最新浙江高考模拟考试题数学卷
浙江省杭州市(新版)2024高考数学统编版模拟(培优卷)完整试卷
浙江省杭州市(新版)2024高考数学统编版模拟(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知某圆锥的侧面展开图为半圆,该圆锥的体积为,则该圆锥的表面积为()A.27πB.C.D.16π第(2)题贵州六马盛产“蜂糖李”,其以果大味甜闻名当地.网红“李子哥”以“绿水青山就是金山银山”理念为引导,大力推进绿色发展,现需订购一批苗木,苗木长度与售价如下表.由表可知苗木长度与售价元之间存在线性相关关系,回归方程为.当苗木长度为时,估计价格为()元.102030405060元2610141618A.36.5B.35C.37D.35.5第(3)题已知函数(其中)在区间上恰有4个零点,则的取值范围为()A.B.C.D.第(4)题已知抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,线段的上一点满足,在上的投影为,则的最大值是()A.B.C.1D.2第(5)题若全集,集合或,集合,则()A.B.C.D.第(6)题已知正方体的外接球的球心为,则()A.B.C.D.第(7)题设、、满足,,,则()A.,B.,C.,D.,第(8)题已知中,角A,B,C所对的边分别为a,b,c,,且,,则的面积为()A.3B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,则下列关系中正确的是()A.B.C.D.第(2)题在中,角A,B,C的对边分别为a,b,c,且,,则以下四个命题中正确的是()A.B.面积的取值范围为C.已知M是边BC的中点,则的取值范围为D.当时,的周长为第(3)题已知函数及其导函数的定义域均为,且是奇函数,.若在区间上单调递增,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知平面向量,若,则______________.第(2)题已知集合,集合,则_____.第(3)题某地建立了农业科技图书馆,供农民免费借阅,收集了近5年的借阅数据如下表:年份20192020202120222023年份代码12345年借阅量万册 4.9 5.1 5.5 5.7 5.8根据上表,可得关于的线性回归方程为.则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知向量,,,设函数.(1)求函数的解析式及单调递增区间;(2)设,,别为内角,,的对边,若,,的面积为,求的值.第(2)题平面直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,射线l的极坐标方程为,将射线l绕点逆时针旋转后,得到射线,若射线l,分别与曲线C相交于点A,点B.(1)求曲线C的极坐标方程;(2)求的最小值.第(3)题今年年初,中共中央、国务院发布《关于开展扫黑除恶专项斗争的通知》,在全国范围部署开展扫黑除恶专项斗争.那么这次的“扫黑除恶”专项斗争与2000年、2006年两次在全国范围内持续开展了十多年的“打黑除恶”专项斗争是否相同呢?某高校一个社团在年后开学后随机调查了位该校在读大学生,就“扫黑除恶”与“打黑除恶”是否相同进行了一次调查,得到具体数据如表:不相同相同合计男女合计(1)根据如上的列联表,能否在犯错误的概率不超过的前提下,认为“扫黑除恶”与“打黑除恶”是否相同与性别有关"?(2)计算这位大学生认为“扫黑除恶”与“打黑除恶”不相同的频率,并据此估算该校名在读大学生中认为“扫黑除恶”与“打黑除恶”不相同的人数;(3)为了解该校大学生对“扫黑除恶”与“打黑除恶”不同之处的知道情况,该校学生会组织部选取位男生和位女生逐个进行采访,最后再随机选取次采访记录放到该大学的官方网站上,求最后被选取的次采访对象中至少有一位男生的概率.参考公式:.附表:第(4)题如图所示,四棱锥中,底面,,为的中点,底面四边形满足,,.(1)证明:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.第(5)题杭州2022年亚运会将于2023年9月23日至10月8日在我国杭州举办.为迎接这一体育盛会,浙江某大学组织大学生举办了一次主题为“喜迎杭州亚运,当好东道主”的亚运知识竞赛,并从所有参赛大学生中随机抽取了200人,统计他们的竞赛成绩m(满分100分,已知每名参赛大学生至少得60分),制成了如下所示的频数分布表:成绩/分[60,70)[70,80)[80,90)[90,100]人数60705020(1)规定成绩不低于85分为“优秀”,成绩低于85分为“非优秀”,这200名参赛大学生的成绩的情况统计如下表:分类优秀非优秀总计男生3070100女生2080100判断是否有95%的把握认为竞赛成绩优秀与性别有关;(2)经统计,用于学习亚运知识的时间(单位:时)与成绩(单位:分)之间的关系近似为线性相关关系,对部分参赛大学生用于学习亚运知识时间x与知识竞赛成绩y进行数据收集,如下表:x/时89111215y/分6763808085求变量y关于x的线性回归方程;(3)A市某企业赞助了这次知识竞赛,给予每位参赛大学生一定的奖励,奖励方案有以下两种:方案一:按竞赛成绩m进行分类奖励,当时,奖励100元;当时,奖励200元;当时,奖励300元.方案二:利用抽奖的方式获得奖金,其中竞赛成绩低于样本中位数的只有1次抽奖机会,竞赛成绩不低于样本中位数的则有2次抽奖机会,其中每次抽奖抽中100元现金红包的概率均为,抽中200元现金红包的概率均为,且两次抽奖结果相互独立.若每名参赛大学生只能选择一种奖励方案,试用样本的频率估计总体的概率,从数学期望的角度分析,每名参赛大学生选择哪种奖励方案更有利.附:(其中;0.100.050.0250.0100.0050.0012.7063.841 5.024 6.6357.87910.828线性回归方程中,,;第(2)问中,,,,.。
【高三上数学】浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)
浙江省宁波市2024届高三上学期高考模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知12i,1i z a z b =−=+(,R a b ∈,i 为虚数单位),若12z z ⋅是实数,则( ) A .10ab −= B .10ab += C .0a b −= D .0a b +=【答案】A 【分析】根据复数乘法及复数的虚部为0计算即可.【详解】因为12(i)(1i)=()(1)i z z a b a b ab =−++−⋅+是实数, 所以10ab −=, 故选:A2.设集合R U =,集合()22{|20},{|log 1}M x x x N x y x =−≥==−,则{|2}x x <=( )A .M N ⋃B .()UN MC .U ()M ND .()UMN【答案】B【分析】化简集合,M N ,根据集合的交集、并集、补集求解.【详解】因为()22{|20}(,0][2,),{|log 1}(,1)M x x x N x y x =−≥=−∞+∞==−=−∞,所以(,1)[2,)M N ⋃=−∞+∞,()U(,1)(0,2)(,2){|2}Nx x M −∞==−∞=<,U 1(,0)][2,)(()[,)[]10,,MN −∞+∞=+∞=+∞∞−,因为(,0]M N =−∞,所以()U(0,)M N =+∞,故选:B3.若,a b 是夹角为60︒的两个单位向量,a b λ+与32a b −+垂直,则λ=( ) A .18B .14C .78D .74【答案】B【分析】由题意先分别算出22,,a b a b ⋅的值,然后将a b λ+与32a b −+垂直”等价转换为)()032a b a b λ−⋅=++,从而即可求解.【详解】由题意有22221,1,cos 60a a b b a b a b ︒====⋅=⋅=又因为a b λ+与32a b −+垂直,所以()()()22132323322a ab a a b b b λλλλ+⋅=−+−⋅+=−+⨯−+1202λ−+=,解得14λ=.B.4.已知数列{}n a 为等比数列,且55a =,则( ) A .19a a +的最小值为50 B .19a a +的最大值为50 C .19a a +的最小值为10 D .19a a +的最大值为105.已知函数32221()2log ,()log ,()log 2xxf x xg x xh x x x ⎛⎫=+=−=+ ⎪⎝⎭的零点分别为,,a b c ,则( ) A .a b c >> B .b a c >> C .c a b >>D .b c a >>由图象可知,a c <,所以a 故选:D6.设O 为坐标原点,12,F F 为椭圆22:142x y C +=的焦点,点P 在C 上,OP =,则12cos F PF ∠=( )A .13−B .0C .13D .3122PF PF PO +=,即可得【详解】如下图所示:不妨设12,PF m PF n ==,根据椭圆定义可得由余弦定理可知1cos 2F PF mn ∠又因为122PF PF PO +=,所以()()22122PF PF PO +=,又22122cos 1m n mn F PF ∠+=+,解得2210m n +=;()22216210n m n mn mn =+−=−=,即3mn =; 所以可得21281081cos 263m n F PF mn ∠+−===;7.已知二面角P AB C −−的大小为3π4,球O 与直线AB 相切,且平面PAB 、平面ABC 截球O 的两个截面圆的半径分别为1O 半径的最大可能值为( )AB .C .3 D的最大值即为MNE 外接圆的OMOE O =,同理可知,AB ⊥平面为MNE外接圆的一条弦,半径OE的最大值即为MNE外接圆的直径,即为π=时,4为MNE外接圆的一条弦,的最大值即为MNE 外接圆的直径,即为的半径的最大可能值为108.已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(,)a b 有( ) A .0个 B .1个 C .2个 D .无数个【点睛】关键点点睛:解题的关键是首先得到()()()212232252f f f ⎧−≤≤⎪−≤≤⎨⎪−≤≤⎩,进一步由不等式的性质通过分析即可求解.二、多选题9.已知5250125(12)x a a x a x a x −=++++,则下列说法正确的是( )A .01a =B .380a =−C .123451a a a a a ++++=−D .024121a a a ++=【答案】ABD【分析】根据二项展开式通式以及赋值法即可得到答案. 【详解】对于 A , 取 0x =, 则 01a = ,则A 正确;对B ,根据二项式展开通式得5(12)x −的展开式通项为()55C 12r r rx −−,即()5C 2rr r x ⋅−⋅,其中05,N r r ≤≤∈所以3335C (2)80a =−=−,故B 正确;对C ,取1x =,则0123451a a a a a a +++++=−, 则12345012a a a a a a ++++=−−=−,故C 错误;对D ,取=1x −,则50123453243a a a a a a −+−+−==,将其与0123451a a a a a a +++++=−作和得()0242242a a a ++=, 所以024121a a a ++=,故D 正确; 故选:ABD.10.设O 为坐标原点,直线20x my m +−−=过圆22:860M x y x y +−+=的圆心且交圆于,P Q 两点,则( )A .5PQ =B .12m =C .OPQ △的面积为D .OM PQ ⊥【答案】BCOPQS=)0,0与由直线方程11.函数()sin (0)f x x ωω=>在区间22⎡⎤−⎢⎥⎣⎦,上为单调函数,且图象关于直线2π3x =对称,则( )A .将函数()f x 的图象向右平移2π3个单位长度,所得图象关于y 轴对称 B .函数()f x 在[]π2π,上单调递减 C .若函数()f x 在区间14π(,)9a 上没有最小值,则实数a 的取值范围是2π14π(,)99− D .若函数()f x 在区间14π(,)9a 上有且仅有2个零点,则实数a 的取值范围是4π(,0)3−【答案】AB 【分析】12.已知函数:R R →,对任意满足0x y z ++=的实数,,x y z ,均有()()()3333f x f y f z xyz ++=,则( )A .(0)0f =B .(2023)2024f =C .()f x 是奇函数D .()f x 是周期函数三、填空题13.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点()1,3P ,则()sin πα+= .14.已知圆台的上、下底面半径分别为1和2,体积为14π3,则该圆台的侧面积为 .15.第33届奥运会将于2024年7月26日至8月11日在法国巴黎举行.某田径运动员准备参加100米、200米两项比赛,根据以往赛事分析,该运动员100米比赛未能站上领奖台的概率为12,200米比赛未能站上领奖台的概率为310,两项比赛都未能站上领奖台的概率为110,若该运动员在100米比赛中站上领奖台,则他在200米比赛中也站上领奖台的概率是 . )()()()710A B P A P B P A B =+−=,进而求)()3110A B P A B =−=,再利用条件概率公式求出答案【详解】设在200米比赛中站上领奖台为事件)310=,()12P B =,()110P A B =,)()()()31171021010A B P A P B P A B =+−=+−=)()3110A B P A B =−=, )()()3310152P AB B P B ===. 故答案为:3516.已知抛物线Γ:22y x =与直线:4l y x =−+围成的封闭区域中有矩形ABCD ,点A ,B 在抛物线上,点C ,D 在直线l 上,则矩形对角线BD 长度的最大值是 .【点睛】关键点点睛:本题的关键是合理设参,并通过数形结合求出参数的范围也是很重要的,至于求出目标函数表达式只需仔细计算即可.四、解答题17.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知12cos cA b =+.(1)证明:2A B =; (2)若3sin 5B =,13c =,求ABC 的面积. 的值,再利用三角形的面积公式可求得ABC 的面积sin A B =,, ABCS=18.已知数列{}n a 满足11a =,且对任意正整数m ,n 都有2.m n n m a a a mn +=++(1)求数列{}n a 的通项公式; (2)求数列{(1)}n n a −的前n 项和n S .()(112135212n n n n a a n −+−++−=++++−=,符合上式,所以2n a n =.)()2222221234(1)n n ⎡⎤−++−+++−−+⎣⎦(()()321121n n n n +−+++−=, 为奇数时,若n =,则21n n n n S S n −−=+−=时,满足1S 19.如图,已知正方体1111ABCD A B C D −的棱长为4,点E 满足3DE EA =,点F 是1CC 的中点,点G 满足135DG GD =(1)求证:,,,B E G F 四点共面;(2)求平面EFG 与平面1A EF 夹角的余弦值.,即可得出结论;,证明//EG BF 即可;,AH FH ,因为F 由3DE EA =知DE EA ,由135DG GD =知DG GH =所以DE DGEA GH=,所以/AH , 所以EG //BF ,所以,G F 四点共面;法2:如图,以D 为原点,建立空间直角坐标系⎭因为()4,0,2,3,0,BF EG ⎛=−=− ⎝,所以34EG BF =,所以//EG BF ,,,,B E G F 四点共面;)由(1)知,()()()11,4,0,1,0,4,3,4,2BE A E EF =−−=−−=−, 设平面EFG 的法向量为(),,m x y z =,m BE m BF ⎧⋅=⎪⎨⋅=⎪⎩,即40420x y x z −−=⎧⎨−+=⎩,可取()4,1,8m =−,平面1A EF 的法向量(),,n a b c =,则有1403420n A E a c n EF a b c ⎧⋅=−−=⎪⎨⋅=−+=⎪⎩,可取()8,7,2n =−设平面EFG 与平面1A EF 夹角为993m n m nθ⋅==⨯EFG 与平面 20.已知函数()()2e 4e 2x xf x a a x =+−−(e 为自然对数的底数,e 2.71828=).(1)讨论()f x 的单调性;(2)证明:当1a >时,()7ln 4.f x a a >−− 【答案】(1)答案见解析 (2)证明见解析21.某中学在运动会期间,随机抽取了200名学生参加绳子打结计时的趣味性比赛,并对学生性别与绳子打结速度快慢的相关性进行分析,得到数据如下表:(1)根据以上数据,能否有99%的把握认为学生性别与绳子打结速度快慢有关?(2)现有n ()*N n ∈根绳子,共有2n 个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.(i )当3n =,记随机变量X 为绳子围成的圈的个数,求X 的分布列与数学期望; (ii )求证:这n 根绳子恰好能围成一个圈的概率为()()212!1!.2!n n n n −⋅−附:()()()()22(),.n ad bc K n a b c d a b c d a c b d −==+++++++)(2422212C 2n n ⋅==))21!2!!n n −=本题第二小问第二步的解决关键是利用分步计数原理得到数列的递推式,从而利用数列的累乘法求得结果点(),0()t t a >的直线l 与双曲线C 的右支交于P ,Q 两点,M 为线段PQ 上与端点不重合的任意一点,过点M 且与1l 平行的直线分别交另一条渐近线2l 和C 于点,T N (1)求C 的方程; (2)求MP MQ OT MN的取值范围.试卷第21页,共21页。
2024年浙江省高三数学考前模拟联考试卷附答案解析
2024年浙江省高三数学考前模拟联考试卷本卷满分150分,考试时间120分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}3log 21A x x =+>,(){}20B x x x =-<,则()R A B ð等于()A .∅B .()0,1C .()1,2D .[)2,+∞2.已知复数z 满足()()112i 5i z --=,则复数z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量(),1a m = ,(),1b m =- ,若3a b - 与b垂直,则a r 等于()ABC .3D .64.已知数列{}n a 满足12a =,则“{}n a 为等比数列”是“m n m n a a a +⋅=(m ∀,*n ∈N )”的()A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件5.在对某校高三学生体质健康状况某个项目的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生80人,女生120人,其方差分别为15,10,由此估计样本的方差不可..能.为()A .11B .13C .15D .176.若()()πsin cos sin 4αβαβαβ⎛⎫-+-=- ⎪⎝⎭,则()A .()tan 1αβ-=-B .()tan 1αβ-=C .()tan 1αβ+=-D .()tan 1αβ+=7.如图,假定两点P ,Q 以相同的初速度运动.点Q 沿直线CD 做匀速运动,CQ x =;点P 沿线段AB (长度为710单位)运动,它在任何一点的速度值等于它尚未经过的距离()PB y =.令P 与Q 同时分别从A ,C 出发,定义x 为y 的纳皮尔对数,用现代数学符号表示x 与y 的对应关系就是()7107110 2.71828xy e e ⎛⎫== ⎪⎝⎭L ,当点P 从线段AB 靠近A 的三等分点移动到中点时,经过的时间为().A .ln 2B .ln 3C .3ln2D .4ln38.设双曲线C :22221x y a b-=(0a >,0b >)的左焦点为F ,过坐标原点的直线与C 交于A ,B 两点,AB =,120AFB ∠=︒,则C 的离心率为()ABC D 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()11sin cos f x x x=+,则()A .()f x 的最小正周期为πT =B .()f x 的图象关于()π,0对称C .()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减D .当π0,2x ⎛⎫∈ ⎪⎝⎭时,()f x ≥10.已知A ,B ,C 是一个随机试验中的三个事件,且()01P A <<,()01P B <<,下列说法正确的是()A .若A 与B 互斥,则A 与B 不相互独立B .若A 与B 相互独立,则A 与B 不互斥C .若()()()P A B P B A P AB ⋅=,且()0P AB ≠,则A 与B 相互独立D .若()()()()P ABC P A P B P C =⋅⋅,则A ,B ,C 两两独立11.已知正方体1111ABCD A B C D -的棱长为1,点P 满足1AP AD AA λμ=+,其中R λ∈,μ∈R ,则()A .当λμ=时,则1C P PD +B .过点P 在平面11ADD A 内一定可以作无数条直线与CP 垂直C .若1C P 与AD 所成的角为π4,则点P 的轨迹为双曲线D .当1λ=,[]0,1μ∈时,正方体经过点A 、P 、1C 的截面面积的取值范围为62⎣三、填空题:本题共3小题,每小题5分,共15分.12.若2nx⎛⎝展开式的二项式系数之和为128,则展开式中x 的系数为.13.已知圆1C :222x y +=和圆2C :()()223416x y -+-=,过圆2C 上一动点P 作圆2C 的切线,交圆1C 于A ,B 两点,当AOB (点O 为坐标原点)面积最大时,满足条件的切线方程为.(写出一条即可)14.已知函数()()2e ln xf x x x =-+,()g x ax b =+,对任意(],1a ∈-∞,存在()0,1x ∈使得不等式()()f x g x ≥成立,则满足条件的b 的最大整数为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在直角坐标平面内有线段12A A ,已知点3A 是线段12A A 上靠近2A 的三等分点,点4A 是线段23A A 上靠近3A 的三等分点,……,点1n A +是线段1-n n A A (2n ≥,*n ∈N )上靠近n A 的三等分点,设点n A 的横坐标为n a .(1)求证:数列{}1n n a a +-为等比数列;(2)若11a =,25a =,求{}n a 的通项公式.16.在四棱锥P ABCD -中,AB AD ⊥,//AB DC ,122AD DC AB ===,=PC E 、F 分别为直线DC ,DP 上的动点.(1)若异面直线AD 与PC 所成的角为45︒,判断PB 与AD 是否具有垂直关系并说明理由;(2)若PB PA ==//EF PC ,求直线AC 与平面BEF 所成角的最大值.17.将除颜色外完全相同的红球2个、白球3个放入一盲盒(一种具有随机属性的玩具盒子),现从中不放回...取球.(1)若每次取一个球,求:(ⅰ)前两次均取到红球的概率;(ⅱ)第2次取到红球的概率;(2)若从中取出两个球,已知其中一个球为红球,求:(ⅰ)另一个也为红球的概率;(ⅱ)若你现在可以选择从剩下的球中随机取一个球来替换另一个球,如果从提高取到红球的可能性出发,你是选择换还是不换?试说明理由.18.在平面直角坐标系xOy 中,已知点()1,0A ,()1F ,)2F ,P 为动点,满足122PF PF -=.(1)求动点P 的轨迹C 的方程;(2)已知过点()3,1T -的直线l 与曲线C 交于两点M ,N ,连接AM ,AN .(ⅰ)记直线AM ,AN 的斜率分别为1k ,2k ,求证:12122k k k k ++为定值;(ⅱ)直线AM ,AN 与直线12y x =-分别交于B ,C 两点,求BC 的最小值.19.莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出,数学家梅滕斯首先使用()n μ作为莫比乌斯函数的记号,其在数论中有着广泛应用.所有大于1的正整数n 都可以被唯一表示为有限个质数的乘积形式:1212k r r rk n p p p =⋅⋅⋅(k 为n 的质因数个数,i p 为质数,1i r ≥,1,2,,i k =⋅⋅⋅),例如:260235=⨯⨯,对应3k =,12p =,23p =,35p =,12r =,21r =,31r =.现对任意*n ∈N ,定义莫比乌斯函数()()121,11,10, 1kk in n r r r r μ=⎧⎪=-==⋅⋅⋅==⎨⎪>⎩存在.(1)求()68μ,()985μ;(2)已知1n >,记1212k r r rk n p p p =⋅⋅⋅(k 为n 的质因数个数,i p 为质数,1i r ≥,1,2,,i k =⋅⋅⋅)的所有因数从小到大依次为1a ,2a ,…,m a .(ⅰ)证明:()()()122km a a a μμμ++⋅⋅⋅+=;(ⅱ)求()()()1212m ma a a a a a μμμ++⋅⋅⋅+的值(用i P (1,2,,i k =⋅⋅⋅)表示).1.D【分析】首先解对数不等式求出集合A ,解一元二次不等式求出集合B ,再根据补集、交集的定义计算可得.【详解】由()3log 21x +>,即()33log 2log 3x +>,即23x +>,解得1x >,所以(){}{}3log 211A x x x x =+>=>,由()20x x -<,解得02x <<,所以(){}{}2002B x x x x x =-<=<<,所以(][)R ,02,B =-∞⋃+∞ð,则()[)R 2,A B =+∞ ð.故选:D 2.C【分析】由复数的除法运算可得1i z =-+,再由共轭复数可知问题的结果.【详解】由()()112i 5i z --=得:()()()5i 12i 5i 5i 1012i 12i 12i 12i 5z +--====-+--+,即1i z =-+,所以1i z =--,故复数z 在复平面内对应的点()1,1--位于第三象限.故选:C.3.B【分析】根据3a b - 与b垂直,可得()30a b b -⋅= ,即可求出m ,再根据模的坐标公式即可得解.【详解】()32,4a b m -= ,因为3a b - 与b垂直,所以()23240a b b m -⋅=-= ,解得22m =,所以a ==r .故选:B.4.B【分析】根据等比数列的定义、通项公式及充分条件、必要条件的定义判断即可.【详解】若{}n a 为等比数列,则12n n a q -=,所以112224m n m m n n a q q q a --+-=⋅=⨯,12m n m n a q +-+=,当2q ¹时m n m n a a a +⋅≠,故充分性不成立;若m n m n a a a +⋅=(m ∀,*n ∈N ),不妨令1m =,则11n n a a a +⋅=,又12a =,所以12n n a a +=,即12n na a +=,所以{}n a 为公比为2的等比数列,故必要性成立;故“{}n a 为等比数列”是“m n m n a a a +⋅=(m ∀,*n ∈N )”的必要不充分条件.故选:B 5.A【分析】根据题意,设男生体质健康状况的平均数为x ,女生的平均数为y ,总体的平均数为w ,方差为2s ,结合方差的公式,分析选项,即可求解.【详解】设男生体质健康状况的平均数为x ,女生的平均数为y ,总体的平均数为w ,方差为2s ,则8012023801208012055w x y x y =+=+++,22280120[15(][10()]8012080120s x w y w =+-++-++22229346[15()][10()]12(1252552525x y x y x y =+-++-=+-≥,结合选项,可得A 项不符合.故选:A.6.C【分析】利用和差角公式展开,即可得到sin cos cos cos sin sin cos sin αβαβαβαβ+=-,再两边同除cos cos αβ,最后结合两角和的正切公式计算可得.【详解】因为()()πsin cos sin 4αβαβαβ⎛⎫-+-=- ⎪⎝⎭,所以sin cos cos sin cos cos sin sin αβαβαβαβ-++ππsin cos cos sinsin 44ααβ⎫=-⎪⎭,即sin cos cos sin cos cos sin sin 2sin sin 2cos sin αβαβαβαβαβαβ-++=-,即sin cos cos cos sin sin cos sin αβαβαβαβ+=-,两边同除cos cos αβ可得tan 1tan tan tan ααββ+=-,所以()tan tan tan 11tan tan αβαβαβ++==--.故选:C 7.D【分析】易知,它们的初速度相等,故Q 点的速度为710,然后可以根据7710110()xy e=,求出P 在中点、三等分点时的x ,则Q 点移动的距离可求,结合速度、时间可求.【详解】解:由题意,P 点初始速度710即为Q 点的速度.当P 在靠近A 点的三等分点时:77710211010()3xe⨯=,解得:7310ln 2x =,当P 在中点时:77710111010()2xe⨯=,解得:7n 102l x =,所以经过的时间为:7734[10(ln 2ln )]10ln 23-÷=.故选:D .8.B【分析】设AF x =,结合已知条件和双曲线的定义求得BF ,利用余弦定理列方程,解方程求得,a c ,由此求得离心率.【详解】如图,设双曲线C 的右焦点为1F ,连接1AF ,1BF .由双曲线的对称性可得:1AF BF =,1//AF BF ,则四边形1AFBF 是平行四边形,又因为120AFB ∠=︒,则160FAF ∠=︒,设AF x =,由双曲线的定义可得:12BF AF a x ==+,在AFB △中,由余弦定理可得:2222cos AB AF BF AF BF AFB=+-⋅⋅∠所以()()()22212222x a x x a x ⎛⎫=++-+⋅- ⎪⎝⎭,整理可得:2236240x ax a +-=,解得:2x a =或4x a =-(舍去),则12AF BF a ==,14BF AF a ==,在1AFF 中,由余弦定理可得:22211112cos FF AF AF AF AF FAF =+-⋅⋅∠所以()()()()()22212242242c a a a a =+-⋅⋅⋅,整理可得:223c a =,所以==ce a.故选:B.9.BCD【分析】由()()πf x f x +≠,可判定A 不正确;由()()πf x f x +=-,可判定B 正确;设sin cos t x x =+,得到()221tf x t =-,利用导数求得函数()f x 的单调性和最值,可判定C 正确、D 正确.【详解】对于A 中,由()()1111πsin(π)cos(π)sin cos f x f x x x x x+=+=--≠++,所以A 不正确;对于B 中,由()()1111π()sin(π)cos(π)sin cos f x f x x x x x+=+=-+=-++,可得函数()f x 关于()π,0对称,所以B 正确;对于C 中,设sin cos t x x =+,可得21sin cos 2t x x -=,则()()211sin cos 2sin cos sin cos 1x x t f x g t x x x x t +=+===-,当π(,0)2x ∈-时,可得πππ(,444x +∈-,则πsin cos (1,1)4t x x x =+=+∈-,又由()()()()()()222222222212222220111t t tt t g t ttt --⋅-+--===<---',所以函数()g t 在()1,1-上单调递减,又π4t x =+在π(,0)2x ∈-上为单调递增函数,所以由复合函数单调性,可得函数()f x 在π(,0)2x ∈-上为单调递减函数,所以C 正确;对于D 中,当π(0,)2x ∈时,可得ππ3π(,444x +∈,则(π1,4t x ⎛⎫=+∈ ⎪⎝⎭,又由()0g t '<,()g t在(为递减函数,当πππ(,)442x +∈时,即π(0,)4x ∈时,函数π4t x ⎛⎫=+ ⎪⎝⎭单调递增;当ππ3π(,424x +∈时,即ππ(,)42x ∈时,函数π4t x ⎛⎫=+ ⎪⎝⎭单调递减,由复合函数的单调性,可得函数()f x 在π(0,4x ∈单调递减,在ππ(,)42x ∈上单调递增,所以()π()4f x f ≥=,所以D 正确.故选:BCD.10.ABC【分析】由互斥事件和相互独立事件的概念对选项一一判断即可得出答案.【详解】对于A ,若A 与B 互斥,则A 与B 不能同时发生,即()0P AB =,因为A B ⋂表示A 与B 都不发生,则A B ⋂的对立事件为A 与B 至少有一个发生,所以()()1P A B P A B ⋂=-⋂,而()()()()()()P A B P A P B P AB P A P B ⋃=+-=+,所以()()()1P A B P A P B ⋂=--,因为()()()()11P A P B P A P B ⎡⎤⎡⎤⋅=--⎣⎦⎣⎦()()()()1P A P B P A P B =---⋅所以()()()P A B P A P B ⋂≠⋅,由此可知,A 与B 不相互独立,故A 正确;对于B ,若A 与B 相互独立,则()()()P AB P A P B =⋅,因为()01P A <<,()01P B <<,所以()()01P A P B <⋅<,则()0P AB ≠,所以A 与B 不互斥,故B 正确;对于C ,若()()()P A B P B A P AB ⋅=,因为()()()()()()()P AB P AB P A B P B A P AB P B P A ⋅=⋅=,因为()0P AB ≠,则有()()()P AB P A P B =⋅,所以A 与B 相互独立,故C 正确;对于D ,抛掷一枚质地均均的骰子,事件A 表示出现点数为1,3,4,事件B 表示出现点数1,5,6,事件C 表示出现点数1,2,3,5,事件ABC 表示出现点数为1,()16P ABC =,()()()33416666P A P B P C ⋅⋅=⨯⨯=,满足()()()()P ABC P A P B P C =⋅⋅,事件AB 表示出现点数为1,()16P AB =,但()()()13316664P AB P A P B =≠⋅=⨯=则A ,B 不相互独立,故D 错误.故选:ABC.11.ACD【分析】对A ,将平面1AD D 展开到与11D ABC 同一平面,由两点间线段最短得解;对B ,当P 在1D 时,过P 点只能作一条直线与CP 垂直,可判断;对CD ,以点D 为坐标原点建立空间直角坐标系,设出点P 坐标,利用向量的坐标运算即可判断.【详解】对于A ,当λμ=时,()11AP AD AA AD λλ=+= ,所以点P 在线段1AD 上,如图,将三角形1AD D 与矩形11D ABC 沿1CD 展成平面图形如下所示,则线段1DC 即为1C P PD +的最小值,利用余弦定理可知22211111113π2cos24C D C D DD C D DD =+-⋅⋅=+所以1C D =,即1C P PD +,故A正确;对于B ,当P 在1D 时,过点P 在平面11ADD A 内只可以作一条直线与CP 垂直,故B 错误;对于C ,以D 为原点,分别以1,,DA DC DD 为x 轴,y 轴,z 轴建立空间直角坐标系,则1(0,0,0),(0,1,1),(1,0,0),(1,1,0),(,0,)D C A B P x z ,得1(,1,1),(1,0,0)C P x z AD =--=-,11πcos 4C P AD C P AD⋅∴==⋅整理得22(1)1x z --=,为双曲线方程,故C 正确.对于D ,当1λ=时,11AP AD AA DP AA μμ=+⇒=,故点P 在线段1DD 上运动,正方体经过点A 、P 、1C 的截面为平行四边形1A P C H ,以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,则()1,0,0A ,()10,1,1C ,()11,0,1A ,()0,0,P μ,所以()10,1,1PC μ=- ,()11,1,1AC =- ,112PC AC μ⋅=-,1PC =,1A C = ,所以点P 到直线1AC的距离为d =,于是当12μ=时min22d =,1PAC的面积取最小值,此时截面面积为2=;当0μ=或1时max 63d =1PAC3=所以正方体经过点A 、P 、1C 的截面面积的取值范围为2⎣,故D 正确.故选:ACD .【点睛】方法点睛:立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别,所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型.12.280【分析】先由二项式系数和为128,求出n ,再求出72x ⎛⎝展开式的通项,令3712r -=,即可得出答案.【详解】2nx ⎛ ⎝展开式的二项式系数之和为2128n=,解得:7n =,所以72x ⎛⎝展开式的通项为:()()37772177C 2C 21rr r r r r r r T x x---+⎛==⋅- ⎝,令3712r -=,解得:4r =,所以展开式中x 的系数为:()4437C 21358280⋅-=⨯=.故答案为:280.13.=1x -或3544y x =-+或7252424y x =-(写出一条即可)【分析】由圆的弦长公式求出AB =1d =,然后由圆心到直线AB 的距离分别等于半径列方程组,解出即可.【详解】设圆1C 的圆心()10,0C,半径1r 2C 的圆心()23,4C ,半径24r =;设O 到直线AB 的距离为d,则AB =0d <,则12AOB S AB d =⋅=== 所以当1d =时,AOB 的面积最大,当直线AB 的斜率不存在时,=1x -满足题意,当直线AB 的斜率存在时,设AB :y kx m =+,则由题意可得14⎧=⎪⎪⎨⎪=⎪⎩,①化简可得344k m m +-=,即334k m -=或354k m +=,代入①可解得3454k m ⎧=-⎪⎪⎨⎪=⎪⎩或7242524k m ⎧=⎪⎪⎨⎪=-⎪⎩,所以满足条件的切线方程为=1x -或3544y x =-+或7252424y x =-,故答案为:=1x -或3544y x =-+或7252424y x =-.(写出一条即可)14.4-【分析】依题意存在()0,1x ∈使得()2e ln x x x x b -+≥+,参变分离可得()2e ln xx x x b -+-≥,令()()2e ln x F x x x x =-+-,()0,1x ∈,利用导数说明函数的单调性,求出()max F x ,则()max b F x ≤,即可求出b 的最大整数.【详解】依题意对任意(],1a ∈-∞,且0x >有()g x ax b x b =+≤+,因为存在()0,1x ∈使得不等式()()f x g x ≥成立,所以存在()0,1x ∈使得()2e ln x x x x b -+≥+,即()2e ln xx x x b -+-≥,令()()2e ln xF x x x x =-+-,()0,1x ∈,则()()()111e 11e xx F x x x x x ⎛⎫'=-+-=-- ⎪⎝⎭,令()1e xm x x=-,()0,1x ∈,则()m x 在()0,1上单调递增,且()1e 10m =->,121e 202m ⎛⎫=-< ⎪⎝⎭,所以01,12x ⎛⎫∃∈ ⎪⎝⎭使得()0001e 0x m x x =-=,即001e x x =,00ln x x =-,所以当00x x <<时()0F x '>,当01x x <<时()0F x '<,所以()F x 在()00,x 上单调递增,在()0,1x 上单调递减,所以()()()0000000m 0ax 00212e ln 212xF x x x x x x x x x F x ⎛⎫-=-+-=-=-=+ ⎪⎝⎭,因为01,12x ⎛⎫∈ ⎪⎝⎭,所以()0012,3x x +∈,所以()()()0max 001124,3F x x F x x ⎛⎫=-+∈-⎪⎭=- ⎝,依题意()max b F x ≤,又b 为整数,所以4b ≤-,所以b 的最大值为4-.故答案为:4-【点睛】关键点点睛:本题关键是将问题转化为存在()0,1x ∈使得()2e ln xx x x b -+≥+,即()2e ln x x x x b -+-≥.15.(1)证明见解析(2)2143n n a -⎛⎫=+- ⎪⎝⎭【分析】(1)根据题意得2122n n n n a a a a +++-=-进而证得21113n n n n a a a a +++-=--,即可证得数列{}1n n a a +-是等比数列;(2)根据题意,求得214a a -=,求得21143n n n a a --⎛⎫-=- ⎪⎝⎭,结合累加法,得到2n ≥时,2143n n a -⎛⎫=+- ⎪⎝⎭,进而求得数列的通项公式.【详解】(1)解:由题意得2122n nn n a a a a +++-=-所以2132n n n a a a ++=+,可得21133n n n n a a a a +++-=-,又由210a a -≠,所以21113n n n n a a a a +++-=--所以数列{}1n n a a +-是首项为21a a -,公比为13-的等比数列.(2)解:因为11a =,25a =,所以214a a -=,因为数列{}1n n a a +-是公比为13-的等比数列,所以2n ≥时,21143n n n a a --⎛⎫-=- ⎪⎝⎭.由累加法可得2n ≥时,21114133n n a a -⎡⎤⎛⎫⎛⎫-=+-+⋅⋅⋅+-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦111113433·1313n n --⎛⎫-- ⎪⎛⎫⎝⎭==-- ⎪⎝⎭+,即当2n ≥时,2143n n a -⎛⎫=+- ⎪⎝⎭,经检验,11a =满足上式,所以数列{}n a 的通项公式2143n n a -⎛⎫=+- ⎪⎝⎭.16.(1)答案见解析,理由见解析(2)60︒【分析】(1)取AB 的中点G ,连接CG ,PG ,即可说明//CG AD ,则PCG ∠(或其补角)为异面直线AD 与PC 所成的角,分45PCG ∠=︒和135PCG ∠=︒两种情况讨论,利用线面垂直的判定定理证明即可;(2)以G 为坐标原点建立空间直角坐标系,设(),2,0E t ,求出平面BEF 的法向量,利用空间向量法求出线面角的正弦值,即可求出线面角的最大值.【详解】(1)取AB 的中点G ,连接CG ,PG,因为//AB DC ,122AD DC AB ===,所以AG DC =且//AG DC ,所以四边形AGCD 为平行四边形,所以//CG AD ,所以PCG ∠(或其补角)为异面直线AD 与PC 所成的角,①当45PCG ∠=︒时,在PCG中,=PC 2CG =,由余弦定理可知2PG ==,所以222CG PG PC +=,所以CG PG ⊥,所以AD PG ⊥,又AD AB ⊥,AB PG G = ,AB ,PG ⊂平面PAB ,所以AD ⊥平面PAB ,又PB ⊂平面PAB ,所以AD PB ⊥.②当135PCG ∠=︒,假设AD PB ⊥,则由①有AD ⊥平面PAB ,因为PG ⊂平面PAB ,所以AD PG ⊥,CG PG ⊥,这与135PCG ∠=︒相矛盾,故此时AD 与PB 不垂直.综上所述,当45PCG ∠=︒时,AD PB ⊥;当135PCG ∠=︒时,AD 与PB 不垂直.(2)由PB PA ==G 是AB 中点,可得PG AB ⊥,从而由122GB AB ==可得2PG =,又2,GC AD PC ===所以2228GC GP PC +==,即PG GC ⊥,因为AD AB ⊥,由(1)有//GC AD ,所以GB GC ⊥,所以,,GB GC GP 两两互相垂直,故可以G 为坐标原点,GB ,GC ,GP 分别为x 轴,y 轴,z 轴建立空间直角坐标系.故()2,0,0A -,()2,0,0B ,()0,2,0C ,()0,0,2P ,()2,2,0AC =.因为//EF PC ,设平面BEF 的法向量为(),,n x y z = ,则有0,0,n BE n PC ⎧⋅=⎪⎨⋅=⎪⎩ 设(),2,0E t ,则()2,2,0BE t =- ,又()0,2,2PC =- ,所以有()220220t x y y z ⎧-+=⎨-=⎩令2x =,则2y z t ==-,故平面BEF 的一个法向量为()2,2,2n t t =--,设直线AC 与平面BEF 所成的角为θ,则sin cos ,AC n AC n AC nθ⋅==⋅===令4t s -=,则sin θ=当0s =时,sin 0θ=;当0s ≠时,sin θ(当且仅当3s =-,1t =时取“=”).又090θ︒≤≤︒,所以060θ︒≤≤︒.综上所述,直线AC 与平面BEF 所成角的最大值为60︒.17.(1)(ⅰ)110;(ⅱ)25(2)(ⅰ)17;(ⅱ)选择交换,理由见解析【分析】(1)不放回取球可以用条件概率公式的变式公式来计算,即:()()()|P AB P A P B A =,第2次取到红球可由两互斥事件计算得到,即()()()21212P A P A A P B A =+;(2)条件概率公式:()()|()P AB P B A P A =,其中有一个球为红球,又等价转化到对立事件来求概率,即可求出结果,对于是否交换,只需要比较两种情形的概率就可以得到判断.【详解】(1)记事件i A (1,2,3,4,5i =)为第i 次取到红球,事件i B (1,2,3,4,5i =)为第i 次取到白球.(ⅰ)前两次均取到红球即为事件12A A ,()()()121212115410P A A P A P A A ==⨯=.(ⅱ)()()()()212121212P A P A A B A P A A P B A =+=+()()()12211132210545P A A P A B P B =+=+⨯=.(2)(ⅰ)事件:其中有一个球为红球的“对立事件”为:两个球均为白球,即为事件12B B ,()()()121213235410P B B P B P B B ==⨯=,所以在一个球为红球的前提下另一个球也为红球的概率()()1212111071710P A A P P B B ===-.(ⅱ)若不换:在取到的一个球为红球的前提下取到的另一个球也为红球的概率记为117P =;若换:换后取到红球的概率记为2161207737P =⨯+⨯=;由于12P P <,所以交换后摸到红球的概率更大,选择交换.18.(1)2214y x -=(2)【分析】(1)由双曲线的定义求解即可;(2)(ⅰ)设直线MN :()11m x ny -+=,2214y x -=变形可得()()2241810x x y -+--=,两式联立,设1y k x =-,可知1k ,2k 是方程()28840k nk m --+=的两根,由根与系数的关系即可得出答案.(ⅱ)设直线AM :()11y k x =-与12y x =-联立求出B x ,同理求出C x ,由此表示出BC ,由基本不等式求解即可.【详解】(1)因为12122PF PF F F -=<,所以根据双曲线的定义可知点P 的轨迹为以1F ,2F 为焦点,实轴长为2的双曲线,由22a =,c =,得1a =,2224b c a =-=,所以C 的方程为2214y x -=.(2)(ⅰ)设直线MN :()11m x ny -+=(220m n +≠)因为直线过定点()3,1-,所以21m n -=.2214y x -=变形可得()224114x y ⎡⎤-+-=⎣⎦,即()()2241810x x y -+--=所以()()()22418110x x m x ny y ⎡⎤-+--+-=⎣⎦整理得()()()22841810m x n x y y +-+--=(*)设1y k x =-,则(*)式除以()21x -得28480m nk k ++-=此时1k ,2k 是方程()28840k nk m --+=的两根,所以1212884k k n k k m +=⎧⎨=--⎩,所以12122168816k k k k m n ++=--+=-,得证.(ⅱ)设直线AM :()11y k x =-,由()1112y k x y x ⎧=-⎪⎨=-⎪⎩,可得1112B kx k =+;设直线AN :()21y k x =-,同理可得2212c k x k =+;2212111122111112222B C k BC x k k k k =-==--+=++++.由1212216k k k k ++=-得121131224k k ⎛⎫⎛⎫++=- ⎪⎪⎝⎭⎝⎭,所以214231k BC ⎛⎫+ ⎪⎝⎭=+⋅,当且仅当2213124k ⎛⎫+= ⎪⎝⎭,即212k -±=时取等号,故BC的最小值为31.【点睛】关键点点睛:设直线AM :()11y k x =-与12y x =-联立求出B x ,同理求出C x ,由此表示出BC ,由基本不等式求解即可.19.(1)()680μ=,()9851μ=(2)(ⅰ)证明见解析;(ⅱ)12111111k p p p ⎛⎫⎛⎫⎛⎫--⋅⋅⋅- ⎪⎪⎪⎝⎭⎝⎭⎝⎭【分析】(1)由268217=⨯,9851975=⨯,根据所给定义计算可得;(2)(ⅰ)依题意只考虑1p ,2p ,…,k p 中的若干个数的乘积构成的因数,从k 个质数中任选i ()1,2,,i k =⋅⋅⋅个数的乘积一共有C ik 种结果,再由组合数公式计算可得;(ⅱ)由(ⅰ)分析可知,因此1212k r r rk n p p p =⋅⋅⋅的所有因数除1之外,只考虑1p ,2p ,…,k p 中的若干个数的乘积构成的因数,即可推导出111k k kx x p -=-,最后利用累乘法计算可得.【详解】(1)因为268217=⨯,因为2的指数21>,所以()680μ=;又9851975=⨯,易知2k =,1197p =,25p =,11r =,21r =,所以()()298511μ=-=;(2)(ⅰ)i a ()1,2,,i m =⋅⋅⋅的因数中如有平方数,根据莫比乌斯函数的定义,()0i a μ=,因此1212k r r rk n p p p =⋅⋅⋅的所有因数除1之外,只考虑1p ,2p ,…,k p 中的若干个数的乘积构成的因数,从k 个质数中任选i ()1,2,,i k =⋅⋅⋅个数的乘积一共有C ik 种结果,所以()()()()121m a a a μμμμ+++⋅⋅⋅+()()()()()()()12122311k k k p p p p p p p p p μμμμμμμ-⎡⎤⎡⎤=+++⋅⋅⋅++++⋅⋅⋅+⎣⎦⎣⎦()12k p p p μ+⋅⋅⋅+⋅⋅⋅01211211C C C C C C C C C 2k k k k kk k k k k k k k k --=+++⋅⋅⋅++=+++⋅⋅⋅++=.(ⅱ)方法一:由(ⅰ)知,因此1212k r r rk n p p p =⋅⋅⋅的所有因数除1之外,只考虑1p ,2p ,…,k p 中的若干个数的乘积构成的因数,所以()()()1212m ma a a a a a μμμ++⋅⋅⋅+()()()()()()()1212231121223111k k k k k k p p p p p p p p p p p p p p p p p p μμμμμμμ--⎡⎤⎡⎤=+++⋅⋅⋅++++⋅⋅⋅+⎢⎥⎢⎥⎣⎦⎣⎦()()()()()222121212122311211111111kk kk k k k p p p p p p p p p p p p p p p p p p μ-⎡⎤⋅⋅⋅----⎡⎤---+⋅⋅⋅+=+++⋅⋅⋅++++++⋅⋅⋅+⎢⎥⎢⎥⋅⋅⋅⋅⋅⋅⎢⎥⎣⎦⎣⎦.令()()()()22212122311211111111kk k k k k x p p p p p p p p p p p p -⎡⎤----⎡⎤---=+++⋅⋅⋅++++⋅⋅⋅++⋅⋅⋅+⎢⎢⎥⋅⋅⋅⎢⎥⎣⎦⎣⎦,则()()()()2221112112232112111111111k k k k k k x p p p p p p p p p p p p ------⎡⎤----⎡⎤---=+++⋅⋅⋅++++++⋅⋅⋅+⎢⎥⎢⎥⋅⋅⋅⎢⎥⎣⎦⎣⎦ (2k ≥,*N k ∈),所以()()()()()()22233311211223211211111111(1)kk k k k k k k k k k k k kx p p p p p p p p p p p p p p p p p p p p ----⎡⎤⎡⎤---------⋅=+++⋅⋅⋅++++⋅⋅⋅+⋅⋅⋅+⎢⎢⎥⋅⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦.所以111k k k k x x x p ---⋅+=,111k k kx x p -=-.因为1111x p =-,所以12112112111111111k k k k k k k x x x x x x x x p p p p ----⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅⋅⋅=--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.方法二:()()()1212m ma a a a a a μμμ++⋅⋅⋅+()()()()()()()1212231121223111k k k k k k p p p p p p p p p p p p p p p p p p μμμμμμμ--⎡⎤⎡⎤=+++⋅⋅⋅++++⋅⋅⋅+⎢⎥⎢⎥⎣⎦⎣⎦()()()()()()2221212121223112111111111kk k k k k k p p p p p p p p p p p p p p p p p p μμ-⎡⎤⋅⋅⋅----⎡⎤---+⋅⋅⋅+=+++⋅⋅⋅++++⋅⋅⋅++⋅⋅⋅+⎢⎥⎢⎥⋅⋅⋅⋅⋅⋅⎢⎥⎣⎦⎣⎦()()()()22212122311211111111kk k k k p p p p p p p p p p p p -⎡⎤----⎡⎤---=+++⋅⋅⋅++++⋅⋅⋅++⋅⋅⋅+⎢⎥⎢⎥⋅⋅⋅⎢⎥⎣⎦⎣⎦.由展开式原理可知,12111111k p p p ⎛⎫⎛⎫⎛⎫--⋅⋅⋅- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的展开式即为上式所求.【点睛】关键点点睛:本题关键是理解题干所给定义,得到1212k r r rk n p p p =⋅⋅⋅的所有因数除1之外,只考虑1p ,2p ,…,k p 中的若干个数的乘积构成的因数.。
浙江省各地2025届高考冲刺数学模拟试题含解析
浙江省各地2025届高考冲刺数学模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =( ) A .16B .17C .18D .192.圆心为()2,1且和x 轴相切的圆的方程是( ) A .()()22211x y -+-= B .()()22211x y +++= C .()()22215x y -+-=D .()()22215x y +++=3.某程序框图如图所示,若输出的120S =,则判断框内为( )A .7?k >B .6?k >C .5?k >D .4?k >4.费马素数是法国大数学家费马命名的,形如()221nn N +∈的素数(如:02213+=)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是( ) A .215B .15C .415D .135.在平面直角坐标系xOy 中,将点()1,2A 绕原点O 逆时针旋转90︒到点B ,设直线OB 与x 轴正半轴所成的最小正角为α,则cos α等于( ) A .25B .5-C 5D .25-6.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式1()3V S S S S h =+下下上上•). A .2寸B .3寸C .4寸D .5寸7.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( ) A .12种B .18种C .24种D .64种8.设{|210}S x x =+>,{|350}T x x =-<,则S T ( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 9.设函数()(1)x g x e e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .,2e⎛⎫+∞⎪ ⎪⎝⎭B .(,)e +∞C .[,)e +∞D .,2e⎡⎫+∞⎪⎢⎪⎣⎭10.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++,,,x y z ∈R ,则x y z ++=( )A .34B .13 C .12D .1411.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2B .32C .1D .012.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
2024年浙江省宁波第二学期高考模拟考试(宁波二模)数学试卷(含答案详解)
宁波市2023~2024学年第二学期高考模拟考试高三数学试题卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z 满足()2i 5z +=,则z =()A B C .2D2.若α为锐角,4sin 5α=,则πsin 3α⎛⎫+= ⎪⎝⎭()A B C D 3.已知平面,,,l αβγαβ⋂=,则“l γ⊥”是“αγ⊥且βγ⊥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知直线:10l x y -+=与圆22:20C x y x m +--=相离,则实数m 的取值范围是()A .1m <B .11m -<<C .1m >D .1m >-5.某校数学建模兴趣小组为研究本地区儿子身高()cm y 与父亲身高()cm x 之间的关系,抽样调查后得出y与x 线性相关,且经验回归方程为ˆ0.8529.5yx =+.调查所得的部分样本数据如下:父亲身高()cm x 164166170173173174180儿子身高()cm y 165168176170172176178则下列说法正确的是()A .儿子身高()cm y 是关于父亲身高()cm x 的函数B .当父亲身高增加1cm 时,儿子身高增加0.85cmC .儿子身高为172cm 时,父亲身高一定为173cmD .父亲身高为170cm 时,儿子身高的均值为174cm6.已知数列{}n a 满足2n a n n λ=-,对任意{}1,2,3n ∈都有1n n a a +>,且对任意{}7,N n n n n ∈≥∈都有1n n a a +<,则实数λ的取值范围是()A .11,148⎡⎤⎢⎣⎦B .11,147⎛⎫ ⎪⎝⎭C .11,157⎛⎫ ⎪⎝⎭D .11,158⎛⎤ ⎥⎝⎦7.在正四棱台1111ABCD A B C D -中,1114,2,===AB A B AA O 与上底面1111D C B A 以及棱,,,AB BC CD DA 均相切,则球O 的表面积为()A .9πB .16πC .25πD .36π8.已知集合(){4,|20240P x y x ax =+-=且}2024xy =,若P 中的点均在直线2024y x =的同一侧,则实数a 的取值范围为()A .()(),20232023,-∞-+∞B .()2023,+∞C .()(),20242024,-∞-+∞ D .()2024,+∞二、选择题:本题共3小题,每小题6分,共18分。
浙江省湖州市(新版)2024高考数学人教版模拟(综合卷)完整试卷
浙江省湖州市(新版)2024高考数学人教版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,若对任意,恒成立,则实数的取值范围是A.B.C.D.第(2)题设集合,,则()A.或B.C.或D.第(3)题已知全集,,则()A.B.C.D.第(4)题不等式成立的一个充分不必要条件是()A.B.C.D.第(5)题已知曲线:与曲线:,直线是曲线和曲线的公切线,设直线与曲线切点为,则点的横坐标满足()A.B.C.D.第(6)题已知,则()A.B.C.D.第(7)题函数的定义域是()A.B.C.D.第(8)题设是正方体的对角面(含边界)内的点,若点到平面、平面、平面的距离相等,则符合条件的点A.仅有一个B.有有限多个C.有无限多个D.不存在二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题一个笼子里关着10只猫,其中有4只黑猫、6只白猫,把笼子打开一个小口,使得每次只能钻出1只猫,猫争先恐后地往外钻,如果10只猫都钻出了笼子,事件表示“第只出笼的猫是黑猫”,,则()A.B.C.D.第(2)题下列说法正确的是()A.两个变量x,y的相关系数为r,则r越小,x与y之间的相关性越弱B.数据1,3,4,5,7,8,10第80百分位数是8C.已知变量x,y的线性回归方程,且,则D.已知随机变量,则第(3)题如图所示的几何体,是将棱长为3的正四面体沿棱的三等分点,作平行于底面的截面所得,且其所有棱长均为1,则()A.直线与直线所成角为B.直线与平面所成角为C.该几何体的体积为D.该几何体中,二面角的余弦值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是_________第(2)题若满足约束条件则的最大值为___________.第(3)题两条直线与的夹角的大小是____四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)当时,求函数的极值;(2)若,讨论函数的单调性.第(2)题已知函数(1)求不等式的解集;(2)若的最小值为,且,求的最小值.第(3)题如图所示,在四棱柱中,底面是等腰梯形,,,,侧棱⊥底面且.(1)指出棱与平面的交点的位置(无需证明);(2)求点到平面的距离.第(4)题如图,在四棱锥中,平面平面ABCD,底面ABCD是直角梯形,,,,.(1)求证:;(2)若平面平面PBC,且中,AD边上的高为3,求AD的长.第(5)题数列满足:或.对任意,都存在,使得,其中且两两不相等.(1)若,写出下列三个数列中所有符合题目条件的数列的序号;①;②;③(2)记.若,证明:;(3)若,求的最小值.。
浙江省绍兴市(新版)2024高考数学统编版模拟(提分卷)完整试卷
浙江省绍兴市(新版)2024高考数学统编版模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题直线l:与曲线C:的交点个数为()A.0B.1C.2D.无法确定第(2)题已知向量,,若,则等于()A.B.C.D.第(3)题二项式的展开式中含项的系数为()A.B.5C.D.第(4)题已知定义域为的函数为偶函数,且在区间上单调递减,则下列选项正确的是()A.B.C.D.第(5)题已知复数z满足,则()A.1B.C.D.1或第(6)题已知平面向量,,若,则()A.B.C.D.第(7)题已知,,点为圆上任意一点,则面积的最大值为()A.5B.C.D.第(8)题设是坐标原点,在区域内随机取一点,记该点为,则直线的倾斜角不大于的概率为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的定义域为,其导函数为,且,,则()A.B.C.在上是减函数D.在上是增函数第(2)题七巧板是古代中国劳动人民的发明,顾名思义,它由七块板组成,其中包括五个等腰直角三角形,一个正方形和一个平行四边形.利用七巧板可以拼出人物、动物等图案一千余种.下列说法正确的是()A.七块板中等腰直角三角形的直角边边长有3个不同的数值,它们的比为B.从这七块板中任取两块板,可拼成正方形的概率为C.从这七块板中任取两块板,面积相等的概率为D.使用一套七巧板中的块,可拼出不同大小的正方形3种第(3)题下列四个命题正确的是()A.若,则的最大值为3B.若复数满足,则C.若,则点的轨迹经过的重心D .在中,为所在平面内一点,且,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题函数的部分图象如图所示,则______.第(2)题当生物死亡后,它机体内碳14会按照确定的规律衰减,大约每经过5730年衰减为原来的一半,照此规律,人们获得了生物体内碳14含量与死亡时间之间的函数关系式,(其中为生物死亡之初体内的碳14含量,为死亡时间(单位:年),通过测定发现某古生物遗体中碳14含量为,则该生物的死亡时间大约是______年前.第(3)题过三点、、的圆的圆心坐标为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆的左、右焦点分别为,是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.(1)求椭圆C的方程;(2)过的直线交椭圆于两点,过作轴的垂线交椭圆与另一点(不与重合).设的外心为,求证为定值.第(2)题已知椭圆的右焦点为,右准线为.过点作与坐标轴都不垂直的直线与椭圆交于,两点,线段的中点为,为坐标原点,且直线与右准线交于点.(1)求椭圆的标准方程;(2)若,求直线的方程;(3)是否存在实数,使得恒成立?若存在,求实数的值;若不存在,请说明理由.第(3)题已知函数.(1)当时,求函数在处的切线方程;(2)若函数在定义域上单调增,求的取值范围;(3)若函数在定义域上不单调,试判定的零点个数,并给出证明过程.第(4)题已知函数,其中.(1)求函数的单调区间;(2)讨论函数零点的个数;(3)若存在两个不同的零点,求证:.第(5)题已知函数.(1)当时,求在处的切线方程;(2)当时,求的极值.。
浙江省杭州市(新版)2024高考数学人教版模拟(自测卷)完整试卷
浙江省杭州市(新版)2024高考数学人教版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知双曲线的左、右焦点分别为,,点M,N在双曲线C上,.若为等边三角形,且,则双曲线C的渐近线方程为()A.B.C.D.第(2)题已知,,,则().A.B.C.D.第(3)题已知函数,,若函数恰有6个零点,则实数的取值范围是()A.B.C.D.第(4)题已知抛物线的顶点是坐标原点O,焦点为F,A是抛物线C上的一点,点A到x轴的距离为.过点A向抛物线C的准线作垂线、垂足为B.若四边形ABOF为等腰梯形,则p的值为()A.1B.C.2D.第(5)题已知四棱锥中,底面ABCD为矩形,平面,,点M,N分别为线段AD,CD上一点,E为BC的中点,当取得最小值时,三棱锥的体积为()A.B.C.D.第(6)题已知集合,,则()A.B.C.D.第(7)题中医是中华传统文化的瑰宝,中医传统补气名方“四君子汤”是由人参、白术、茯苓、炙甘草四味药组成的,补血名方“四物汤”是由熟地黄、白芍、当归、川芎四味药组成的,这两个方子中的八味药又组合而成“八珍汤”,现从“八珍汤”的八味药中任取四味.取到的四味药刚好组成“四君子汤”或“四物汤”的概率是()A.B.C.D.第(8)题如图,已知直线与函数的图象相切于两点,则函数有().A.2个极大值点,1个极小值点B.3个极大值点,2个极小值点C.2个极大值点,无极小值点D.3个极大值点,无极小值点二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题关于函数,下列判断正确的是()A.的极大值点是B.函数有且只有个零点C.存在实数,使得成立D.对任意两个正实数,,且,若,则第(2)题下列说法中正确的是()A.8道四选一的单选题,随机猜结果,猜对答案的题目数B.100件产品中包含5件次品,不放回地随机抽取8件,其中的次品数C.设随机变量,,则D.设M,N为两个事件,已知,,,则第(3)题定义在R上的偶函数满足,当时,,设函数,则()A.函数图象关于直线对称B.函数的周期为6C.D.和的图象所有交点横坐标之和等于8三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在圆内随机地取一点,则该点坐标满足的概率为________.第(2)题在中,角,,所对的边分别为,,,且,,若,则的最大值为___________.第(3)题已知的展开式的各项系数的绝对值之和为1024,____________,展开式中的项的系数为____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某乡镇在实施乡村振兴的进程中,大力推广科学种田,引导广大农户种植优良品种,进一步推动当地农业发展,不断促进农业增产农民增收.为了解某新品种水稻品种的产量情况,现从种植该新品种水稻的不同自然条件的田地中随机抽取400亩,统计其亩产量(单位:吨).并以此为样本绘制了如图所示的频率分布直方图.附:.0.1000.0500.0100.0012.7063.8416.63510.828(1)求这400亩水稻平均亩产量的估计值(同一组中的数据用该组区间的中点值代表,精确到小数点后两位);(2)若这400亩水稻的灌溉水源有河水和井水,现统计了两种水源灌溉的水稻的亩产量,并得到下表:亩产量超过亩产量不超过合计河水灌溉18090270井水灌溉7060130合计250150400试根据小概率值的独立性检验分析,用井水灌溉是否比河水灌溉好?第(2)题二十四节气起源于黄河流域,是古代中国劳动人民长期经验的积累和智慧的结晶.其中“立冬小雪十一月,大雪冬至迎新年”就是描述二十四节气农历11月和12月的节气口诀.某中学为调查本校学生对二十四节气的了解情况,组织测试活动,按照性别分层抽样抽取了150名学生进行答题,其中男生占,记录其性别和是否全部答对的情况,得到如图的等高条形图.(1)若该校有3000人,试估计该校对二十四节气的测试活动全部答对的学生人数;(2)完成下面的列联表,判断能否有的把握认为“是否全部答对”与性别有关?完全答对部分答对合计男女合计附:,其中.0.1500.1000.0500.0100.0052.072 2.7063.841 6.6357.879第(3)题四棱锥中,底面为直角梯形,,,,,,为的中点,为的中点,平面底面.(Ⅰ)证明:平面平面;(Ⅱ)若与底面所成的角为,求二面角的余弦值.第(4)题已知是等差数列的前项和,,数列是公比大于1的等比数列,且,.(1)求数列和的通项公式;(2)设,求使取得最大值时的值.第(5)题已知,设向量,.(1)若,求x的值;(2)若,求的值.。
浙江省杭州市(新版)2024高考数学统编版模拟(综合卷)完整试卷
浙江省杭州市(新版)2024高考数学统编版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题下列方程中表示圆心在直线上,半径为,且过原点的圆的是()A.B.C.D.第(2)题在三棱锥中,平面,垂足为,且,则点一定是的()A.内心B.外心C.重心D.垂心第(3)题已知平面向量,,与垂直,则的值是()A.B.1C.D.2第(4)题已知定义在上的函数的导函数为,对任意满足,则下列结论正确的是A.B.C.D.第(5)题2023年7月28日、第31届世界大学生夏季运动会将在成都东安湖体育公园开幕.公园十二景中的第一景东安阁,阁楼整体采用唐代风格、萃取太阳神鸟形象、蜀锦与宝相花纹(芙蓉花)元素,严谨地按照唐式高阁的建筑形制设计建造,已成为成都市文化新地标,面向世界展现千年巴蜀风韵.某数学兴趣小组在探测东安阁高度的实践活动中,选取与阁底A在同一水平面的B,C两处作为观测点,测得,,,在C处测得阁顶的仰角为45°,则他们测得东安阁的高度为(精确到,参考数据:,)()A.B.C.D.第(6)题两个大人和4个小孩站成一排合影,若两个大人之间至少有1个小孩,则不同的站法有()种.A.240B.360C.420D.480第(7)题设表示不小于实数的最小整数,如.已知函数,若函数在(-1,4]上有2个零点,则k的取值范围是A.B.C.D.第(8)题已知圆锥的顶点为,其三条母线两两垂直,且母线长为.则圆锥的侧面积为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列大小关系正确的是.()A.B.C.D.第(2)题以下四个不等关系,正确的是()A.B.C.D.第(3)题下列命题为真命题的是()A.若样本数据的方差为2,则数据的方差为17B.一组数据8,9,10,11,12的第80百分位数是11.5C.用决定系数比较两个模型的拟合效果时,若越大,则相应模型的拟合效果越好D.以模型去拟合一组数据时,为了求出经验回归方程,设,求得线性回归方程为,则c,k的值分别是和2三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在空间直角坐标系中,点满足:,平面过点,且平面的一个法向量,则点P在平面上所围成的封闭图形的面积等于__________.第(2)题中国古代四大名楼鹳雀楼,位于山西省运城市永济市蒲州镇,因唐代诗人王之涣的诗作《登鹳雀楼》而流芳后世.如图,某同学为测量鹳雀楼的高度,在鹳雀楼的正东方向找到一座建筑物,高约为,在地面上点处(,,三点共线)测得建筑物顶部,鹳雀楼顶部的仰角分别为和,在处测得楼顶部的仰角为,则鹳雀楼的高度约为________.第(3)题已知圆C过点两点,且圆心C在y轴上,经过点且倾斜角为锐角的直线l交圆C于A,B两点,若(C为圆心),则该直线l的斜率为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设椭圆的左顶点为,右顶点为,离心率,且椭圆过点.(1)求椭圆的方程;(2)过点作两条斜率为,的直线分别交椭圆于,(异于,)两点,设,在轴的上方,过点作直线的平行线交椭圆于点,若直线过椭圆的左焦点,求的值.第(2)题已知数列满足,(1)记,证明:数列为等比数列;(2)记,求数列的前项和.第(3)题在锐角中,,于点,.(1)建立适当的坐标系,求动点的轨迹的方程;(2)点是以为直径的圆上的中点,过点的直线与C交于P,Q两点,判断是否存在定点,使得为定值.第(4)题某电子公司新开发一电子产品,该电子产品的一个系统G有2n﹣1个电子元件组成,各个电子元件能正常工作的概率均为p,且每个电子元件能否正常工作相互独立.若系统中有超过一半的电子元件正常工作,则系统G可以正常工作,否则就需维修.(1)当时,若该电子产品由3个系统G组成,每个系统的维修所需费用为500元,设为该电子产品需要维修的系统所需的总费用,求的分布列与数学期望;(2)为提高系统G正常工作的概率,在系统内增加两个功能完全一样的电子元件,每个新元件正常工作的概率均为p,且新增元件后有超过一半的电子元件正常工作,则系统C可以正常工作,问p满足什么条件时,可以提高整个系统G的正常工作概率?第(5)题已知函数.(1)若函数存在极小值点,求的取值范围;(2)证明:.。
浙江省杭州市第二中学2025届高考仿真模拟数学试卷含解析
浙江省杭州市第二中学2025届高考仿真模拟数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.我们熟悉的卡通形象“哆啦A 梦”的长宽比为2:1.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米 B .480米 C .520米D .600米2.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥ D .若αβ⊥,m α⊥,则//m β3.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( ) A .单调递增B .单调递减C .先递减后递增D .先递增后递减4.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .5.已知向量11,,2a b m ⎛⎫== ⎪⎝⎭,若()()a b a b +⊥-,则实数m 的值为( )A .12B .32C .12±D .32±6.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .2597.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年8.双曲线的离心率为,则其渐近线方程为 A .B .C .D .9.若复数()()31z i i =-+,则z =( ) A .22B .25C .10D .2010.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④11.已知α,β表示两个不同的平面,l 为α内的一条直线,则“α∥β是“l ∥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知复数z 满足(1)2z i -=,其中i 为虚数单位,则1z -=( ). A .iB .i -C .1i +D .1i -二、填空题:本题共4小题,每小题5分,共20分。
浙江省宁波市2025届高三上学期高考模拟考试数学试卷(宁波一模)(含答案)
浙江省宁波市2025届高三上学期高考模拟考试数学试卷(宁波一模)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A ={−2,0,1},B ={y|y =x 2,x ∈A},则A ∪B =A. {−2,0,1}B. {0,1,4}C. {0,1}D. {−2,0,1,4}2.复数z 满足z =5i−2,则|z|=A. 1B. 2C.5D. 53.向量a ,b 满足|a |=|b |=1,a ⊥b ,则|a−3b |=A.3B.7C.10D.134.研究小组为了解高三学生自主复习情况,随机调查了1000名学生的每周自主复习时间,按照时长(单位:小时)分成五组:[2,4),[4,6),[6,8),[8,10),[10,12),得到如图所示的频率分布直方图,则样本数据的第60百分位数的估计值是A. 7B. 7.5C. 7.8D. 85.圆台的高为2,体积为14π,两底面圆的半径比为1:2,则母线和轴的夹角的正切值为A.33B.32C. 233D.36.已知椭圆C 的左、右焦点分别为F 1,F 2,过上顶点A 作直线AF 2交椭圆于另一点B.若|AB|=|F 1B|,则椭圆C 的离心率为A. 13B. 12C.33D.227.不等式(x 2−ax−1)(x−b)≥0对任意x >0恒成立,则a 2+b 2的最小值为A. 22−2B. 2C. 22 D. 22+28.设a ∈R ,函数f(x)={sin (2πx−2πa),x <a,|x−a−1|−3a +6,x ≥a 若f(x)在区间(0,+∞)内恰有6个零点,则a 的取值范围是A. (2,72]B. (2,3]C. (2,73]∪(52,72]D. (2,73]∪(52,3]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知数列{a n},{b n}都是正项等比数列,则A. 数列{a n+b n}是等比数列B. 数列{a n·b n}是等比数列C. 数列{a n b n}是等比数列D. 数列{a n b n}是等比数列10.函数f(x)=e x−a ln x,则A. f(x)的图象过定点B. 当a=1时,f(x)在(0,+∞)上单调递增C. 当a=1时,f(x)>2恒成立D. 存在a>0,使得f(x)与x轴相切11.已知曲线C:(x2+y2−1)3−7sin2x+7cos2y=6,下列说法正确的是A. 曲线C过原点OB. 曲线C关于y=x对称C. 曲线C上存在一点P,使得|OP|=1D. 若P(x,y)为曲线C上一点,则|x|+|y|<3三、填空题:本题共3小题,每小题5分,共15分。
浙江省金华市2024-2025学年高三上学期一模考试数学试题含答案
金华十校2024年11月高三模拟考试数学试题卷(答案在最后)本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.考生注意:1.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.2.选择题的答案须用2B 铅笔将答题卷上对应题目的答案涂黑,如要改动,须将原填涂处用橡皮擦干净.3.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题卷上相应区域内,答案写在本试题卷上无效.选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22M x x =-<<,{}1,0,1,2,3N =-,则M N = ()A.{}1,0,1- B.{}1,0,1,2- C.{}1,0- D.{}0,12.在复平面中,若复数z 满足1i 1z =-,则z =()A.2B.13.若,a b ∈R ,则a b =是22ab=的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知点F 为抛物线C :()220y px p =>的焦点,点()3,M m 在抛物线C 上,且4MF =,则抛物线C 的方程为()A.2y x = B.22y x= C.24y x= D.26y x=5.已知πtan 6α⎛⎫+= ⎪⎝⎭,则sin cos αα⋅=()A.14 B.34C.12-D.326.已知函数()32f x x ax bx c =+++的部分图像如图所示,则以下可能成立的是()A.2a =,1b =B.1a =-,2b =C.2a =-,1b = D.2a =,1b =-7.某高中高三(15)班打算下周开展辩论赛活动,现有辩题A 、B 可供选择,每位学生都需根据自己的兴趣选取其中一个作为自己的辩题进行资料准备,已知该班的女生人数多于男生人数,经过统计,选辩题A 的人数多于选辩题B 的人数,则()A.选辩题A 的女生人数多于选辩题B 的男生人数B.选辩题A 的男生人数多于选辩题B 的男生人数C.选辩题A 的女生人数多于选辩题A 的男生人数D.选辩题A 的男生人数多于选辩题B 的女生人数8.已知正方体1111ABCD A B C D -的棱长为42,P 为正方体内部一动点,球O 为正方体内切球,过点P 作直线与球O 交于M ,N 两点,若OMN △的面积最大值为4,则满足条件的P 点形成的几何体体积为()A.32π3642π3C.162π3-D.322π3-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量()3,4a = ,()4,b m =,则()A.5a = B.min 1ab -=C.若a b ∥,则3m = D.若a b ⊥,则3m =10.设函数()sin5sin cos xf x x x=⋅,则()A.()f x 的图像有对称轴B.()f x 是周期函数C.()f x 在区间π0,2⎛⎫⎪⎝⎭上单调递增 D.()f x 的图像关于点π,02⎛⎫⎪⎝⎭中心对称11.从棱长为1个单位长度的正四面体的一顶点A 出发,每次均随机沿一条棱行走1个单位长度,设行走n 次时恰好为第一次回到A 点的概率为()n P n +∈N ,恰好为第二次回到A 点的概率为()n Q n +∈N ,则()A.329P =B.4127Q =C.2n ≥时,1n nP P +为定值 D.数列{}n Q 的最大项为427非选择题部分(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.已知数列{}n a 为等差数列,11a =,238a a +=,则6a =______.13.从1,2,3,4,5,6这六个数中任选三个数,至少有两个数为相邻整数的选法有______种14.已知双曲线C :221x y -=,F 为右焦点,的直线l 与C 交于M ,N 两点,设点()11,M x y ,()22,N x y ,其中120x x >>,过M 且斜率为1-的直线与过N 且斜率为1的直线交于点T ,直线TF 交C于A ,B 两点,且点T 为线段AB 的中点,则点T 的坐标为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)记ABC △内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos c B A -=.(1)求B ;(2)若ABC △为等腰三角形且腰长为2,求ABC △的底边长.16.(本题满分15分)如图,三棱锥A BCD -中,AD ⊥平面BCD ,AD DB DC BC ===,E 为AB 中点,M 为DE 中点,N 为DC 中点.(1)求证:MN ∥平面ABC ;(2)求直线DE 与平面ABC 所成角的正弦值.17.(本题满分15分)已知函数()()21ln 12f x x a x a x =-+-,()0a >.(1)若1a =,求()f x 的单调区间;(2)若()212f x a ≥-,求a 的取值范围.18.(本题满分17分)已知()2,0A 和31,2B ⎛ ⎝⎭为椭圆C :()222210x y a b a b +=>>上两点.(1)求椭圆C 的离心率;(2)过点()1,0-的直线l 与椭圆C 交于D ,E 两点(D ,E 不在x 轴上).(i )若ADE △l 的方程;(ii )直线AD 和AE 分别与y 轴交于M ,N 两点,求证:以MN 为直径的圆被x 轴截得的弦长为定值.19.(本题满分17分)已知正n 边形的每个顶点上有一个数.定义一个变换T ,其将正n 边形每个顶点上的数变换成相邻两个顶点上的数的平均数,比如:记n 个顶点上的n 个数顺时针排列依次为12,,,n a a a ⋅⋅⋅,则()112i i i a a T a -++=,i 为整数,21i n ≤≤-,()212n a a T a +=,()112n n a a T a -+=.设()()()()ni i T a T T T a =⋅⋅⋅(共n 个T ,表示n 次变换)(1)若4n =,i a i =,14i ≤≤,求()21Ta ,()22T a ,()23T a ,()24T a ;(2)对于正n 边形,若()i i T a a =,1i n ≤≤,证明:121n n a a a a -==⋅⋅⋅==;(3)设42n k =+,k *∈N ,{}{}12,,,1,2,,n a a a n ⋅⋅⋅=⋅⋅⋅,证明:存在m *∈N ,使得()()1,2,,mi Ta i n =⋅⋅⋅不全为整数.金华十校2024年11月高三模拟考试数学参考答案与评分标准一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案ADBCBCAD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABABDACD三、填空题:本题共3小题,每小题5分,共15分。
2024浙江省高三下学期五校联考高考模拟考试数学及答案
2024年浙江省高考数学模拟卷命题:浙江省温州中学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足1i 3iz=+−,则z 的共轭复数z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.设集合{}21,M x x k k ==+∈Z ,{}31,N x x k k ==−∈Z ,则M N = ( ) A .{}21,x x k k =+∈Z B .{}31,x x k k =−∈Z C .{}61,x x k k =+∈ZD .{}61,x x k k =−∈Z3.已知不共线的平面向量a ,b 满足()()2a b a b λλ++∥,则正数λ=( )A .1BCD .24.传输信号会受到各种随机干扰,为了在强干扰背景下提取微弱信号,可用同步累积法.设s 是需提取的确定信号的值,每隔一段时间重复发送一次信号,共发送m 次,每次接收端收到的信号()1,2,3,,i i X s i m ε=+= ,其中干扰信号i ε为服从正态分布()20,N σ的随机变量,令累积信号1mi i Y X ==∑,则Y 服从正态分布()2,N ms m σ,定义信噪比为信号的均值与标准差之比的平方,例如1X 的信噪比为2s σ,则累积信号Y 的信噪比是接收一次信号的( )倍AB .mC .32mD .2m5.已知函数()πcos 24f x x=+,则“()ππ8k k θ=+∈Z ”是“()f x θ+为奇函数且()f x θ−为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.在平面直角坐标系xOy 中,直线2y x t =+与圆C :22240x y x y +−+=相交于点A ,B ,若2π3ACB ∠=,则t =( ) A .12−或112− B .-1或-6C .32−或132− D .-2或-77.已知甲、乙、丙、丁、戊5人身高从低到高,互不相同,将他们排成相对身高为“高低高低高”或“低高低高低”的队形,则甲、丁不相邻的不同排法种数为( ) A .12B .14C .16D .188.已知双曲线()22221,0x y a b a b−=>上存在关于原点中心对称的两点A ,B ,以及双曲线上的另一点C ,使得ABC △为正三角形,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .()2,+∞D .+∞二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()1e x f x x =+,则下列结论正确的是( )A .()f x 在区间()2,−+∞上单调递增B .()f x 的最小值为21e−C .方程()2f x =的解有2个D .导函数()f x ′的极值点为-310.南丁格尔是一位英国护士、统计学家及社会改革者,被誉为现代护理学的奠基人.1854年,在克里米亚战争期间,她在接到英国政府的请求后,带领由38名志愿女护士组成的团队前往克里米亚救治伤员,并收集士兵死亡原因数据绘制了如下“玫瑰图”.图中圆圈被划分为12个扇形,按顺时针方向代表一年中的各个月份.每个扇形的面积与该月的死亡人数成比例.扇形中的白色部分代表因疾病或其他原因导致的死亡,灰色部分代表因战争受伤导致的死亡.右侧图像为1854年4月至1855年3月的数据,左侧图像为1855年4月至1856年3月的数据.下列选项正确的为( )A .由于疾病或其他原因而死的士兵远少于战场上因伤死亡的士兵B .1854年4月至1855年3月,冬季(12月至来年2月)死亡人数相较其他季节显著增加C .1855年12月之后,因疾病或其他原因导致的死亡人数总体上相较之前显著下降D .此玫瑰图可以佐证,通过改善军队和医院的卫生状况,可以大幅度降低不必要的死亡11.如图,平面直角坐标系上的一条动直线l 和x ,y 轴的非负半轴交于A ,B 两点,若1OB OA +=恒成立,则l 始终和曲线C 1=相切,关于曲线C 的说法正确的有( )A .曲线C 关于直线y x =和y x =−都对称B .曲线C 上的点到11,22和到直线y x =−的距离相等C .曲线C 上任意一点到原点距离的取值范围是D .曲线C 和坐标轴围成的曲边三角形面积小于π14−三、填空题:本小题共3小题,每小题5分,共15分.12.若62a x x−展开式中的常数项为-160,则实数a =______.13.已知公差为正数的等差数列{}n a 的前n 项和为n S ,{}n b 是等比数列,且()22342S b b =−+,()()612566S b b b b =++,则{}n S 的最小项是第______项.14.已知正三角形ABC 的边长为2,中心为O ,将ABC △绕点O 逆时针旋转角2π03θθ<<,然后沿垂直于平面ABC 的方向向上平移至A B C ′′′△,连接AA ′,AC ′,BA ′,BB ′,CB ′,CC ′,得到八面体ABCA B C ′′′,则该八面体体积的取值范围为______.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC △中,角A ,B ,C 的对边为a ,b ,c ,已知1tan A ,1cos B ,1tan C是等差数列.(1)若a ,b ,c 是等比数列,求tan B ;(2)若π3B =,求()cos A C −.16.(15分)已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离的最大值和最小值分1+1. (1)求该椭圆的方程;(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ′,求P F PF ′+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB △面积的最大值.17.(15分)如图,已知三棱台111ABC A B C −,112AB BC CA AA BB =====,114A B =,点O 为线段11A B 的中点,点D 为线段1OA 的中点.(1)证明:直线AD ∥平面1OCC ;(2)若平面11BCC B ⊥平面11ACC A ,求直线1AA 与平面1BCC B 所成线面角的大小.18.(17分)第二次世界大战期间,了解德军坦克的生产能力对盟军具有非常重要的战略意义.已知德军的每辆坦克上都有一个按生产顺序从1开始的连续编号.假设德军某月生产的坦克总数为N ,随机缴获该月生产的n 辆(n N <)坦克的编号为1X ,2X ,…,n X ,记{}12max ,,,n M X X X = ,即缴获坦克中的最大编号.现考虑用概率统计的方法利用缴获的坦克编号信息估计总数N . 甲同学根据样本均值估计总体均值的思想,用12nX X X X n+++=估计总体的均值,因此()112Ni N N i N X =+≈=∑,得12N X +≈,故可用21Y X =−作为N 的估计.乙同学对此提出异议,认为这种方法可能出现Y M <的无意义结果.例如,当5N =,3n =时,若11X =,22X =,34X =,则4M =,此时124112133Y M ++=⋅−=<. (1)当5N =,3n =时,求条件概率()5P Y M M <=;(2)为了避免甲同学方法的缺点,乙同学提出直接用M 作为N 的估计值.当8N =,4n =时,求随机变量M 的分布列和均值()E M ;(3)丙同学认为估计值的均值应稳定于实际值,但直观上可以发现()E M 与N 存在明确的大小关系,因此乙同学的方法也存在缺陷.请判断()E M 与N 的大小关系,并给出证明.19.(17分)卷积运算在图像处理、人工智能、通信系统等领域有广泛的应用.一般地,对无穷数列{}n a ,{}n b ,定义无穷数列()11nk n k n k c a b n +−=+=∈∑N ,记作{}{}{}*n n n a b c =,称为{}n a 与{}n b 的卷积.卷积运算有如图所示的直观含义,即{}n c 中的项依次为所列数阵从左上角开始各条对角线上元素的和,易知有交换律{}{}{}{}**n n n n a b b a =.(1)若n a n =,2n n b =,{}{}{}*n n n a b c =,求1c ,2c ,3c ,4c ;(2)对i +∈N ,定义{}i n T a 如下:①当1i =时,{}{}i n n T a a =;②当2i ≥时,{}i n T a 为满足通项10,,n n i n id a n i +−< = ≥ 的数列{}n d ,即将{}n a 的每一项向后平移1i −项,前1i −项都取为0.试找到数列(){}int ,使得(){}{}{}innni t a T a ⋅=; (3)若n a n =,{}{}{}*n n n a b c =,证明:当3n ≥时,122n n n n b c c c −−=−+.2024年浙江省高考数学模拟卷参考答案命题:温州中学 审题:金华一中一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 2 3 4 5 6 78 DDBBACBA第8题解析:设点(),A x y ,则可取),C,故22222222331x y y x a b a b=−=−,得2222222233a b b yb ax a +<=+,解得b a >,故离心率e >. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 ABDBCDBCD第11题解析:A .曲线C 不关于直线y x =−对称;B .设C 上一点(),P x y2222210x y x y xy +−−−+=,而()222114122210x y xy x y x y x y xy =⇔++=⇒=−−⇔+−−−+=,成立;C.2221OP x y =+≤=,()222211228x y x y++≥≥=,成立; D .(),P x y 到点()1,1A 的距离()()2222211222211AP x y x y x y xy −+−+−−++≥,故曲线C位于圆()()22111x y −+−=的左下部分四分之一圆弧的下方,故围成面积小于π14−. 三、填空题:本小题共3小题,每小题5分,共15分.第13题解析:6244020264S S SS =+=⋅⇒=,故{}n S 的最小项是第2项. 第14题解析:ABCA B C A ABCC A B C A B BC A C AC V V V V V ′′′′′′′′−−−′′−′=+++211π12222sin 22sin 3636θθ=+⋅⋅⋅+⋅⋅⋅π1sin 6θ =++∈ . 四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)(1)由2b ac =得2sin sin sin B A C =,sin cos cos 2112sin sinsin sin cos tan tan cos BC A B C A B A CC A =⇔+==+, 故22sin 1tan cos sin 2B B B B =⇔=.(2)若π3B =,则1sin sin sin cos 2A CB B ==, 又由()1cos cos cos sin sin 2A C A C AB +=−=−得1cos cos 2A C=−,故()1cos 2A C −=−. 注:第二问直接利用积化和差公式()()()1sin sin cos cos 2A C A C A C =−−+,写对公式给3分,条件代入正确化简给3分,最终答案1分. 16.(15分)(1)记c =1a c +=+,1a c −=−,解得a =1c =,故椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ′,则2PF P F PF PF a +=+=′′. (3)设()11,A x y ,()22,B x y ,直线AB 的方程为2x my =+,联立22212x my x y =++=,得()222420m y my +++=, 故12y y −=21132ABF S y y =⋅⋅−=△令0t =>,则ABF S =≤=△m =时取到等号. 17.(15分)(1)取AB 中点M ,则1CM C O ∥,故O ,M ,C ,1C 共面, 由AM 与OD 平行且相等得平行四边形ODAM ,故AD OM ∥, 故AD ∥平面1OCC .(2)法1(建系):以O 为原点,OM ,1OA为x ,y 轴正方向,垂直于平面11ABB A 向上为z 轴正方向,建立空间直角坐标系Oxyz .设))1cos Cαα−,表示出平面1ACC A的法向量11cos sin n αα+=,由对称性得平面11BCC B的法向量21cos 1,sin n αα+=,故120n n ⋅=,解得1cos 3α=,故C,(1n =,(11,n = , 记所求线面角为θ,则1212,sin AA n n AA θ==,故π4θ=.法2(综合法):连接1CA ,1CB ,取1A C 中点N ,则1111CN AA NA NC ====,故11CA CC ⊥, 由平面11BCC B ⊥平面11ACC A ,1CC =平面1BCC B 平面1ACC A ,故1CA ⊥平面1BCC B ,故11B C A C ⊥,又由11B C A C =,得11B C AC ==,延长1C C ,1A A ,1B B 交于点V ,则所求线面角即1AVC ∠,而111sin A C AVC AV ∠=1AA 与平面11BCC B法3(三余弦定理):延长1C C ,1A A ,1B B 交于点V ,则11π3BVA ∠=,1111AVC BVC ∠=∠, 由平面11BCC B ⊥平面11ACC A ,用三余弦定理得111111cos cos cos BVA C VA C VB ∠=∠⋅∠,因此11cos C VA ∠1AA 与平面1BCC B 所成线面角即为11π4C VA ∠=.18.(17分)(1)5M =时,最大编号为5,另2辆坦克编号有24C种可能,故()2435355C P M C ===, 由Y M <,有2153X X −<⇔<,故总编号和小于9,除最大编号5外另2个编号只能是1,2, 仅1种可能,故()3511510P Y M M C <===且, 因此()()()51565P Y M M P Y M M P M <=<====且.(2)分布列如下:(3)直观上可判断()E M N <,证明:()()()NNk n k nE M kP M k NP M k N ====<==∑∑.19.(17分)(1)12c =,28c =,322c =,452=. (2)()11,10,2nn t n = =≥ ,对一般的i +∈N ,()1,0,i n n i t n i = = ≠. (3)法1:记{}n b 的前n 项和为n S ,由卷积运算的交换律有()11nkn k n k bc ==+−∑,故()11nn kn k n S kbc =+−=∑…①,因此()()111121nn n n k k n S kb n b c +++=+−−+=∑…②,②-①得11n n n S c c ++=−,故当3n ≥时,()()1112122n n n n n n n n n n b S S c c c c c c c −−−−−−=−=−−−=−+. 法2:记{}n b 的前n 项和为n S ,常数列()1n T n +=∀∈N ,注意 (Ⅰ)易证卷积关于数列加法有分配律,将(Ⅰ)中所有数列对应项相加,得{}{}{}*n n n T b S =,注意 (Ⅱ)注意{}n T 是(){}int 对所有i +∈N对应项相加所得的数列,{}n a 是(){}{}*nnit T 对所有i +∈N对应项相加所得的数列,易知卷积运算有结合律,因此将(Ⅱ)中所有数列对应项相加,得{}{}*n n n c a b =的通项即为1nn i i c S ==∑,故当3n ≥时,()()1112122n n n n n n n n n n b S S c c c c c c c −−−−−−=−=−−−=−+. 注:以上论证可用符号语言说明如下:定义数列加法:{}{}{}n n n z x y =+,其中nn n z x y =+.容易验证卷积运算满足结合律:{}{}(){}{}{}{}()****nnnnnnx y x y ωω=,数列加法关于卷积满足分配律:{}{}(){}{}{}{}{}***nnnnnnnx y x y ωωω+=+. 因此{}{}(){}(){}{}(){}(){}{}()11111*****n i n n n n n n n n j i j i i j i j i a b t t b t t b S ∞∞∞∞===== == ∑∑∑∑∑.。
浙江省宁波市2024-2025学年高三上学期高考模拟考试数学试卷
浙江省宁波市2024-2025学年高三上学期高考模拟考试数学试卷一、单选题1.集合{}2,0,1A =-,{}2,B y y x x A ==∈,则A B = ()A .{}2,0,1-B .{}0,1,4C .{}0,1D .{}2,0,1,4-2.复数z 满足5i 2z =-,则z =()A .1B .2CD .53.向量a ,b 满足1a b == ,a b ⊥ ,则3a b -= ()AB C D 4.研究小组为了解高三学生自主复习情况,随机调查了1000名学生的每周自主复习时间,按照时长(单位:小时)分成五组:[)2,4,[)4,6,[)6,8,[)8,10,[)10,12,得到如图所示的频率分布直方图,则样本数据的第60百分位数的估计值是()A .7B .7.5C .7.8D .85.圆台的高为2,体积为14π,两底面圆的半径比为1:2,则母线和轴的夹角的正切值为()A .3B .2C .3D 6.已知椭圆C 的左、右焦点分别为1F ,2F ,过上顶点A 作直线2AF 交椭圆于另一点B .若1AB F B =,则椭圆C 的离心率为()A .13B .12C D .27.不等式()()210x ax x b ---≥对任意0x >恒成立,则22a b +的最小值为()A.2B .2C.D.28.设a ∈R ,函数()()sin 2π2π,,136,.x a x a f x x a a x a ⎧-<⎪=⎨---+≥⎪⎩若()f x 在区间()0,∞+内恰有6个零点,则a 的取值范围是()A .72,2⎛⎤⎥⎝⎦B .(]2,3C .7572,,322⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ D .752,,332⎛⎤⎛⎤⎥⎥⎝⎦⎝⎦二、多选题9.已知数列{}n a ,{}n b 都是正项等比数列,则()A .数列{}n n a b +是等比数列B .数列{}n n a b ⋅是等比数列C .数列n na b ⎧⎫⎨⎬⎩⎭是等比数列D .数列{}n b n a 是等比数列10.函数()e ln x f x a x =-,则()A .()f x 的图象过定点B .当1a =时,()f x 在()0,∞+上单调递增C .当1a =时,()2f x >恒成立D .存在0a >,使得()f x 与x 轴相切11.已知曲线C :()3222217sin 7cos 6x y x y +--+=,下列说法正确的是()A .曲线C 过原点OB .曲线C 关于y x =对称C .曲线C 上存在一点P ,使得1OP =D .若(),P x y 为曲线C 上一点,则3x y +<三、填空题12.已知()3x f x =,则()3log 2f =.13.抛物线C :24y x =的焦点为F ,P 为C 上一点且3PF =,O 为坐标原点,则OPF S = .14.一个盒子中装有标号为1,2,3,4,5的五个大小质地完全相同的小球.甲、乙两人玩游戏,规则如下:第一轮,甲先从盒子中不放回地随机取两个球,乙接着从盒子中不放回地随机取一个球,若甲抽取的两个小球数字之和大于乙抽取的小球数字,则甲得1分,否则甲不得分;第二轮,甲、乙从盒子中剩余的两个球中依次不放回地随机取一个球,若甲抽取的小球数字大于乙抽取的小球数字,则甲得1分,否则甲不得分.则在两轮游戏中甲共获得2分的概率为.四、解答题15.在三棱锥P ABC -中,侧面PAC 是边长为2的等边三角形,AB =2PB =,π2ABC ∠=.(1)求证:平面PAC ⊥平面ABC ;(2)求平面PAB 与平面PAC 的夹角的余弦值.16.已知数列{}n a 为等差数列,且满足()221n n a a n *=+∈N .(1)若11a =,求{}n a 的前n 项和n S ;(2)若数列{}n b 满足215134b b -=,且数列{}n n a b ⋅的前n 项和()13428n n T n +=-×+,求数列{}n b 的通项公式.17.已知53,2⎛⎫ ⎪⎝⎭是双曲线E :()222210,0x y a b a b -=>>上一点,E的渐近线方程为2y x =±.(1)求E 的方程;(2)直线l 过点()1,1A ,且与E 的两支分别交于P ,Q 两点.若AP AQ PQ ⋅=l 的斜率.18.已知函数()sin f x ax x =.(1)判断()f x 的奇偶性;(2)若12a =-,求证:()1f x ≤;(3)若存在()00,πx ∈,使得对任意()00,x x ∈,均有()1f x <,求正实数a 的取值范围.19.开启某款保险柜需输入四位密码123s a a a x ,其中123a a a 为用户个人设置的三位静态密码(每位数字都是09 中的一个整数),s x 是根据开启时收到的动态校验钥匙s (s 为1~5中的一个随机整数)计算得到的动态校验码.s x 的具体计算方式:s x 是32123M a s a s a s =⋅+⋅+⋅的个位数字.例如:若静态密码为301,动态校验钥匙2s =,则3232021226M =⨯+⨯+⨯=,从而动态校验码26x =,进而得到四位开柜密码为3016.(1)若用户最终得到的四位开柜密码为2024,求所有可能的动态校验钥匙s ;(2)若三位静态密码为随机数且等可能,动态校验钥匙5s =,求动态校验码s x 的概率分布列;(3)若三位静态密码为随机数且等可能,动态校验钥匙()15,s i i i =≤≤∈N 的概率为i p ,其中i p 是互不相等的正数.记得到的动态校验码()09,s x k k k =≤≤∈N 的概率为k Q ,试比较0Q 与1Q 的大小.。
浙江省宁波市2024年数学(高考)统编版真题(预测卷)模拟试卷
浙江省宁波市2024年数学(高考)统编版真题(预测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知,且,若函数在上单调递减,则a的取值范围是()A.B.C.D.第(2)题已知,,则实数a,b,c的大小关系为()A.c>a>b B.a>b>cC.a>c>b D.c>b>a第(3)题已知复数满足,则()A.B.C.D.第(4)题函数的部分图象为()A.B.C.D.第(5)题如图,是边长为2的正三角形,P在平面上且满足,则面积的最大值为()A.B.4C.D.第(6)题已知等差数列的公差为,前项和为,且,则的值为()A.1B.C.D.-1第(7)题已知双曲线的左,右焦点分别为,以为直径的圆在第一象限与双曲线交于一点,且的面积为4,若双曲线上一点到两条渐近线的距离之积为,则该双曲线的离心率为()A.B.C.D.第(8)题在三棱锥中,已知,,,则下列结论错误的是()A.异面直线与所成角的余弦值为B.异面直线与所成角的余弦值为C.三棱锥外接球的表面积为D.直线与平面所成角的正弦值为二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题在中,,若满足条件的三角形有两个,则边的取值可能是()A.1.5B.1.6C.1.7D.1.8第(2)题巴塞尔问题是一个著名的数论问题,这个问题首先由皮耶特罗·门戈利在1644年提出,由欧拉在1735年解决.由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题,马上就出名了,当时他28岁.这个问题是精确计算所有平方数倒数的和,也就是以下级数的和.巴塞尔问题是寻找这个数的准确值,欧拉发现的准确值是.不过遗憾的是:若把上式中的指数换成其他的数,例如,则的精确值为多少,至今未解决.下列说法正确的是()A.所有正奇数的平方倒数和为B.记,则的值为C.的值不超过D.记,则存在正常数,使得对任意正整数,恒有第(3)题下列说法正确的的有()A.已知一组数据的方差为10,则的方差也为10B.对具有线性相关关系的变量,其线性回归方程为,若样本点的中心为,则实数的值是C.已知随机变量服从正态分布,若,则D .已知随机变量服从二项分布,若,则三、填空(本题包含3个小题,每小题5分,共15分。
浙江省杭州市2024年数学(高考)统编版测试(自测卷)模拟试卷
浙江省杭州市2024年数学(高考)统编版测试(自测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题在半径为的实心球中挖掉一个圆柱,再将该圆柱重新熔成一个球,则球的表面积的最大值为()A.B.C.D.第(2)题设全集,集合,,则()A.B.C.D.第(3)题已知,则()A.B.C.D.第(4)题若为锐角,,则()A.B.1C.D.第(5)题函数的图象大致为()A.B.C.D.第(6)题已知定义在上的函数满足,当时,不等式恒成立(为的导函数),若,,,则()A.B.C.D.第(7)题已知集合,则A.B.C.D.第(8)题已知二面角为,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.4二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题新中国成立至今,我国一共进行了7次全国人口普查,历次普查得到的全国人口总数如图1所示,城镇人口比重如图2所示.下列结论正确的有()A.与前一次全国人口普查对比,第五次总人数增长量高于第四次总人数增长量B.对比这7次全国人口普查的结果,我国城镇人口数量逐次递增C.第三次全国人口普查城镇人口数量低于2亿D.第七次全国人口普查城镇人口数量超过第二次全国人口普查总人口数第(2)题设,为正实数,则下列不等式正确的是()A.B.C.D.第(3)题若是区间上的单调函数,则实数的值可以是()A.B.C.3D.4三、填空(本题包含3个小题,每小题5分,共15分。
请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题若是实数,是自然对数的底数,,则______.第(2)题在棱长为3的正方体中,点E满足,点F在平面内,则|的最小值为___________.第(3)题已知是夹角为的两个单位向量,若,则k的值为_______.四、解答题(本题包含5小题,共77分。
浙江省杭州市(新版)2024高考数学统编版摸底(预测卷)完整试卷
浙江省杭州市(新版)2024高考数学统编版摸底(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知直线l:与x轴和y轴分别交于两点,点P在以点A为圆心,2为半径的圆上,当最大时,的面积为()A.2B.C.4D.第(2)题一个不透明的袋中装有2个红球,2个黑球,1个白球,这些球除颜色外,其他完全相同,现从袋中一次性随机抽取3个球,则“这3个球的颜色各不相同”的概率为()A.B.C.D.第(3)题有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是()A.4B.5C.6D.7第(4)题为棱长为2的正方体,点分别为,的中点,给出以下命题:①直线与是异面直线;②点到面距离为;③若点三点确定的平面与交于点,则,正确命题有()A.0个B.1个C.2个D.3个第(5)题满足条件的复数在复平面上对应点的轨迹是()A.一条直线B.两条直线C.圆D.椭圆第(6)题一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.第(7)题已知圆,点,若圆M上存在两点B,C,使得是等边三角形,则实数的取值范围是()A.B.C.D.第(8)题已知集合,集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则下列结论正确的是()A.的最小正周期为B.的值域为C.的图象是轴对称图形D.的图象是中心对称图形第(2)题若是函数(为自然对数的底数)图象上的任意两点,且函数在点和点处的切线互相垂直,则下列结论中正确的是()A.B.最小值为1C.的最小值为D.的最大值为第(3)题已知函数,则()A.的最小正周期为B .为图象的一条对称轴C.的最小值为1D .在上单调递增三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知幂函数满足,则______.第(2)题已知,,,则的最小值为________.第(3)题已知定义在上的偶函数满足,则的一个解析式为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知抛物线:()上一点的纵坐标为3,点到焦点距离为5.(1)求抛物线的方程;(2)过点作直线交于,两点,过点,分别作的切线与,与相交于点,过点作直线垂直于,过点作直线垂直于,与相交于点,、、、分别与轴交于点、、、.记、、、的面积分别为、、、.若,求直线的方程.第(2)题设抛物线,直线是抛物线C的准线,且与x轴交于点B,过点B的直线l与抛物线C交于不同的两点M,N,是不在直线l上的一点,直线,分别与准线交于P,Q两点.(1)求抛物线C的方程;(2)证明::(3)记,的面积分别为,,若,求直线l的方程.第(3)题记锐角内角的对边分别为.已知.(1)求;(2)若,求的取值范围.第(4)题已知椭圆E:的左、右焦点分别为,,左顶点为A,,P是椭圆E上一点(异于顶点),O是坐标原点,Q在线段上,且∥,.(1)求椭圆E的标准方程;(2)若直线l与x轴交于点C、与椭圆E交于点M,N,B与N关于x轴对称,直线MB与x轴交于点D,证明:为定值.第(5)题如图,已知抛物线焦点为,过上一点作切线,交轴于点,过点作直线交于点.(1)证明:;(2)设直线,的斜率为,的面积为,若,求的最小值.。
浙江省杭州市(新版)2024高考数学部编版摸底(提分卷)完整试卷
浙江省杭州市(新版)2024高考数学部编版摸底(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题命题“存在实数,使”的否定是()A.不存在实数,使B.存在实数,使C.对任意的实数x,都有D.对任意的实数x,都有第(2)题从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为()A.B.C.D.第(3)题等比数列的公比为,前项和为,则“”是“对任意的,,,构成等比数列的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分条件也不必要条件第(4)题如图是国家统计局2021年11月发布的全国居民消费价格的涨跌幅情况,现有如下说法:①2021年10月份,全国居民消费价格的同比和环比均呈现增涨趋势;②2020年10月至2021年10月,全国居民消费价格同比增涨的月份个数是下跌的5倍;③从2020年10月至2021年10月中任取1个月,全国居民消费价格的同比均呈现增涨的概率为;则上述说法正确的个数为()A.0B.1C.2D.3第(5)题在平面直角坐标系中,是坐标原点,两定点,满足,则点集所表示的区域的面积是()A.B.C.D.第(6)题展开式中项的系数为()A.B.C.20D.240第(7)题对于定义域为的函数,若满足①;②当,且时,都有;③当,且时,都有,则称为“偏对称函数”.现给出四个函数:;;则其中是“偏对称函数”的函数个数为A.0B.1C.2D.3第(8)题已知集合,,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的最小正周期是,把它图象向右平移个单位后得到的图象所对应的函数为奇函数,下列正确的是()A.函数的图象关于直线对称B.函数的图象关于点对称C .函数在区间上单调递减D.函数在上有3个零点第(2)题已知拋物线,点均在抛物线上,点,则()A.直线的斜率可能为B.线段长度的最小值为C.若三点共线,则存在唯一的点,使得点为线段的中点D.若三点共线,则存在两个不同的点,使得点为线段的中点第(3)题已知抛物线,F为抛物线C的焦点,下列说法正确的是()A.若抛物线C上一点P到焦点F的距离是4,则P的坐标为、B.抛物线C在点处的切线方程为C.一个顶点在原点O的正三角形与抛物线相交于A、B两点,的周长为D.点H为抛物线C的上任意一点,点,,当t取最大值时,的面积为2三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数(),若函数的极值为0,则实数__________;若函数有且仅有四个不同的零点,则实数的取值范围是__________.第(2)题若满足约束条件,则的最大值为________第(3)题已知函数,记为函数的2次迭代函数,为函数的3次迭代函数,…,依次类推,为函数的n次迭代函数,则______;除以17的余数是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知抛物线上的动点与距离的最小值为.(1)求;(2)过点的直线交抛物线于两点,直线平行于,且与抛物线仅有一个公共点,求面积的最小值.第(2)题为进一步保障和改善民生,国家“十二五”规划纲要提出,“十二五”期间将提高住房保障水平,使城镇保障性信房覆盖率达到20℅左右. 某城市2010年有商品房万套,保障性住房万套(). 预计2011年新增商品房万套,以后每年商品新增量是上一年新增量的倍,问“十二五”期间(2011年~2015年)该城市保障性住房建设年均应增加多少万套才能使覆盖率达到?(,,,)第(3)题2024年高三数学适应性考试中选择题有单选和多选两种题型组成.单选题每题四个选项,有且仅有一个选项正确,选对得5分,选错得0分,多选题每题四个选项,有两个或三个选项正确,全部选对得6分,部分选对得3分,有错误选择或不选择得0分.(1)已知某同学对其中4道单选题完全没有答题思路,只能随机选择一个选项作答,且每题的解答相互独立,记该同学在这4道单选题中答对的题数为随机变量X.(i)求;(ii)求使得取最大值时的整数;(2)若该同学在解答最后一道多选题时,除确定B,D选项不能同时选择之外没有答题思路,只能随机选择若干选项作答.已知此题正确答案是两选项与三选项的概率均为,求该同学在答题过程中使得分期望最大的答题方式,并写出得分的最大期望.第(4)题椭圆的离心率为,左焦点到直线的距离为10,圆.(1)求椭圆的方程;(2)若是椭圆上任意一点,为圆的任一直径,求的取值范围;(3)是否存在以椭圆上点为圆心的圆,使得过圆上任意一点作圆的切线,切点为,都满足?若存在,求出圆的方程;若不存在,请说明理由.第(5)题已知某公司生产的风干牛肉干是按包销售的,每包牛肉干的质量(单位:g)服从正态分布,且.(1)若从公司销售的牛肉干中随机选取3包,求这3包中恰有2包质量不小于的概率;(2)若从公司销售的牛肉干中随机选取(为正整数)包,记质量在内的包数为,且,求的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_________,函数 f (x) 的极值___________。
15、(原创)已知 (1 2x)5 a0 a1(1 x) a2 (1 x)2 a5 (1 x)5 ,则 a3 a4 =______
16、(改编)抛物线 y2=2x 的焦点为 F,过 F 的直线交该抛物线于 A,B 两点,则|AF|+4|BF| 的最小值为________.
用橡皮擦干净后,再选涂其它答案标号。答在试题卷上无效。
参考公式:
如果事件 A , B 互斥,那么
P A B P A PB
棱柱的体积公式 V Sh
如果事件 A , B 相互独立,那么
P A B P A PB
其中 S 表示棱柱的底面积, h 表示棱柱的高 棱锥的体积公式
如果事件 A 在一次试验中发生的概率是 p ,那么
精品文档
2018 年浙江省高考模拟试卷 数学卷
本试题卷分选择题和非选择题两部分.满分 150 分,考试时间 120 分钟。 请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共 40 分)
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在
答题纸上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,
n 次独立重复试验中事件 A 恰好发生 k 次的概率
Pn k Cnk pk 1 k nk ,k 0,1, 2, , n
球的表面积公式 S 4 R2
球的体积公式 V 4 R3 3
其中 R 表示球的半径
V 1 Sh 3
其中 S 表示棱锥的底面积, h 表示棱锥的高
棱台的体积公式
1
V
h 3
S1
S1S2 S2
其中 S1, S2 分别表示棱台的上底、下底面积, h 表示棱台的高
一、选择题:(本大题共 10 小题,每小题 4 分,共 40 分。)
1、(原创)已知集合U R ,集合 M {y y 2x , x R} ,集合 N {x y lg(3 x)},
则 CU M N ( )
C. c 9 4
D. c 9 4
精品文档
精品文档
非选择题部分(共 110 分)
二、填空题:( 本大题共 7 小题, 单空题每题 4 分,多空题每题 6 分,共 36 分。)
11、(原创) eln 3
0.125
2 3
1
. log2.5 6.25 ln e (0.064) 3
.
12、(原创)已知离散型随机变量 的分布列为
x2 a2
y2 b2
1
(a,b>0)
的左、右焦点,B 是虚轴的端点,直线 F1B 与 C 的两条渐近线分别 交于 P,Q 两点,线段 PQ 的垂直平分线与 x 轴交于点 M,若
|MF2|=|F1F2|,则 C 的离心率是( )
A. 2 3 3
B. 6 2
C. 2
D. 3
8、(引用余高月考卷)如图,α∩β=l,A∈α,C∈β,C∉l,直线 AD∩l=D,A,B,C 三点确定的平面为 γ,则平面 γ、β 的交线必过( )
A.y y 3 B. y y 0
C. y 0 y 3
D.
2、(原创)已知实数 x, y, 则“ xy 2 ”是“ x 2 y 2 4 ”的( )
A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不ห้องสมุดไป่ตู้分也不必要条件
3、(引用十二校联考题)某几何体的三视图如图所示, 其中俯视图是半圆,则该几何体的表面积为( )
y a
最小值为 4 ,则 a 的值是( )
A. 1
B. 0
C.1
D. 1 2
6、 (改编)单位向量 ai ,( i 1,2,3,4 )满足 ai ai1 0 ,则 a1 a2 a3 a4 可能值有(
)
A.2 个
B.3 个
C.4 个
D..5 个
7、(改编)如图,F1,F2 分别是双曲线 C :
2
4
(I)求函数 f (x) 的最小正周期.
(II) 设 函 数 g(x) 对 任 意 x R , 有 g(x ) g(x) , 且 当 x [0, ] 时 ,
2
2
g(x) 1 f (x) ,求函数 g(x) 在[ ,0] 上的解析式. 2
0
1
2
则变量 的数学期望
_________,方差
____________.
13、(原创)函数
f
(x)
2 x
,
x
2
则 f f 2 =
x2 2x 1, x 2
;方程 f f x 2 解是
14、(原创)已知函数 f(x) x - 2lnx ,则曲线 y f (x) 在点 A(1, f (1)) 处的切线方程是
D. (,3] ( 5 ,) 2
10、(改编)已知 f (x) x2 2x c, f1 (x) f (x), fn (x) f ( fn1(x))(n 2, n N * ) ,若
函数 y fn (x) x 不存在零点,则 c 的取值范围是( )
A. c 1 4
B. c 3 4
A.点 A
B.点 B
C.点 C,但不过点 D
D.点 C 和点 D
9、若正实数 x,y 满足 x 2 y 4 4xy ,且不等式 (x 2 y)a2 2a 2xy 34 0 恒成立,
则实数 a 的取值范围是( )
A.[3, 5] 2
B. (,3] [ 5 ,) 2
C. (3, 5 ] 2
17 . 已 知 f x { 2x1, x 1
3x 2, x 1
,若不等式
f
cos
2
sin
1 4
1 2
0
对任意的
0,
2
恒成立,则整数
的最小值为______________.
三、解答题:本大题共 5 小题,共 74 分。解答应写出文字说明、证明过程或演算步骤。
18、(改编)(本题满分 14 分)设函数 f (x) 2 cos(2x ) sin2 x
A. 3π 3 2
C. 3π 2
B. π 3 D. 5π 3
2
精品文档
精品文档
4、(改编)袋中标号为 1,2,3,4 的四只球,四人从中各取一只,其中甲不取 1 号球,
乙不取 2 号球,丙不取 3 号球,丁不取 4 号球的概率为( )
A. 1
B. 3
C. 11
4
8
24
D. 23 24
x y 1 5、(15 年海宁月考改编)设变量 x, y 满足约束条件 x y 4 ,目标函数 z 3x 2 y 的