高一数学必修4第一章习题

合集下载

高一数学训练习题参考答案

高一数学训练习题参考答案

数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。

高一数学必修4第一章《三角函数》单元测试

高一数学必修4第一章《三角函数》单元测试

清河中学高一数学必修4第一章《三角函数》单元测试
(满分:100分时间:90分钟)
一、选择题:(本大题共12小题,每小题4分,共48分)
1.化简的结果是()
②函数是偶函数
③是函数的一条对称轴方程
④若是第一象限的角,且,则
其中正确命题的序号是_______________
三、解答题:(本大题分5小题共36分)
17.(本题7分)已知,求的值
18.(本题7分)已知角终边上一点,求的值
19.(本题7分)已知函数的最大值为,最小值为.
(1)求的值;
(2)求函数的最小值并求出对应x的集合.
20.(本题7分)函数在同一个周期内,当时取最大值1,当时,取最小值。

(1)求函数的解析式
(2)函数的图象经过怎样的变换可得到的图象?。

高一数学必修四第一章课后练习

高一数学必修四第一章课后练习
(1)420°(2)-75°(3)855°(4)-510°.
4.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:
(1)-54°18′(2)395°8′(3)-1190°30′.
5.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来:
1.4.1正弦函数、余弦函数的图像
练习:
1.4.2正弦函数、余弦函数的性质
练习:
2.你认为我们应当如何利用函数的1.4.3正切函数的性质与图像
练习:
1.5函数y=Asin(ωx+φ)的图像
练习:
3.作一个以5cm为单位长度的圆,然后分别作出225°,330°角的正弦线、余弦线、正切线,量出它们的长度,从而写出这些角的正弦值、余弦值、正切值.
4.你认为三角函数线对认识三角函数概念有哪些作用?
1.2.2同角三角函数的基本关系
练习:
1.3三角函数的诱导公式
练习:
4.填表:
1.4三角函数的图像与性质
5.分别用角度制、弧度制下的弧长公式,计算半径为1m的圆中,60°的圆心角所对的弧的长度(可用计算器).
6.已知半径为120mm的圆上,有一条弧的长是144mm,求该弧所对的圆心角的弧度数.
1.2.1任意角的三角函数
练习:
3.填表:

角 的弧度数
sin
cos
tan
练习:
1.你能从单位圆中的三角函数线出发得出三角函数的哪些性质?
第一章三角函数
1.1.1任意角
练习
1.(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.
2.(口答)今天是星期三,那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?

§1.5 函数高一数学必修4第一章第五节练习题(解析版)

§1.5  函数高一数学必修4第一章第五节练习题(解析版)

§1.5 函数sin()y A x ωϕ=+的图象1.要得到sin()3y x π=+的图象,只需把sin y x =的图象 ( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移13个单位 D .向右平移13个单位 2.要得到sin 4x y =的图象,只需把sin y x =的图象上所有点 ( )A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来14,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来14,横坐标不变 3.要得到cos()24x y π=-的图象,只需将cos 2x y =的图象 ( )A .向左平移2π个单位 B .向右平移2π个单位 C .向左平移4π个单位 D .向右平移4π个单位 4.函数12sin()23y x π=+在一个周期内的三个“零点”的横坐标可能是 ( )A .511,,333πππ- B .2410,,333πππ- C .1123,,666πππ- D .25,,333πππ- 5.方程sin 2sin x x =在区间(0,2)π内解的个数是_________.6.若函数()sin(2)(0)f x x ϕπϕ=+-<<是偶函数,则ϕ=________.7.将函数sin 2y x =的图象经过以下变换:_______________________________________,可以得到函数cos 2y x =的图象.8.关于函数4sin(2)()3y x x R π=+∈给出下列四个命题:(1)由12()()0f x f x ==,可得12x x -必是π的整数倍;(2)()y f x =的表达式可以改写成4cos(2)6y x π=-;(3)()y f x =的图象关于点(,0)6π-对称;(4)()y f x =的图象关于直线6x π=-对称.其中真命题的序号是____________________. 9.将sin(2)4y x π=+的图象向左平移2π个单位后得到的函数图象的解析式为_________. 10.在同一平面直角坐标系中作出函数sin 2y x =+与sin 1y x =-的图象,并指出它们与sin y x =的图象间的关系.11.若函数()5cos()f x x ωϕ=+对任意x 都有()()33f x f x ππ-=+,试求()3f π的值.12.sin(3)3y x π=-的图象可由sin 3y x =的图象通过怎样的变换得到?13.把函数2sin()3y x π=--的图象向左平移(0)m m >个单位,所得的图象关于y 轴对称,求m 的最小值.1.5 函数sin()y A x ωϕ=+的图象1.A2.A3.B4.B5.36.2π-7. 向左平移4π的单位 8.(2)(3) 9. 5sin(2)4y x π=+ 10. 略 11. 5± 12. 向右平移9π的单位得到 13. 56π。

高一数学必修4第一章综合检测题

高一数学必修4第一章综合检测题

第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] A[解析] α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.sin(-600°)=( )A.12B.32 C .-12 D .-32 [答案] B3.已知角α的终边经过点P (3,-4),则角α的正弦值为( ) A.34 B .-4 C .-45 D.35 [答案] C[解析] x =3,y =-4,则r =x 2+y 2=5, 则sin α=y r =-45.4.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4k ∈Z[答案] D[解析] 要使函数有意义,则有x -π4≠π2+k π,k ∈Z ,即x ≠3π4+k π,k ∈Z .5.已知sin(π+α)=13,则cos ⎝ ⎛⎭⎪⎫3π2-α等于( )A .-13 B.13 C .-33 D.33[答案] B[解析] sin(π+α)=-sin α=13,则sin α=-13,cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=13. 6.函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫π2,2π3 [答案] A[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈[]),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C .-54 D.45[答案] D[解析] sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-21+tan 2θ=45. 8.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12xB .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)[答案] B[解析] y =sin(x -π3)――→横坐标伸长为原来的2倍y =sin(12x -π3)错误!y=sin[12(x -π3-π3]=sin(12x -π2).9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[答案] D[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ), ∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数. ∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 10.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据:A .y =12cos π6t +1B .y =12cos π6t +32C .y =2cos π6t +32D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6.又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32,∴y =12cos π6t +32.11.已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)等于( )A .-23B .-12 C.23 D.12[答案] C[解析] 首先由图象可知所求函数的周期为T =2⎝ ⎛⎭⎪⎫11π12-7π12=2π3,故ω=2π2π3=3.将⎝ ⎛⎭⎪⎫11π12,0代入解析式, 得A cos ⎝ ⎛⎭⎪⎫3×11π12+φ=0,即cos ⎝ ⎛⎭⎪⎫11π4+φ=0,∴11π4+φ=π2+2k π,k ∈Z , ∴φ=-9π4+2k π(k ∈Z ).令φ=-π4,代入解析式得f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4.又∵f ⎝ ⎛⎭⎪⎫π2=-23, ∴f ⎝ ⎛⎭⎪⎫π2=-A sin π4=-22A =-23∴A =232,∴f (0)=232cos ⎝ ⎛⎭⎪⎫-π4=232cos π4=23.12.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π]上是单调函数,则ω+φ=( )A.π2+23B.π2+2 C.π2+32 D.π2+103[答案] A[解析] 由于f (x )是R 上的偶函数,且0≤φ≤π,故φ=π2.图象关于点M (3π4,0)对称,则f (3π4)=0,即sin(3π4ω+π2)=0,所以cos 3ωπ4=0.又因为f (x )在区间[0,π]上是单调函数,且ω>0, 所以ω=23.故ω+φ=π2+23.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.某人的血压满足函数式f (t )=24sin160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.[答案] 8014.化简1-2sin4cos4=________. [答案] cos4-sin4[解析] 原式=sin 24+cos 24-2sin4cos4=(sin4-cos4)2=|sin4-cos4|.则sin4<cos4,所以原式=cos4-sin4.15.定义在R 上的函数f (x )既是偶函数,又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f (5π3)的值为________.[答案] 32[解析] ∵T =π,∴f (5π3)=f (π+2π3)=f (23π)=f (π-π3)=f (-π3)=f (π3)=32.16.已知函数f (x )=sin ⎝ ⎛⎭⎫2x -π4,在下列四个命题中:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin2x 的图象向右平移π4个单位长度得到;③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x =-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是________(把你认为正确命题的序号都填上).[答案] ③④[解析] f (x )的最小正周期是T =2π2=π,所以①不正确;f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, 则f (x )的图象可由g (x )=sin2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4=-1时,有2x -π4=-π2+2k π(k ∈Z ),则x =-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z 且k ≠0),所以③正确;当x =-π8时,f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π8-π4=-1,即函数f (x )取得最小值-1,所以④正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设f (θ)= 2cos 3θ+sin 2(2π-θ)+sin (π2θ)-32+2sin 2(π2+θ)-sin (3π2-θ),求f (π3)的值.[解析] 解法一:f (π3)=2cos 3π3+sin 2(2π-π3)+sin (π2+π3)-32+2sin 2(π2+π3)-sin (32π-π3)=2cos 3π3+sin 25π3+sin 5π6-32+2sin 25π6-sin7π6=2×18+34+12-32+2×14+12=-12.解法二:∵f (θ)=2cos 3θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =2cos 3θ+1-cos 2θ+cos θ-32+cos θ+2cos 2θ=2cos 3θ-2-(cos 2θ-cos θ)2+cos θ+2cos 2θ =2(cos 3θ-1)-cos θ(cos θ-1)2+2cos 2θ+cos θ=(cos θ-1)(2cos 2θ+cos θ+2)2cos 2θ+cos θ+2=cos θ-1,∴f (π3)=cos π3-1=-12.18.(本题满分12分)(2011~2012·山东济南一模)已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.19.(12分)已知x ∈[-π3,2π3],(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12.∴y =cos x 的值域为[-12,1].(2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154].20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R . 求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12+π4=2k π-π2,解得x =4k π-3k π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z . (2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12+π4-1的图象. 21.(本题满分12分)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2). (1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.[解析] (1)由最低点为M (2π3,-2),得A =2. 由T =π,得ω=2πT =2ππ=2. 由点M (2π3,-2)的图象上,得2sin(4π3+φ)=-2, 即sin(4π3+φ)=-1. 所以4π3+φ=2k π-π2,(k ∈Z ). 故φ=2k π-11π6(k ∈Z ). 又φ∈(0,π2), 所以φ=π6.所以f (x )=2sin(2x +π6). (2)因为x ∈[0,π12],所以2x +π6∈[π6π3]. 所以当2x +π6=π6,即x =0时,f (x )取得最小值1; 当2x +π6=π3,即x =π12时,f (x )取得最大值 3. 22.(本题满分12分)已知f (x )=2sin(2x +π6)+a +1(a 为常数). (1)求f (x )的单调递增区间;(2)若当x ∈[0,π2]时,f (x )的最大值为4,求a 的值; (3)求出使f (x )取得最大值时x 的取值集合.[解析] (1)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)当x ∈[0,π2]时,2x +π6∈[π6,76π], 故当2x +π6=π2,即x =π6时,f (x )有最大值a +3=4,所以a =1. (3)当sin(2x +π6)=1时f (x )取得最大值, 此时2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z ,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.。

高一数学必修4第一章三角函数(正弦型函数以前部分)

高一数学必修4第一章三角函数(正弦型函数以前部分)

正弦型函数一.正弦函数y=sinx图像:二.正弦函数y=sinx性质:1.定义域:2.值域:3.奇偶性:4.周期性:5.单调增区间:单调增区间:6.对称中心:对称轴:三.正弦型图像与性质①y=sinx------→------------→②y=sinx------→------------→sin()(0,0)y A x Aωφω=+>>sin()(0,0)y A x Aωφω=+>>sin()(0,0)y A x Aωφω=+>>跟踪综合训练一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48分) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是( )A .3πB .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .2-B .2C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位 7、如图,曲线对应的函数是 ( )A .y=|sin x |B .y=sin|x |C .y=-sin|x |D .y=-|sin x |8 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称 11、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数12、函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .52,2()66k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .72,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦13、已知αβαππβαπ2,3,3则-<-<-<+<的取值范围是 . 14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .15、函数2sin()([,])863y x x πππ=-∈的最小值是 . 16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、(8分)已知3tan 2απαπ=<<,求sin cos αα-的值.19、(8分)已知N (2,2)是函数y =A sin(ωx +φ)(A >0,ω>0)的图象的最高点,N 到相邻最低点的图象曲线与x 轴交于A 、B ,其中B 点的坐标(6,0),求此函数的解析表达式.20、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+21、(10分)求函数2(x)sin 2sin 5f x a x =++的值域(其中a 为常数)22、(8分)给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位; ④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。

人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷

人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷

人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。

(word完整版)高一数学必修四第一章测试题

(word完整版)高一数学必修四第一章测试题

宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。

最新人教版高一数学必修4第一章1.1—1.4练习题

最新人教版高一数学必修4第一章1.1—1.4练习题

人教版高一数学必修4第一章1.1—1.4练习题;考试时间:120分钟;注意事项:1答题卡上第1卷一、选择题(本大题共12个小题,每小题5分,共60分)1、等于( )A.B.C.D.2、若角的终边过点,则等于( )A.B.C.D.不能确定,与的值有关3、已知函数, 则下列命题正确的是( )A.是周期为的奇函数B.是周期为的偶函数C.是周期为的非奇非偶函数D.是周期为的非奇非偶函数4、已知为锐角,且有,,则的值是( )A.B.C.D.5、在函数、、、中,最小正周期为的函数的个数为( )A.1个B.2个C.3个D.4个6、若,是方程的两根,则的值为 ( ) A.B.C.D.7、在到范围内,与角终边相同的角是( )A.B.C.D.8、已知,且,则的值是( ) A.B.C.D.9、已知,那么( )A.B.C.D.10、在上满足的的取值范围是( )A.B.C.D.11、若,则的值为( )A.B.C.D.12、若,则、、三个数之间的大小关系是( ) A.B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分)13、已知是第二象限的角,,则.14、求函数的单调递减区间是15、函数的值域是 .16、三角函数式的化简结果是。

三、解答题(其中第17题10分,其它每小题12分,共70分)1.2.18、求下列函数的定义域:19、求下列函数的值域:20、设函数,象的一条对称轴是直线1.求;2.求函数的单调增区间;3.画出函数在区间上的图象.21、已知函数,且,求的值.22、设函数是定义在上以3为周期的奇函数,若,,求的取值范围.参考答案一、选择题1.答案:C解析:因为,选C.2.答案:C解析:根据题意,由于角的终边过点,那么结合三角函数定义可知,,,当时,表示的角的正弦值和余弦值的和为,当时,则表示的和为,因此可知答案为,选C。

3.答案:B解析:,且,∴为偶函数.4.答案:C解析:化简为,①化简为.②由①②消去,解得.又为锐角,根据,解得.5.答案:C解析:由的图象知,它是非周期函数.6.答案:B解析:由题意知, ,.∵,∴,解得.又,∴或,∴.7.答案:D解析:因为,所以与的终边相同.8.答案:A9.答案:C解析:∵,∴.【点拨】解题的关键是熟记诱导公式.10.答案:C11.答案:B解析:由已知可得.12.答案:B解析:∵,,,,,所以可知,选B项.二、填空题13.答案:14.答案:15.答案:解析:.当时,;当时,.16.答案:解析:原式。

高一数学必修1、4基础题及答案

高一数学必修1、4基础题及答案

必修1 第一章 集合基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

高中数学习题必修4及答案

高中数学习题必修4及答案

高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。

罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。

()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。

人教版高中数学高一A版必修4 第一章第四节三角函数的图象与性质(第三课时)

人教版高中数学高一A版必修4 第一章第四节三角函数的图象与性质(第三课时)

第一章第四节三角函数的图象与性质第三课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sin x,y=cos x是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么?③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么?由值域又能得到什么?④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思路的学生,教师可参与到他们中去,并适时的给予点拨、指导.在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R〔或(-∞,+∞)〕.对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sin x |≤1,|cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y =sin x (x ∈R ),(1)当且仅当x =π2+2k π,k ∈Z 时,取得最大值1. (2)当且仅当x =-π2+2k π,k ∈Z 时,取得最小值-1. 对于余弦函数y =cos x (x ∈R ),(1)当且仅当x =2k π,k ∈Z 时,取得最大值1.(2)当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-π2,3π2](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4就是说,函数y =sin x ,x ∈[-π2,3π2]. 当x ∈[-π2,π2]时,曲线逐渐上升,是增函数,sin x 的值由-1增大到1; 当x ∈[π2,3π2]时,曲线逐渐下降,是减函数,sin x 的值由1减小到-1. 类似地,同样可得y =cos x ,x ∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-π2+2k π,π2+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[π2+2k π,3π2+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y =sin x 为奇函数,y =cos x 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x )=-sin x ,cos(-x )=cos x ,∴y =sin x 为奇函数,y =cos x 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x =π2对称,余弦曲线还关于点(π2,0)对称等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习埋下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x 轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y =cos x +1,x ∈R ;(2)y =-3sin2x ,x ∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z };使函数y =cos x +1,x ∈R 取得最小值的x 的集合,就是使函数y =cos x ,x ∈R 取得最小值的x 的集合{x |x =(2k +1)π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令z =2x ,使函数y =-3sin z ,z ∈R 取得最大值的z 的集合是{z |z =-π2+2k π,k ∈Z }, 由2x =z =-π2+2k π,得x =-π4+k π. 因此使函数y =-3sin2x ,x ∈R 取得最大值的x 的集合是{x |x =-π4+k π,k ∈Z }. 同理,使函数y =-3sin2x ,x ∈R 取得最小值的x 的集合是{x |x =π4+k π,k ∈Z }. 函数y =-3sin2x ,x ∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y =A sin(ωx +φ)+B 的函数,一般通过变量代换(如设z =ωx +φ化归为y =A sin z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2利用三角函数的单调性,比较下列各组数的大小:(1)sin(-π18)与sin(-π10);(2)cos(-23π5)与cos(-17π4). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为-π2<-π10<-π18<0,正弦函数y =sin x 在区间[-π2,0]上是增函数, 所以sin(-π18)>sin(-π10). (2)cos(-23π5)=cos 23π5=cos 3π5,cos(-17π4)=cos 17π4=cos π4. 因为0<π4<3π5<π,且函数y =cos x ,x ∈[0,π]是减函数, 所以cos π4>cos 3π5,即cos(-23π5)<cos(-17π4). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题,如本例中,cos π4>0,cos 3π5<0,显然大小立判. 例3求函数y =sin(12x +π3),x ∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向:把12x +π3看成z ,这样问题就转化为求y =sin z 的单调区间问题,而这就简单多了. 解:令z =12x +π3.函数y =sin z 的单调递增区间是[-π2+2k π,π2+2k π]. 由-π2+2k π≤12x +π3≤π2+2k π,得-5π3+4k π≤x ≤π3+4k π,k ∈Z .由x ∈[-2π,2π]可知,-2π≤-5π3+4k π且π3+4k π≤2π,于是-112≤k ≤512,由于k ∈Z ,所以k =0,即-5π3≤x ≤π3.而[-5π3,π3]⊂[-2π,2π], 因此,函数y =sin(x 2+π3),x ∈[-2π,2π]的单调递增区间是[-5π3,π3]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1求下列函数的定义域:(1)y =11+sin x;(2)y =cos x . 活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sin x ≠0,得sin x ≠-1,即x ≠3π2+2k π(k ∈Z ). ∴原函数的定义域为{x |x ≠3π2+2k π,k ∈Z }. (2)由cos x ≥0,得-π2+2k π≤x ≤π2+2k π(k ∈Z ). ∴原函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2在下列区间中,函数y =sin(x +π4)的单调增区间是( ) A .[π2,π] B .[0,π4] C .[-π,0] D .[π4,π2] 活动:函数y =sin(x +π4)是一个复合函数,即y =sin[φ(x )],φ(x )=x +π4,欲求y =sin(x +π4)的单调增区间,因φ(x )=x +π4在实数集上恒递增,故应求使y 随φ(x )递增而递增的区间.也可从转化与化归思想的角度考虑,即把x +π4看成一个整体,其道理是一样的. 解析:∵φ(x )=x +π4在实数集上恒递增,又y =sin x 在[2k π-π2,2k π+π2](k ∈Z )上是递增的,故令2k π-π2≤x +π4≤2k π+π2. ∴2k π-3π4≤x ≤2k π+π4. ∴y =sin(x +π4)的递增区间是[2k π-3π4,2k π+π4]. 取k =-1、0、1分别得[-11π4,7π4]、[-3π4,π4]、[5π4,9π4], 故选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y =A sin(ωx +φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y =f (t ),t =φ(x );(3)根据函数f (t )的单调性确定φ(x )的单调性;(4)写出满足φ(x )的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.知能训练课本本节练习解答:1.(1)(2k π,(2k +1)π),k ∈Z ;(2)((2k -1)π,2k π),k ∈Z ;(3)(-π2+2k π,π2+2k π),k ∈Z ;(4)(π2+2k π,3π2+2k π),k ∈Z . 点评:只需根据正弦曲线、余弦曲线写出结果,不要求解三角不等式,要注意结果的规范及体会数形结合思想方法的灵活运用.2.(1)不成立.因为余弦函数的最大值是1,而cos x =32>1. (2)成立.因为sin 2x =0.5,即sin x =±22,而正弦函数的值域是[-1,1],±22∈[-1,1]. 点评:比较是学习的关键,反例能加深概念的深刻理解.通过本题准确理解正弦、余弦函数的最大值、最小值性质.3.(1)当x ∈{x |x =π2+2k π,k ∈Z }时,函数取得最大值2;当x ∈{x |x =-π2+2k π,k ∈Z }时,函数取得最小值-2.(2)当x ∈{x |x =6k π+3π,k ∈Z }时,函数取得最大值3;当x ∈{x |x =6k π,k ∈Z }时,函数取得最小值1.点评:利用正弦、余弦函数的最大值、最小值性质,结合本节例题巩固正弦、余弦函数的性质,快速写出所给函数的最大值、最小值.4.B点评:利用数形结合思想认识函数的单调性.这是一道选择题,要求快速准确地选出正确答案.数形结合是实现这一目标的最佳方法.5.(1)sin250°>sin260°;(2)cos 15π8>cos 14π9;(3)cos515°>cos530°;(4)sin(-54π7)>sin(-63π8). 点评:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.6.[k π+π8,k π+5π8],k ∈Z . 点评:关键是利用转化与化归的思想将问题转化为正弦函数的单调性问题,得到关于x 的不等式,通过解不等式求得答案.课堂小结1.由学生回顾归纳并说出本节学习了哪些数学知识,学习了哪些数学思想方法.这节课我们研究了正弦函数、余弦函数的性质.重点是掌握正弦函数的性质,通过对两个函数从定义域、值域、最值、奇偶性、周期性、增减性、对称性等几方面的研究,更加深了我们对这两个函数的理解.同时也巩固了上节课所学的正弦函数,余弦函数的图象的画法.2.进一步熟悉了数形结合的思想方法,转化与化归的思想方法,类比思想的方法及观察、归纳、特殊到一般的辩证统一的观点.作业判断下列函数的奇偶性:(1)f (x )=x sin(π+x );(2)f (x )=-1+sin x +cos 2x 1-sin x. 解答:(1)函数的定义域为R ,它关于原点对称.∵f (x )=x sin(π+x )=-x sin x ,f (-x )=-(-x )sin(-x )=-x sin x =f (x ),∴函数为偶函数.(2)函数应满足1-sin x ≠0,∴函数的定义域为{x |x ∈R 且x ≠2k π+π2,k ∈Z }. ∵函数的定义域关于原点不对称,∴函数既不是奇函数也不是偶函数.设计感想1.本节是三角函数的重点内容,设计的容量较大,指导思想是让学生在课堂上充分探究、大量活动.作为函数的性质,从初中就开始学习,到高中学习了幂函数、指数、对数函数后有了较深的认识,这是高中所学的最后一个基本初等函数.但由于以前所学的函数不是周期函数,所以理解较为容易,而正弦函数、余弦函数除具有以前所学函数的共性外,又有其特殊性,共性中包含特性,特性又离不开共性,这种普通性与特殊性的关系通过教学应让学生有所领悟.2.在讲完正弦函数性质的基础上,应着重引导学生用类比的方法写出余弦函数的性质,以加深他们对两个函数的区别与联系的认识,并在解题中突出数形结合思想,在训练中降低变化技巧的难度,提高应用图象与性质解题的力度.较好地利用图象解决问题,这也是本节课主要强调的数学思想方法.3.学习三角函数性质后,引导学生对过去所学的知识重新认识,例如sin(α+2π)=sin α这个公式,以前我们只简单地把它看成一个诱导公式,现在我们认识到了,它表明正弦函数的周期性,以提升学生的思维层次.备课资料一、近几年三角函数知识的变动情况三角函数一直是高中固定的传统内容,但近几年对这部分内容的具体要求变化较大.1998年4月21日,国家教育部专门调整了高中数学的部分教学内容,其中的调整意见第(7)条为:“对三角函数中的和差化积、积化和差的8个公式,不要求记忆”.1998年全国高考数学卷中,已尽可能减少了这8个公式的出现次数,在仅有的一次应用中,还将公式印在试卷上,以供查阅.而当时调整意见尚未生效(应在1999年生效),这不能不说对和积互化的8个公式的要求是大大降低了.但是,如果认为这次调整的仅仅是8个公式,仅仅是降低了对8公式的要求,那就太表面、太肤浅了.我们知道,三角中的和积互化历来是三角部分的重点内容之一,相当部分的三角题都是围绕它们而设计的,它们也确实在很大程度上体现了公式变形的技巧和魅力.现在要求降低了,有关的题目已不再适合作为例(习)题选用了.这样一来,三角部分还要我们教些什么呢?又该怎样教?立刻成了部分教师心头的一大困惑.有鉴于此,我们认为很有必要重新审视这部分的知识体系,理清新的教学思路,以便真正落实这次调整的意见,实现“三个有利于(有利于减轻学生过重的课业负担,有利于深化普通高中的课程改革,有利于稳定普通高中的教育教学秩序)”的既定目标.1.是“三角”还是“函数”应当说,三角函数是由“三角”和“函数”两部分知识构成的.三角本是几何学的衍生物,起始于古希腊的希帕克,经由托勒玫、利提克思等至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科,历史上的很长一段时期,只有《三角学》盛行于世,却无“三角函数”之名.“三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年.但是,此概念一经引入,立刻极大地改变了三角学的面貌,特别是经过罗巴切夫斯基的开拓性工作,致使三角函数可以完全独立于三角形之外,而成为分析学的一个分支,其中的角也不限于正角,而是任意实数了.有的学者甚至认为可将它更名为角函数,这是有见地的,所以,作为一门学科的《三角学》已经不再独立存在.现行中学教材也取消了原来的《代数》《三角》《几何》的格局,将三角并入了代数内容.这本身即足以说明“函数”在“三角”中应占有的比重.从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的,所以,书中的分式变形、根式变形、指数式变形和对数式变形可谓连篇累牍,所在皆是.这是由当时的数学认知水平决定的.而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值.1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”.现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图象和性质及应用,对这三种代数式的变形却轻描淡写.所以,三角函数部分应重在“函数的图象和性质”是无疑的,这也是国际上普遍认可的观点.2.是“图象”还是“变换”现行高中三角函数部分,单列了一章专讲三角函数,这是与数学发展的潮流相一致的.大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图象和性质”倒是在其次的,这一点,与前面所述的“幂、指、对”函数有着极大的反差.调整以后,降低这部分的要求,大面积地减少了题量.把“函数”作为关键词,将目光放在“图象和性质”上,应当是正确的选择,负担轻了,障碍小了,这更方便于我们将注意力转移到对函数图象和性质的关注上,这才是“三个有利于”得以贯彻的根本.3.国外的观点及启示下面来看一下美国和德国的观点:美国没有全国统一的教材和《考试说明》,只有一个《课程标准》,在《课程标准》中,他们对三角函数提出了下面的要求:“会用三角学的知识解三角形;会用正弦、余弦函数研究客观实际中的周期现象;掌握三角函数图象;会解三角函数方程;会证基本的和简单的三角恒等式;懂得三角函数同极坐标、复数等之间的联系”.他们还特别指出,不要在推导三角恒等式上花费过多的时间,只要掌握一些简单的恒等式推导就可以了,比较复杂的恒等式就应该完全避免了.德国在10到12年级(相当于中国的高一到高三)每年都有三角内容,10年级要求如下:(1)一个角的弧度;(2)三角函数sin x 、cos x 、tan x 和它们的图象周期性;(3)三角形中角和边的计算;(4)重要关系(特指同角三角函数的平方关系、商数关系和倒数关系).另外,在11年级和12年级的“无穷小分析”中,继续研究三角函数的图象变换、求导、求积分、求极限.从以上罗列,我们可以看出下面的共同点:第一,突出强调三角函数的图象和性质;第二,淡化三角式的变形,仅涉及同角变换,而且要求较低,8个公式根本不予介绍; 第三,明确变换的目的是为了三角形中的实际计算;第四,注意三角函数和其他知识的联系.这带给我们的启示还是很强烈的,美国和德国的中学教育以实用为主,并不太在乎教材体系是否严谨,知识系统是否完整;我国的教材虽作调整,怎样实施且不去细说,有一个意图是可猜到的,那就是要让学生知道教材是严谨与完整的.现在看来严谨的东西,在更高的观点下是否还严谨?在圈内看是完整的,跳出圈子看,是否还完整?在一个小地方钻得太深,在另外更大的地方就可能无暇顾及.人家能在中学学到向量、行列式、微分、积分,我们却热衷于在个别地方穷追不舍,这早已引起行家的注意,从这个意义上说,此次调整应当只是第一步.在中学阶段即试图严谨与完整,其实是受前苏联教育家赞可夫的三高(高速度、高难度、高理论)影响太深的缘故.二、备用习题1.函数y =sin(π3-2x )的单调减区间是( ) A .[2k π-π12,2k π+5π12](k ∈Z ) B .[4k π-5π3,4k π+11π3](k ∈Z ) C .[k π-5π12,k π+11π12](k ∈Z ) D .[k π-π12,k π+5π12](k ∈Z ) 答案:D2.满足sin(x -π4)≥12的x 的集合是( ) A .{x |2k π+5π12≤x ≤2k π+13π12,k ∈Z } B .{x |2k π-π12≤x ≤2k π+7π12,k ∈Z } C .{x |2k π+π6≤x ≤2k π+5π6,k ∈Z } D .{x |2k π≤x ≤2k π+π6,k ∈Z }∪{x |2k π+5π6≤x ≤(2k +1)π,k ∈Z } 答案:A3.求下列函数的定义域和值域:(1)y =lgsin x ;(2)y =2cos3x .答案:解:(1)由题意得sin x >0,∴2k π<x <(2k +1)π,k ∈Z .又∵0<sin x ≤1,∴lgsin x ≤0.故函数的定义域为[2k π,(2k +1)π],k ∈Z ,值域为(-∞,0].(2)由题意得cos3x ≥0,∴2k π-π2≤3x ≤2k π+π2,k ∈Z . ∴2k π3-π6≤x ≤2k π3+π6,k ∈Z . 又∵0≤cos x ≤1,∴0≤2cos3x ≤2.故函数的定义域为[2k π3-π6,2k π3+π6],k ∈Z ,值域为[0,2].。

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版

1.2.2 同角三角函数的基本关系一、A组1.化简sin2β+cos4β+sin2βcos2β的结果是()A. B. C.1 D.解析:原式=sin2β+cos2β(sin2β+cos2β)=sin2β+cos2β=1.答案:C2.(2016·某某某某实验中学检测)已知tan α=2,则sin2α-sin αcos α的值是()A. B.- C.-2 D.2解析:sin2α-sin αcos α==.答案:A3.(2016·某某某某十一中高一期中)(1+tan215°)cos215°的值等于()A. B.1 C.- D.解析:(1+tan215°)cos215°=cos215°=cos215°+sin215°=1.答案:B4.已知α是第四象限角,tan α=-,则sin α=()A. B.- C. D.-解析:∵α是第四象限角,∴sin α<0.由tan α=-,得=-,∴cos α=-sin α.由sin2α+cos2α=1,得sin2α+=1,∴sin2α=1,sin α=±.∵sin α<0,∴sin α=-.答案:D5.若角α的终边落在直线x+y=0上,则的值为()A.2B.-2C.0D.2或-2解析:由题知,α为第二或第四象限角,原式=.当α为第二象限角时,原式=-=0.当α为第四象限角时,原式==0.综上,原式=0.答案:C6.在△ABC中,cos A=,则tan A=.解析:在△ABC中,可得0<A<π.∵cos A=,∴sin A=.∴tan A==2.答案:27.已知sin α=2m,cos α=m+1,则m=.解析:∵sin2α+cos2α=1,∴(2m)2+(m+1)2=4m2+m2+2m+1=1,∴m=0或m=-.答案:0或-8.(2016·某某某某溧水中学月考)若tan2x-sin2x=,则tan2x sin2x=.解析:tan2x sin2x=tan2x(1-cos2x)=tan2x-tan2x cos2x=tan2x-sin2x=.答案:9.若<α<2π,化简:.解:∵<α<2π,∴sin α<0.∴原式====-=-.10.求证:(1)sin4α-cos4α=2sin2α-1;(2)sin θ(1+tan θ)+cos θ.证明:(1)左边=(sin2α+cos2α)(sin2α-cos2α)=sin2α-(1-sin2α)=2sin2α-1=右边,∴原式成立.(2)左边=sin θ+cos θ=sin θ++cos θ+===右边.∴原式成立.二、B组1.锐角α满足sin αcos α=,则tan α的值为()A.2-B.C.2±D.2+解析:将sin αcos α看作分母是1的分式,则sin αcos α=,分子、分母同时除以cos2α(cos α≠0),得,化成整式方程为tan2α-4tan α+1=0,解得tan α=2±,符合要求,故选C.答案:C2.化简的结果为()A.-cos 160°B.cos 160°C. D.解析:原式===|cos 160°|=-cos 160°,故选A.答案:A3.已知sin θ=,cos θ=,其中θ∈,则tan θ的值为()A.-B.C.-或-D.与m的值有关解析:∵sin2θ+cos2θ=1,∴=1,解得m=0或m=8.∵θ∈,∴sin θ≥0,cos θ≤0.当m=0时,sin θ=-,cos θ=,不符合题意;当m=8时,sin θ=,cos θ=-,tan θ=-,故选A.答案:A4.已知cos,0<α<,则sin=.解析:∵sin2+cos2=1,∴sin2=1-.∵0<α<,∴<α+.∴sin.答案:5.导学号08720014若0<α<,则的化简结果是. 解析:由0<α<,得0<,所以0<sin<cos.故原式==cos-sin+sin+cos=2cos.答案:2cos6.(2016·某某某某溧水中学月考)若α∈(π,2π),且sin α+cos α=.(1)求cos2α-cos4α的值;(2)求sin α-cos α的值.解:(1)因为sin α+cos α=,所以(sin α+cos α)2=,即1+2sin αcos α=,所以sin αcos α=-.所以cos2α-cos4α=cos2α(1-cos2α)=cos2αsin2α=(sin αcos α)2=.(2)(sin α-cos α)2=1-2sin αcos α=1-2×,由(1)知sin αcos α=-<0,又α∈(π,2π),所以α∈.所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-.7.导学号08720015已知关于x的方程2x2-(+1)x+m=0的两根为sin θ和cos θ.求:(1)的值;(2)m的值.解:因为已知方程有两根,所以(1)==sin θ+cos θ=.(2)对①式两边平方,得1+2sin θcos θ=, 所以sin θcos θ=.由②,得,即m=.由③,得m≤,所以m=.。

高一数学必修4第一章测试题

高一数学必修4第一章测试题

第一章 三角函数一、选择题1.已知 α 为第三象限角,则 2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限C .第一、四象限 D .第二、四象限3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=( ). A .-433B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43B .-34 C .43 D .34 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆CB .B ⊆A ⊆CC .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos (α+β)=1,sin α=31,则sin β 的值是( ).A .31B .-31C .322 D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,πB .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π510.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin α=552,2π≤α≤π,则tan α= . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<α<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限. 3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433. 4.D 解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin θ cos θ=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin θ+cos θ=±2. 5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53. 又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D解析:若 α,β 是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β 的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合. 8.B解析:∵ cos (α+β)=1, ∴ α+β=2k π,k ∈Z . ∴ β=2k π-α.∴ sin β=sin (2k π-α)=sin (-α)=-sin α=-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象. 二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin α=552,2π≤α≤π⇒cos α=-55,所以tan α=-2. 13.53. (第6题`)解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos α=53,∴ sin ⎪⎭⎫⎝⎛α - 2π=cos α=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sincos 即 f (x )等价于min {sin x ,cos x },如图可知, f (x )max =f ⎪⎭⎫⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. (第15题)∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2) ±αcos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0,(第17题)∴ k (cos x -1)≥0, 又 sin 2 x ≥0,∴ 当 cos x =1,即x =2k π(k ∈Z )时,f (x )=sin 2 x +k (cos x -1)有最小值f (x )min =0.期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.sin 150°的值等于( ).A .21 B .-21C .23D .-23 3.在0到2π范围内,与角-34π终边相同的角是( ).A .6π B .3π C .32π D .34π 4.若cos α>0,sin α<0,则角 α 的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .41B .23 C .21 D .43 7.下列函数中,最小正周期为 π 的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 10.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-1 12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos xB .y =sin xC .y =tan xD .y =sin (x -3π) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 α 的终边经过点P (3,4),则cos α 的值为 . 16.已知tan α=-1,且 α∈[0,π),那么 α 的值等于 . 18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin (ωt +ϕ)+b (其中2π<ϕ<π),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<α<2π,sin α=54.(1)求tan α 的值;(2)求cos 2α+sin ⎪⎭⎫ ⎝⎛2π + α的值.21.(本小题满分10分) 已知函数f (x )=sin ωx (ω>0).(1)当 ω=1时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ω 的值.期末测试题参考答案一、选择题:1.A 解析:sin 150°=sin 30°=21.2.B =0+9=3. 3.C 解析:在直角坐标系中作出-34π由其终边即知. 4.D 解析:由cos α>0知,α 为第一、四象限或 x 轴正方向上的角;由sin α<0知,α 为第三、四象限或y 轴负方向上的角,所以 α 的终边在第四象限.5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 7.B 解析:由T =ωπ2=π,得 ω=2.10.B 解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.12.A 解析:画出函数的图象即知A 正确. 二、填空题: 15.53.解析:因为r =5,所以cos α=53. 16.43π.解析:在[0,π)上,满足tan α=-1的角 α 只有43π,故 α=43π. 18.20;y =10sin (8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin (ωx +ϕ)+b 的半个周期的图象,所以A =21(30-10)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ω=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<ϕ<π,可得 ϕ=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<α<2π,sin α=54, 故cos α=53,所以tan α=34.(2)cos 2α+sin ⎪⎭⎫⎝⎛α + 2π=1-2sin 2α +cos α=1-2532+53=258.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32πω=0,所以32πω=k π,k ∈Z .即 ω=23k ,k ∈Z .又ω>0,所以k ∈N*. 当k =1时,ω=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,ω≥3,f (x )=sin ωx 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,ω=23.。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。

高一下学期数学(人教版必修4)第一章1.3第1课时课时作业

高一下学期数学(人教版必修4)第一章1.3第1课时课时作业

[学业水平训练]1.cos(-420°)的值等于( )A.32B .-32 C.12 D .-12 解析:选C.cos(-420°)=cos(360°+60°)=cos 60°=12. 2.若sin(π+α)=-12,则sin(4π-α)的值是( ) A.12 B .-12C .-32 D.32解析:选B.sin α=12,sin(4π-α)=-sin α=-12. 3.已知cos α=35,则sin(3π+α)·cos(2π-α)·tan(π-α)等于( ) A .±35 B .±45C.925D.1625解析:选D.原式=sin(π+α)·cos(-α)·tan(π-α)=(-sin α)·cos α·(-tan α)=sin 2α,由cos α=35,得sin 2α=1-cos 2α=1625. 4.已知角α和β的终边关于x 轴对称,则下列各式中正确的是( )A .sin α=sin βB .sin(α-2π)=sin βC .cos α=cos βD .cos(2π-α)=-cos β解析:选C.由α和β的终边关于x 轴对称,故β=-α+2k π(k ∈Z ),故cos α=cos β.5.下列三角函数值:①sin(n π+4π3);②cos(2n π+π6);③sin(2n π+π3); ④sin[(2n +1)π-π3](n ∈Z ). 其中与sin π3数值相同的是( ) A .①② B .②③C .②③④D .①③④解析:选C.①sin(n π+4π3)=⎩⎨⎧sin π3(n 为奇数)-sin π3(n 为偶数); ②cos(2n π+π6)=cos π6=sin π3;③sin(2n π+π3)=sin π3;④sin[(2n +1)π-π3]=sin π3.故②③④正确.6.sin(-17π3)=________.解析:sin(-17π3)=sin(-6π+π3)=sin π3=32. 答案:327.化简:cos (-α)tan (7π+α)sin (π+α)=________. 解析:原式=cos αtan α-sin α=-sin αsin α=-1. 答案:-18.若|sin(4π-α)|=sin(π+α),则角α的取值范围是________.解析:因为|sin(4π-α)|=sin(π+α),则|sin α|=-sin α,sin α≤0,所以2k π-π≤α≤2k π(k ∈Z ).答案:{α|2k π-π≤α≤2k π,k ∈Z }9.已知cos α=14,求sin (2π+α)cos (-π+α)cos (-α)tan α的值. 解:sin (2π+α)cos (-π+α)cos (-α)tan α=sin α(-cos α)cos αtan α=-cos α=-14. 10.计算下列各式的值: (1)cos π5+cos 2π5+cos 3π5+cos 4π5; (2)sin 420°cos 330°+sin(-690°)cos(-660°). 解:(1)原式=⎝⎛⎭⎫cos π5+cos 4π5+⎝⎛⎭⎫cos 2π5+cos 3π5 =⎣⎡⎦⎤cos π5+cos ⎝⎛⎭⎫π-π5+⎣⎡⎦⎤cos 2π5+cos ⎝⎛⎭⎫π-2π5 =⎝⎛⎭⎫cos π5-cos π5+⎝⎛⎭⎫cos 2π5-cos 2π5=0. (2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°)=sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1. [高考水平训练] 1.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9.其中符号为负的是( )A .①B .②C .③D .④解析:选C.sin(-1 000°)=sin 80°>0;cos(-2 200°)=cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0;sin 7π10cos πtan 17π9=-sin 7π10tan 17π9,sin 7π10>0,tan 17π9<0. ∴原式>0.2.已知sin α=15,cos(α+β)=-1,则sin(2α+β)=________. 解析:由cos(α+β)=-1,得α+β=2k π+π(k ∈Z ),则2α+β=α+(α+β)=α+2k π+π(k ∈Z ),所以sin(2α+β)=sin(α+2k π+π)=sin(α+π)=-sin α=-15. 答案:-153.已知tan(π+α)=-12,求下列各式的值. (1)2cos (π-α)-3sin (π+α)4cos (α-2π)+sin (4π-α); (2)sin(α-7π)·cos(α+5π).解:tan(π+α)=-12, 则tan α=-12. (1)原式=-2cos α-3(-sin α)4cos α+sin (-α)=-2cos α+3sin α4cos α-sin α=-2+3tan α4-tan α=-2+3×(-12)4-(-12)=-79. (2)原式=sin(-6π+α-π)·cos(4π+α+π)=sin(α-π)·cos(α+π)=-sin α(-cos α)=sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 4.设f (x )=a sin(πx +α)+b cos(πx +β)+7,α,β均为实数,若f (2 013)=6,求f (2 014)的值.解:∵f (2 013)=a sin(2 013π+α)+b ·cos(2 013π+β)+7=-a sin α-b cos β+7, ∴-a sin α-b cos β+7=6,∴a sin α+b cos β=1,又∵f (2 014)=a sin(2 014π+α)+b cos(2 014π+β)+7=a sin α+b cos β+7,∴f(2 014)=1+7=8.。

人教版高一数学必修4第一章1.1—1.4练习题

人教版高一数学必修4第一章1.1—1.4练习题

人教版高一数学必修4第一章1.1—1.4练习题;考试时间:120分钟;注意事项:1答题卡上第1卷 一、选择题(本大题共12个小题,每小题5分,共60分)1、等于( )A.B. C.D.2、若角的终边过点,则等于( )A.B.C.D.不能确定,与的值有关 3、已知函数, 则下列命题正确的是( )A.是周期为的奇函数B.是周期为的偶函数C.是周期为的非奇非偶函数D.是周期为的非奇非偶函数试卷第2页,总10页4、已知为锐角,且有,,则的值是( )A.B.C.D.5、在函数、、、中,最小正周期为的函数的个数为( )A.1个B.2个C.3个D.4个 6、若,是方程的两根,则的值为 ( )A. B. C.D.7、在到范围内,与角终边相同的角是( )A.B.D.8、已知,且,则的值是( ) A.B.C.D.9、已知,那么( )A.B.C.D.10、在上满足的的取值范围是( )A.B.试卷第4页,总10页C.D.11、若,则的值为( )A. B. C. D. 12、若,则、、三个数之间的大小关系是( )A. B. C.D.二、填空题(本大题共4个小题,每小题5分,共20分)13、已知是第二象限的角,,则. 14、求函数的单调递减区间是 15、函数的值域是 .16、三角函数式的化简结果是 。

三、解答题(其中第17题10分,其它每小题12分,共70分)1.2.18、求下列函数的定义域:19、求下列函数的值域:20、设函数,象的一条对称轴是直线 1.求;2.求函数的单调增区间; 3.画出函数在区间上的图象.21、已知函数,且,求的值.22、设函数是定义在上以3为周期的奇函数,若,,求的取值范围.试卷第6页,总10页参考答案一、选择题 1.答案: C解析: 因为,选C.2.答案: C解析: 根据题意, 由于角的终边过点,那么结合三角函数定义可知,,,当时,表示的角的正弦值和余弦值的和为,当时,则表示的和为,因此可知答案为,选C 。

高一下册数学必修四第一章 三角函数.知识点及同步练习

高一下册数学必修四第一章 三角函数.知识点及同步练习

巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修四第一章 三角函数一、角的概念的推广●任意角的概念角可以看成平面内一条射线绕着端点从一个位置转到另一个位置所成的图形。

●正角、负角、零角按逆时针方向旋转成的角叫做正角, 按顺时针方向旋转所成的角叫做负角, 一条射线没有作任何旋转所成的叫做零角。

可见,正确理解正角、负角和零角的概、关键是看射线旋转的方向是逆时针、顺时针还是没有转动。

●象限角、轴线角当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合时,那么角的终边在第几象限(终边的端点除外),就说这个角是第几象限角。

当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合时,终边落在坐标轴上的角叫做轴线角。

●终边相同角所有与角α终边相同的角,连同角α在内,可构成集合S={β|β=α+k •360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

二、弧度制●角度定义制 规定周角的3601为一度的角,记做1°, 这种用度作为单位来度量角的单位制叫做角度制,角度制为60进制。

●弧度制定义1、长度等于半径的弧度所对的圆心角叫做1弧度的角。

用弧度作为单位来度量角的单位制叫做弧度制。

1弧度记做1rad 。

2、根据圆心角定理,对于任意一个圆心角α,它所对的弧长与半径的比与半径的大小无关,而是一个仅与角α有关的常数,故可以取为度量标准。

●弧度数一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.如果半径为r 的圆的圆心角α所对的弧的长为l ,那么,角α的弧度数的绝对值是rl =||α。

α的正负由角α的终边的旋转方向决定,逆时针方向为正,顺时针方向为负。

三、任意角的三角函数●任意角的三角函数的定义设α是一个任意大小的角,α的终边上任意点P 的坐标是(x,y ),它与原点的距离r(0r =>),那么1、比值yr叫做α的正弦,记做sin α,即sin y r α=。

2、比值x r 叫做α的余弦,记做cos α,即cos xrα=。

3、比值yx叫做α的正切,记做tan α,即tan y x α=。

另外,我们把比值x y 叫做α的余切,记做cot α,即cot x y α=;把比值rx叫做α的正割,记做sec α,即sec rxα=;把比值r y 叫做α的余割,记做csc α,即csc r y α=。

对于一个确定的角α,上述的比值是唯一确定的,它们都可以看成从一个角的集合到一个比值的集合的映射,是以角为自变量,以比值为函数值的函数,我们把它们统称为三角函数。

●诱导公式一终边相同角的同一个三角函数的值相等。

sin(2)sin k απα+•=, cos(2)cos k απα+•=,tan(2)tan k απα+•=,以上k ∈Z 。

利用此公式,可以把球求任意角的三角函数值化为求0到2π角的三角函数值。

●正弦线、余弦线、正切线1、如图所示,设任意角α的终边与单位圆交于点P (x,y )sin 1y yy r α===, cos 1x xx r α===。

过点P (x,y )作P M ⊥x 轴于M ,我们把线段MP ,OM 了方向的有向线段:当MP 的方向与y 轴的正方向一致时,MP 是正的;当MP 的方向与y 轴的负方向一致时,MP 是负的。

因此,有向线段MP 的符号与点P 纵坐标的符号总是一致的,且|MP|=|y|,即总有MP=y 。

同理也有OM=x 成立。

从而sin y MP α==,cos x OM α==。

我们把单位圆中规定了方向的线段MP ,OM 分别叫做角α的正弦线、余弦线。

2、如图所示,过A (1,0)作x 轴的垂线,交α的终边OP 的延长线(当α为第一、四象限角时)或这条终边的反向延 长线(当α为第二、三象限角时)于点T ,借助于有向线段OA ,AT ,我们有tan y AT AT x OAα===。

于是,我们 把规定了方向的线段AT 叫做α的正切线。

特别地,当α的终边在x 轴上时,点A 与点T 重合,tan 0AT α==;当α的终边落在y 轴上时,OP 与垂线平行,正切线不存在。

四、同角三角函数的基本关系●同角三角函数的基本关系根据三角函数的定义,可以推导出同角三角函数间的基本关系。

由三角函数定义有sin y r α=,cos x r α=,tan y xα=。

①222222222sin cos ()()1y x x y r r r r rαα++=+===,即22sin cos 1αα+=。

②当()2k k Z παπ≠+∈时,sin tan (,)cos 2k k Z απααπα=≠+∈,即同一个角α的正弦、余弦的平方和等于1,商等于α角的正切(其中,2k k Z παπ≠+∈)。

●关于公式22sin cos 1αα+=的深化()21sin sin cos ααα±=±sin cos αα=±sincos22αα=+sin 4cos4sin 4cos4=+=--sin 4cos 4=-五、正弦、余弦的诱导公式●0°~360°之间角的划分对于任何一个0°到360°的角,以下四种情形有且仅有一种成立:[0,90)180 [90,180)180 [180,270)360 [270,360)αβαββαβαβ⎧∈⎪-∈⎪⎨+∈⎪⎪-∈⎩●诱导公式二sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=。

●诱导公式三sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-。

●诱导公式四sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-。

以上几个诱导公式可以叙述为 :对于2()k k Z απ+•∈,则α-,πα±的三角函数,等于α的同名函数值,前面加上一个把α看成锐角时原三角函数值的符号。

也可以简单地说成“函数名不变,符号看象限”。

●诱导公式五sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭。

●诱导公式六 sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭。

可以概括为:2πα±的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号。

也可以简单地说成“函数名改变,符号看象限”。

高中数学 必修4第一章 三角函数练习1 一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( ) A .① B .② C .③ D .④ 3.02120sin 等于( )A .23±B .23C .23-D .21 4.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( ) A .43- B .34- C .43 D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________。

3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。

4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 。

5.与02002-终边相同的最小正角是_______________。

三、解答题 1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根, 且παπ273<<,求ααsin cos +的值. 2.已知2tan =x ,求xx xx sin cos sin cos -+的值。

3.化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅-- 三角函数练习2一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是( )A .0B .4π C .2πD .π 2.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是( )A .1sin 2y x =B .1sin()22y x π=-C .1sin()26y x π=-D .sin(2)6y x π=-3.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )A .35(,)(,)244ππππ B .5(,)(,)424ππππC .353(,)(,)2442ππππD .33(,)(,)244ππππ4.若,24παπ<<则( )A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >> 5.函数)652cos(3π-=x y 的最小正周期是( )A .52π B .25π C .π2 D .π5二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是 ,因为当α= 时,该命题的结论不成立. 2.函数xxy cos 2cos 2-+=的最大值为________.3.若函数)3tan(2)(π+=kx x f 的最小正周期T 满足12T <<,则自然数k 的值为______.4.满足23sin =x 的x 的集合为_________________________________。

5.若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________。

相关文档
最新文档