验数据。
【实验仪器】杨氏弹性模量仪,钢卷尺,水准仪,螺旋测微器。
【实验原理】一、拉伸法测定金属丝的杨氏弹性模量设一粗细均匀的金属丝长为L ,截面积为S ,上端固定,下端悬挂砝码,金属丝在外力F 的作用下发生形变,伸长L Δ。
根据胡克定律,在弹性限度内,金属丝的胁强F S和产生的胁变LL∆成正比。
即F LES L∆=(9-1) 或FLE S L=∆ (9-2) 式中比例系数E 称为杨氏弹性模量。
在国际单位制中,杨氏弹性模量的单位为牛每平方米,记为2-⋅m N 。
实验证明,杨氏弹性模量与外力F 、物体的长度L 和截面积S 的大小无关,它只决定于材料的性质。
它是表征固体材料性质的一个物理量。
在式(9-2)的右端,L F 、和S 可用一般的仪器和方法测得,唯有L Δ是一个微小变化量,需用光杠杆法测量。
二、光杠杆法测微小长度将一平面镜固定在T 形横架上,在支架的下部安置三个尖脚就构成一个光杠杆,如图9-1所示。
用光杠杆法测微小长度原理图如图9-2所示,假定开始时平面镜M 的法线no O 在水平位置,则标尺H 上的标度线0n 发出的光通过平面镜M 反射后,进入望远镜,在望远镜中观察到0n 的像。
当金属丝受外力而伸长后,光杠杆的主杆尖脚随金属丝下降L Δ,平面镜转过一角度α。
根据光的反射定律,镜面旋转α角,反射线将旋转α2角,这时在望远镜中观察到2n 的像。
从图9—2可见(93)Ltg bα∆=- 20_2(94)n n l tg D Dα==-式中b 为光杠杆主杆尖脚到前面两脚连线的距离;D 为标尺平面到平面镜的距离;l 为从望远镜中观测到的两次标尺读数之差。
用拉伸法测金属丝的杨氏弹性模量
金属杨氏模量的测定杨氏模量是表征固体材料抵抗形变能力的重要物理量,是工程材料重要参数,它反映了材料弹性形变与内应力的关系,它只与材料性质有关,是工程技术中机械构件选材时的重要依据。
本实验采用液压加力拉伸法及利用光杠杆的原理测量金属丝的微小伸长量,从而测定金属材料的杨氏模量。
一、 实验目的(1) 学会测量杨氏弹性模量的一种方法(2) 掌握光杠杆放大法测量微小长度的原理 (3) 学会用逐差法处理数据二、仪器和量具数显液压杨氏模量仪,光杠杆和标尺望远镜,钢卷尺,螺旋测微计。
三、原理1.拉伸法测量钢丝的杨氏模量任何物体在外力作用下都要产生形变,可分为弹性形变和塑性形变。
弹性形变在外力作用撤除后能恢复原状,而塑性形变则不能恢复原状。
发生弹性形变时,物体内部产生的企图恢复物体原状的力叫做内应力。
对固体来讲,弹性形变又可分为4种:伸长或压缩形变、切变、扭变、弯曲形变。
本实验只研究金属丝沿长度方向受外力作用后的伸长形变。
取长为L ,截面积为S 的均匀金属丝,在两端加外力F 相拉后,则作用在金属丝单位面积上的力S F 为正应力,相对伸长LL ∆定义为线应变。
根据胡克定律,物体在弹性限度范围内,应变与应力成正比,其表达式为LLYS F ∆= (1) 式中Y 称为杨氏模量,它与金属丝的材料有关,而与外力F 的大小无关。
由于L ∆是一个微小长度变化,故实验常采用光杠杆法进行测量。
2.光杠杆法测量微小长度变化放大法是一种应用十分广泛的测量技术,有机械放大、光放大、电子放大等。
如螺旋测微计是通过机械放大而提高测量精度的,示波器是通过将电子信号放大后进行观测的。
本实验采用的光杠杆法属于光放大。
光杠杆放大原理被广泛地用于许多高灵敏度仪表中,如光电反射式检流计、冲击电流计等。
图1(b)标尺光杠杆如图1(a )、1(b )所示,在等腰三角形板1的三个角上,各有一个尖头螺钉,底边连线上的两个螺钉B 和C 称为前足尖,顶点上的螺钉A 称为后足尖,A 到前两足尖的连线BC 的垂直距离为b ,如图3(a )所示;2为光杠杆倾角调节架;3为光杠杆反射镜。
用拉伸法测金属丝的杨氏弹性模量
二、测金属丝的杨氏弹性模量
1.轻轻将砝码加到砝码托上,每次增加1kg ,加 至7kg为止。逐次记录每加一个砝码时望远镜中的 标尺读数。加砝码时注意勿使砝码托摆动,并将砝 码缺口交叉放置,以防掉下。
2.再将所加的7kg砝码依次轻轻取下,并ห้องสมุดไป่ตู้次记 录每取下1kg砝码时望远镜中的标尺读数。
3.用钢卷尺测量光杠杆镜面至标尺的距离和金属 丝的长度各三次,分别求出它们的平均值。
5
实验内容
一、杨氏弹性模量仪的调节 1.将水准仪放在平台上,调节杨氏弹性模量仪
双柱支架上的底脚螺丝,使立柱铅直。 2.将光杠杆放在平台上,两前尖脚放在平台的
凹槽中,主杆尖脚放在圆柱夹具的上端面上,但不 可与金属丝相碰。调节平台的上下位置,使光杠杆 三尖脚位于同一水平面上。
3.在砝码托上加1kg砝码,把金属丝拉直。并检 查圆柱夹具是否能在平台孔中自由移动。
生的胁变成正比。
即
F E L SL
(9-1)
或
E FL SL
(9-2)
式中比例系数E称为杨氏弹性模量。在国际单位制中,
杨氏弹性模量的单位为牛每平方米,记为 Nm2 。
3
二、光杠杆法测微小长度 将一平面镜固定在形横架上,在支
架的下部安置三个尖脚就构成一个光杠 杆,如图9-1所示。
用光杠杆法测微小长度原理图如图 9-2所示。
4
杨氏弹性模量仪如图9-3所 示,双柱支架上装有两根立柱 和三只底脚螺丝,调节底脚螺 丝,可以使立柱铅直。立柱的 中部有一个可以沿立柱上下移 动的平台。待测金属丝的上端 夹紧在横梁上的夹子中,下端 夹紧在圆柱夹具中。圆柱夹具 穿过固定平台中间的小孔可以 上下自由移动,下端系有砝码 及砝码托。光杠杆的主尖脚放 在圆柱夹具的上端面,两前尖 脚放在固定平台的凹槽内,望 远镜和标尺是测量微小长度变 化的装置。
拉伸法测金属丝的杨氏弹性模量
实验名称用拉伸法测金属丝的杨氏弹性模量固体材料的长度发生微小变化时,用一般测量长度的工具不易测准,光杠杆镜尺法是一种测量微小长度变化的简便方法。
本实验采用光杠杆放大原理测量金属丝的微小伸长量,在数据处理中运用两种基本方法—逐差法和作图法。
【实验目的】⑴掌握光杠杆镜尺法测量微小长度变化的原理和调节方法。
⑵用拉伸法测量金属丝的杨氏弹性模量。
⑶学习处理数据的一种方法——逐差法。
【实验原理】1. 拉伸法测金属丝的杨氏弹性模量设一各向同性的金属丝长为L,截面积为S,在受到沿长度方向的拉力F的作用时伸长ΔL,根据虎克定律,在弹性限度内,金属丝的胁强F/S(即单位面积所受的力)与伸长应变ΔL/L(单位长度的伸长量)成正比(1)式中比例系数E为杨氏弹性模量,即(2)在国际单位制中,E的单位为牛每平方米,记为N/m2。
实验表明,杨氏弹性模量E与外力F、金属丝的长度L及横截面积S大小无关,只与金属丝的材料性质有关,因此它是表征固体材料性质的物理量。
(2)式中F、L、S容易测得,ΔL是不易测量的长度微小变化量。
例如一长度L=90.00cm、直径d=0.500mm的钢丝,下端悬挂一质量为0.500 kg砝码,已知钢丝的杨氏弹性模量E=2.00×1011N/m2, 根据(2)式理论计算可得钢丝长度方向微小伸长量ΔL=1.12×10-4m。
如此微小伸长量,如何进行非接触式测量,如何提高测量准确度?本实验采用光杠杆法测量。
2. 光杠杆测微小长度将一平面镜M固定在有三个尖脚的小支架上,构成一个光杠杆,如图1所示。
用光杠杆法测微小长度原理如图2所示。
假设开始时平面镜M的法线OB在水平位置,B点对应的标尺H上的刻度为n ,从n0发出的光通过平面镜M反射后在望远镜中形成n0的像,当金属丝受到外0力而伸长后,光杠杆的后尖脚随金属丝下降ΔL,带动平面镜M转一角度到M ˊ,平面镜的法线OB也转同一角度到OBˊ,根据光的反射定律,镜面旋转角,从B发出光的反射线将旋转2角,即到达B′′,由光线的可逆性,从B′′发出的光经平面镜M反射后进入望远镜,因此从望远镜将观察到刻度n1。
拉伸法测金属丝杨氏模量实验报告
拉伸法测金属丝杨氏模量实验报告用拉伸法测金属丝的杨氏模量参考报告用拉伸法测金属丝的杨氏模量参考报告一、实验目的1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;5.学会实验报告的正确书写。
二、实验仪器YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm ,0.1cm)、游标卡尺(0-150mm,0.02mm)、螺旋测微器(0-25mm,0.01mm) 三、验原理在外力作用下,固体所发生的形状变化称为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长?L,则在金属丝的弹性限度内,有:FY?SLL我们把Y称为杨氏弹性模量。
如上图:Ltgx?x(A1A0) LA1?A02D2DFF12d8FLDY 2Lxdx(A1A0)(A1?A0)LL四、实验内容一仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.500-2.000m左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺0刻度?2cm以内,并使得视差不超过半格。
二测量1、下无挂物时标尺的读数A0;2、依次挂上1kg的砝码,七次,计下A1,A2,A3,A4,A5,A6,A7;3、依次取下1kg的砝码,七次,计下A1,A2,A3,A4,A5,A6,A7;4、用米尺测量出金属丝的长度L(两卡口之间的金属丝)、镜面到尺子的距离D;5、用游标卡尺测量出光杠杆x、用螺旋测微器测量出金属丝直径d。
太原理工大学大物实验拉伸法测量金属丝的杨氏模量
2.光杠杆及望远镜尺组的调节
(2)镜外找像 打开激光器电源,使望远镜上方沿镜筒方向射出 的激光束照到光杠杆镜面,并反射到标尺的中部。 (3)镜内找像 先调望远镜目镜,看清叉丝后,再慢慢调节物镜, 直到看清标尺的像。 (4)细调 观察到标尺像后,再仔细地调节目镜和物镜,使 既能看清叉丝又能看清标尺像,且没有视差。
2、静态拉伸法(本实验采用此法),它适 用于有较大形变的固体和常温下的测量, 它的缺点是: ①因为载荷大,加载速度慢,含有驰豫过 程。所以它不能很真实地反映出材料内部 结构的变化。 ②对脆性材料不能用拉伸法测量; ③不能测量材料在不同温度下的杨氏弹性 模量
D = L = b =
102 m 102 m 102 m
计算出金属丝的杨氏模量及其不确定度,表 示出测量结果。
六、注意事项
1.光杠杆和望远镜尺组一经调好,在实验 中不得再移动,否则测量数据无效,应重新 测量。 2.加减砝码时动作要平稳,勿使砝码托摆动。 否则将会导致光杠杆后足尖发生移动。并在 每次增减砝码后,等金属丝完全不晃动时才 能读数。 3.金属丝不直时,应先加几千克砝码,将 之拉直后再测 。
二、实验仪器
三角底座上装有两根立柱和调整螺丝,欲使立柱铅直,可 调节调整螺丝,并由立柱下端的水平仪来判断。金属丝的 上端夹紧在横梁上的夹头中。立柱的中部有一个可以沿立 柱上下移动的平台,用来承托光杠杆。平台中有一个圆孔, 孔中有一个可以上下滑动的夹头,金属丝的下端夹紧在夹 头中。夹头下面有一个挂钩,可挂砝托,用来承托拉伸金 属丝的砝码。装置平台上的光杠杆及望远镜尺组用来测量 微小长度的变化。
光杠杆的结构:一块直立的平面镜装在两足支架的一端,前平足放在平台上 的横槽内,后尖足B放在夹具C上,当金属丝发生形变时,光杠杆的镜面将 向上或向下倾斜,倾斜的角度由望远镜及尺组测定。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》
三、实验中注意:实验测量中,发现增荷和减荷时读数相关差较大,当荷重按比例增加时,?n不按比例增加,应找出原因,重新测量。这种情况可能发生的原因有:
1、金属丝不直,初始砝码太轻,没有把金属丝完全拉直。
2、杨氏弹性模量仪支柱不垂直,使金属丝下端的夹头不能在金属框内上下自由滑动,摩擦阻力太大。
1
3、加减砝码时动作不够平衡,导致光杠杆足尖发生移动。
1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。所以它不能很真实地反映出材料内部结构的变化。②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
8LD?n??F?KF 2?dbE
8LD
?d2bE由此式作?n?F图线,应得一直线。从图线中计算出直线的斜率K,再由K?
即可计算出E。
3
篇二:大学物理实验用拉伸法测金属丝的杨氏模量
用拉伸法测金属丝的杨氏模量
材料在外力作用下产生形变,其应力与应变的比值叫做弹性模量,它是反映材料抵抗形变能力的物理量,杨氏模量是固体材料的纵向弹性模量,是选择机械构件的依据之一,也是工程技术中研究材料性质的常用参数。测定弹性模量的方法很多,如拉伸法、振动法、弯曲法、光干涉法等,本实验采用拉伸法测定金属丝的杨氏弹性模量,研究拉伸正应力与应变之间的关系。
大学物理实验 用拉伸法测金属丝的杨氏模量
用拉伸法测金属丝的杨氏模量材料在外力作用下产生形变,其应力与应变的比值叫做弹性模量,它是反映材料抵抗形变能力的物理量,杨氏模量是固体材料的纵向弹性模量,是选择机械构件的依据之一,也是工程技术中研究材料性质的常用参数。
测定弹性模量的方法很多,如拉伸法、振动法、弯曲法、光干涉法等,本实验采用拉伸法测定金属丝的杨氏弹性模量,研究拉伸正应力与应变之间的关系。
本实验所涉及的微小长度变化量的测量方法−−光杠杆法,其原理广泛应用在许多测量技术中。
光杠杆装置还被许多高灵敏的测量仪器(如冲击电流计和光电检流计等)所采用。
【实验目的】1. 掌握用拉伸法测金属丝的杨氏模量及进一步熟悉千分尺、望远镜的使用。
2. 学会用光杠杆测微小长度的变化量。
3. 学会用逐差法处理实验数据。
【实验仪器】杨氏模量测定仪、尺读望远镜、千分尺、游标卡尺、钢卷尺、标尺、砝码若干。
【实验原理】物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。
设有一截面为S ,长度为L 0的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了L Δ,其单位面积截面所受到的拉力SF 称为正应力,而单位长度的伸长量L LΔ称为应变。
根据胡克定律,在弹性形变范围内,柱状(或线状)固体正应力与它所受的应变成正比:εσE =其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。
其单位为2/m N ,是表征材料抗应变能力的一个物理量。
柱状体受外力作用时的形变量L ∆,柱状体的长度L ,截面积S ,作用力F ,满足胡克定律:LS FLE ∆=(1)图 11、反射镜2、与钢丝相连的夹套组件I3、中托板4、标尺5、望远镜由于一般L ∆很小,常采用光杠杆放大法进行测量,图1为其原理图。
初始时,镜面M 的法线正好是水平的,假设是理想状态,n 0是反射镜M 的法线。
大学物理实验--拉伸法测金属丝杨氏模量
实验一拉伸法测金属丝杨氏模量一实验目的1.用伸长法测定金属丝的杨氏模量2.掌握光杠测微原理及使用方法3.掌握不同长度测量器具的选择和使用,学习误差分析和误差均匀原理思想。
4.学习使用逐差法和作图法处理数据及最终处理结果的表达。
二实验原理1. 设金属丝的原长为L,横截面积为A,外加力为P,伸长了长度为△L,则单位长度的伸长量为△L/L,叫应变。
单位横截面所受的力为P/A,叫应力。
根据胡克定理,应变和应力有如下关系:P/A=E×△L/L,其中E为杨氏弹性模量(它仅与材料性质)2.在已知外加力P,横截面积为A,金属丝的原长为L,及伸长了长度为△L的情况下,就可以根据一下公式求得氏弹性模量E:E=P×L/(A×△L)3.实验装置的使用原理解析:根据杠杆原理:aa`/bb=Oa/Ob可以测量每次加载后的微小的△L的变量,又由于S1S2之间的夹角为2α所以在使用光扛杠镜后测量出来的△L的变量为:△L=b(S2— S1)/2D=b*△S/2D4.在已知b为短臂长,2D为长臂长,△L为短臂末梢的微小位移,△S=(S2— S1)为光臂末端的位移,及A=πρ 2 /4(ρ为钢丝的直径),则最后的E可为一下公式表达:E=8LDP/(πρ2b△S)三实验内容1仪器的认识和调整。
调节杨氏模量仪器支架成铅垂,调节光杠杆镜和望远镜。
2.实验现象的观察和数据测量。
(1)在测量之前,必须先观察实验基本的现象,思考可能的误差来源。
(2)测量钢丝在不同荷重下的伸长变化。
先放1个1kg砝码,记下读数,然后逐次增加1kg砝码,记下每次的读数,共10次。
再将所加大砝码逐次拿下,记下每次都读数。
(3)根据误差均匀思想(应选择适当的测量仪器,使得各直接测量的误差分量最终结果断误差的影响大致相同),合理选择并正确使用不同测长仪器来测量光杠杆镜至标尺的距离D,钢丝的长度L 和直径ρ以及光杠杆镜后脚尖至O点多垂直距离b,最后求E最大误差限△E(4)测量时注意这些量的实际存在的测量偏差,从而决定测量次数。
用拉伸法测量金属丝的杨氏弹性模量实验报告
用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》
用拉伸法测金属丝的杨氏弹性模量一、令狐采学二、实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。
三、实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)四、实验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长L ,则在金属丝的弹性限度内,有:我们把E称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg xL n D x L ∆⋅=∆⇒2 (02n n n -=∆)五、实验内容<一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4.粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5.细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。
<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9.依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
大学物理实验用拉伸法测金属丝的杨氏弹性模量
大学物理实验用拉伸法测金属丝的杨氏弹性模量Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】用拉伸法测金属丝的杨氏弹性模量一、 实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。
二、 实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm , 、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 三、 实验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg xL n D x L ∆⋅=∆⇒2 (02n n n -=∆) 四、 实验内容 <一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。
<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
用拉伸法测金属丝的杨氏模量报告
用拉伸法测金属丝的杨氏模量报告杨氏模量是用来描述固体材料在受力时的弹性特性的重要参数,可以描述材料在受力时的抗拉能力和变形能力。
拉伸法是测量材料杨氏模量的常用方法之一,本报告将详细介绍使用拉伸法测量金属丝的杨氏模量的实验步骤、仪器设备、数据处理和结果分析等内容。
一、实验目的:本实验的目的是通过拉伸法测量金属丝的杨氏模量,从而了解金属丝的力学性质。
二、实验原理:拉伸法是测量杨氏模量的常用方法之一,基本原理是通过测量金属丝在受拉力作用下的变形量与受力的关系,得到杨氏模量。
三、实验仪器设备:1.金属丝样品(材料:金属丝);2.拉力机;3.游标卡尺等测量工具;4.外力计。
四、实验步骤:1.准备工作:a.将金属丝剪成合适的长度,并用离心机清洗干净;b.按照实验要求,在拉力机上安装好金属丝样品,并调整好拉力机的参数。
2.实验测量:a.测量金属丝样品的初始长度和直径,并记录测量结果;b.在拉力机上施加一个逐渐增大的拉力,记录拉力和相应的伸长量。
3.数据处理:a.根据实验测量结果,计算金属丝的应变(单位长度的伸长量),并绘制应变-应力图;b.根据应变-应力图中线性部分的斜率,计算金属丝的杨氏模量。
五、结果分析:根据实验测量的数据和计算结果,可以得到金属丝的杨氏模量。
根据实验测量的应变-应力图中线性部分的斜率,可以计算出杨氏模量的数值。
六、实验注意事项:1.实验过程中需要注意安全,避免发生意外情况;2.测量金属丝的长度和直径时,要使用合适的测量工具进行准确测量;3.在实验过程中需要仔细记录实验数据,并及时进行数据处理;4.在数据处理过程中需要注意计算的准确性和可靠性。
七、实验总结:通过本次实验,成功使用拉伸法测量了金属丝的杨氏模量。
实验过程中,需要仔细操作测量仪器和记录实验数据,以提高实验的准确性和可靠性。
本次实验的结果可用于研究金属丝的力学性质和应用等方面,对进一步了解材料的性能和特性具有重要意义。
拉伸法测钢丝的杨氏弹性模量
拉伸法测钢丝的杨氏弹性模量篇一:大学物理实验用拉伸法测金属丝的杨氏弹性模量一、实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。
二、实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm , 、游标卡尺(0-150mm,)、螺旋测微器(0-150mm,) 三、实验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长?L,则在金属丝的弹性限度内,有:FE?L我们把E称为杨氏弹性模量。
如上图:?L??tgx?x??Ln(?n?n2?n0) ?2D?n??2??D?FF12?d8FLDE2?Lx?dx??n?nLL四、实验内容仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. n0一般要求调节到零刻度。
测量7. 计下无挂物时刻度尺的读数n0;8. 依次挂上1kg的砝码,七次,计下n1,n2,n3,n4,n5,n6,n7;9. 依次取下1kg的砝码,七次,计下n1,n2,n3,n4,n5,n6,n7;10. 用米尺测量出金属丝的长度L(两卡口之间的金属丝)、镜面到尺子的距离D; 11. 用游标卡尺测量出光杠杆x、用螺旋测微器测量出金属丝直径d。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》(精编文档).doc
【最新整理,下载后即可编辑】用拉伸法测金属丝的杨氏弹性模量一、 实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。
二、 实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、 实验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:F SE L L=∆我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg xL n DxL ∆⋅=∆⇒2 (02n n n -=∆)nx d FLDLnDx dFL L S F E ∆⋅=∆=∆=228241ππ 四、 实验内容 <一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。
<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ;9.依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ; 10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
拉伸法测钢丝的杨氏弹性模量
拉伸法测钢丝的杨氏弹性模量篇一:用拉伸法测金属丝的杨氏弹性模量实验报告示范实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。
二.实验原理长为l,截面积为S的金属丝,在外力F的作用下伸长了?l,称Y?丝直径为d,即截面积S??d2/4,则Y? F/S 为杨氏模量(如图1)。
设钢?l/l 4lF 。
??ld2 伸长量?l 比较小不易测准,因此,利用光杠杆放大原理,装置去测伸长量?l(如图2)。
由几何光学的原理可知,?l? 8FlLbb 。
(n?n0)???n, ?Y?2 2L2L?db?n 图1图2 三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤 1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量 (1) 砝码盘上预加2个砝码。
记录此时望远镜十字叉丝水平线对准标尺的刻度值n0。
(2) 依次增加1个砝码,记录相应的望远镜读数n1。
,n2,?,n7 (3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数n7。
,n6,?,n1,n0 (4) 计算同一负荷下两次标尺读数(ni 和ni )的平均值ni?(ni ?ni )/2。
(5) 用隔项逐差法计算?n。
5. 用钢卷尺单次测量标尺到平面镜距离L和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b。
6.进行数据分析和不确定度评定,报道杨氏模量值。
五.数据记录及处理 1.多次测量钢丝直径 d 表 1 用千分卡测量钢丝直径d(仪器误差取0.004mm)钢丝直径d的: A类不确定度uA(d)? 112 (d?)?(di?)2/n?1) ??i n(n?1)n ?0.278?10?4/(6?1)?0.0024 mm B类不确定度uB(d)? ?? 0.004?0.0023mm 总不确定度uC(d)? 22uA(d)?uB(d)?0.0034 mm 相对不确定度ur(d)? uC(d)0.0034 ??0.48% 0.710测量结果? ?d?(0.710?0.004)mm ?ur(d)?0.48%2.单次测量:用米尺单次测量钢丝长l、平面镜与标尺间距L,用游标卡尺测量光杠杆长b (都取最小刻度作为仪器误差,单次测量把B类不确定度当作总不确定度处理)表2 钢丝长l、平面镜与标尺间距L、测量光杠杆长b单位:mm (计算方法:不确定度=仪器误差/ ) 3.光杠杆法测量钢丝微小伸长量“仪器误差”,即u(?n)?0.02/?0.012mm) 4.计算杨氏模量并进行不确定度评定 8FlL 可得钢丝的杨氏模量的:?d2b?n 8FlL8?4.00?9.8?663.0?10?3?907.5?10?3112.123?10近真值Y?=(N/m2) ?2?32?3?2 ?db?n3.14?[0.710?10]?75.86?10?0.74?10 由表1、表2、表3所得数据代入公式Y? 相对不确定度ur(Y)?ur(l)]2?[ur(L)]2?[2ur(d)]2?[ur(b)]2?[ur(?n)]2 ?0.000872?0.00064 2?(2?0.0048)2?0.000162?0.00162?0.98% 总不确定度uC(Y)?ur(Y)?Y?0.21?10(N/m2) 11 ?Y?(2.12?0.21)?1011N/m2 测量结果? ?ur(Y)?0.98%篇二:拉伸法测钢丝的杨氏弹性模量用拉伸法测金属丝的杨氏弹性模量一、实验目的 1.学会用光杠杆法测量杨氏弹性模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验的正确书写。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》机械基础
用拉伸法测金属丝的杨氏弹性模量一、 实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。 二、 实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)三、 实验原理在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E L L=∆我们把E 称为杨氏弹性模量。如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg xL n D x L ∆⋅=∆⇒2 (02n n n -=∆)nx d FLDLnDx dFL L S F E ∆⋅=∆=∆=228241ππ 四、 实验内容<一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像; 6. 0n 一般要求调节到零刻度。<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。<三>数据处理方法——逐差法1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还是不能达到最好的效果,我们多采用逐差法来处理这些数据。2. 逐差法采用隔项逐差:4)()()()(37261504n n n n n n n n n -+-+-+-=∆3. 注:上式中的n ∆为增重kg 4的金属丝的伸长量。五、 实验数据记录处理金属丝伸长量:cm A A A A A A A A A 82.14)()()()(37261504=-+-+-+-=()cm AaS i in 02.014412=--=∑=cm S n A 05.022=∆+=∆仪金属丝直径:mm d d d d d d d 600.06654321=+++++=()mm d dS i in 002.016612=--=∑=mm S n d 005.022=∆+=∆仪 (注意:i A 为下表中第5列数据)(以上各公式请把自己实际实验数据代入计算,仪∆为仪器误差值,根据实际测量所用仪器查询)2112323222/1004.21082.11060.76)10600.0(14.31020.1501020.6880.9000.488m N A x d FLD E ⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅=-----πE x x d d D D L L A A ⨯⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆=∆2222222112.0410=⨯=0.131110⨯2/m N参考值: 100.2~000.20=E ⨯11102/m N 百分差:%2~%3%10010000.210000.21004.2~10100.210100.21004.2%10011111111111100-=⨯⨯⨯-⨯⨯⨯-⨯=⨯-=∆E E E E六、实验注意事项及误差分析(此部分请同学根据自己实验情况写,勿抄袭!)<一>注意事项:1. 光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可在移动,否则,所测的数据将不标准,实验又要重新开始; 2. 不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任意纸片擦拭镜面; <二> 误差分析:3. 实验测数据前没有事先放上去一个kg 2砝码,将金属丝拉直,作为一个基准点;4. 用游标卡尺在纸上测量x 值和螺旋测微器测量读数时易产生误差;5. 测量金属丝长度时没有找准卡口;6. 米尺使用时常常没有拉直,且应该注意水平测量D,铅垂测量L;7. 在加减砝码是应该注意轻放,避免摇晃。以上数据处理方法、结果表达方式可以参考,但并非实验真实数据,请大家采用自己实验所得数据,切勿抄袭结果!。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》
大学物理实验《用拉伸法测金属丝的杨氏弹性模
量》
哎呀,大学物理实验可真是让人头疼啊!不过,这次实验可是有挑战性的哦!我们要用拉伸法来测金属丝的杨氏弹性模量。
这可不是一般的实验,需要我们用心去做。
我们要准备好实验器材。
我们需要一根金属丝、一个滑轮、一个弹簧秤和一个刻度尺。
别小看这些简单的器材,它们可是测量杨氏弹性模量的法宝哦!
我们要开始实验了。
我们要把金属丝固定在一个位置上,然后用滑轮把它拉长。
这时候,我们要用力地拉紧金属丝,让它尽量伸展。
等到金属丝拉到一定程度后,我们就可以松手了。
这时候,金属丝会自动弹回原来的长度。
这时候,我们就要用弹簧秤来测量金属丝的伸长量了。
具体操作方法是:把弹簧秤挂在滑轮上,然后让滑轮悬挂在金属丝上。
接着,我们要记录下弹簧秤的读数。
等到金属丝弹回原来的位置后,再记录下弹簧秤的读数。
我们可以用这两个读数来计算出金属丝的杨氏弹性模量了。
不过,在实验过程中可不能掉以轻心哦!因为金属丝的弹性会受到很多因素的影响,比如温度、湿度等等。
我们在实验前要做好充分的准备工作,确保实验数据的准确性。
现在让我们来看看这个实验的结果吧!经过一番努力,我们终于得出了金属丝的杨氏弹性模量。
哇塞!没想到这个简单的实验竟然能得出这么重要的结论!这可真是让人惊喜不已啊!
这次大学物理实验让我们深刻地认识到了科学实验的重要性。
只有通过实践才能真正掌握知识,才能更好地理解物理学中的各种概念和原理。
所以呢,大家一定要认真对待每一次实验哦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
用拉伸法测金属丝的杨氏弹性模量
一、
实验目的
1. 学会用光杠杆法测量杨氏弹性模量;
2. 掌握光杠杆法测量微小伸长量的原理;
3. 学会用逐差法处理实验数据;
4. 学会不确定的计算方法,结果的正确表达;
5. 学会实验报告的正确书写。
二、
实验仪器
杨氏弹性模量测量仪 ( 型号见仪器上 )(包括望远镜、测量架、光杠杆、标尺、砝 码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、
实验原理
在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体 能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度 方向施力F 后,物体的伸长
L ,则在金属丝的弹性限度内,有:
L
我们把E 称为杨氏弹性模量。
如上图:
E =
S L
L x n
tg
L = 2x D
n
n = n - n )
4
四、
实验内容 < 一> 仪器调整
1. 杨氏弹性模量测定仪底座调节水平;
2. 平面镜镜面放置与测定仪平面垂直;
3. 将望远镜放置在平面镜正前方 1.5-2.0m 左右位置上;
4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、 准
星对准平面镜中心,并能在望远镜上方看到尺子的像;
5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,
然后继续调节物镜焦距并能看到尺子清晰的像; 6.
n 0 一般要求调节到零刻度。
<二>测量
7. 计下无挂物时刻度尺的读数n 0 ;
8. 依次挂上1kg 的砝码,七次,计下n 1,n 2,n 3,n 4,n 5,n 6,n 7 ; 9. 依次取下1kg 的砝码,七次,计下 n 1',n 2',n 3',n 4',n 5 ,n 6',n 7';
10. 用米尺测量出金属丝的长度 L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
<三>数据处
理方法——逐差法
1. 实验测量时,多次测量的算术平均值最接近于真值。
但是简单的求一下平均还 是
不能达到最好的效果,我们多采用逐差法来处理这些数据。
2. 逐差法采用隔项逐差:
(n 4-n 0)+(n 5-n 1)+(n 6-n 2)+(n 7 -n 3)
五、 实验数据记录处理
4 8 FLD
x
d 2 x
n
2D 3. 注:上式中的
n 为增重4kg 的金属丝的伸长量。
金属丝伸长量:A=(A4-A0)+(A5-A1)+4(A6-A2)+(A7-A3)=1.82cm
(a i -A)2
S n =i =1= 0.02cm
4-1
A=
S n2+仪2= 0.05cm
d + d + d + d + d + d
d =1 2 3 4 5 6
6
d = S n2+2= 0.005mm(注意:A i为下表中第5列数据)
i
m i(kg)加砝码减砝码平均值
a i= A i+4 - A i
不确定度
000.000.010.00 1.84
110.470.490.48 1.82
= 0.05 cm 220.940.980.96 1.80
33 1.38 1.40 1.39 1.82
44 1.83 1.85 1.84
55 2.29 2.31 2.30
A= A A= 1.82 0.05 cm 66 2.77 2.75 2.76
77 3.21 3.21 3.21
直径未
加
载加满载
平均值d = 0.600 mm
d上0.6010.6010.5990.599
d中0.6010.6010.6000.600不确定度:d =
0.005 mm
d下
0.6020.6010.5960.598d=d = 0.600 0.005 mm
其螺旋测微器零点读数:0.000 mm;游标卡尺零点读数0.00mm
他D = 150.200.05 cm
数L = 68.200.05 cm
据x = 76.600.02 mm
结
果表
E=(2.04 0.13) 1011N /m2百分差:-3% ~ 2%达
= 0.600mm
金属丝直径:
6-1
= 0.002mm
i=1
(以上各公式请把自己实际实验数据代入计算,仪
为仪器误差值,根据实际测量所用 仪器
查询)
8FLD
8 4.0009.8068.2010-2 150.2010-2
11 2
E = =
= 2.04
1011N /m 2
d 2x A 3.14(0.60010-3)2 76.6010-
3 1.8210-
2
=0.13
1011 N / m 2
参考值:E = 2.000 ~ 2.100 1011 N /m 2
百分差:
E -E 0
2.041011- 2.1001011 2.041011- 2.0001011
100% = ~
E 2.1001011 2.000 1011
六、实验注意事项及误差分析(此部分请同学根据自己实验情况写,勿抄袭!) <一>注意事
项:
1. 光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可 在移
动,否则,所测的数据将不标准,实验又要重新开始;
2. 不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任 意纸片
擦拭镜面; <二> 误差分析:
3. 实验测数据前没有事先放上去一个 2kg 砝码,将金属丝拉直,作为一个基准点;
4. 用游标卡尺在纸上测量 x 值和螺旋测微器测量读数时易产生误差;
5. 测量金属丝长度时没有找准卡口;
6. 米尺使用时常常没有拉直,且应该注意水平测量D ,铅垂测量 L ;
7. 在加减砝码是应该注意轻放,避免摇晃。
以上数据处理方法、结果表达方式可以参考,但并非实 验真实数据,请大家采用自己实验所得数据,切勿抄袭 结果!
2.041011
100% = -3% ~ 2%。