九年级数学中考专题--压轴题 精炼卷(含答案)

合集下载

【精品】人教版九年级数学中考压轴试题(含答案解析)

【精品】人教版九年级数学中考压轴试题(含答案解析)

【精品】人教版九年级数学中考压轴试题(含答案)1.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈ 2.9 .(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.4.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m 即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.5.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE ∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是(﹣2,0)或(6,0).【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式求出PA的长即可解决问题;【解答】解:(1)∵一次函数y=x+b的图象与x轴交于点A(2,0),∴2+b=0,∴b=﹣2,∴y=x﹣2,当x=3时,y=1,∴B(3,1),代入y=中,得到k=3,∴反比例函数的解析式为y=.(2)∵△PAB的面积是2,∴PA=4,∴P(﹣2,0)或(6,0).【点评】本题考查一次函数的性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)【分析】作AH⊥BN于H,设AH=xm,根据正切的概念表示出CH、BH,根据题意列出方程,解方程即可.【解答】解:如图,作AH⊥BN于H,设AH=xm,∵∠ACN=45°,∵tanB=,∴BH=x,则BH﹣CH=BC,即x﹣x=100,解得x=50(+1).答:这座山的高度为50(+1)m;【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确作出辅助线、熟记锐角三角函数的概念是解题的关键.8.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.【分析】(1)由平行四边形的性质知CD∥AB,即∠DAF=∠CDE,再由CE⊥AD、DF⊥BA知∠AFD=∠DEC=90°,据此可得;(2)根据△ADF∽△DCE知=,据此求得DC=9,再根据平行四边形的性质可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠DAF=∠CDE,又∵CE⊥AD、DF⊥BA,∴∠AFD=∠DEC=90°,∴△ADF∽△DCE;(2)∵AD=6、且E为AD的中点,∴DE=3,∵△ADF∽△DCE,∴=,即=,解得:DC=9,∵四边形ABCD是平行四边形,∴AB=CD=9.【点评】本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质及平行四边形的性质.9.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.【分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【解答】解:(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=﹣,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=3,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤3.【点评】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.10.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.【分析】(1)直接利用圆周角定理以及切线的性质定理得出∠ACD=∠ABC,进而得出答案;(2)首先得出DC的长,即可得出FC的长,再利用已知得出BC的长,结合勾股定理求出答案.【解答】(1)证明:连接DC,∵AC是⊙O的直径,∴∠BDC=90°,∴∠ABC+∠BCD=90°,∵⊙O的切线CB与AD的延长线交于点B,∴∠BCA=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠ABC,∴∠ABC=∠AED;(2)解:连接BF,∵在Rt△ADC中,AD=,tan∠AED=,∴tan∠ACD==,∴DC=AD=,∴AC==8,∵AF=6,∴CF=AC﹣AF=8﹣6=2,∵∠ABC=∠AED,∴tan∠ABC==,∴=,解得:BD=,故BC=6,则BF==2.【点评】此题主要考查了切线的性质与判定以及勾股定理等知识,正确得出∠ACD=∠ABC是解题关键.11.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A (﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P 关于直线y=t的对称点为点Q,若点Q落在△OBC的内部,求t的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)分别求出点Q落在直线BC和x轴上时的t的值即可判断;【解答】解:(1)∵抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,易知抛物线的顶点坐标为(1,4).观察图象可知当点P关于直线y=t的对称点为点Q中直线BC上时,t=3,当点P关于直线y=t的对称点为点Q在x轴上时,t=2,∴满足条件的t的值为2<t<3.【点评】本题考查二次函数的性质、待定系数法、轴对称等知识,解题的关键是熟练掌握基本知识,学会寻找特殊点解决问题,属于中考常考题型.。

数学初三九年级上册 压轴解答题测试卷(含答案解析)

数学初三九年级上册 压轴解答题测试卷(含答案解析)

数学初三九年级上册压轴解答题测试卷(含答案解析)一、压轴题1.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.2.如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边BC相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.3.如图,已知矩形ABCD中,BC=2cm,AB3cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.4.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 5.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).6.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.7.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标.8.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.9.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.10.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在....x.轴上方的部分围成的图形中............(.包括边界....).时,求t的取值范围.(直接写出答案即可) 11.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P (3,2),Q (3+1,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式. 12.如图,扇形OMN 的半径为1,圆心角为90°,点B 是上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q . (1)当点B 移动到使AB :OA=:3时,求的长;(2)当点B 移动到使四边形EPGQ 为矩形时,求AM 的长. (3)连接PQ ,试说明3PQ 2+OA 2是定值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4 【解析】 【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解. 【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ∴BE EF =,80BEF ∠= ∴180502BEFEBF BFE -∠∠=∠== ,即50BFD ∠=∵AB=AC=4,D 是BC 的中点 ∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△ ∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠= ∴50CFD BAD ∠=∠= ∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心 ∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥ ∴9040ABC BAD ∠=-∠= ∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立 (3)由(1)和(2)知,//CF AB ∴点F 的运动路径在CF 上 如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置 ∴故当点E 与点A 重合时,AF 最小 此时AF 1=AB=AC=4,即AF 的最小值为4. 【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解. 2.(1)作图见解析;(2)49π. 【解析】试题分析:(1)作出∠B 的角平分线BD ,再过X 作OX ⊥AB ,交BD 于点O ,则O 点即为⊙O 的圆心;(2)由于⊙P 与△ABC 哪两条边相切不能确定,故应分⊙P 与Rt △ABC 的边AB 和BC 相切;⊙P 与Rt △ABC 的边AB 和AC 相切时;⊙P 与Rt △ABC 的边BC 和AC 相切时三种情况进行讨论.试题解析:(1)如图所示:①以B 为圆心,以任意长为半径画圆,分别交BC 、AB 于点G 、H ;②分别以G 、H 为圆心,以大于23GH 为半径画圆,两圆相交于D ,连接BD ;③过X 作OX ⊥AB ,交直线BD 于点O ,则点O 即为⊙O 的圆心.(2)①当⊙P 与Rt △ABC 的边AB 和BC 相切时,由角平分线的性质可知,动点P 是∠ABC 的平分线BM 上的点,如图1,在∠ABC 的平分线BM 上任意确定点P 1(不为∠ABC 的顶点)∵OX=BOsin ∠ABM ,P 1Z=BPsin ∠ABM ,当BP 1>BO 时,P 1Z >OX 即P 与B 的距离越大,⊙P 的面积越大,这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点; 如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上,∴以P为圆心、PC为半径作圆,则⊙P与CB相切于C,与边AB相切于E,即这时⊙P是符合题意的圆,时⊙P的面积就是S的最大值,∵AC=1,BC=2,∴AB=5,设PC=x,则PA=AC-PC=1-x在直角△APE中,PA2=PE2+AE2,∴(1-x)2=x2+(5-2)2,∴x=25-4;②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则(2-y)2=y2+(5-1)2,∴y=51 ;③如图4,同理可得,当⊙P与Rt△ABC的边BC和AC相切时,设PF=z,∵△APF∽△PBE,∴PF:BE=AF:PE,∴,∴z=49. 由①、②、③可知,49>51->∴z >y >x ,∴⊙P 的面积S 的最大值为π.考点:1. 切线的性质;2.角平分线的性质;3.勾股定理;4.作图—复杂作图. 3.(1)详见解析;(2)21y 32x x =-,302AF ≤≤;(3)3. 【解析】 【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AE BE BC =,23y xx -=,即2132y x x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°, ∴∠AEF +∠AFE =90°, ∵EF ⊥CE , ∴∠AEF +∠BEC =90°, ∴∠AFE =∠BEC , ∴△AEF ∽△BCE ; (2)由(1)△AEF ∽BEC 得AF AE BE BC =,23y xx -=, ∴2132y x x =-+, ∵2132y x x =-+=213(3)22x -+, 当3x =y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点, ∴∠EHF =90°, ∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF , ∴MA =ME =MF =MH , 则A 、E 、H 、F 在同一圆上; 如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30° ∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°, 如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=, ∵AB =23 ∴AH =3,所以点H 移动的距离为3. 【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键. 4.(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】 【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【详解】(1)在ABC ∆中,90ACB ∠=︒. ∴90B A ∠=︒-∠9028=︒-︒ 62=︒,∵BC BD =,∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+, ∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =,∴34 ab =.【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.5.(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或()π;②【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°,∴AB =83, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA 216x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭解得x =4(负根已经舍弃),∴AB =2∴⊙O 的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF =18x 2=98, ∴FG=2﹣98,AF158,AH, ∵∠CFG =∠AFH ,∠FCG =∠AHF ,∴△CFG ∽△HFA , ∴GF CG AF AH=,∴928158-= ∴CG,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.6.(1)10;(2)10+米;(3)①100k a =-;②不存在,理由见解析【解析】【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值;(2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离;(3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可; ②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(2110010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得.【详解】(1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6),可设2(10)6y m x =-+,将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在. ∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点, ∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件,221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得1a =,2a =. 开口向下,0a <,∴1a ,2a 都可以,将1a ,2a 分别代入(2110010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键.7.(1)223y x x =+-;(2)是,定值为8;(3)1557,416⎛⎫- ⎪⎝⎭或939,416⎛⎫-- ⎪⎝⎭ 【解析】【分析】(1)把点A 、C 坐标代入抛物线解析式即可求得b 、c 的值.(2)设点Q 横坐标为t ,用t 表示直线AQ 、BN 的解析式,把x =1-分别代入即求得点M 、N 的纵坐标,再求DM 、DN 的长,即得到DM +DN 为定值.(3)点P 可以在x 轴上方或下方,需分类讨论.①若点P 在x 轴下方,延长AP 到H ,使AH =AB 构造等腰△ABH ,作BH 中点G ,即有∠PAB =2∠BAG =2∠ACO ,利用∠ACO 的三角函数值,求BG 、BH 的长,进而求得H 的坐标,求得直线AH 的解析式后与抛物线解析式联立,即求出点P 坐标.②若点P 在x 轴上方,根据对称性,AP 一定经过点H 关于x 轴的对称点H ',求得直线AH '的解析式后与抛物线解析式联立,即求出点P 坐标.【详解】解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,-3),∴10003b c c ++=⎧⎨++=-⎩解得:23b c =⎧⎨=-⎩, ∴抛物线的函数表达式为y =x 2+2x -3.(2)结论:DM +DN 为定值.理由:∵抛物线y =x 2+2x -3的对称轴为:直线x =-1,∴D (﹣1,0),x M =x N =﹣1,设Q (t ,t 2+2t ﹣3)(﹣3<t <1),设直线AQ 解析式为y =dx +e∴2023d e dt e t t +=⎧⎨+=+-⎩解得:33d t e t =+⎧⎨=--⎩, ∴直线AQ :y =(t +3)x ﹣t ﹣3,当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6,∴DM =0﹣(﹣2t ﹣6)=2t +6,设直线BQ 解析式为y =mx +n ,∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩, ∴直线BQ :y =(t ﹣1)x +3t ﹣3,当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2,∴DN =0﹣(2t ﹣2)=﹣2t +2,∴DM +DN =2t +6+(﹣2t +2)=8,为定值.(3)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I .∵当x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1,∴B (﹣3,0),∵A (1,0),C (0,﹣3),∴OA =1,OC =3,AC=AB =4,∴Rt △AOC 中,sin ∠ACO=0A AC =,cos ∠ACO=OC AC =, ∵AB =AH ,G 为BH 中点,∴AG ⊥BH ,BG =GH ,∴∠BAG =∠HAG ,即∠PAB =2∠BAG ,∵∠PAB =2∠ACO ,∴∠BAG =∠ACO ,∴Rt △ABG 中,∠AGB =90°,sin ∠BAG=10BG AB =, ∴BGAB =, ∴BH =2BG, ∵∠HBI +∠ABG =∠ABG +∠BAG =90°,∴∠HBI =∠BAG =∠ACO ,∴Rt △BHI 中,∠BIH =90°,sin ∠HBI =HI BH,cos ∠HBI=BI BH =, ∴HIBH =43,BIBH =125, ∴x H =411355-+=-,y H =125-,即1112,55H ⎛⎫-- ⎪⎝⎭, 设直线AH 解析式为y =kx +a , ∴0111255k a k a +=⎧⎪⎨-+=-⎪⎩,解得:3434k a ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AH :3344y x =-, ∵2334423y x y x x ⎧=-⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或943916x y ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴939,416P ⎛⎫-- ⎪⎝⎭. ②若点P 在x 轴上方,如图2,在AP 上截取AH '=AH ,则H '与H 关于x 轴对称.∴1112,55H ⎛'⎫- ⎪⎝⎭, 设直线AH '解析式为y k x a ='+', ∴0111255k a k a +='''⎧-'⎪⎨+=⎪⎩,解得:3434k a ⎧=-⎪⎪⎨''⎪=⎪⎩, ∴直线AH ':3344y x =-+, ∵2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或1545716x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1557,416P ⎛⎫- ⎪⎝⎭. 综上所述,点P 的坐标为939,416⎛⎫-- ⎪⎝⎭或1557,416⎛⎫- ⎪⎝⎭. 【点睛】本题属于二次函数综合题,考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.运用到分类讨论的数学思想,理清线段之间的关系为解题关键.8.(1)1;(2)①4b =-;②26c ≤<;(3)D 一定在线段AB 上,52102=CD 【解析】【分析】(1)根据题意顶点P (k ,h )可将二次函数化为顶点式:()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4,即可得出a 的值; (2)①根据抛物线x=0和x=4时函数值相等,可得到顶点P 的横坐标,根据韦达定理结合(1)即可得到b 的值,②根据(1)和(2)①即可得二次函数对称轴为x=2,利用点Q (0,2)关于对称轴的对称点R (4,2)可得QR=4,又QR 在直线y=2上,故令M 坐标(t ,2)(0≤t <2),代入二次函数即求得c 的取值范围;(3)由c=-b-1代入抛物线方程即可化简,将抛物线绕原点逆时针旋转αα,且tanα=2,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tanα=2,可得到直线l 的解析式,最后联立直线方程与抛物线方程运算求解.【详解】解:(1)根据题意可知1二次函数2y ax bx c =++(a≠0)的顶点为P (k ,h ),故二次函数顶点式为()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,且无论h 、k 为何值,AB 的长度都为4,∴a=1;故答案为:a=1.(2)①∵二次函数当0x =和4x =时的函数值相等 ∴222b b x a =-=-= ∴4b =-故答案为:4b =-. ②将点Q 向右平移4个单位得点()4,2R当2c =时,242y x x =-+令2y =,则2242x x =-+解得14x =,20x =此时()0,2M ,()4,2N ,4MN QR ==∵4QM QN +=∵QM NR =∴4QN NR QR +==∴N 在线段QR 上,同理M 在线段QR 上设(),2M m ,则02m ≤<,224m m c =-+ 2242(2)6c m m m =-++=--+∵10-<,对称轴为2m =,02m ≤<∴c 随着m 的增大而增大∴26c ≤<故答案为:26c ≤<.(3)∵1c b =--∴21y x bx b =+--将抛物线绕原点逆时针旋转α,且tan 2α=,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tan 2α=,∴l 的解析式为2y x =221y x y x bx b =⎧⎨=+--⎩∴2(2)10x b x b +---= ∴2224(2)448b ac b b b ∆=-=-++=+∴x =∴12,22b D b ⎛-+-++ ⎝⎭ 2224412444244AB ac b b b b y k b a ---+-+=+=+==-++124224AB D b y yb b ⎛⎫-+-=-++-++= ⎪⎝⎭∵20b ≥∴12404410444D ABb y y -+-+-=≥==> ∴点1D 始终在直线AB 上方∵2C b -+-⎝⎭∴24224BC A b y yb b ⎛⎫-+-=-+--++= ⎪⎝⎭ ∴224841644AB C b b y y -++--++-== )22164-+=∵b-<<2028b ≤<,∴4≤<设n ,4n≤<∴2(2)164AB C n y y --+-= ∵104-<,对称轴为2n = ∴当4n ≤<时,AB C y y -随着n 的增大而减小∴当4n =时,0AB C y y -=∴当224n ≤<时,AB C y y >∴区域S 的边界与l 的交点必有两个∵1D AB y y >∴区域S 的边界与l 的交点D 一定在线段AB 上∴D AB y y =∴2(2)164D C C AB n y y y y --+-=-= ∴当22n =时,D C y y -有最大值122+此时1222D C x x +-= 由勾股定理得:()()2252102C CD D CD x x y y +=-+-=,故答案为:5102=CD . 【点睛】 本题考查二次函数一般式与顶点式、韦达定理的运用,以及根与系数的关系判断二次函数交点情况,正确理解相关知识点是解决本题的关键.9.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】 (1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,∴A 、B 点的坐标为:A (0,2),B(4,0),将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+,D2M的解析式为:322y x=-,联立两个方程得:D3(4,4),故所求的D点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.10.(1)y=−x2+3;(2)①t=2或t=5;②6−3⩽t⩽6 2【解析】【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);则有DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据DF=7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为(−3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t⩽6 2.∵C′E′=CE=3,∴C′点的横坐标为t−3,∴MN=3−(t−3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得3−(t−3)2⩾3−2t2,解得t⩾6−3或t⩽−6−3(舍去).∴t的取值范围为:6−3⩽t⩽6 .【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..11.(1)45,45;(2)k=3;(3)y=3x+3﹣2【解析】【分析】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx (k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=33 ;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3﹣1,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y=3x+b,将点Q′的坐标代入上式并解得:直线的表达式为:y=3x+3﹣2【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.12.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.。

2020年春学期九年级数学中考压轴题精选精练(含答案解析)

2020年春学期九年级数学中考压轴题精选精练(含答案解析)

2020年春学期九年级数学中考压轴题精选精练一、选择题(6题)1.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6 B.C.D.3. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为()A.1 B.54C.1或3 D.54或54.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.103B.163C.85D.1855.如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4 B.6 C.7 D.86.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.10二、填空题(6题)1.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE =2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.2.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=.3.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD 面积分别为8和18,若双曲线kyx恰好经过BC的中点E,则k的值为.第3题第4题4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.5.如图,在平面直角坐标系中,已知点A(0,1),B(0,1+m),C(0,1﹣m)(m>0),点P在以D(﹣4,﹣2)为圆心,为半径的圆上运动,且始终满足∠BPC=90°,则m的取值范围是.第3题第4题6.如图,在矩形ABCD中,AB=15,AD=10,点P是AB边上任意一点(不与A点重合),连接PD,以线段PD为直角边作等腰直角△DPQ(点Q在直线PD右侧),∠DPQ=90°,连接BQ,则BQ的最小值为.三、解答题(6题)1.如图,正方形ABCD的边长为2,点E、F分别是边AB、AD上的动点,且∠ECF=45°,CF的延长线交BA的延长线于点G,GE的延长线交DA的延长线于点H,连接AE、CF.(1)求证:△AEF的周长为定值;(2)求AG•AH的值;(3)当△CGH是等腰三角形时,求AF的值.2.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M在抛物线上,点P为y轴上一动点,求MP+PC的最小值.3.如图①,一次函数122y x =-的图象交x 轴于点A ,交y 轴于点B ,二次函数212y x bx c =-++的图象经过A 、B 两点,与x 轴交于另一点C .(1)求二次函数的关系式及点C 的坐标; (2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD +PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB =∠ACB ,求出所有满足条件的点M 的坐标.4.如图,矩形ABCD 中,AB =6,AD =8.动点E ,F 同时分别从点A ,B 出发,分别沿着射线AD 和射线BD 的方向均以每秒1个单位的速度运动,连接EF ,以EF 为直径作⊙O 交射线BD 于点M ,设运动的时间为t .(1)当点E 在线段AD 上时,用关于t 的代数式表示DE ,DM . (2)在整个运动过程中,①连结CM ,当t 为何值时,△CDM 为等腰三角形.②圆心O 处在矩形ABCD 内(包括边界)时,求t 的取值范围,并直接写出在此范围内圆心运动的路径长.5.如图1,矩形ABCD中,AB=6,动点P从点A出发,沿A→B→C的方向在AB和BC 上移动,记P A=x,点D到直线P A的距离为y,y关于x的函数图象由C1、C2两段组成,如图2所示.(1)求AD的长;(2)求图2中C2段图象的函数解析式;(3)当△APD为等腰三角形时,求y的值.6.如图,顶点为A的抛物线y=a(x+2)2﹣4交x轴于点B(1,0),连接AB,过原点O 作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式;(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,OB=AP;(3)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.【答案与解析】一、选择题1.【分析】设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数y=,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【解答】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得:y=m,则点A的坐标为:(m,m),线段AB的长度为m,点D的纵坐标为m,∵点A在反比例函数y=上,∴k=m2,即反比例函数的解析式为:y=,∵四边形ABCD为正方形,∴四边形的边长为m,点C,点D和点E的横坐标为m+m=m,把x=m代入y=得:y=m,即点E的纵坐标为m,则EC=m,DE=m﹣m=m,=,故选:A.2.【分析】点A,C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点O在到AC的中点的距离不变.本题可通过设出AC的中点坐标,根据B、D、O在一条直线上时,点B到原点O的最大可得出答案.【解答】解:作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=AC=2,∵BD==2,OD=AC=2,∴点B到原点O的最大距离为2+2,故选:D.3.【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得,可求BE,DE的长,由勾股定理可求PB的长.【解答】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB==5∵点D是AB的中点,∴BD=BA=∵B1D⊥BC,∠C=90°∴B1D∥AC∴∴BE=EC=BC=2,DE=AC=∵折叠∴B1D=BD=,B1P=BP∴B1E=B1D﹣DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2﹣BP)2,∴BP=如图,若点B1在BC右侧,∵B1E=DE+B1D=+,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP﹣2)2,∴BP=5故答案为:或5 故选:D.4.【分析】先解方程组得P点坐标为(3a﹣1,4a+2),则可确定点P为直线y =x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),利用勾股定理计算出AB=,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,证Rt△MBP∽Rt△ABO,利用相似比计算出MP=,则PQ =,即线段PQ的最小值为.【解答】解:解方程组得,∴P点坐标为(3a﹣1,4a+2),设x=3a﹣1,y=4a+2,∴y=x+,即点P为直线y=x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),∴AB==,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,∵∠MBP=∠ABO,∴Rt△MBP∽Rt△ABO,∴MP:OA=BM:AB,即MP:=:,∴MP=,∴PQ=﹣1=,即线段PQ的最小值为.故选:C.5.【分析】连结BD,由四边形EBCD的面积是△ABE面积的3倍得平行四边形ABCD的面积是△ABE面积的4倍,根据平行四边形的性质得S△ABD=2S△ABE,则AD=2AE,即点E为AD的中点,E点坐标为(0,2),A点坐标为(﹣,0),利用线段中点坐标公式得D点坐标为,再利用反比例函数图象上点的坐标特征得k的值.【解答】解:如图,连结BD,∵四边形EBCD的面积是△ABE面积的3倍,∴平行四边形ABCD的面积是△ABE面积的4倍,∴S△ABD=2S△ABE,∴AD=2AE,即点E为AD的中点,∵E点坐标为(0,2),A点坐标为(﹣,0),∴D点坐标为(,4),∵顶点D在双曲线y=(x>0)上,∴k=×4=6,故选:B.6.【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE 的值;【解答】解:将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,∴MA+MD+ME的最小值为4+3.故选:B.二、填空题.【分析】如图作点D关于BC的对称点D′,连接PD′,ED′.由DP=PD′,推出PD+PF =PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.【解答】解:如图作点D关于BC的对称点D′,连接PD′,ED′.在Rt△EDD′中,∵DE=6,DD′=8,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=8,∴PF+PD的最小值为8,故答案为8.2.【分析】不能用全等、相似的判定和性质求得AC的情况下,考虑构造直角三角形用勾股定理来求,故过点C作AB垂线CF.由于△ABD三边确定,可用勾股定理列方程求得AB边上的高DE的长.根据平行线间距离处处相等,即有CF=DE,进而求得BF和AF,再在Rt△ACF中用勾股定理求AC.【解答】解:过点D作DE⊥AB于点E,过点C作CF⊥AB交AB延长线于点F∴∠AED=∠BED=∠F=90°设AE=x,∵AB=BC=BD=2,AD=1∴BE=AB﹣AE=2﹣x∵在Rt△ADE中,AE2+DE2=AD2,在Rt△BDE中,BE2+DE2=BD2∴DE2=AD2﹣AE2=BD2﹣BE2得:12﹣x2=22﹣(2﹣x)2解得:x=∴DE2=AD2﹣AE2=12﹣()2=∵AB∥CD∴CF=DE∴在Rt△BCF中,BF=∴AF=AB+BF=2+=∴在Rt△ACF中,AC=3.【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明△OAB∽△OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为6.【解答】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(0,b),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为6.4.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB =1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE 的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.5.【分析】由题意P A=AB=AC=m,求出P A的最大值和最小值即可解决问题;【解答】解:∵A(0,1),B(0,1+m),C(0,1﹣m)(m>0),∴AB=AC=m,∵∠BPC=90°,∴P A=AB=AC,∵D(﹣4,﹣2),A(0,1),∴AD==5,∵点P在⊙D上运动,∴P A的最小值为5﹣,P A的最大值为5+,∴满足条件的m的取值范围为:5﹣≤m≤5+故答案为5﹣≤m≤5+.6.【分析】过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,依据全等三角形的性质,即可得到AF=PE=10(定值),依据△EFQ是等腰直角三角形,可得FQ与FB的夹角始终为45°,进而得到当BQ⊥FQ时,BQ的长最小,根据△BQF是等腰直角三角形,即可得到BQ的长度.【解答】解:如图所示,过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,∵△DPQ是等腰直角三角形,四边形ABCD是矩形,∴DP=PQ,∠A=∠PEQ,∠ADP=∠EPQ,∴△ADP≌△EPQ(AAS),∴AP=QE=FE,AD=PE=10,∴AF=PE=10(定值),又∵△EFQ是等腰直角三角形,∴∠QFE=45°,即FQ与FB的夹角始终为45°,如图,当BQ⊥FQ时,BQ的长最小,此时,△BQF是等腰直角三角形,又∵QE⊥BF,∴BE=EF=QE=AP,∴BE=AP==,∴BF=5,∴BQ=cos45°×BF=,即BQ的最小值为,故答案为:.三、解答题1.【分析】(1)先构造出△CDN≌△CBE(SAS),得出CN=CE,∠DCN=∠BCE,进而判断出△FCN≌△FCE,即可得出结论;(2)利用等式的性质得出∠AHC=∠ACG,进而判断出△ACH∽△AGC,即可得出结论;(3)分三种情况,①当HC=HG时,判断出△HCD≌△GHA(AAS),得出AH=CD=2,HD=AG=4,再判断出△AFG∽△BCG,即可得出结论;②当GC=GH时,判断出△GBC≌△HAG(AAS),得出AG=BC=2=AB,进而判断出AF是三角形BCG的中位线,即可得出结论;③当CG=CH时,先判断出△CAG≌△CAH(SAS),得出∠DCF=∠ACF=22.5°,在CD上取点M使DM=DF=m,得出MF=CM=m,再判断出CM=MF,得出m+m =2,即可得出结论.【解答】(1)证明:如图,延长AD至N,使DN=BE,∵四边形ABCD是正方形,∴∠CDN=∠B=90°,CD=CB,∴△CDN≌△CBE(SAS),∴CN=CE,∠DCN=∠BCE,∵∠ECF=45°,∴∠DCF+∠BCE=45°,∴∠DCF+DCN=45°=∠FCN,∴∠FCN=∠FCE,∵CF=CF,∴△FCN≌△FCE,∴FN=EF,∴△AEF的周长为AE+AF+EF=AB﹣BE+AF+FN=AB﹣BE+AF+DF+DN=AB﹣BE+AF+DF+BE=AB+AD=2AB=4是定值;(2)∵AC是正方形ABCD的对角线,∴∠CAD=∠CAB=45°,∴∠CAH=∠CAG=135°,又∵∠DAC=∠AHC+∠ACH=45°,∠ECF=∠ACF+∠ACH=45°,∴∠AHC=∠ACG,∴△ACH∽△AGC,∴,∴AC2=AG•AH,∵正方形ABCD的边长为2,∴AC=2,∴AG•AH=8;(3)①当HC=HG时,∴∠HGC=∠HCG=45°,∴∠CHG=90°,∴∠CHD+∠AHG=90°,∴∠CHD+∠DCH=90°,∴∠DCH=∠AHG,∵∠CDH=∠HAG=90°∴△HCD≌△GHA(AAS)∴AH=CD=2,HD=AG=4,∵AF∥BC,∴△AFG∽△BCG,∴,∴,∴AF=,②当GC=GH时,∴∠CHG=∠HCG=45°,∴∠CGH=90°,∴∠BGC+∠AGH=90°,∵∠BGC+∠BCG=90°,∴∠BCG=∠AGH,∵∠CBG=∠GAH=90°,∴△GBC≌△HAG(AAS),∴AG=BC=2=AB,∵AF∥BC,∴CF=GF,∴AF=BC=1;③当CG=CH时,∴∠CGH=∠CHG,∵AC是正方形ABCD的对角线,∴∠DAC=∠BAC=45°,∴∠CAG=∠CAH=135°,∵CA=CA,∴△CAG≌△CAH(SAS),∴∠DCF=∠ACF=22.5°如备用图,在CD上取点M使DM=DF=m,连接MF,∴MF=CM=m,∠DFM=45°=∠CFM+∠DCF=∠CFM+22.5°,∴∠CFM=22.5°=∠DCF,∴CM=MF,∴m+m=2 ∴m=2﹣2,∴AF=AD﹣DF=4﹣2综上所述:当△CGH是等腰三角形时,AF的值为或1或4﹣2.2.【分析】(1)根据点A,B的坐标,利用待定系数法可求出抛物线的解析式,再利用配方法可求出顶点D的坐标;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,由BC∥DE结合点D的坐标可得出直线DE的解析式,再连接直线DE和抛物线的解析式成方程组,通过解方程组可求出点E的坐标;(3)利用二次函数图象上点的坐标特征可求出点M的坐标,过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,由OC=OB结合BN⊥直线BC可得出点N的坐标,由点B,N的坐标,利用待定系数法可求出直线BN的解析式,由MF∥BN结合点M的坐标可得出直线MF的解析式,联立直线MF和直线BC的解析式成方程组,通过解方程组可求出点F的坐标,进而可求出MF的长度,由∠PCF=45°,∠PFC=90°可得出△PCF为等腰直角三角形,进而可得出PF=PC,结合点到直线之间垂直线段最短可得出当MF⊥BC时,MP+PC取得最小值,最小值为MF的长度,此题得解.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4).(2)当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3).过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,如图1所示.设直线BC的解析式为y=kx+c(k≠0),将B(3,0),C(0,﹣3)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=x﹣3.∵BC∥DE,∴设直线DE的解析式为y=x+d,将D(1,﹣4)代入y=x+d,得:﹣4=1+d,解得:d=﹣5,∴直线DE的解析式为y=x﹣5.连接直线DE和抛物线的解析式成方程组,得:,解得:,,∴在线段BC下方的抛物线上,存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3).(3)当x=﹣时,y=x2﹣2x﹣3=,∴点M的坐标为(﹣,).过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,如图2所示.∵OB=OC,∴∠BCO=45°,∴∠BNC=45°=∠BCO,∴ON=OC=3,∴点N的坐标为(0,3).设直线BN的解析式为y=nx+t(n≠0),将B(3,0),N(0,3)代入y=nx+t,得:,解得:,∴直线BN的解析式为y=﹣x+3.设直线MF的解析式为y=﹣x+q,将M(﹣,)代入y=﹣x+q,得:+q=,解得:q=,∴直线MF的解析式为y=﹣x+.联立直线MF和直线BC的解析式成方程组,得:,解得:,∴点F的坐标为(,﹣),∴MF==.∵∠PCF=45°,∠PFC=90°,∴△PCF为等腰直角三角形,∴PF=PC,∴当MF⊥BC时,MP+PC=MP+PF=MF最小,最小值为.3.【分析】(1)先根据一次函数解析式确定A(4,0),B(0,﹣2),再利用待定系数法求抛物线解析式;然后解方程﹣x2+x﹣2=0得C点坐标;(2)如图2,先证明△PDE∽△OAB.利用相似比得到PD=2PE.设P(m,﹣m2+m ﹣2),则E(m,m﹣2).再利用m表示出PD+PE得到PD+PE=3×[﹣m2+m﹣2﹣(m﹣2)],然后根据二次函数的性质解决问题;(3)讨论:当点M在直线AB上方时,根据圆周角定理可判断点M在△ABC的外接圆上,如图1,由于抛物线的对称轴垂直平分AC,则△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),根据半径相等得到()2+(﹣t+2)2=(﹣4)2+t2,解方程求出t得到圆心O1的坐标为(,﹣2),然后确定⊙O1的半径半径为.从而得到此时M点坐标;当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2,通过证明∠O1AB=∠OAB可判断O2在x轴上,则点O2的坐标为(,0),然后计算出DM即可得到此时M点坐标.【解答】解:(1)令y==0,解得x=4,则A(4,0).令x=0,得y=﹣2,则B(0,﹣2);∵二次函数y=的图象经过A、B两点,∴,解得∴二次函数的关系式为y=﹣x2+x﹣2;当y=0时,﹣x2+x﹣2=0,解得x1=1,x2=4,则C(1,0);(2)如图2,∵PD∥x轴,PE∥y轴,∴∠PDE=∠OAB,∠PED=∠OBA.∴△PDE∽△OAB.∴===2,∴PD=2PE.设P(m,﹣m2+m﹣2),则E(m,m﹣2).∴PD+PE=3PE=3×[﹣m2+m﹣2﹣(m﹣2)]=﹣m2+6m=﹣(m﹣2)2+6;∵0<m<4,∴当m=2时,PD+PE有最大值6;(3)当点M在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),∵O1B=O1A,∴()2+(﹣t+2)2=(﹣4)2+t2,解得t=2.∴圆心O1的坐标为(,﹣2).∴O1A==,即⊙O1的半径半径为.此时M点坐标为(,);当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB.∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0).∴O2D=1,∴DM==.此时点M的坐标为(,).综上所述,点M的坐标为(,)或(,).4.【分析】(1)在Rt△ABD中,依据勾股定理可求得BD的长,然后依据MD=ED•cos∠MDE,cos∠MDE=cos∠ADB=,由此即可解决问题.(2)①可分为点E在AD上,点E在AD的延长线上画出图形,然后再依据MC=MD,CM=CD、DM=DC三种情况求解即可;②当t=0时,圆心O在AB边上.当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.先求得DH的长,然后依据平行线分线段成比例定理可得到DF=DH,然后依据DF=DH列出关于t的方程,从而可求得t的值,故此可得到t的取值范围.【解答】解:(1)如图1所示:连接ME.∵AE=t,AD=8,∴ED=AD﹣AE=8﹣t.∵EF为⊙O的直径,∴∠EMF=90°.∴∠EMD=90°.∴MD=ED•cos∠MDE=.(2)①a、如图2所示:连接MC.当DM=CD=6时,=6,解得t=;b、如图3所示:当MC=MD时,连接MC,过点M作MN⊥CD,垂足为N.∵MC=MD,MN⊥CD,∴DN=NC.∵MN⊥CD,BC⊥CD,∴BC∥MN.∴M为BD的中点.∴MD=5,即=5,解得t=;c、如图4所示:CM=CD时,过点C作CG⊥DM.∵CM=CD,CG⊥MD,∴GD=MD=.∵=,∴DG=CD=.∴=.解得:t=﹣1(舍去).d、如图5所示:当CD=DM时,连接EM.∵AE=t,AD=8,∴DE=t﹣8.∵EF为⊙O的直径,∴EM⊥DM.∴DM=ED•cos∠EDM=.∴=6,解得:t=.综上所述,当t=或t=或t=时,△DCM为等腰三角形.②当t=0时,圆心O在AB边上.如图6所示:当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.∵HE∥CD,OF=OE,∴DF=DH.∵DH==,DF=10﹣t,∴=10﹣t.解得:t=.综上所述,在整个运动过程中圆心O处在矩形ABCD内(包括边界)时,t的取值范围为0≤t≤.5.【分析】(1)由图1和图2直接确定出AD;(2)先利用互余即可得出∠BAP=∠DGA,进而判断出△ABP∽△DGA即可确定出函数关系式;(3)分三种情况利用等腰三角形的性质和勾股定理求出x的值,即可求出y的值.【解答】解:(1)如图,当点P在AB上移动时,点P到P A的距离不变,当点P从B点向C点移动时,点D到P A的距离在变化,由图2知,AD=10,(2)∵四边形ABCD是矩形,∴∠ABP=∠BAD=90°,∵DG⊥AP,∴∠AGD=90°,∴∠ABP=∠DGA,∵∠BAP+∠GAD=90°,∠CAG+∠ADG=90°,∴∠BAP=∠DGA,∴△ABP∽△DGA,∴,∵AB=6,AP=x,DG=y,AD=10,∴,∴y=(6<x≤2);即:图2中C2段图象的函数解析式y=(6<x≤2);(3)∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=10,∠ABC=∠DCB=90°,当AD=AP时,∵AD=10,∴x=AP=10,∴y==6,当AD=DP时,∴DP=10,在Rt△DCP中,CD=AB=6,DP=10,∴CP=8,∴BP=BC﹣CP=2,在Rt△ABP中,根据勾股定理得,x=AP===2,∴y===3,当AP=DP时,点P是线段AD的垂直平分线,∴点P是BC的中点,∴BP=BC=AD=5,在Rt△ABP中,根据勾股定理得,x=AP===,∴y===.6.【分析】(1)将点B的坐标代入到抛物线的解析式中即可求得a值,从而求得其解析式;(2)利用两点坐标求得线段AB的长,然后利用平行四边形的对边相等求得t=5时,四边形ABOP为平行四边形;若四边形ABOP为等腰梯形,连接AP,过点P作PG⊥AB,过点O作OH⊥AB,垂足分别为G、H,根据△APG≌△BOH求得线段OP=GH=AB﹣2BH=.(3)首先判定四边形ABOD是平行四边形,然后确定S△DOC=×5×4=10.过点P作PN⊥BC,垂足为N,利用△OPN∽△BOH得到PN=t,然后表示出四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2 t+10,从而得到当t=时,四边形CDPQ的面积S最小.然后得到点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),利用两点坐标公式确定PQ的长即可.【解答】解:(1)把(1,0)代入y=a(x+2)2﹣4,得a=.∴y=(x+2)2﹣4,即y=x2+x﹣;(2)由题意得OP=t,AB==5,若OB∥AP,即四边形ABOP为平行四边形时,OB=AP,且OP=AB=5,即当t=5时,OB=AP,若OB不平行于AP,即四边形ABOP为等腰梯形时,OB=AP,连接AP,过点P作PG ⊥AB,过点O作OH⊥AB,垂足分别为G、H,∴△APG≌△BOH,在Rt△OBM中,∵OM=,OB=1,∴BM=,∴OH=,∴BH=,∴OP=GH=AB﹣2BH=,即当t=时,OB=AP;(3)将y=0代入y=x2+x﹣,得x2+x﹣=0,解得x=1或﹣5.∴C(﹣5,0).∴OC=5,∵OM∥AB,AD∥x轴,∴四边形ABOD是平行四边形,∴AD=OB=1,∴点D的坐标是(﹣3,﹣4),∴S△DOC=×5×4=10,过点P作PN⊥BC,垂足为N.易证△OPN∽△BOH,∴=,即=,∴PN=t,∴四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2t+10,∴当t=时,四边形CDPQ的面积S最小,此时,点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),∴PQ==.。

2023年九年级数学中考复习《中考压轴解答题》专题提升训练(含解析)

2023年九年级数学中考复习《中考压轴解答题》专题提升训练(含解析)

2022-2023学年九年级数学中考复习《中考压轴解答题》专题提升训练(附答案)1.如图,AB是⊙O的直径,点F在⊙O上,∠BAF的平分线AE交⊙O于点E,过点E作ED⊥AF,交AF的延长线于点D,延长DE、AB相交于点C.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,tan∠EAD=,求AE的长.2.如图,点C是以AB为直径的⊙O上一点,过点A作⊙O的切线交BC延长线于点D,取AD中点E,连接EC并延长交AB延长线于点F.(1)试判断EF与⊙O的位置关系,并说明理由;(2)若CF=12,BF=8,求tan D.3.如图,四边形ABCD内接于⊙O,AE⊥CB的延长线于点E,连结AC,BD,AB平分∠EBD,(1)求证:AC=AD.(2)当B为的中点,BC=3BE,AD=6时,求CD的长.4.如图,已知AB是圆O的直径,C是圆O上异于A,B的点,D为中点,且DE⊥AC 于点E,连结CD.(1)求证:DE是圆O的切线;(2)若圆O的半径为5,且CD=6,求AC.5.如图,AB是半圆⊙O的直径,C为半圆上一点,CE⊥AB,垂足为E,F为AB延长线上一点,且∠FCB=∠ECB.(1)求证:CF是⊙O的切线;(2)若EB=3,BF=6,求图中阴影部分的面积.6.如图,以▱ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连接BF.过点E作EG⊥CD于点G,EG是⊙O的切线.(1)求证:▱ABCD是菱形;(2)已知EG=2,DG=1.求CF的长.7.已知,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D.(1)如图1,求证:BD=CD;(2)如图2,点E在上,连接CE并延长至点F,连接AF交⊙O于点G,若=,求证:∠BAC=2∠F;(3)如图3,在(2)的条件下,连接BF,若CF=5,BF=8,求△ACF的面积.8.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,∠APB的度数应为多少时,四边形APBC 为菱形?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).9.感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.(不需证明)探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:如图3,四边形ABDC中,∠B=45°,∠C=135°,DB=DC,DE⊥AB,若BE=a,则AB﹣AC的值为.(用a的代数式表示)10.定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF =CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.11.如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE =90°,EF=6cm,DF=8cm,E、F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD﹣DE上以2cm/s的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,点C时,△DEF与点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH=cm,DG=cm;(2)t=秒时点P与点G重合?(3)t为多少秒时△PDG为等腰三角形?请说明理由;(4)直接写出△PDB的面积(可用含t的代数式表示).12.(1)问题探究:如图1,在正方形ABCD中,点E,Q分别在边BC、AB上,DQ⊥AE 于点O,点G,F分别在边CD、AB上,GF⊥AE.①判断DQ与AE的数量关系:DQ AE;②推断:的值为;(无需证明)(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF 折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、N分别在边BC、AB上,求的值.13.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为.14.【问题情境】(1)如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.【尝试应用】(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;【拓展提升】(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连接DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连接AC交DE于点H,直接写出的值.15.【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.(1)【实践探究】在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN=45°,若tan∠BAN=,求证:M是CD的中点.(3)【拓展】如图③,在矩形ABCD中,AB=12,AD=16,点M、N分别在边DC、BC 上,连接AM、AN,已知∠MAN=45°,BN=4,则DM的长是.16.在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.17.如图,已知抛物线y=mx2+4x+n与x轴交于A、B两点,与y轴交于点C.直线y=x﹣3经过B,C两点.(1)求抛物线的函数表达式;(2)抛物线的顶点为M,在该抛物线的对称轴l上是否存在点P,使得以C,M,P为顶点的三角形是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.18.如图一,在平面直角坐标系中,抛物线的顶点为D(2,8),与x轴交于两点A,B(A在B的左侧),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图二,连接AD,BC,点P是线段BC上方抛物线上的一个动点,过点P作PQ ∥AD交CB于点Q,PQ的最大值及此时点P的坐标;(3)将该抛物线关于直线x=1对称得到新抛物线y1,点E是原抛物线y和新抛物线y1的交点,F是原抛物线对称轴上一点,G为新抛物线上一点,若以E、F、A、G为顶点的四边形是平行四边形,请直接写出点F的坐标.19.抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.20.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A,B两点(点B在点A的右边),点A坐标为(1,0),抛物线与y轴交于点C,S△ABC=3.(1)求抛物线的函数表达式;(2)点P(x,y)是抛物线上一动点,且x>3.作PN⊥BC于N,设PN=d,求d与x 的函数关系式;(3)在(2)的条件下,过点A作PC的平行线交y轴于点F,连接BF,在直线AF上取点E,连接PE,使PE=2BF,且∠PEF+∠BFE=180°,请直接写出P点坐标.参考答案1.解:(1)连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠BAF,∴∠OAE=∠DAE,∴∠OEA=∠EAD,∴OE∥AD,∵ED⊥AF,∴OE⊥DE,OA是⊙O的半径,∴CD是⊙O的切线;(2)连接BE,∵AB是⊙O的直径,∴∠AEB=90°=∠D,又∠DAE=∠BAE,∴△ADE∽△AEB,∴==,∵tan∠EAD=,∴==,则AE=2BE,又AB=10,在△ABE中,AE2+BE2=AB2,即(2BE)2+BE2=102,解得:BE=2,则AE=4.2.解:(1)EF是⊙O的切线,理由如下:连接OC,AC,∵AB是⊙O的直径,∴∠ACB=90°=∠ACD,又∴E是AD的中点,∴CE=ED=EA,∴∠EAC=∠ACE,又∵OA=OC,∴∠OAC=∠OCA,∵AD是⊙的切线,AB是直径,∴∠EAB=90°=∠EAC+∠OAC,∴∠ACE+∠OCA=90°,即OC⊥EF,∴EF是⊙O的切线;(2)解法一:设OC=x=OB,在Rt△OFC中,由勾股定理得,OC2+FC2=OF2,即x2+122=(8+x)2,解得x=5,即OC=5,∴AB=2OC=10,∴tan F====,∴AE=,∴DE=2AE=15,在Rt△ABD中,tan D===.解法二:连接AC,∵AB是⊙O的直径,∴∠ACB=90°=∠ACD,∵AD是⊙O的切线,∴∠DAB=90°,∴∠D=∠CAB,∵∠BCF=∠CAB,∠F=∠F,∴△CBF∽△ACF,∴===,∴tan D=tan∠CAB==.3.(1)证明:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠ABE=∠ADC,∵AB平分∠DBE,∴∠ABE=∠DBA,∴∠ADC=∠DBA,∵∠ACD=∠DBA,∴∠ADC=∠ACD,∴AC=AD;(2)解:过A作AF⊥CD于F,∵B为的中点,∴AB=BC,∵BC=3BE,∴AB=3BE,∵四边形ABCD是⊙O的内接四边形,∴∠ADF=∠ABE,∵∠AFD=∠AEB=90°,∴△ABE∽△ADF,∴==,∵AD=6,∴DF=2,∵AC=AD,∴CD=2DF=4.4.(1)证明:连接OD、OC,∵D为中点,∴∠BOD=∠COD=∠BOC,又∵∠BAC=∠BOC,∴∠BAC=∠BOD,∴OD∥AE,∴DE⊥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线;(2)解:连接BD,∵D为中点,∴BD=CD=6,∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ABD中,AD==8,∵∠DCE=∠B,∴sin B====sin∠DCE==,∴DE=,∴CE==,在Rt△ADE中,由勾股定理得,DE2+AE2=AD2,即()2+(AC+)2=82,∴AC=.5.(1)证明:连接OC,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠CBE=90°,∵OC=OB,∴∠OCB=∠CBE,∴∠OCB+∠ECB=90°,∵∠FCB=∠ECB∴∠FCB+∠OCB=90°,∴∠OCF=90°,∴CF是⊙O的切线;(2)解:∵∠OCF=∠OEC=90°,∠FOC=∠COE,∴△OCE∽△OFC,∴=,即=,解得:OB=6,∴cos∠COF===,∴∠COF=60°,∴CF=OF•sin∠COF=6,∴阴影部分的面积=×6×6﹣=18﹣6π.6.(1)证明:如图,连接OE,∵EG是⊙O的切线,∴OE⊥EG,∵EG⊥CD,∵四边形ABCD是平行四边形,∴OE∥CD∥AB,∴∠CEO=∠CAB,∵OC=OE,∴∠CEO=∠ECO,∴∠ACB=∠CAB,∴AB=BC,∴▱ABCD是菱形;(2)如图,连接BD,由(1)得,OE∥CD,OC=OB,∴AE=CE,∴CE:AC=1:2,∴点E是AC的中点,∵四边形ABCD是菱形,∴BD经过点E,∵BC是⊙O的直径,∴BF⊥CD,∵EG⊥CD,∴EG∥BF,∴△DGE∽△DFB,∴DG:DF=GE:BF=DE:BD=1:2,∴DF=2,BF=4,在Rt△BFC中,设CF=x,则BC=x+2,由勾股定理得,x2+42=(x+2)2,解得:x=3,∴CF=3.7.(1)证明:如图1,连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)证明:如图2,连接AD,CG,∵AC是⊙O的直径,∴∠CGF=∠AGC=90°,∠ADC=90°,∴∠ADC=∠CGF,∵=,∴∠DCG=∠ACE,∴∠DCG﹣∠ACG=∠ACE﹣∠ACG,∴∠ACD=∠FCG,∴∠F=∠CAD,∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC,∴∠BAC=2∠F;(3)解:如图3,取CF的中点H,连接DH,GH,DG,由(1)知:BD=CD,∴DH==4,∵∠CGF=90°,CH=FH,∴GH=FH==,∠GFC+∠GCF=90°,∴∠FGH=∠GFC,∴∠FGH+∠GCF=90°,∵=,∴∠AGD=∠ACD,由(2)知:∠DAC=∠GFC,∴∠AGD=∠GFC,∴∠FGH+∠AGD=90°,∴∠DGH=90°,∴DG===,∵=,∴∠CDG=∠CAF,由(2)知:∠DCG=∠ACE,∴△CDG∽△CAF,∴,∴CG•AF=CF•DG=5×=,∴,∴S△ACF=.8.解:(1)如图1,连接OA,OB,∵P A,PB为⊙O的切线,∴∠P AO=∠PBO=90°,∵∠APB+∠P AO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵P A,PB为⊙O的切线,∴P A=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴的长度==,∴阴影部分的周长=r+r+r=(+1+)r.9.感知证明:如图1,∵∠B+∠C=180°,∠B=90°,∴∠C=90°,∴∠B=∠C,∵∠BAD=∠CAD,AD=AD,∴△BAD≌△CAD(AAS),∴DB=DC.探究证明:如图2,延长AC到点F,使AF=AB,连接DF,∵∠F AD=∠BAD,AD=AD,∴△F AD≌△BAD(SAS),∴∠F=∠ABD,DF=DB,∵∠ABD+∠ACD=180°,∴∠F+∠ACD=180°,∵∠DCF+∠ACD=180°,∴∠F=∠DCF,∴DF=DC,∴DB=DC.应用解:如图3,作DG⊥AC交AC的延长线于点G,连接AD,∵DE⊥AB,∠B=45°,∴∠BED=∠G=∠AED=90°,∠EDB=∠B=45°,∴DE=BE=a,∵∠ACD=135°,∴∠GCD=45°,∵∠B=∠GCD,DB=DC,∴△BED≌△CGD(AAS),∴DE=DG,CG=BE=a,∵AD=AD,∴Rt△AED≌Rt△AGD(HL),∴AE=AG=AC+a,∴AC=AE﹣a,∴AB﹣AC=AB﹣(AE﹣a)=AB﹣AE+a=BE+a=2a,故答案为:2a.10.【性质初探】解:过点A作AG⊥BC交于G,过点E作EH⊥BC交于H,∵▱ABCD,∴AE∥BC,∴AG=EH,∵四边形ABCE恰为等腰梯形,∵AB=EC,∴Rt△ABG≌Rt△ECG(HL),∴∠B=∠ECH,∵∠B=80°,∴∠BCE=80°;【性质再探】证明:∵四边形ABCD是矩形,∴AE∥BC,∵四边形BCEF是等腰梯形,∴BF=CE,由(1)可知,∠FBC=∠ECB,∴△BFC≌△CEB(SAS),∴BE=CF;【拓展应用】解:连接AC,过G点作GM⊥AD交延长线于点M,∵四边形ABCD是平行四边形,∴O是AC的中点,∵GO⊥AC,∴AC=CG,∵AB∥CD,∠ABC=45°,∴∠DCG=45°,∴∠CDG=90°,∴CD=DG,∴BA=DG=2,∵∠CDG=90°,∴CG=2,∴AG=2,∵∠ADC=∠DCG=45°,∴∠CDM=135°,∴∠GDM=45°,∴GM=DM=,在Rt△AGM中,(2)2=(AD+)2+()2,∴AD=﹣,∴BC=﹣.11.解:(1)当t=2时,BF=2cm,PF=4cm,BE=8cm.∵∠C=90°,∠DFE=90°,∴∠C+∠DFE=180°.∴AC∥DF.∴△BHF∽△BAC.∴BF:BC=HF:AC,即2:12=HF:9.∴HF=.∴PH=4﹣=.∵tan B===,tan D=,∴∠B=∠D,∴∠BGE=90°,∴△BEG∽△BAC,∴=,即=,解得,EG=(cm),∴DG=10﹣EG=(cm),故答案为:;;(2)设当△DEF和点P运动的时间是t时,点P与点G重合,此时点P一定在DE边上,DP=DG.由(1)知,∠B=∠D.又∵∠D+∠DEB=90°,∴∠B+∠DEB=90°,∴∠DGH=∠BFH=90°.∴FH=BF•tan B=t,DH=DF﹣FH=8﹣t,DG=DH•cos D=(8﹣t)•=﹣t+,∵DP+DF=2t,∴DP=2t﹣8.由DP=DG得,2t﹣8=﹣t+,解得t=,∵4<<6,则此时点P在DE边上.∴t的值为时,点P与点G重合.故答案为:;(3)只有点P在DF边上运动时,△PDE才能成为等腰三角形,且PD=PE.(如图1)∵BF=t,PF=2t,DF=8,∴PD=DF﹣PF=8﹣2t.在Rt△PEF中,PE2=PF2+EF2=4t2+36=PD2.即4t2+36=(8﹣2t)2.解得t=.∴t为时△PDE为等腰三角形;(4)当0<t≤4时,点P在DF边上运动,如图1,S△PDB=PD•BF=(8﹣2t)•t=﹣t2+4t;当4<t≤6时,点P在DE边上运动,如图2,过点P作PS⊥BC于S,则tan∠PBF=.可得PE=DE﹣DP=10﹣(2t﹣8)=18﹣2t.此时PS=PE•cos∠EPS=PE•cos D=•(18﹣2t)=﹣t+,S△PDB=S△DEB﹣S△BPE=BE•DF﹣BE•PS=×(6+t)×8﹣×(6+t)(﹣t+)=t2+t﹣.综上所述,△PDB的面积为﹣t2+4t(0<t≤4)或t2+t﹣(4<t≤6).12.解:(1)①证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.故答案为:=.②结论:=1.理由:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG=DQ,∵AE=DQ,∴FG=AE,∴=1.故答案为:1.(2)结论:=k.理由:如图2,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴=k.(3)如图3,过点D作EF⊥BC,交BC的延长线于点F,过点A作AE⊥EF,连接AC,∵∠ABC=90°,AE⊥EF,EF⊥BC,∴四边形ABFE是矩形,∴∠E=∠F=90°,AE=BF,EF=AB=10,∵AD=AB,BC=CD,AC=AC,∴△ACD≌△ACB(SSS),∴∠ADC=∠ABC=90°,∴∠ADE+∠CDF=90°,且∠ADE+∠EAD=90°,∴∠EAD=∠CDF,且∠E=∠F=90°,∴△ADE∽△DCF,∴,∴AE=2DF,DE=2CF,∵DC2=CF2+DF2,∴25=CF2+(10﹣2CF)2,∴CF=5(不合题意,舍去),CF=3,∴BF=BC+CF=8,由(2)的结论可知:.13.解:(1)证明:如图a,∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∵∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②如图c,∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又∵CP=CD,∴∠CPD=∠CDP=75°,又∵∠BPC=60°,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形;(3)如图b,由∠CBF=∠EDF,∠DEF=∠BCF,可得△DEF∽△BCF,∴=,即=,设DF=x,则BF=5x,CF=10﹣x,∵Rt△BCF中,BF2=BC2+CF2,∴(5x)2=102+(10﹣x)2,解得x1=,x2=﹣(舍去),∴BF=5x=,∵PB=PC,∴∠PBC=∠PCB,又∵∠PBC+∠PFC=∠PCB+∠PCF=90°,∴∠PFC=∠PCF,∴PF=PC,∴BP=PF=BF=;如图d,延长BE、CD,交于点F,由∠CBF=∠CDQ=∠EDF,∠DEF=∠BCF,可得△DEF∽△BCF,∴=,即=,设DF=x,则BF=5x,CF=10+x,∵Rt△BCF中,BF2=BC2+CF2,∴(5x)2=102+(10+x)2,解得x1=﹣(舍去),x2=,∴BF=5x=,∵PB=PC,∴∠PBC=∠PCB,又∵∠PBC+∠PFC=∠PCB+∠PCF=90°,∴∠PFC=∠PCF,∴PF=PC,∴BP=PF=BF=.故答案为:或.14.(1)证明:方法1,平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△BCH中,,∴△ABE≌△BCH(ASA),∴AE=BH,∴AE=FG;方法2:平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)解:将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,由勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)解:①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴AD=CD,∠DAC=∠P AC=∠DMC=45°,∴△ACD是等腰直角三角形,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.15.(1)解:∵四边形ABCD是正方形,∴AB=CD=AD,∠BAD=∠C=∠D=90°,由旋转的性质得:△ABE≌△ADM,∴BE=DM,∠ABE=∠D=90°,AE=AM,∠BAE=∠DAM,∴∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,即∠EAM=90°,∵∠MAN=45°,∴∠EAN=90°﹣45°=45°,∴∠MAN=∠EAN,在△AMN和△AEN中,,∴△AMN≌△AEN(SAS),∴MN=EN,∵EN=BE+BN=DM+BN,∴MN=BN+DM,在Rt△CMN中,由勾股定理得:MN===10,则BN+DM=10,设正方形ABCD的边长为x,则BN=BC﹣CN=x﹣6,DM=CD﹣CM=x﹣8,∴x﹣6+x﹣8=10,解得:x=12,即正方形ABCD的边长是12;故答案为:12;(2)证明:设BN=m,DM=n,由(1)可知,MN=BN+DM=m+n,∵∠B=90°,tan∠BAN=,∴tan∠BAN==,∴AB=3BN=3m,∴CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,在Rt△CMN中,由勾股定理得:(2m)2+(3m﹣n)2=(m+n)2,整理得:3m=2n,∴CM=2n﹣n=n,∴DM=CM,即M是CD的中点;(3)解:延长AB至P,使BP=BN=4,过P作BC的平行线交DC的延长线于Q,延长AN交PQ于E,连接EM,如图③所示:则四边形APQD是正方形,∴PQ=DQ=AP=AB+BP=12+4=16,设DM=a,则MQ=16﹣a,∵PQ∥BC,∴△ABN∽△APE,∴===,∴PE=BN=,∴EQ=PQ﹣PE=16﹣=,由(1)得:EM=PE+DM=+a,在Rt△QEM中,由勾股定理得:()2+(16﹣a)2=(+a)2,解得:a=8,即DM的长是8;故答案为:8.16.(1)①证明:如图1,∵四边形ABCD是正方形,∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,在△AOC1和△BOD1中,∴△AOC1≌△BOD1(SAS);②AC1⊥BD1;(2)AC1⊥BD1.理由如下:如图2,∵四边形ABCD是菱形,∴OC=OA=AC,OD=OB=BD,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OA,OD1=OB,∠AOC1=∠BOD1,∴,∴△AOC1∽△BOD1,∴∠OAC1=∠OBD1,又∵∠AOB=90°,∴∠OAB+∠ABP+∠OBD1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB=90°∴AC1⊥BD1;∵△AOC1∽△BOD1,∴====,∴k=;(3)如图3,与(2)一样可证明△AOC1∽△BOD1,∴===,∴k=;∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OD1=OD,而OD=OB,∴OD1=OB=OD,∴△BDD1为直角三角形,在Rt△BDD1中,BD12+DD12=BD2=100,∴(2AC1)2+DD12=100,∴AC12+(kDD1)2=25.17.解:(1)y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将C(0,﹣3),B(3,0)代入y=mx2+4x+n中,∴,解得,∴y=﹣x2+4x﹣3;(2)存在点P,使得以C,M,P为顶点的三角形是等腰三角形,理由如下:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴M(2,1),对称轴为直线x=2,设P(2,t),∴MP=|t﹣1|,MC=2,CP=,①当MP=MC时,|t﹣1|=2,∴t=2+1或t=﹣2+1,∴P(2,2+1)或(2,﹣2+1);②当MP=CP时,|t﹣1|=,解得t=﹣,∴P(2,﹣);③当MC=CP时,2=,解得t=1(舍)或t=﹣7,∴P(2,﹣7);综上所述:P点坐标为(2,2+1)或(2,﹣2+1)或(2,﹣)或(2,﹣7).18.解:(1)∵抛物线的顶点为D(2,8),∴﹣=2,=8,解得b=2,c=6,∴y=﹣x2+2x+6;(2)令y=0,则﹣x2+2x+6=0,解得x=﹣2或x=6,∴A(﹣2,0),B(6,0),令x=0,则y=6,∴C(0,6),设直线AD的解析式为y=kx+d,∴,解得,∴y=2x+4,设直线BC的解析式为y=k'x+d',∴,解得,∴y=﹣x+6,设P(t,﹣t2+2t+6),∵QP∥AD,∴直线QP的解析式为y=2x﹣t2+6,当2x﹣t2+6=﹣x+6时,x=t2,∴Q(t2,6﹣t2),∴PQ=|t2﹣t|,∵0<t<6,∴PQ=(﹣t2+t)=﹣(t﹣3)2+,当t=3时,PQ有最大值,此时P(3,);(3)D点关于直线x=1的对称点为(0,8),∴新抛物线y1=﹣x2+8,当﹣x2+2x+6=﹣x2+8时,x=1,∴E(1,),∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴抛物线的对称轴为直线x=2,设F(2,m),G(n,﹣n2+8),当EF为平行四边形的对角线时,,解得,∴F(2,﹣12);当EA为平行四边形的对角线时,,解得,∴F(2,4);当EG为平行四边形的对角线时,,解得,∴F(2,15);综上所述:F点坐标为(2,﹣12)或(2,4)或(2,15).19.解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=,∴y=x﹣6;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠P AM=90°,∠APM+∠P AM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,∵PN⊥x轴,∴PN∥OC,∴∠PNQ=∠OCB,∴Rt△PQN∽Rt△BOC,∴==,∵OB=8,OC=6,BC=10,∴QN=PN,PQ=PN,由△CNE∽△CBO,∴CN=EN=m,∴CQ+PQ=CN+NQ+PQ=CN+PN,∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,当m=时,CQ+PQ的最大值是.20.解:(1)∵抛物线y=ax2+bx+3与y轴交于点C,当x=0时,y=3,∴C(0,3),即OC=3,∵S△ABC=3,∴×AB×OC=3,即AB×3=3,∴AB=2,又∵A(1,0)且点B在点A的右边,∴B(3,0),把A点和B点坐标代入抛物线y=ax2+bx+3,得,解得,∴抛物线的解析式为y=x2﹣4x+3;(2)由(1)知,C(0,3),B(3,0),设直线BC的解析式为y=kx+t,代入B点和C点的坐标得,解得,∴直线BC的解析式为y=﹣x+3,过点P作PD⊥x轴交BC延长线于点E,交x轴于点D,∵OC=OB,∴∠CBO=45°,又∵∠COB=∠PDO=90°,且∠CBO=∠DBE=45°,∴∠PEC=45°,且PN⊥CB,∴∠NPE=45°,∴PN=PE,设P(m,m2﹣4m+3),则E(m,﹣m+3),∴PE=m2﹣4m+3﹣(﹣m+3)=m2﹣3m,∴PN=d=PE=(m2﹣3m)=m2﹣m,∴d=x2﹣x;(3)如下图,过点P作PH⊥FE于点H,过点C作CI⊥FE于点I,过点B作BJ⊥FE 于点J,设FE交BC于点K,∵∠PEF+∠BFE=180°,且∠PEF+∠PEH=180°,∴∠BFE=∠PEH,∵∠PHE=∠CIJ=∠BJH=90°,又∵PE=2BF,∴△PEH∽△BJF,∴BJ=PH,又∵CP∥AH,且CI∥PH,∴四边形CPHI是矩形,∴CJ=PH,又∵∠CJI=∠BKJ,∴BJ=CI,∴BK=CK,∴K(2,1),设直线AF的解析式为y=sx+n,代入K点和A点的坐标得,解得,∴直线AF的解析式为y=x﹣1,设直线PC的解析式为y=x+g,代入C点坐标得g=3,∴直线PC的解析式为y=x+3,联立直线PC和抛物线的解析式得,解得或,∴P(5,8).。

2022年春苏科版九年级数学中考复习几何压轴题专题训练(附答案)

2022年春苏科版九年级数学中考复习几何压轴题专题训练(附答案)

2022年春苏科版九年级数学中考复习几何压轴题专题训练(附答案)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB,垂足为E,点F在DE的延长线上,点G在线段AD上,且∠BGF=60°.(1)若DE=2,求AC的长;(2)证明:DF=AD+DG.2.在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.3.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.4.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC 的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG =45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.5.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.6.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.7.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF 交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF =BC.8.如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C →B→C作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)证明:AD∥BC.(2)在移动过程中,小明发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,会出现△DEG与△BFG全等的情况.9.如图,已知凸五边形ABCDE中,EC,EB为其对角线,EA=ED.(1)如图1,若∠A=60°,∠CDE=120°,且CD+AB=BC.求证:CE平分∠BCD;(2)如图2,∠A与∠D互补,∠DEA=2∠CEB,若凸五边形ABCDE面积为30,且CD=AB=4.求点E到BC的距离.10.已知△ABC≌△ADE,且它们都是等腰直角三角形,∠ABC=∠ADE=90°.(1)如图1,当点D在边AC上时,连接BD并延长交CE于点F,①求证:∠CBD=∠EDF;②求证:点F为线段CE的中点;(2)△ADE绕着点A顺时针旋转,如图2所示,连接BD并延长交CE于点F,点F还是线段CE的中点吗?请说明理由.11.已知在△ABC与△CDE中,AB=CD,∠B=∠D,∠ACE=∠B,点B、C、D在同一直线上,射线AH、EI分别平分∠BAC、∠CED.(1)如图1,试说明AC=CE的理由;(2)如图2,当AH、EI交于点G时,设∠B=α,∠AGE=β,求β与α的数量关系,并说明理由;(3)当AH∥EI时,求∠B的度数.12.如图1,△ABC≌△DAE,∠BAC=∠ADE=90°.(1)连接CE,若AB=1,点B、C、E在同一条直线上,求AC的长;(2)将△ADE绕点A逆时针旋转α(0°<α<90°),如图2,BC与AD交于点F,BC 的延长线与AE交于点N,过点D,作DM∥AE交BC于点M.求证:①BM=DM;②MN2=NF•NB.13.如图1,2,3,将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB1C1D1,连接BD.(1)探究:①如图1,当α=90°时,点C1恰好在DB的延长线上,若AB=1,求BC的长;②如图2,连接AC1,过点D1作D1M∥AC1交BD于点M,线段D1M与DM相等吗?请说明理由.(2)在探究(1)②的条件下,射线DB分别交AD1、AC1于点P、N(如图3).求证:①MN=AN;②MN2=PN•DN.14.如图1,在矩形ABCD中,点E是CD上一动点,连接AE,将△ADE沿AE折叠,点D落在点F处,AE与DF交于点O.(1)射线EF经过点B,射线DF与BC交于点G.ⅰ)求证:△ADE∽△DCG;ⅱ)若AB=10,AD=6,求CG的长;(2)如图2,射线EF与AB交于点H,射线DF与BC交于点G,连接HG,若HG∥AE,AD=10,DE=5,求CE的长.15.如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.D、E分别是AB、AC边的中点,连接DE.现将△ADE绕A点逆时针旋转,连接BD,CE并延长交于点F.(1)如图2,点E正好落在AB边上,CF与AD交于点P.①求证:AE•AB=AD•AC;②求BF的长;(2)如图3,若AF恰好平分∠DAE,直接写出CE的长.16.如图,过⊙O外一点P作⊙Q的两条切线P A和PB,PD交⊙O于D和C,E在弦DC 上.且∠DAE=∠PBC.(1)求证:∠ADC=∠P AC;(2)求证:△ADE∽△BAC;(3)若AD=5,BC=3,AC=4,试求BD的长.17.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 的长为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,求出BP的长.18.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,将△ABC沿BC翻折得到△DBC,过点D作⊙O的切线DF,与BC的延长线交于点E,F为切点,⊙O的半径为,∠ABD=30°.(1)求的长.(2)若DE∥AB,连接AE.①求证:四边形ABDE为菱形.②求DF的长.19.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点M,OM交⊙O于点N,连接AM.(1)求证:AM是⊙O的切线;(2)若DN=4,AC=8,求线段MN的长;(3)在(2)的条件下,求阴影部分的面积.20.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,连接BD,△ADE是以AD为斜边的直角三角形,且满足∠EAD=∠DAB,DE=DC.(1)求证:DE为⊙O的切线;(2)求证:DE2=EF•BD;(3)若AB=1,求BD的长.参考答案1.(1)解:在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,DE⊥AB,∴CD=DE=2.∠CBD=∠ABD=30°,∴BD=2CD=4,∵DE⊥AB,∠CBD=∠ABD=30°,∴AD=BD=4,∴AC=AD+CD=4+2=6,∴AC的长为6;(2)证明:如图,在DE上截取DH=DG,连接GH,∵AD=BD,∠A=∠ABD=30°,∴∠BDE=∠ADE=60°,∴△DGH是等边三角形,∴∠DGH=∠DHG=60°,∵∠BGF=60°,∴∠1+∠HGB=∠2+∠HGB=60°,∴∠1=∠2,∵∠BDC=∠DHG=60°,∴∠BDG=∠FHG=120°,在△BDG和△FHG中,,∴△BDG≌△FHG(ASA),∵DF=FH+DH=BD+DG=AD+DG,∴DF=AD+DG.2.证明:(1)如图,在BC上截取BM=BD,连接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,,∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,,∴△ECF≌△MCF(ASA),∴EF=MF,(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,,∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.3.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.4.解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.5.(1)解:∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故选B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故选C.(3)证明:延长AD到M,使AD=DM,连接BM,∵AD是△ABC中线,∴CD=BD,∵在△ADC和△MDB中∴△ADC≌△MDB,∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即AC=BF.6.解:(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN,此时,理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴=;(2)猜想:结论仍然成立,证明:在NC的延长线上截取CM1=BM,连接DM1,∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴=;(3)证明:在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC﹣BM=MN.7.证明:(1)如图1中,连接BD,作DM⊥AB于M,DN⊥BC于N,∵∠DMB=∠DNB=90°,∠ABC=60°,∴∠MDN=∠EDF=120°,∴∠MDE=∠NDF,∵△ABC是等边三角形,AD=DC,∴∠DBA=∠DBC,∴DM=DN,∴△DME≌△DNF,∴DE=DF.(2)如图2中,作DK∥BC交AB于K.设AE=a,则BE=3a,AB=AC=BC=4a,∵AD=DC,DK∥CB,∴AK=BK=2a,DK=BC=2a=AD=AK,∴AE=EK=a,∴DE⊥AK,∴∠BED=90°,∵∠BED+∠BFD=180°,∴∠DFB=90°,在Rt△CDF中,∵∠C=60°,∴CF=CD=a,∴CF=BC.(3)①如图3中,作DK∥BC交AB于K.设BE=a,则AE=3a,AK=BK=2a,△ADK是等边三角形,∴∠ADK=60°,∠EDF=∠KDC,∴∠KDE=∠CDF,∵DK=DC,DE=DF,∴△EDK≌△FDC,∴EK=CF=a,∵BC=4a,∴CF=BC.②如图4中,由(1)可知EM=FN,设AE=a,则BE=4a,AB=BC=AC=5a,AM=CN=a,EM=FN=a,∴CF=FN+CN=a,∴CF:BC=a:5a=3:10,∴CF=BC.故答案为,.8.(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∴AD∥BC;(2)解:设运动时间为t,点G的运动速度为v,当时,若△DEG≌△BGF,则,∴,∴,∴v=3;若△DEG≌△BGF,则,∴,∴(舍去);当时,若△DEG≌△BFG,则,∴,∴,∴;若△DEG≌△BGF,则,∴,∴,∴v=1.综上,当点G的速度为3或1.5或1时.会出现△DEG与△BFG全等的情况.9.(1)证明:延长CD到T,使得DT=BA,连接ET.∵∠CDE=120°,∴∠EDT=180°﹣120°=60°,∵∠A=60°,∴∠A=∠EDT,在△EAB和△EDT中,,∴△EAB≌△EDT(SAS),∴EB=ET,∴CB=CD+BA=CD+DT=CT,在△ECB和△ECT中,,∴△ECB≌△ECT(SSS),∴∠ECB=∠ECD,∴CE平分∠BCD.(2)解:延长CD到Q,使得∠QED=∠AEB,过点E作EH⊥BC于H.∵∠A+∠CDE=180°,∠CDE+∠EDQ=180°,∴∠A=∠EDQ,在△AEB和△DEQ中,,∴△AEB≌△DEQ(ASA),∴EB=EQ,∵∠AED=2∠BEC,∴∠AEB+∠CED=∠BEC,∴∠CED+∠DEQ=∠BEC,∴∠CEB=∠CEQ,在△CEB和△CEQ中,,∴△ECB≌△ECQ(SAS),∵S五边形ABCDE=S四边形EBCQ=2S△EBC=30,∴S△EBC=15,∵CD=AB=4,∴AB=6,CD=4,∴BC=CD+QD=CD+AB=10,∴×10×EH=15,∴EH=3,∴点E到BC的距离为3.10.(1)证明:①∵△ABC≌△ADE,∴AB=AD,BC=DE,AE=AC,∵△ABC,△ADE为等腰直角三角形,∴AD=DE,AB=BC,∠DAE=∠AED=∠BAC=∠BCA=45°,在△ABD中,AB=AD,∴∠ABD=∠ADB=67.5°,∴∠CBF=90°﹣∠ABD=22.5°,∠EDF=90°﹣∠CDF=90°﹣∠ADB=22.5°,∴∠CBF=∠EDF,∴∠CBD=∠EDF;②∵AE=AC,∠EAC=45°,∴∠ACE=∠AEC=67.5°,∵∠ADE=90°,∴∠DEC=22.5°,∵∠FDC=∠FCD=67.5°,∴EF=DF,DF=FC,∴EF=FC,∴点F为线段CE的中点;(2)解:点F还是线段CE的中点,理由如下:过点E作EG∥BC交BF延长线于G,∴∠EGF=∠CBF,∠FEG=∠FCB,∵AB=AD,∴∠ABD=∠ADB,∵∠ADE=∠ABC=90°,∴∠EDG=90°﹣∠ADB=90°﹣∠ABD=∠FBC,∴∠EDG=∠EGD,∴DE=EG,∵DE=BC,∴EG=BC,∵∠FEG=∠FCB,∠FGE=∠FBC,∴△EFG≌△CFB(ASA),∴EF=CF,∴F为EC的中点.11.(1)证明:∵∠ACD=∠ACE+∠ECD=∠A+∠B,又∠B=∠ACE,∴∠A=∠ECD.在△ABC和△CDE中,,∴△ABC≌△CDE(ASA).∴AC=CE.(2)解:3α﹣2β=180°.理由如下:如图1所示,连接GC并延长至点K.∵AH、EI分别平分∠BAC、∠DEC,则设∠CAH=∠BAH=a,∠CEI=∠DEI=b,∵∠ACK为△ACG的外角,∴∠ACK=a+∠AGC,同理可得∠ECK=b+∠EGC,∴∠ACE=∠ACK+∠ECK=∠B=α=(a+∠AGC)+(b+∠EGC)=a+b+∠AGE=a+b+β,即α=a+b+β,∴a+b=α﹣β.又由(1)中证明可知∠ECD=∠BAC=2a,由三角形内角和公式可得∠ECD+∠DEC+∠D=180°,即2a+2b+α=180°,∴2(a+b)+α=180°,∴3α﹣2β=180°.(3)当AH∥EI时,如图2所示,过点C作MN∥AH,则MN∥AH∥EI.∴∠CAH=∠ACM=a,∠CEI=∠ECM=b,∴∠ACE=∠ACM+∠ECM=a+b=α,即α=a+b.由(1)中证明可得∠ECD=∠BAC=2a,∠D=∠B=α.在△CED中,根据三角形内角和定理有∠ECD+∠CED+∠D=180°,即2a+2b+α=180°,即2(a+b)=180°﹣α,即3α=180°,解得:α=60°.故∠B=60°.12.(1)解:∵△ABC≌△DAE,∴AD=AB=1,AC=DE,∵∠BAC=∠ADE=90°,∴AB∥DE,∴△ABC∽△DEC,=,∴=,解得AC=;(2)证明:①连接BD,∵△ABC≌△DAE,∴∠ABC=∠DAE,AB=DA,∵DM∥AE,∴∠MDA=∠DAE,∴∠ABC=∠MDA,∵AB=DA,∴∠ABD=∠ADB,∴∠ABD﹣∠ABC=∠ADB﹣∠MDA,∴∠MBD=∠MDB,∴BM=DM;②连接MA,由①知,BM=DM,AB=DA,∵AM=AM,∴△AMB≌△AMD(SSS),∴∠BAM=∠DAM,由①知,∠ABC=∠DAE,∴∠ABC+∠BAM=∠DAE+∠DAM,∴∠AMN=∠NAM,∴MN=AN,∵∠BNA=∠ANF,∠ABC=∠DAE,∴△ANF∽△BNA,∴,∴AN2=BN•NF,∴MN2=NF•NB.13.(1)解:①如图1,∵四边形ABCD是矩形,∴CD=AB,BC=DA,∠BAD=90°,∵将矩形ABCD绕点A顺时针旋转90°得到矩形AB1C1D1,∴∠D1AD=∠BAD=90°,C1D1=CD=AB=1,∴AB与AD1重合,即点A、B、D1在同一条直线上,设BC=DA=D1A=x,则D1B=x﹣1,∵∠D1=∠BAD=90°,∠D1BC1=∠ABD,∴△D1BC1∽△∠ABD,∴=,∴=,解得x1=,x2=(不符合题意,舍去),∴BC=.②D1M=DM,理由如下:如图2,连结DD1,∵AD1=AD,∴∠AD1D=∠ADD1,∵D1C1=AB,∠C1D1A=∠BAD=90°,AD1=DA,∴△C1D1A≌△BAD(SAS),∴∠D1AC1=∠ADB,∵D1M∥AC1,∴∠AD1M=∠D1AC1,∴∠AD1M=∠ADB,∴∠AD1D﹣∠AD1M=∠ADD1﹣∠ADB,∴∠MD1D=∠MDD1,∴D1M=DM.(2)证明:如图3,连结AM,①∵AD1=AD,D1M=DM,AM=AM,∴△AD1M≌△ADM(SSS),∴∠AD1M=∠ADM,∠MAD1=∠MAD,∵∠AD1M=∠NAD1,∴∠NAD1=∠ADM,∴∠NAD1+∠MAD1=∠ADM+∠MAD,∵∠NAM=∠NAD1+∠MAD1,∠NMA=∠ADM+∠MAD,∴∠NAM=∠NMA,∴MN=AN.②∵∠NAD1=∠ADM,∴∠NAP=∠NDA,∵∠ANP=∠DNA,∴△ANP∽△DNA,∴=,∴AN2=PN•DN,∴MN2=PN•DN.14.解:(1)i)由翻折可得,△ADE≌△AFE,DF⊥AE于O,∴∠CDG+∠ADO=90°,∠ADO+∠EAD=90°,∴∠CDG=∠EAD,∵∠ADE=∠DCG=90°,∴△ADE∽△DCG;ii)∵AB=10△ADE≌△AFE,∴AF=AD=6,在Rt△ABF中,BF=,设DE=EF=x,CE=10﹣x,BC=AD=6,在Rt△BCE中,BE2=BC2+CE2,即(8+x)2=62+(10﹣x)2,解得:x=2,由i)可知△ADE∽△DCG,∴,∴,解得:CG=;(2)由i)可知,△ADE∽△DCG,∴,同理可得,△ADE∽△DOE,即,∵∠OAD=∠ODE,∠ADE=∠DOE=90°,∵HG∥AE,∴△HGF∽△EDF,∵△DOE≌△FOE,∴,∵∠BGH+∠CGD=90°,∠BHG+∠BGH=90°,∴∠CGD=∠BHG,∵∠B=∠C=90°,∴△BHG∽△CGD,∴,综上所述,△BHG∽△CGD∽△DEA∽△OED∽△GHF,设CE=x,DC=5+x,CG=,BG=10﹣CG=10﹣,BH=BG=,HG=BH=,∵HG:GF=1:2,∴GF=,在△ADE中,AD=10,DE=5,AE=5,DO=,∵,∵,∴OE=,DO=OF=2,在△DCG中,DC=5+x,CG=,DG=DF+FG=4,∵,∴DG=CG,即,解得:x=9,即CE=9.15.(1)①证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,∴△ADE∽△ABC,∴=,∴AE•AB=AD•AC;②解:如图1,作CG⊥AB于G,作FH⊥AB于H,在Rt△ABC中,AB=10,BC=6,∴AC=8,∴AE=4,∴BE=AB﹣AE=6,∵BG=BC•cos∠ABC=6•=6×=,CG=BC•sin∠ABC=6×=,∴EG=BE﹣BG=6﹣=,∴tan∠FEH=tan∠CEG=,∴tan∠FEH=,设EH=a,FH=2a,∵tan∠FBE=,∴BH=4a,∵BH﹣EH=BE,∴4a﹣a=6,∴a=2,∴FH=4,BH=8,∴BF===4;(2)如图2,当AF平分∠DAE时,AF⊥BD,∴∠AFD=∠AED=90°,∴点A、E、F、D共圆,∴∠DEF=∠DAF,设AF与DE的交点为O,作OG⊥AD于G,作AH⊥CF于H,∵AF平分∠DAE,∴OG=OE,AG=AF=4,∴DG=AD﹣AG=1,设OG=OE=x,∴OD=3﹣x,在Rt△DOG中,(3﹣x)2﹣x2=12,∴x=,∴OG=OE=,∴tan∠DAF=,sin∠DAF=,cos∠DAF=,∵∠AED=90°,∴∠AEH+∠DEF=90°,∵∠AEH+∠EAH=90°,∴∠EAH=∠DEF=∠DAF,∴EH=AE•sin∠EAH=4×=,AH=AE•cos∠EAH=4×=,∴CH===,∴CE=EH+CH=.16.(1)证明:如图,过点A作直径AF,连接FC,则∠ACF=90°,∵P A是⊙O的切线,∴∠F AC+∠P AC=90°,∵∠AFC+∠F AC=90°,∴∠AFC=∠P AC,∵∠ADC=∠AFC,∴∠ADC=∠P AC,(2)如图,过点B作直径BG,连接GC,则∠GCB=90°,∴∠G+∠GBC=90°,∵PB是⊙O的切线,∠GBC+∠CBP=90°,∴∠G=∠CBP,又∠G=∠BAC,∴∠BAC=∠CBP,∵∠DAE=∠PBC,∴∠DAE=∠BAC,∵∠ADE=∠ABC,∴△ADE∽△BAC,(3)如图,过A作AN⊥PD于点N,过B作BM⊥PD于M,则AN=AD•sin∠ADC,BM =BD•sin∠BDC,∴==,又∵S△P AC=,S△PBC=,∴=,∵P A,PB是⊙O的切线,∴P A=PB,∴=,∴=,由(1)知:∠ADC=∠P AC,∠BDC=∠PBC,∴,∴,∴BD=.17.(1)证明:过O作OM⊥AC于M,如图:∵AB=AC,AO⊥BC,∴AO平分∠BAC,∵OE⊥AB,OM⊥AC,∴OE=OM,∵OE为⊙O半径,∴OM为⊙O半径,∴AC是⊙O的切线;(2)解:∵OM=OE=OF=3,且F是OA中点,∴OA=6,在Rt△AEO中,AE==3,∴S△AOE=AE•OE=,∵OE⊥AB,OA=6,OE=3,∴∠EAO=30°,∠AOE=60°,∴S扇形OEF==,∴S阴影=S△AOE﹣S扇形OEF=﹣;(3)解:作F关于BC的对称点G,连接EG交BC于P,连接EF,如图:此时PE+PF最小,最小值为EG的长度,∵F、G关于BC对称,∴∠FOP=∠GOP=90°,∴∠FOP+∠GOP=180°,即F、O、G共线,由(2)知∠EOF=60°,OG=OF=OE,∴∠G=30°,∠EOB=30°,∴∠GPO=∠B=60°,∴∠EPB=∠B=60°,∴△EBP是等边三角形,∴BP=BE,而Rt△BOE中,BE==,∴BP=.18.(1)解:如图,连接OC,∵△ABC沿BC翻折得到△DBC,∴AC=DC,∴OC为△ABD的中位线,∴OC∥BD,∴∠AOC=∠ABD=30°,∴的长;(2)①证明:∵△ABC沿BC翻折得到△DBC,∴∠ACB=∠DCB=90°,AC=DC.∵DE∥AB,∴∠ABC=∠DEC,∴∠BAC=∠EDC.在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴AB=DE,∴四边形ABDE为平行四边形.∵AB为⊙O的直径,∴∠ACB=90°,即AC⊥BC,∴四边形ABDE是菱形.②解:如图,连接OF交BD于点G.∵DF为⊙O的切线,∴FO⊥EF.又∵DE∥AB,∴OF⊥OB.在Rt△BOG中,∠ABD=30°,∴,∴.∵DE∥AB,∴∠GDF=∠ABD=30°,在Rt△DFG中,.19.(1)证明:如图,连接OC,∵OD⊥AC,ON过圆心O,∴AD=CD.∴OM垂直平分AC.∴MA=MC.∴∠MAC=∠MCA.∵OA=OC,∴∠OAC=∠OCA.∴∠OAC+∠MAC=∠OCA+∠MCA,即∠MAO=∠MCO.∵CM为⊙O的切线,∴∠MCO=90°,∴∠MAO=90°.∴OA⊥AM.又∵点A在⊙O上,∴AM是⊙O的切线;(2)解:设⊙O的半径为r,则OD=r﹣4,AD=AC=4.∴(r﹣4)2+(4)2=r2,解得r=8.∴OD=4,OA=8,∴∠OAD=30°∴∠AOD=60°,∴∠AMO=30°.∴OM=2OA=16.∴MN=16﹣8=8;(3)解:∵∠COD=∠AOD=60°,∴∠AOC=120°,∴S阴影=S四边形AOCM﹣S扇形OAC=﹣=64﹣.20.解:(1)证明,连接OD,∵△ADE为直角三角形,AD为斜边,∴∠AED=90°,∴∠EAD+∠EDA=90°,∵∠EAD=∠DAB,∠OAD=∠ODA,∴∠ODA+∠EDA=90°,∵OD为⊙O半径,∴DE为⊙O的切线;(2)证明,如图,连接DF,∵∠DFE+∠DF A=180°,∠DF A+∠DBA=180°,∴∠DFE=∠DBA∵∠ABC=90°,∠DEA=90°,∴∠DBA+∠DBC=90°,∠DFE+∠EDF=90°,∴∠EDF=∠DBC,∴Rt△EDF∽Rt△DBC,∴=,∵DE=DC,∴DE2=EF•BD;(3)∵∠DBC+∠DBA=90°,∠DAB+∠DBA=90°,∴∠DBC=∠DAB,∵∠EAD=∠DAB,∴∠EAD=∠DBC,∵AB是⊙O的直径,∴∠ADB=∠BDC=90°,∴∠E=∠BDC,在Rt△ADE和Rt△BCD中,,∴△ADE≌△BCD(AAS),∴BC=AD,∵∠ADB=∠ABC=90°,∠C=∠C,∴△CDB∽△CBA,∴==,设CD=x,BC=y,则=,整理得x2+xy﹣y2=0,解得x1=y,x2=y(舍去),∵AB=1,∴=,即=,解得BD=,∴BD的长为.。

初三数学压轴题含答案

初三数学压轴题含答案

1.如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B C ,两点的抛物线2y ax bx c =++与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =.(1)求A 点的坐标;(2)求该抛物线的函数表达式;(3)连结AC .请问在x 轴上是否存在点Q ,使得以点P B Q ,,为顶点的三角形与ABC △相似,若存在,请求出点Q 的坐标;若不存在,请说明理由.[解]直线3y x =-+与x 轴相交于点B ,∴当0y =时,3x =,∴点B 的坐标为(30),. 又抛物线过x 轴上的AB ,两点, 且对称轴为2x =,根据抛物线的对称性,∴点A 的坐标为(10),. (2)3y x =-+过点C ,易知(03)C ,,3c ∴=.又抛物线2y ax bx c =++过点(10)(30)A B ,,,,309330a b a b +==⎧∴⎨++=⎩,. 解得14a b =⎧⎨=-⎩,.243y x x ∴=-+. (3)连结PB ,由2243(2)1y x x x =-+=--,得(21)P -,,设抛物线的对称轴交x 轴于点M ,在Rt PBM △中,1PM MB ==,452PBM PB ∴==,∠.由点(30)(03)B C ,,,易得3OB OC ==,在等腰直角三角形OBC 中,45ABC =∠,由勾股定理,得32BC =. 假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与ABC △相似. ①当BQ PBBC AB=,45PBQ ABC ==∠∠时,PBQ ABC △∽△. 即2232BQ =,3BQ ∴=,又3BO =,∴点Q 与点O 重合,1Q ∴的坐标是(00),. ②当QB PB AB BC=,45QBP ABC ==∠∠时,QBP ABC △∽△. AB CPO y2x =AB C PO xy2x =即2232QB =,23QB ∴=.273333OB OQ OB QB =∴=-=-=,, 2Q ∴的坐标是703⎛⎫⎪⎝⎭,.180********PBx BAC PBx BAC =-=<∴≠,,∠∠∠∠. ∴点Q 不可能在B 点右侧的x 轴上综上所述,在x 轴上存在两点127(00)03Q Q ⎛⎫ ⎪⎝⎭,,,,能使得以点P B Q ,,为顶点的三角形与ABC △相似。

(完整)中考数学压轴题精选含答案

(完整)中考数学压轴题精选含答案

一、解答题1.如图,在直角梯形ABCD 中,AB ∥CD ,∠B =90°,AB =4,BC =8,CD =2m (m >2),P 为CD 中点,以P 为圆心,CP 为半径作半圆P ,交线段AC 于点E ,交线段AD 于点F .(1)当E 为CA 中点时,①求证:E 是弧CF 的中点.②求此时m 的值.(2)连结PF ,若PF 平行△ABC 的某一边时求出满足条件的m 值.(3)连结PE ,将PE 绕着点E 顺时针旋转90°得到EP ',连结AP ',当AP '⊥AC 时,求此时CE 的长.2.如图1,在菱形ABCD 中,∠D =120°,AB =8,点M 从A 开始,以每秒1个单位的速度向点B 运动;点N 从C 出发,沿C →D →A 方向,以每秒2个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也随之停止运动.设运动的时间为t 秒,过点N 作NQ ⊥DC ,交AC 于点Q .(1)当t =2时,求线段NQ 的长;(2)设△AMQ 的面积为S ,直接写出S 与t 的函数关系式及t 的取值范围;(3)在点M 、N 运动过程中,是否存在t 值,使得△AMQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线2y x bx c =-++,与y 轴交于点A 与x 轴交于点E 、B .且点()0,5A ,()5,0B ,点P 为抛物线上的一动点.(1)求二次函数的解析式;(2)如图1,过点A 作AC 平行于x 轴,交抛物线于点C ,若点P 在AC 的上方,作PD 平行于y 轴交AB 于点D ,连接PA ,PC ,当245AOE APCD S S ∆=四边形时,求点P 坐标; (3)设抛物线的对称轴与AB 交于点M ,点Q 在直线AB 上,当以点M 、E 、P 、Q 为顶点的四边形为平行四边形时,请直接写出点Q 的坐标.4.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,OA =1,OB =OC =3.(1)求抛物线的表达式;(2)如图1,点D 为第一象限抛物线上一动点,连接DC ,DB ,BC ,设点D 的横坐标为m ,△BCD 的面积为S ,求S 的最大值;(3)如图2,点P (0,n )是线段OC 上一点(不与点O 、C 重合),连接PB ,将线段PB 以点P 为中心,旋转90°得到线段PQ ,是否存在n 的值,使点Q 落在抛物线上?若存在,请求出满足条件的n 的值,若不存在,请说明理由.5.如图,抛物线223y x x =--+与x 轴交于A 、B 两点,与y 轴交于C 点.(1)在第二象限内的抛物线上确定一点P ,使四边形PBOC 的面积最大.求出点P 的坐标.(2)点M 为抛物线上一动点,x 轴上是否存在一点Q ,使点B 、C 、M 、Q 的顶点的四边形是平行四边形,若存在,请直接写出Q 点的坐标;若不存在,请说明理由.6.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫ ⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围7.如图1,直线l 1:y =kx 与直线l 2:y =﹣12x +b 相交于点A (4,3),直线l 2:y =﹣12x +b 与x 轴交于点B ,点E 为线段AB 上一动点,过点E 作EF ∥y 轴交直线l 1于点F ,连接BF .(1)求k、b的值;(2)如图2,若点F坐标为(8,6),∠OFE的角平分线交x轴于点M.①求线段OM的长;②点N在直线l1的上方,当△OFN和△OFM全等时,直接写出点N的坐标.8.如图,抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方,连接PA、PD,求当△PAD面积最大时点P 的坐标及该面积的最大值;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.9.如图,在△ABC中,AB=AC,⊙是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.10.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB 相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD以每秒10个单位长度的速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).11.在平面直角坐标系xOy中,点A(a,b)和点B(c,d).给出如下定义:以AB为边,作等边三角形ABC,按照逆时针方向排列A,B,C三个顶点,则称等边三角形ABC为点A,B的逆序等边三角形.例如,当1,0,3,0a b c d=-===时,点A,B的逆序等边三角形ABC如图①所示.(1)已知点A(-1,0),B(3,0),则点C的坐标为___;请在图①中画出点C,B的逆序等边三角形CBD,点D的坐标为___.(2)图②中,点B(3,0),点A在以点M(-2,0)为圆心1为半径的圆上,求点A,B的逆序等边三角形ABC的顶点C的横坐标取值范围.(3)图③中,点A在以点M(-2,0)为圆心1为半径的圆上,点B在以N(3,0)为圆心2为半径的圆上,且点B的纵坐标0d>,点A,B的逆序等边三角形ABC如图③所示.若点C 恰好落在直线y x t=+上,直接写出t的取值范围.12.已知:如图1,一次函数y=mx+5m的图像与x轴、y轴分别交于点A、B,与函数y=-23x的图像交于点C,点C的横坐标为-3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=2S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规.....作图找到点P的位置; (保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.13.在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为12≤yM136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,013MN2=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.14.△ABC为等边三角形,AB=4,AD⊥BC于点D,点E为AD的中点.(1)如图1,将AE绕点A顺时针旋转60°至AF,连接EF交AB于点G,求证:G为EF中点.(2)如图2,在(1)的条件下,将△AEF绕点A顺时针旋转,旋转角为α,连接BE,H为BE的中点,连接DH,GH.当30°<α<120°时,猜想∠DHG的大小是否为定值,并证明你的结论.(3)在△AEF绕点A顺时针旋转过程中,H为BE的中点,连接CH,问线段CH何时取得最大值,请说明理由,并直接写出此时△ADH的面积.15.在ABC中,AB AC=,D是边AC上一点,F是边AB上一点,连接BD、CF交于点E,连接AE,且.(1)如图1,若90BAC∠=︒,,,求点B到AE的距离;(2)如图2,若E为BD中点,连接FD,FD平分,G为CF上一点,且,求证:;(3)如图3,若,12BC=,将ABD△沿着AB翻折得,点H为的中点,连接HA、HC,当周长最小时,请直接写出的值.16.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于C点,D为抛物线顶点.(1)连接AD,交y轴于点E,P是抛物线上的一个动点.①如图一,点P是第一象限的抛物线上的一点,连接PD交x轴于F,连接,若,求点P的坐标.②如图二,点P在第四象限的抛物线上,连接AP、BE交于点G,若,则w有最大值还是最小值?w的最值是多少?(2)如图三,点P是第四象限抛物线上的一点,过A、B、P三点作圆N,过点P作PM x⊥轴,垂足为I,交圆N于点M,点P在运动过程中,线段是否变化?若有变化,求出MI的取值范围;若不变,求出其定值.(3)点Q是抛物线对称轴上一动点,连接OQ、AQ,设AOQ外接圆圆心为H,当的值最大时,请直接写出点H的坐标.17.如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B(﹣2,3),已知抛物线y=﹣34x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D (﹣2,﹣1)在直线BC 上,点E 为y 轴右侧抛物线上一点,连接BE 、AE ,DE ,若S △BDE =4S △ABE ,求E 点坐标;(3)如图2,在(2)的条件下,P 为射线DB 上一点,作PQ ⊥直线DE 于点Q ,连接AP ,AQ ,PQ ,若△APQ 为直角三角形,请直接写出P 点坐标.18.如图1,点A ,点B 的坐标分别(a ,0),(0,b ),且b =+4,将线段BA 绕点B 逆时针旋转90°得到线段BC .(1)直接写出a = ,b = ,点C 的坐标为 ;(2)如图2,作CD ⊥x 轴于点D ,点M 是BD 的中点,点N 在△OBD 内部,ON ⊥DN ,求2+ON =DN .(3)如图3,点P 是第二象限内的一个动点,若∠OPB =90°,求线段CP 的最大值.19.如图1,已知抛物线)(3343y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C ,(1)写出A 、B 、C 三点的坐标.(2)若点P 为OBC 内一点,求OP BP CP ++的最小值.(3)如图2,点Q 为对称轴左侧抛物线上一动点,点()4,0D ,直线DQ 分别与y 轴、直线AC 交于E 、F 两点,当CEF △为等腰三角形时,请直接写出CE 的长.20.已知等边△ABC ,M 在边BC 上,MN ⊥AC 于N ,交AB 于点P .(1)求证:BP =BM ;(2)若MC =2BM ,求证:MP =MN .(3)若E ,F 分别在AB 、AC 上,且△MEF 为等边三角形,当MEF ABC S S ∆∆的值最小时,BM BC= .【参考答案】**科目模拟测试 一、解答题 1.(1)①见解析;②5m =;(2)m 的值为25或6;(3)25CE =【解析】【分析】(1)①连接DE ,证明ADC ∆是等腰三角形,根据“三线合一”的性质可得ADE CDE ∠=∠,证得EC EF =,从而可得结论;②根据勾股定理得到AC 45=,由E 为AC 中点得EC 25=,再证明DEC CBA ,由相似三角形的性质列出比例式,求出m 的值即可;(2)分PF //AC 和PF //BC 两种情况求解即可; (3)设CE =x ,作PG ⊥AC ,则2x GE =,45AE x =- 证明PGE EAP '≅得AP GE '=,再证明AP EBAC ',列比例式求出x 的值即可.【详解】解:(1)如图,连接DE∵CD 是圆P 的直径,∴∠DEC =90°,即DE ⊥AC∵E 为CA 中点∴AE =CE∴AD =CD∴ADE CDE ∠=∠∴EC EF =∴E 是CF 的中点;②在Rt △ABC 中,∠B =90°,AB =4,BC =8,∴22224845AC AB BC +=+∵E 是AC 的中点∴11452522EC AC ==⨯= ∵AB //CD ,90B ∠=︒∴90B DCB ∠+∠=︒∴90DCB∠=︒,即90DCE BCA∠+∠=︒∵90CDE DCE∠+∠=︒∴CDE BCA∠=∠又90B DEC∠=∠=︒∴DEC CBA∆∆∽∴CE DCAB AC=,即252=445m解得,5m=;(2)分两种情况:①当PF//AC时,如图,则有PDF CDA∆∆∴PF PDAC CD=,即245PF mm=∴25=PF∴25m=②当PF//BC时,如图,过点A作AH⊥DC,垂足为H,则四边形AHCB是矩形,∴AH//BC,HC=AB=4,AH=BC=8∴PF//AH∵90DCB∠=︒∴90FPD∠=︒∴45PDF PFD∠=∠=︒∴45HAD HDA∠=∠=︒∴DH=AH,即248m-=解得,6m=综上,m的值为256;(3)过点P 作PG AC ⊥于点G ,如图,∵PE =PC ∴1,2GE CE EPG CPG =∠=∠ ∵90PEP '∠=︒∴90P EA PEG '∠+∠=︒又90PEG GPE ∠+∠=︒∴P EA EPG '∠=∠又90P AE PGE '∠=∠=︒,PE P E '=∴P AE EPG '∆≅∆∴AP GE '=设CE x =,则45,2x AE x GE AP '=== ∵90,90BCA DCA GPC PCH ∠+∠=︒∠+∠=︒∴GPC BCA ∠=∠∴EPG BCP ∠=∠∴P EA BCA '∠=∠又90P AE B '∠=∠=︒∴AP E BAC '∆∆ ∴AP AB AE BC '=42825x = ∴5x =25CE =【点睛】本题主要考查了全等三角形的判定与性质,圆的基本概念,相似三角形的判定与性质,正确作出辅助线以及进行分类讨论是解答本题的关键.2.(143;(2)S =()()22330434348t t t ⎧+≤≤⎪⎪⎨⎪≤⎪⎩<;(3)存在,当t =247s 或(32-163)s或163s时,△AMQ为等腰三角形.【解析】【分析】(1)首先求得CN的长,在直角△CNQ中利用三角函数即可求得NQ的长;(2)当0≤t≤4时,N在CD上,首先求得CQ,则AQ长即可求得,再根据△CAB=30°,AM=t,据此即可求得△AMQ的长;当4<t≤8时,利用相似求得AQ的长,进而求得△AMQ的面积,得到函数解析式;(3)分三种情形讨论求解即可.【详解】解:(1)当t=2时,CN=2×2=4,∵在△ACD中,AD=DC,∴∠DCA=1801202︒-︒=30°,在直角△CNQ中,NQ=CN•tan30°=4×33=433;(2)由题意得,AM=t,当0≤t≤4时,CN=2t,∵∠D=120°,AB=CD=8,∴∠DCA=30°,连接BD,与AC相交于点定O,过点Q作QG⊥AB于点G,∴OC=CD•cos30︒3AC3∴在Rt△CNQ中,NQ23t,CQ43t,∴AQ=AC-CQ343,QG=12AQ,∴S=12AM• QG =233t+,当4<t≤8时,延长QN,交AB于G,交CD延长线于H,如图:ND =2t -8,∠HDN =60°,∴HD =12ND =t -4, ∴CH =t -4+8=t +4,∴CQ =23cos303CH =︒(t +4), ∴AQ =AC -CQ =83-233(t +4),QG =12AQ , S =12•AM • QG 234363t t =-+. 综上,S =()()223230433434863t t t t t t ⎧-+≤≤⎪⎪⎨⎪-+≤⎪⎩<; (3)①当0<t ≤4时,只有MA =MQ 符合条件,过点M 作ME ⊥AC 于点E ,则AE =EQ =AM •cos30︒=32t , ∴AQ =3t ,由(2)知AQ 343, 3433, 解得t =247; ②当4<t ≤8时,由(2)知AQ 323t +4),AQ =AM 时,)4t +=t ,解得tAQ =MQ 时,AM ,t )4t ⎤+⎥⎦, 解得t =163.综上所述,当t =247s 或(s 或163s 时,△AMQ 为等腰三角形. 【点睛】本题考查了菱形的性质以及三角函数,正确进行分请情况进行讨论是关键.3.(1)245y x x =-++;(2)1(2,9)P ,2(3,8)P ;(3)1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -【解析】【分析】(1)直接将(0,5)A ,(5,0)B 代入2y x bx c =-++,求解即可;(2)先求出AB 的解析式,设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+,用t 表示出PD ,最后利用245AOE APCD S S ∆=四边形求出结果; (3)分三种情况讨论解答:①当EM 为平行四边形的对角线时;②当EP 为对角线时;③当EQ 为对角线时.【详解】(1)将点(0,5)A ,(5,0)B 分别代入2y x bx c =-++得25505b c c -++=⎧⎨=⎩, 45b c =⎧∴⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)//AC x 轴,点()0,5A ,∴当5y =时,2455x x -++=,10x ∴=,24x =,()4,5C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,将(0,5)A ,(5,0)B 分别代入得505n m n =⎧⎨=+⎩, 解得:1m =-,5n =∴直线AB 的解析式为5y x =-+;设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+()2245(5)5PD t t t t t ∴=-++--+=-+,4AC =,()22114521022APCD S AC PD t t t t ∴=⨯=⨯⨯-+=-+四边形 函数245y x x =-++,当0y =时,有2450x x -++=,11x ∴=-,25x =,(1,0)E ∴-,1OE ∴=,又5OA =,11515222AOE S OE OA ∆∴=⨯⨯=⨯⨯=, 245AOE APCD S S ∆=四边形, 22452101252t t ∴-+=⨯=, 解得:12t =,23t =,∴点1(2,9)P ,2(3,8)P ;(3)∵2(2)9y x =--+,∴当x =2时,y =-2+5=3,∴M (2,3),设P (m ,2(2)9m --+,(,5)Q n n -+,而E (-1,0),①当EM 为平行四边形的对角线时,(平行四边形的对角线互相平分)得:21222(2)950322m n m n +-+⎧=⎪⎪⎨--+-++⎪=⎪⎩, 解得121261,52m m n n ==-⎧⎧⎨⎨=-=⎩⎩ (舍), ∴点Q 的坐标为(-5,10);②当EP 为对角线时,212220(2)93522m m m n -++⎧=⎪⎪⎨--+-+⎪=⎪⎩,解得121223,10m m n n ==⎧⎧⎨⎨=-=⎩⎩, ∴点Q 的坐标为(-1,6)或(0,5);③当EQ 为对角线时,21222053(2)922n m n m -++⎧=⎪⎪⎨-+--+⎪=⎪⎩, 解得121261,92m m n n ==-⎧⎧⎨⎨==⎩⎩(舍), 点Q 的坐标为(9,-4),综上所得:1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -.【点睛】本题考查了待定系数法求函数关系式,平行四边形的性质和判定,解本题的关键是分类思想的运用.4.(1)2y x 2x 3=-++;(2)278;(3)存在,n =1或n 3+33- 【解析】【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF ⊥x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A (-1,0),B (3,0),C (0,3)∴(1)(3)y a x x =+-把C (0,3)代入得,1a =-∴2y x 2x 3=-++(2)作DF ⊥x 轴于点F ,交BC 于点E设直线BC 关系式为y =kx +b ,代入(3,0),(0,3)得k =-1,b =3,∴y =-x +3∵点D 的横坐标为m ,则DF =223m m -++,EF =-m +3∴DE =23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ∵302-<,∴S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N∴1290Q MP Q NP BOP ∠=∠=∠=︒∵1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,∴1PQ M BPO ∠=∠又∵1BP PQ =,∴1Q PM PBO △≌△∴1MQ OP n ==,3MP OB ==,∴1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,∴2Q (-n ,n -3)代入抛物线,得2323n n n =-+-- 解得13+33n -=2333n --=舍去) 综上,存在n 的值,n =1或n 3+33-【点睛】 此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.5.(1)315,24⎛⎫- ⎪⎝⎭;(2)Q 1(-5,0),Q 2(-1,0),Q 3 ()720,,Q 4)720,. 【解析】【分析】(1)分别求出点B 、C 的坐标,连接PB ,PC ,PO ,设点P 坐标为()2,23m m m --+,四边形PBOC 的面积为S ,根据=BOP COP S S S +△△得到S 关于m 的二次函数解析式,根据二次函数的性质即可求解;(2)分点M 在x 轴上方或点M 在x 轴下方两种情况讨论,分别求出点M 的坐标,根据平行四边形的性质即可求出点Q 的坐标. 【详解】解:(1)把0x =代入223y x x =--+得y =3, ∴点C 坐标为(0,3);把y =0代入223y x x =--+得2x 2x 30--+=, 解得123,1x x =-=, ∵点B 在x 轴负半轴上, ∴点B 坐标为(-3,0); 如图1,连接PB ,PC ,PO ,∵点P 在第二象限抛物线223y x x =--+上,∴设点P 坐标为()2,23m m m --+(-3<m <0),设四边形PBOC 的面积为S , ∴=BOP COP S S S +△△2211232m m OB O m C =--++ ()()2332223m m m +=+--- 2399222m m =--+, ∵302-<,∴当322b m a =-=-时,S 有最大值, 此时,215234m m --+=, ∴当点P 坐标为315,24⎛⎫- ⎪⎝⎭时,四边形PBOC 的面积最大;(2)存在,如图2,分点M 在x 轴上方或点M 在x 轴下方两种情况讨论. ①当点M 在x 轴上方时,点M 与点C 纵坐标相等,∴2233x x --+=, 解得122,0x x =-=, ∴CM 1=2,∵四边形BQCM 1是平行四边形, ∴CM =BQ =2,∴满足条件的点Q 有两个,分别是Q 1(-5,0),Q 2(-1,0); ②当点M 在x 轴下方时,点M 与点C 纵坐标互为相反数, ∴2233x x --+=-, 解得1271,71x x =--=-,∴点M 2坐标为()713---,,点M 3坐标为()713--,,由平行四边形的性质得点B 向右平移3个单位,向上平移3个单位得到点C ,∴点M 2向右平移3个单位,向上平移3个单位得到点Q 3,点M 3向右平移3个单位,向上平移3个单位得到点Q 4,∴Q 3的坐标为()720-+,,Q 4的坐标为()720+,;综上所述,满足条件的点Q 的坐标有四个,分别是Q 1(-5,0),Q 2(-1,0),Q 3()720-+,,Q 4()720+,.【点睛】本题为二次函数综合题,难度较大,解决第(1)步,关键是理解函数图象上点的坐标特点,将四边形分割为两个三角形,分别表示出三角形面积,得到函数解析式,并利用二次函数性质求解;解决第(2)步关键是理解平行四边形的性质,利用分类讨论思想求解,注意要充分考虑各种情况,不要漏解.6.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k≠0或56<k<43【解析】【分析】(1)把A(−3,0),B(1,0),52,2C⎛⎫⎪⎝⎭代入y=ax2+bx+c,解方程组即可;(2)把C点坐标代入直线CD,得2k+b=52,分两种情况:①若AB为平行四边形的边时,②若AB为平行四边形的对角线时,得关于k、b的方程组,解方程组即可求解;(3)分两种情况:①当E点在x轴上方时,②E点在x轴下方时,根据当α=β时,列方程,可求出k的值,进而求出k的取值范围.【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线经过A(−3,0),B(1,0),C(2,52)三点,∴9305 422a b ca b ca b c⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132abc⎧⎪⎪⎨⎪⎪-⎩===,∴抛物线的解析式为y=12x2+x−32;(2)如图1所示,将C点坐标代入直线CD,得2k+b=52,当x=−1时,y=−k+b,即E(−1,−k+b).①若AB为平行四边形的边时,则F(-1+4,−k+b)或F(-1-4,−k+b),即:F(3,−k +b )或F (-5,−k +b ), 把F (3,−k +b )代入y =12x 2+x −32,得−k +b =6, 把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称, ∴F (−1,k -b ), ∴k -b =-2, 又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2); (3)如图2所示,①当E 点在x 轴上方时,如图2所示,当α=β时,∵∠EHA =90°, ∴∠AEC =90°, ∴∠AEH =∠EGH , ∵∠AHF =∠FHG =90°, ∴AHF FHG ∽, ∴AE AHEG EH=, ∵A (−3,0),E (−1,−k +b ),G (bk-,0),∴()()2222221k bk bbk bk+-+=-+⎛⎫-++-+⎪⎝⎭,∴k2−bk−2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k<56且k≠0时,α>β;②E点在x轴下方时,如图4所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,根据①可得此时k=43(k=−12舍去),随着E点向下移动,∠CEH的度数越来越小,∠EAH的度数越来越大,因此当56<k <43时,α>β.综上所述可得,当α>β时,k 取值范围为−12<k <56且k ≠0或56<k <43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.7.(1)34k =,5b =;(2)①OM =5;②()3,6N 或724,55N ⎛⎫ ⎪⎝⎭【解析】 【分析】(1)分别将将(4,3)A 代入y kx =和12y x b =-+中,求解即可;(2)①设直线AB 与y 轴交与点C ,与FM 交于点D ,证明△AFD ≌△EFD ,得到AD =ED ,利用中点坐标公式求得点D 坐标,用待定系数法求得直线FD 的函数表达式,令0y =,即可求得点M 的坐标,从而求得OM ;②点N 在直线l 1的上方,当△OFN 和△OFM 全等时,满足题意的点N 有两个,分别画出相关的图形,分类讨论求解即可. 【详解】解:(1)∵直线l 1:y kx =和直线l 2:12y x b =-+相交于点A∴将(4,3)A 代入y kx =中,得:43k = 解得:34k =∴将(4,3)A 代入12y x b =-+中,得:1432b -⨯+=解得:5b =∴3,54k b == (2)① 设直线AB 与y 轴交与点C ,与FM 交于点D ,如下图:∵34k =,5b = ∴直线l 1的函数表达式为34y x =,直线l 2的函数表达式为152y x =-+∵(4,3)A ∴22345OA +设直线AB 与y 轴交与点C ,与FM 交于点D 则()0,5C ∴5OC = ∴5OA OC == ∴∠OCA =∠OAC ∵//FE y 轴 ∴∠OCA =∠FEA 又∵∠OAC =∠FAE ∴∠FAE =∠FEA ∴FA =FE又∵FM 是∠OFE 的角平分线 ∴∠AFM =∠EFM 又∵FD =FD ∴△AFD ≌△EFD ∴AD =ED ∴点D 为AE 的中点 ∵//FE y 轴∴点F 和点E 的横坐标相同 将8x =代入152y x =-+中,得1y =∴()8,1E ∵(4,3)A ,()8,1E ∴()6,2D设线段FM 所在的直线函数表达式为()0y ax b a =+≠将()()8,6,6,2F D 代入y ax b =+中,得:8662k b k b +=⎧⎨+=⎩解得:210k b =⎧⎨=-⎩∴线段FM 所在的直线函数表达式为210y x =- 令0y =,得2100x -= 解得:5x = ∴()5,0M ∴OM =5② 当,OFN FOM 全等时,有两种情况,情况一,如下图所示:∵OFN FOM ≅△△∴∠OFN =∠FOM ,FN =OM ,ON =FM ∴//FN OM ∵OM =5 ∴FN =5,8F x =∴853N x =-=,6N F y y == ∴()3,6N情况二,当△OMF 和△ONF 关于直线l 1对称时,如下图所示:∵OFN FOM ≅△△∴ON =OM =5,∠NOF =∠MOF ∵OP =OP ∴△NOP ≌△MOP ∴PN =PM ∵()8,6F∴10OF 又∵1122OMFF SOM y OF PM =⋅=⋅ ∴F OM y OF PM ⋅=⋅ ∴56==310PM ⨯∴MN =2PM =6,OP 4 ∵1122OMN N S MN OP OM y =⋅=⋅△ ∴642455N y ⨯==∴75N x ==∴724,55N ⎛⎫⎪⎝⎭综上所述,满足题意点有两个,分别是:()3,6N 或724,55N ⎛⎫⎪⎝⎭【点睛】本题考查用待定系数法求一次函数表达式,三角形全等的性质和证明,两条直角交点的求法以及三角形的等面积法等知识点,牢记相关内容并能灵活应用数形结合思想解题是本题的关键.8.(1)y 14=-x 2+x +3;y 12=x +1;(2)△PAD 的面积的最大值为274,P (1,154);(3)点Q 的坐标为(0,133)或(0,﹣9) 【解析】 【分析】(1)由A (﹣2,0)、B (6,0)设抛物线的解析式为y =a (x +2)(x ﹣6),把D (4,3)的代入解析式解方程即可,再利用待定系数法求解一次函数的解析式; (2)如图1中,过点P 作PT y ∥轴交AD 于点T .设P (m ,14- m 2+m +3),则T(m,12m+1),再利用面积列函数关系式,再利用二次函数的性质求解最值即可;(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,则T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,再求解直线DT的解析式为y13=-x133+,作点T关于AD的对称点T′(1,﹣6),求解直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,从而可得答案.【详解】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,∴设抛物线的解析式为y=a(x+2)(x﹣6),∵D(4,3)在抛物线上,∴3=a(4+2)×(4﹣6),解得a14 =-,∴抛物线的解析式为y14=-(x+2)(x﹣6)14=-x2+x+3,∵直线l经过A(﹣2,0)、D(4,3),设直线l的解析式为y=kx+m(k≠0),则2043k mk m-+=⎧⎨+=⎩,解得,121km⎧=⎪⎨⎪=⎩,∴直线l的解析式为y12=x+1;(2)如图1中,过点P作PT y∥轴交AD于点T.设P(m,14-m2+m+3),则T(m,12m+1).∵S△PAD12=•(xD﹣xA)•PT=3PT,∴PT的值最大值时,△PAD的面积最大,∵PT14=-m2+m+312-m﹣114=-m212+m+214=-(m﹣1)294+,∵14-<0,抛物线开口向下,∴m=1时,PT的值最大,最大值为94,此时△PAD的面积的最大值为274,P(1,154).(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,过D作DM x⊥轴于,M过T作TN x轴于,N90,,TNA AMD TAD AD AT90,TAN ATN TAN DAM,ATN DAM,ATN DAM≌6,3,235,TN AM AN DM ON∴T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,∵D(4,3),∴直线DT的解析式为y13=-x133+,∴Q(0,133),作点T关于AD的对称点T',同理可得T'(1,﹣6),则直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,∴Q′(0,﹣9),综上所述,满足条件的点Q的坐标为(0,133)或(0,﹣9).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题,属于中考压轴题.二次函数综合题中面积问题的解题通法:(1)直角坐标系中图形面积的求法,以“S三角形=12×水平底×铅直高”为基础求解.(2)图形面积的数量关系:①找出所求图形的顶点,其中动点的坐标根据函数关系式用含未知数的代数式表示出来;②结合图形作辅助线,并将关键线段的长度用含未知数的代数式表示出来;③利用面积公式用含未知数的代数式表示出图形的面积;④列方程求解.(3)图形面积的最值,解题思路跟(1)中的前三步相同,然后利用函数的增减性求解.9.(1)证明见解析;(2)证明见解析,(3)15714BF=.【解析】【分析】(1)连接OA并延长AO交BC于E,证明∠BAC=2∠BAE和∠ABD=∠BAE即可得结论,(2)利用直角三角形两锐角互余、圆周角定理进行导角,得出MCG△和△FCG是等腰三角形,得出BM=MC=FG=CG,MH=HG,进而由BF=BM+MH-FH=FG-FH+HG,得出结论;(3)过O点作OP⊥AC,由垂径定理得出12PD=,再由52ABOADOS AB BOS AD OD===和平行线分线段成比例定理求出7724DH DP==,由勾股定理进而可求BH,再利用相似三角形对应边成比例求出HG,即可得BF长.【详解】解:(1)连接OA并延长AO交BC于E,∵AB=AC,∴AB AC=,∵AE过圆心O,∴AE BC⊥,BE EC=,∴∠BAC=2∠BAE,∵OA=OB,∴∠ABD=∠BAE,∴∠BAC=2∠ABD;(2)如解图(2),连接OA并延长AO交BC于E,AE交BF于M,连接MC,设2BACα∠=,则ABD BAE EACα∠=∠=∠=∵AE =EC ,AE ⊥BC ,∴BM =MC ,∴∠MBC =∠MCB ,∵BG ⊥AC ,AE ⊥BC ,∴∠EAC +∠ACE =90°,∠HBC +∠ACE =90°,∴EAC HBC MCB α∠=∠=∠=,∴2CMG MBC MCB α∠=∠+∠=,∵BC BC =,∴2G BAC α∠=∠=,∴∠G =∠CMG ,∴CG =CM =BM ,∵AC ⊥BG ,∴MH =HG ,∵OA =OC ,∴ACO EAC α∠=∠=∴9090CFG ACO α∠=︒-∠=︒-,∵180FCG CFG G ∠=︒-∠-∠,即180(90)290FCG ααα∠=︒-︒--=︒-,∴FCG CFG ∠=∠,∴FG =CG ,∴BM =MC =FG =CG ,又∵MH =HG ,∴BF =BM +MH -FH =FG -FH +HG ,∴BF =2HG .(3)过O 点作OP ⊥AC ,如解图(3)∵AO 是∠BAC 的角平分线,∴点O 到AB 、AC 的距离相等, ∴ABO ADO SAB BO S AD OD==, ∵AD =2,CD =3,∴AB =AC =5, ∴5=2BO OD ,即:2=7OD BD , ∵OP ⊥AC ,∴52AP PC ==,12PD =, ∵BH AC ⊥, ∴OP //BH ,∴27DP OP OD DH BH BD ===, ∴7724DH DP ==, ∴154AH AD DH =+=,5-4HC DC DH ==,∵在Rt ABH中,BH == ∵BAH G ∠=∠,AHB GHC ∠=∠, ∴AHB GHC △△,∴AH BH HG CH = 即:AH HC BHHG =, 51544=⨯, ∴HG =, 由(2)得BF =2HG ,∴BF = 【点睛】 本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.10.(1)291515404y x x =+-,y =﹣34x ﹣15;(2)面积最大值225,C (﹣10,﹣30);(3)S =﹣2553t +160t ﹣240. 【解析】【分析】(1)利用待定系数法将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 即可求出抛物线的函数表达式;设AB 的函数表达式是y =kx +b ,然后利用待定系数法将点A (﹣20,0),B (0,﹣15)代入y =kx +b 即可求出直线AB 的函数表达式;(2)作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15),根据题意表示出CF 的长度,进而表示出ABC S ∆,然后利用二次函数的性质求解即可;(3)作AN ⊥OD 于N ,AD 与FG 交于点I ,首先根据题意求出OC 的解析式,然后联立33154y x y x =⎧⎪⎨=--⎪⎩求出点D 的坐标,然后求出AD OD =,利用等腰三角形三线合一性质求出ON 的长度,进而利用勾股定理求出AN 的长度,表示出S △AON ,然后证明出△GFI ∽△OGH ∽△ANO ,利用相似三角形的性质表示出S △IJF =803(t ﹣3)2,S △GOH =253t ,最后利用面积之间的关系即可求出S 与t 之间的函数关系式.【详解】解:(1)由题意得,将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 得, 21515(20)(20)04c a c =-⎧⎪⎨-+⨯-+=⎪⎩, ∴15940c a =-⎧⎪⎨=⎪⎩, ∴291515404y x x =+-, 设AB 的函数表达式是y =kx +b ,将点A (﹣20,0),B (0,﹣15)代入y =kx +b 得,∴15200b k b =-⎧⎨-+=⎩, ∴1534b k =-⎧⎪⎨=-⎪⎩, ∴y =﹣34x ﹣15; (2)如图1,作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15), ∴FC =(﹣315)4a -﹣(2940a +154a ﹣15)=﹣2940a ﹣92a , ∴ABC S ∆=12CF •AO =12(﹣2940a ﹣92a )×20=﹣94(a +10)2+225, ∴当a =﹣10时,ABC S ∆=225, 当a =﹣10时,y =29(10)40⨯-+()15104⨯-﹣15=﹣30, ∴C (﹣10,﹣30);(3)如图2,作AN ⊥OD 于N ,∵C (﹣10,﹣30),∴OC 的解析式是:y =3x ,由33154y x y x =⎧⎪⎨=--⎪⎩得, 412x y =-⎧⎨=-⎩, ∴D (﹣4,﹣12),∵A (﹣20,0),OD 22412+10∴AD ()2220412-++=20,∴AD OD=,又∵AN⊥OD,∴ON=12OD=AN=S△AON=1160 22AN ON=⨯=,∵OE,OD=,∴DE=,∴JE=3(),∴FJ=EF﹣JEt﹣3(t)=(t﹣3),∵OG AN FJ∥∥,∴GOH OAN DAN AJF∠=∠=∠=∠,又∵90G ANO F∠=∠=∠=︒,∴△GFI∽△OGH∽△ANO,∴IJFAONSS∆∆=(FJAN)2=2,GOHAONSS∆∆=(OGAN)2)2,∴S△IJF=803(t﹣3)2,S△GOH=253t,∴S=S正方形OEFG﹣S△IJF﹣S△GOH=10t2﹣53t2﹣803(t﹣3)2=﹣2553t+160t﹣240,故答案是:S=﹣2553t+160t﹣240.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数与一次函数综合问题,相似三角形的性质和判定,二次函数中最大面积问题等知识,解题的关键是正确分析题目中的条件,设出点的坐标,根据相似三角形的性质以及勾股定理表示出相应的线段和面积.11.(1)(1,,图见解析(2)1322Cx-≤≤1122t<≤【解析】【分析】(1)根据等边三角形的性质,勾股定理求解即可;(2)根据题意以MB为边作等边三角形MM B',以M'为圆心1为半径作M',根据线段中点坐标公式求解即可;(3)在(2)的基础上,先求得最小值,再确定2个圆心,第1个是A 点运动点C 对应的圆心P ',第2个是点B 的运动时点C 轨迹的对应的圆心P ,进而根据线段和最大,当,,P P Q '共线时候,t 最大,根据(2)的方法求解即可.(1)过点C 作CE x ⊥轴于点E ,作出点C ,B 的逆序等边三角形CBD ,如图1,()()1,03,0A B -,,ABC 是等边三角形()1131222AE BE AB ∴===--=,33CE AE ==()1,0E ∴,(1,3C ,ABC BCD 是等边三角形∴60DCB ABC ∠=∠=︒,AB AC BC CD BD ====,CD AB CD AB ∴=∥(5,23D ∴ 故答案为:(1,23,(5,23(2)如图2,以MB 为边作等边三角形MM B ',以M '为圆心1为半径作M ', 点B (3,0),点A 在以点M (-2,0)为圆心1为半径的圆上, ∴点A ,B 的逆序等边三角形ABC 的顶点C 在M '23122M x '-+∴== M '的半径为1∴111122C x -≤≤+ 即1322C x -≤≤(3)如图3,设N 与x 轴交于点G ,以GM 为边向上作等边三角形MGH ,以点H 为圆心1为半径,作H ,设直线y x =为1l ,y x t =+为2l ,过点H 作1HJ l ⊥,交x 轴于点J ,交1l 于点S ,交2l 于点L ,过点H ,作HI x ⊥轴于点I ,设2l 与x 轴的交点为T ,则OT t =根据题意,当C 点在第二象限时,能找到t 的最小值,根据定义可知,B 点与G 点重合时,A 点在M 上运动,则C 点在H 上运动,当2l 与H 相切时,t 最小, ()2,0M -,()3,0N ,M 的半径为1,N 的半径为2, 2,321OM OG ∴==-=3MG ∴=33HI ∴=1322MI MG == 1,02I ⎛⎫∴- ⎪⎝⎭ 1332H ⎛∴- ⎝⎭1l 与x 轴的夹角为45°,1HJ l ⊥,HI x ⊥轴, HIJ ∴是等腰直角三角形 HI IJ ∴=HJ ∴===12OI =12OJ ∴1,02J ⎫∴⎪⎪⎝⎭1LJ HJ HL ∴=-=12l l ∥ LTJ ∴是等腰直角三角形1TJ ∴===⎝3122OJ =1122TO TJ JO ⎫=-==⎪⎪⎝⎭即t 12, B 的纵坐标0d >,则12t > 如图4,作,M N 的逆序等边三角形MNP ',以P '为圆心,1为半径作P ',则1PP AM '==,连接,AM PP ',ANP MNP '是等边三角形,,,60AN NP MN NP ANP MNP ''∴==∠=∠=︒PNP ANM '∴∠=∠PP N AMN '≌∴当,,P P Q '共线时候,t 最大以P 为圆心,2为半径作半圆P ,当直线y x t =+与半圆P 相切时,设切点为Q ,当C 点与Q 点重合时,即可取得t 的最大值,最大值即为T O '的长,()()2,0,3,0M N - ∴1532P ⎛' ⎝⎭过点P '作P P x '''⊥轴于点P '',如图,。

2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)

2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)

中考数学专题几何函数压轴题专题1.如图,抛物线y=ax2-bx+3 交x 轴于B(1,0),C(3,0)两点,交y 轴于点A,连接AB,点P 为抛物线上一动点.(1)求抛物线的解析式;(2)当点P 到直线AB 的距离为7 10时,求点P 的横坐标;9(3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图2.如图1,在平面直角坐标系中,直线y=x+4 与抛物线y =-1x2 +bx +c (b,c 2是常数)交于A,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.(1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A,B 重合).①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D,求PD的最大值;OD②如图3,若点P 在x 轴上方,连接PC,以PC 为一边作正方形CPEF.随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.23. 如图,抛物线y=ax2+bx+4(a≠0)交x 轴于点A(4,0),B(-2,0),交y 轴于点C.(1)求抛物线的解析式.(2)点Q 是x 轴上位于点A,B 之间的一个动点,点E 为线段BC 上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE 的面积为S,点Q 的横坐标为m,求出S 关于m 的函数关系式,并求出当S 取最大值时点Q 的坐标.(3)点P 为抛物线上位于AC 上方的一个动点,过点P 作PF⊥y 轴,交直线AC 于点F,点D 的坐标为(2,0),若O,D,F 三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P 的坐标;若不存在,请说明理由.4.如图,抛物线y =-3x2 +bx +c 与x 轴交于A,B 两点,与y 轴交于点C,直4线y =3x + 3 经过点A,C.4(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM∥y 轴交直线AC 于点M,设点P 的横坐标为t.①若以点C,O,M,P 为顶点的四边形是平行四边形,求t 的值.②当射线MP,MC,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2 与x 轴交于A,B 两点,与y 轴交于点C,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G,作PH⊥EO,垂足为H.设PH 的长为a,点P 的横坐标为m,求a 关于m 的函数关系式(不必写出m 的取值范围),并求出a 的最大值.(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值.(2)点E 是直角三角形ABC 斜边AB 上一动点(点A,B 除外),过点E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点E 的坐标.(3)在(2)的条件下:①求以点E,B,F,D 为顶点的四边形的面积;② 在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,直接写出所有点P 的坐标;若不存在,说明理由.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x 轴于A,C 两点,与直线y=x-1 交于A,B 两点,直线AB 与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P 在直线AB 上方的抛物线上运动,若△ABP 的面积最大,求此时点P 的坐标;(3)在平面直角坐标系中,以点B,E,C,D 为顶点的四边形是平行四边形,请直接写出符合条件点D 的坐标.8.如图,已知抛物线y =ax2 +3x + 4 的对称轴是直线x=3,且与x 轴相交于A,2B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A,B 两点的坐标.(2)若点P 是抛物线上B,C 两点之间的一个动点(不与B,C 重合),则是否存在一点P,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N,当MN=3 时,求点N 的坐标.9.如图,抛物线y=1x2 +bx +c 经过点A( 2 3(1)求该抛物线的解析式;,0)和点B(0,-2).(2)若△OAB 以每秒2 个单位长度的速度沿射线BA 方向运动,设运动时间为t,点O,A,B 的对应点分别为D,E,C,直线DE 交抛物线于点M.①当点M 为DE 的中点时,求t 的值;②连接AD,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图310.如图,抛物线y=ax2+bx-2 的对称轴是直线x=1,与x 轴交于A,B 两点,与y 轴交于点C,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD⊥x 轴于点D,交直线BC 于点E.(1)求抛物线解析式.(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积.(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N,使得以点B,D,M,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0),抛物线y=-x2+bx+c 经过A,B 两点.(1)求抛物线的解析式.(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D,交线段AB 于点E,使PE 1DE .2①求点P 的坐标和△PAB 的面积.②在直线PD 上是否存在点M,使△ABM 为直角三角形?若存在,直接写出符合条件的所有点M 的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+2 与直线y=-x 交第二象限于点E,与x 轴交于A(-3,0),B 两点,与y 轴交于点C,EC∥x 轴.(1)求抛物线的解析式;(2)点P 是直线y=-x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.13. 如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4 交于B,D 两点.(1)求抛物线的解析式及点D 的坐标;(2)点P 为直线BD 下方抛物线上的一个动点,求△BDP 面积的最大值及此时点P 的坐标;(3)点Q 是线段BD 上异于B,D 的动点,过点Q 作QF⊥x 轴于点F,交抛物线于点G,当△QDG 为直角三角形时,直接写出点Q 的坐标.1314.如图,抛物线y=ax2+bx+c 交x 轴于点A(1,0)和点B(3,0),交y 轴于点C,抛物线上一点D 的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P 是直线BC 下方抛物线上的一个动点,PE∥x 轴,PF∥y 轴,求线段EF 的最大值;(3)如图2,点M 是线段CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点N,当△CBN 是直角三角形时,请直接写出所有满足条件的点M 的坐标.15.如图,已知抛物线y=ax2+4x+c 与x 轴交于点M,与y 轴交于点N,抛物线的对称轴与x 轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A 是y 轴正半轴上一动点,点B 是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO 为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM 中有一边的长等于MP 时,请直接写出点 A 的坐标.16.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1 过A,B 两点,并与过点A 的直线y =-1x -1 交于点C.2(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C 为顶点的三角形与△AOC 相似?若存在,求出点N 的坐标;若不存在,请说明理由.17.如图,直线l:y =1x +m 与x 轴交于点A(4,0),与y 轴交于点B,抛物线2y=ax2+bx+c(a≠0)经过A,B 两点,且与x 轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P 是抛物线上一动点,当点P 在直线l 下方的抛物线上运动时,过点P 作PM∥x 轴交l 于点M,过点P 作PN∥y 轴交l 于点N,求PM+PN 的最大值;(3)在(2)的条件下,当PM+PN 的值最大时,将△PMN 绕点N 旋转,当点M 落在x 轴上时,直接写出此时点P 的坐标.18.如图,已知抛物线y=ax2+x+c 与y 轴交于点C(0,3),与x 轴交于点A 和点B(3,0),点P 是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P 是点B 与点C 之间的抛物线上的一个动点,过点P 向x 轴作垂线,交BC 于点D,求线段PD 长度的最大值;(3)当点P 移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.19.在平面直角坐标系内,直线y =1x + 2 分别与x 轴、y 轴交于点A,C.抛物2线y =-1x2 +bx +c 经过点A 与点C,且与x 轴的另一个交点为点B.点D2在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D 到直线AC 的最大距离以及此时△ADC 的面积;(3)过点D 作DF⊥AC,垂足为点F,连接CD.若△CFD 与△AOC 相似,求点D 的坐标.20.如图,抛物线y=ax2+bx-3 过A(1,0),B(-3,0),直线AD 交抛物线于点D,点D 的横坐标为-2,点P(m,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式.(2)过点P 的直线垂直于x 轴,交抛物线于点Q,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.21.如图,抛物线y=-x2+bx+c 交x 轴于A,B 两点,交y 轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上的一动点,求△BCP 面积S 的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M 的坐标.21参考答案:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、。

2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。

初三中考数学压轴题精选100题(含答案)

初三中考数学压轴题精选100题(含答案)

初三中考数学压轴题精选100题(含答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.3.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.4.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.7.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.8.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.9.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.11.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A 类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.12.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.13.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.14.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.16.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.19.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.20.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.。

2023年九年级数学中考专题:二次函数综合压轴题附答案附答案

2023年九年级数学中考专题:二次函数综合压轴题附答案附答案

2023年九年级数学中考专题:二次函数综合压轴题附答案1.如图,已知抛物线2y x bx c =++(b ,c 是常数)与x 轴交于()1,0A ,()3,0B -两点,顶点为C ,点P 为线段AB 上的动点(不与A 、B 重合),过P 作PQ BC ∥交抛物线于点Q ,交AC 于点D .(1)求该抛物线的表达式;(2)求CPD △面积的最大值;(3)连接CQ ,当CQ PQ ⊥时,求点Q 的坐标;(4)点P 在运动过程中,是否存在以A 、O 、D 为顶点的三角形是等腰三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由2.在平面直角坐标系中,抛物线24y x x c =--+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为()5,0-.(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求点P 到直线AC 距离的最大值,并求出此时点P 的坐标;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.3.已知:如图,抛物线()2430y mx mx m =++>交x 轴于E 、F 两点,交y 轴于A 点,直线AE :y x b =+交x 轴于E 点,交y 轴于A 点.(1)求抛物线的解析式;(2)若Q 为抛物线上一点,连接,QE QA ,设点Q 的横坐标为()3t t <-,QAE 的面积为S ,求S 与t 函数关系式;(不要求写出自变量t 的取值范围)(3)在(2)的条件下,点M 在线段QA 上,点N 是位于Q 、E 两点之间的抛物线上一点,15S =,QMN AEM ∠=∠,且MN EM =,求点N 的坐标.4.如图,抛物线22y ax ax c =++经过()()1003B C ,,,两点,与x 轴交于另一点A ,点D 是抛物线的顶点.(1)求抛物线的解析式及点D 的坐标;(2)如图1,连接AC ,点E 在直线AC 上方的抛物线上,连接EA EC ,,当EAC 面积最大时,求点E 坐标;(3)如图2,连接AC BC 、,在抛物线上是否存在点M ,使ACM BCO ∠=∠,若存在,求出M 点的坐标;若不存在,请说明理由.5.抛物线21164y ax x =+-与x 轴交于(,0),(8,0)A t B 两点,与y 轴交于点C ,直线6y kx =-经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求二次函数与一次函数的解析式;(2)如图1,连接AC ,AP ,PC ,若APC △是以CP 为斜边的直角三角形,求点P 的坐标;(3)如图2,若点P 在直线BC 上方的抛物线上,过点P 作PQ BC ⊥,垂足为Q ,求12CQ PQ +的最大值.6.在平面直角坐标系中,抛物线223y x x =-++与x 轴交于点A 、B (A 在B 左侧),与y 轴交于点C ,顶点为D ,对称轴为直线l ,点P 是抛物线上位于点B 、C 之间的动点.(1)求ABC ∠的度数;(2)若PBC ACO ∠=∠,求点P 的坐标;(3)已知点(),P p n ,若点(),Q q n 在抛物线上,且p q >;①仅用无刻度的直尺在图2中画出点Q ;②若2PQ t =,求232022p tq t +-+的值.7.如图,在平面直角坐标系中,抛物线2y x bx c =-++经过()0,1A ,()4,1B -.直线AB 交x 轴于点C ,P 是直线AB 上方且在对称轴右侧的一个动点,过P 作PD AB ⊥,垂足为D ,E 为点P 关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)PE +的最大值时,求此时点P PE +的最大值;(3)将抛物线y 关于直线3x =作对称后得新抛物线y ',新抛物线与原抛物线相交于点F ,M 是新抛物线对称轴上一点,N 是平面中任意一点,是否存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.8.如图所示,在平面直角坐标系中,直线3y x =-+交坐标轴于B 、C 两点,抛物线23y ax bx =++经过B 、C 两点,且交x 轴于另一点()1,0A -.点D 为抛物线在第一象限内的一点,过点D 作DQ CO ∥,DQ 交BC 于点P ,交x 轴于点Q .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,在点D 的移动过程中,存在DCP DPC ∠=∠,求出m 值;(3)在抛物线上取点E ,在平面直角坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果存在,请求出点F 的坐标;如果不存在,请说明理由.9.在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)求出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD ∠=∠,求点P 的坐标;(3)如图2,M 是线段CB 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当QMN 为等腰直角三角形时,直接写出此时点M 的坐标.10.二次函数2y ax bx c =++交x 轴于点()10A -,和点()30B -,,交y 轴于点()03C -,.(1)求二次函数的解析式;(2)如图1,点E 为抛物线的顶点,点()0T t ,为y 轴负半轴上的一点,将抛物线绕点T 旋转180︒,得到新的抛物线,其中B ,E 旋转后的对应点分别记为B E '',,当四边形BEB E ''的面积为12时,求t 的值;(3)如图2,过点C 作CD x ∥轴,交抛物线于另一点D .点M 是直线CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点P .是否存在点M 使PBC 为直角三角形,若存在,请直接写出点M 的坐标,若不存在,请说明理由.11.如图,已知抛物线2y ax 2x c =++交x 轴于点()10A -,和点()30B ,,交y 轴于点C ,点D 与点C 关于抛物线的对称轴对称.(1)求该抛物线的表达式,并求出点D 的坐标;(2)若点E 为该抛物线上的点,点F 为直线AD 上的点,若EF x ∥轴,且1EF =(点E 在点F 左侧),求点E 的坐标;(3)若点P 是该抛物线对称轴上的一个动点,是否存在点P ,使得APD △为直角三角形?若不存在,请说明理由;若存在,直接写出点P 坐标.12.在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴、y 轴分别交于B 、C 两点,抛物线2y x bx c =-++经过B 、C 两点,与x 轴的另一个交点为A .(1)如图1,求b 、c 的值;(2)如图2,点P 是第一象限抛物线2y x bx c =-++上一点,直线AP 交y 轴于点D ,设点P 的横坐标为t ,ADC △的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,E 是直线BC 上一点,45EPD ∠=︒,ADC △的面积S 为54,求E 点坐标.13.抛物线24y ax =-经过A 、B 两点,且OA OB =,直线EC 过点()41E -,,()03C -,,点D 是线段OA (不含端点)上的动点,过D 作PD x ⊥轴交抛物线于点P ,连接PC 、PE .(1)求抛物线与直线CE 的解析式;(2)求证:PC PD +为定值;(3)在第四象限内是否存在一点Q ,使得以C 、P 、E 、Q 为顶点的平行四边形面积最大,若存在,求出Q 点坐标;若不存在,请说明理由.14.如图,已知抛物线()230y ax bx a =++≠与x 轴交于()1,0A 、()4,0B 两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的函数表达式及点D 的坐标;(2)若四边形BCEF 为矩形,3CE =.点M 以每秒1个单位的速度从点C 沿CE 向点E 运动,同时点N 以每秒2个单位的速度从点E 沿EF 向点F 运动,一点到达终点,另一点随之停止.当以M 、E 、N 为顶点的三角形与BOC 相似时,求运动时间t 的值;(3)抛物线的对称轴与x 轴交于点P ,点G 是点P 关于点D 的对称点,点Q 是x 轴下方抛物线上的动点.若过点Q 的直线l :94y kx m k ⎛⎫=+< ⎪⎝⎭与抛物线只有一个公共点,且分别与线段GA 、GB 相交于点H 、K ,求证:GH GK +为定值.15.在平面直角坐标系中,已知抛物线2y ax bx =+经过(40)(13)A B ,,,两点.P 是抛物线上一点,且在直线AB的上方.(1)求抛物线的表达式;(2)若OAB 面积是PAB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,PD BO ∥交AB 于点D .记CPB △,BCO 的面积分别为12S S ,,判断12S S 是否存在最大值.若存在,求出最大值;若不存在,请说明理由.16.已知抛物线212y x bx c =-++(b 、c 是常数)的顶点B 坐标为()1,2-,抛物线的对称轴为直线l ,点A 为抛物线与x 轴的右交点,作直线AB .点P 是抛物线上的任意一点,其横坐标为m ,过点P 作x 轴的垂线交直线AB 于点Q ,过点P 作PN l ⊥于点N ,以PQ PN 、为边作矩形PQMN .(1)b =___________,c =___________.(2)当点Q 在线段AB 上(点Q 不与A 、B 重合)时,求PQ 的长度d 与m 的函数关系式,并直接写出d 的最大值.(3)当抛物线被矩形PQMN 截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P 的坐标.(4)矩形PQMN 的任意两个顶点到直线AB 的距离相等时,直接写出m 的值.17.如图1.在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于点()2,0A -,点()4,0B ,与y 轴交于点()0,2C .(2)点P 是第一象限内的抛物线上一点.过点P 作PH x ⊥轴于点H ,交直线BC 于点Q ,求PQ 的最大值,并求出此时点P 的坐标;(3)如图2.将地物线沿射线BC()2111110y a x b x c a =++≠,新抛物线与原抛物线交于点G ,点M 是x 轴上一点,点N 是新抛物线上一点,若以点C 、G 、M 、N 为顶点的四边形是平行四边形时,请直接写出点N 的坐标.18.如图,抛物线()20y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点()0,6C ,顶点为D ,且()1,8D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,过点O 作OH OM ⊥交BC 的延长线于H ,且MO HO =,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.参考答案:1.(1)223y x x =+-(2)2(3)11524Q ⎛⎫-- ⎪⎝⎭(4)1,05⎛⎫- ⎪ ⎪⎝⎭或()0,0或1,05⎛⎫ ⎪⎝⎭2.(1)()0,5(2)点P 到直线AC 距离为8,此时535,24P ⎛⎫- ⎪⎝⎭(3)点M 的坐标为()3,8-或()7,16--或()3,16-3.(1)243y x x =++(2)23922S t t =+(3)()2N -4.(1)223y x x =--+,()14D -,(2)E 的坐标为31524⎛⎫- ⎪⎝⎭,(3)存在,()45M --,或5724⎛⎫- ⎪⎝⎭,5.(1)2111644y x x =-+-;364y x =-(2)710,2P ⎛⎫- ⎪⎝⎭(3)169166.(1)45︒(2)(1,4)P(3)①见解析;②20237.(1)2712y x x =-++PE +的最大值为1,此时点P 的坐标为961,416⎛⎫ ⎪⎝⎭(3)存在点N ,使以C ,F ,M ,N 为顶点的四边形是菱形,此时点N 的坐标为215,424N ⎛+ ⎝⎭或215,424⎛- ⎝⎭或13,544N ⎛⎫+ ⎪ ⎪⎝⎭或13,544N ⎛- ⎝⎭或299,204N ⎛⎫ ⎪⎝⎭8.(1)223y x x =-++(2)2m =(3)存在,此时点F 的坐标为()4,1或()5,2--9.(1)2=23y x x --(2)满足PCB CBD ∠=∠,点P 的坐标为(4,5)或(2,2)-(3)M 点的坐标为(1,2)-或(2,5)--或924,55⎛⎫-- ⎪⎝⎭10.(1)243y x x =---(2)3t =-(3)存在,532⎛⎫-- ⎪ ⎪⎝⎭或532⎛⎫-- ⎪ ⎪⎝⎭或(23)--,或(53)--,11.(1)223y x x =-++,()23D ,(2)11024E ++⎝⎭,或1124E --+⎝⎭,(3)存在点P ,使得APD △为直角三角形,此时点P 的坐标为312⎛⎫+ ⎪⎝⎭,或312⎛ ⎝⎭,或()12-,或()14,12.(1)2b =,3c =(2)12S t =(3)3513,1616⎛⎫ ⎪⎝⎭13.(1)2144y x =-;132y x =-(2)见解析(3)存在,754Q ⎛⎫- ⎪⎝⎭,14.(1)2315344y x x =-+,527,216D ⎛⎫- ⎪⎝⎭(2)当911t =或65t =时(3)见解析15.(1)24y x x=-+(2)(24)P ,或(3,3)(3)见解析16.(1)1-,32(2)21122d m =-+()11m -<<,d 最大值为12(3)()3,0-或1--(4)3-或0或317.(1)211242y x x =-++;(2)5PQ +最大值为94,此时点5(3,4P ;(3)(1-,14-或(1-,1)4-或(1-+1)4或(1--1)4.18.(1)2246y x x =-++(2)129,55⎛⎫ ⎪⎝⎭(3)(1,8或(1,8或271,4⎛⎫ ⎪⎝⎭。

九年级中考数学动点问题压轴题专题训练(含答案)

九年级中考数学动点问题压轴题专题训练(含答案)

九年级中考数学动点问题压轴题专题训练1.如图1, 在平面直角坐标系中, 四边形OABC各顶点的坐标分别为O(0, 0), A(3, 3 ), B(9, 5 ), C(14, 0). 动点P与Q同时从O点出发, 运动时间为t秒, 点P沿OC方向以1单位长度/秒的速度向点C运动, 点Q沿折线OA-AB-BC运动, 在OA, AB, BC上运动的速度分别为3, , (单位长度/秒). 当P, Q中的一点到达C点时, 两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2, 当点Q在AB上运动时, 求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P, Q的运动过程中, 若线段PQ的垂直平分线经过四边形OABC的顶点, 求相应的t值.图1 图22.如图, 抛物线y=-x2+bx+c与x轴交于A, B两点(A在B的左侧), 与y轴交于点N, 过A点的直线l:y=kx+n与y轴交于点C, 与抛物线y=-x2+bx+c的另一个交点为D, 已知A(-1, 0), D(5, -6), P 点为抛物线y=-x2+bx+c上一动点(不与A, D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时, 过P点作PE∥x轴交直线l于点E, 作PF ∥y轴交直线l于点F, 求PE+PF的最大值;(3)设M为直线l上的点, 探究是否存在点M, 使得以点N, C, M, P为顶点的四边形为平行四边形.若存在, 求出点M的坐标;若不存在, 请说明理由.3.如图, 在平面直角坐标系中, 抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点, 求AM+OM的最小值.4.设直线l1: y=k1x+b1与l2: y=k2x+b2, 若l1⊥l2, 垂足为H, 则称直线l1与l2是点H的直角线.(1)已知直线①;②;③;④和点C(0, 2), 则直线_______和_______是点C的直角线(填序号即可);(2)如图, 在平面直角坐标系中, 直角梯形OABC的顶点A(3, 0)、B(2, 7)、C(0, 7), P为线段OC上一点, 设过B、P两点的直线为l1, 过A、P两点的直线为l2, 若l1与l2是点P的直角线, 求直线l1与l2的解析式.5.如图①, 在平面直角坐标系xOy中, 已知抛物线y=ax2-2ax-8a与x轴相交于A, B两点(点A在点B的左侧), 与y轴交于点C(0, -4).(1)点A的坐标为, 点B的坐标为, 线段AC的长为, 抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q, 使得以点B, C, P, Q为顶点的四边形是平行四边形, 求点Q的坐标.①6.如图, 已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A.B(点A位于点B是左侧), 与y轴的正半轴交于点C.(1)点B的坐标为______, 点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P, 使得四边形PCOB的面积等于2b, 且△PBC是以点P为直角顶点的等腰直角三角形?如果存在, 求出点P的坐标;如果不存在, 请说明理由;(3)请你进一步探索在第一象限内是否存在点Q, 使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在, 求出点Q的坐标;如果不存在, 请说明理由.7.如图, 已知A.B是线段MN上的两点, , , . 以A为中心顺时针旋转点M, 以B为中心逆时针旋转点N, 使M、N两点重合成一点C, 构成△ABC, 设.(1)求x的取值范围;(2)若△ABC为直角三角形, 求x的值;(3)探究: △ABC的最大面积?8.如图, 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴, 垂足为C, 在对称轴的左侧且平行于y轴的直线交线段AB于点N, 交抛物线于点M, 若四边形MNCB为平行四边形, 求点M的坐标.9.在平面直角坐标系中, 反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时, 求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大, 求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q, 当△ABQ是以AB为斜边的直角三角形时, 求k的值.10.如图, 已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3, 抛物线与x轴相交于A, B两点, 与y轴相交于点C, 已知B点的坐标为(8, 0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点, 点N为线段BC上的一点, 若MN∥y 轴, 求MN的最大值;(3)在抛物线的对称轴上是否存在点Q, 使△ACQ为等腰三角形?若存在, 求出符合条件的Q点坐标;若不存在, 请说明理由.11.如图, 直线y=2x+6与反比例函数y=(k>0)的图象交于点A(m, 8), 与x轴交于点B, 平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M, 交AB于点N, 连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象, 直接写出当x>0时不等式2x+6->0的解集;(3)直线y=n沿y轴方向平移, 当n为何值时, △BMN的面积最大?最大值是多少?12.如图, 在平面直角坐标系xOy中, 顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B, AO=BO=2, ∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM, 求∠AOM的大小;(3)如果点C在x轴上, 且△ABC与△AOM相似, 求点C的坐标.13.在直角梯形OABC中, CB//OA, ∠COA=90°, CB=3, OA=6, BA=. 分别以OA.OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D.E分别为线段OC.OB上的点, OD=5, OE=2EB, 直线DE交x轴于点F. 求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点, 在x轴上方的平面内是否存在另一点N, 使以O、D、M、N为顶点的四边形是菱形?若存在, 请求出点N的坐标;若不存在, 请说明理由.14.如图, 已知一次函数y=-x+7与正比例函数的图象交于点A, 且与x轴交于点B. (1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C, 过点B作直线l//y轴. 动点P从点O出发, 以每秒1个单位长的速度, 沿O—C—A的路线向点A运动;同时直线l从点B出发, 以相同速度向左平移, 在平移过程中, 直线l交x轴于点R, 交线段BA或线段AO于点Q. 当点P到达点A时, 点P和直线l都停止运动. 在运动过程中, 设动点P运动的时间为t秒.①当t为何值时, 以A.P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在, 求t的值;若不存在, 请说明理由.15.如图, 二次函数y=a(x2-2mx-3m2)(其中a、m是常数, 且a>0, m>0)的图像与x轴分别交于A.B(点A位于点B的左侧), 与y轴交于点C(0,-3), 点D在二次函数的图像上, CD//AB, 联结AD. 过点A作射线AE交二次函数的图像于点E, AB平分∠DAE.(1)用含m的式子表示a;(2)求证: 为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G, 联结GF, 以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点G即可, 并用含m的代数式表示该点的横坐标;如果不存在, 请说明理由.16.如图, 二次函数y=-x2+4x+5的图象的顶点为D, 对称轴是直线l, 一次函数y= x+1的图象与x轴交于点A, 且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C, N是线段DC上一点(不与点D, C重合), 点N的纵坐标为n.过点N作直线与线段DA, DB分别交于点P, Q, 使得△DPQ与△DAB 相似.①当n= 时, 求DP的长;②若对于每一个确定的n的值, 有且只有一个△DPQ与△DAB相似, 请直接写出n的取值范围.17.已知直线y=3x-3分别与x轴、y轴交于点A, B, 抛物线y=ax2+2x+c经过点A, B. (1)求该抛物线的表达式, 并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l, 点B关于直线l的对称点为C, 若点D在y 轴的正半轴上, 且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移, 平移后抛物线的顶点为P, 其对称轴与直线y=3x-3交于点E, 若, 求四边形BDEP的面积.18.如图, 在平面直角坐标系xOy中, 二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A.B两点, 点A在x轴上, 点B的纵坐标为-7.点P是二次函数图象上A.B两点之间的一个动点(不与点A.B重合), 设点P的横坐标为m, 过点P作x轴的垂线交AB于点C, 作PD ⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB, 线段PC把△PDB分成两个三角形, 是否存在适合的m值, 使这两个三角形的面积之比为1∶2?如果存在, 直接写出m的值;如果不存在, 请说明理由.19.如图, 抛物线与x轴交于A.B两点(点A在点B的左侧), 与y轴交于点C.(1)求点A.B的坐标;(2)设D为已知抛物线的对称轴上的任意一点, 当△ACD的面积等于△ACB 的面积时, 求点D的坐标;(3)若直线l过点E(4, 0), M为直线l上的动点, 当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式.20.已知平面直角坐标系中两定点A(-1, 0)、B(4, 0), 抛物线y=ax2+bx-2(a≠0)过点A.B, 顶点为C, 点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时, 求m的取值范围;(3)若m>, 当∠APB为直角时, 将该抛物线向左或向右平移t(0<t<)个单位, 点C、P平移后对应的点分别记为C′、P′, 是否存在t, 使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在, 求t的值并说明抛物线平移的方向;若不存在, 请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1.【答案】【思维教练】(1)设一次函数解析式, 将已知点A、B的坐标值代入求解即可;(2)S △CPQ=·CP·Qy, CP=14-t, 点Q在AB上, Qy即为当x=t时的y值, 代入化简得出S与t的函数关系式, 化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论, 当Q在OA上时, 过点C;当Q在AB上时, 过点A;当Q在BC上时, 过点C和点B, 再列方程并求解.解图1解: (1)把A(3, 3 ), B(9, 5 )代入y=kx+b,得, 解得,∴y=33x+23;(3分)(2)在△PQC中, PC=14-t,∵OA==6且Q在OA上速度为3单位长度/s,AB==4 且Q点在AB上的速度为单位长度/s,∴Q在OA上时的横坐标为t, Q在AB上时的横坐标为t,PC边上的高线长为33t+2 3.(6分)所以S=(14-t)( t+2 )=-t2+t+14 (2≤t≤6).当t=5时, S有最大值为.(7分)解图2(3)①当0<t ≤2时, 线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2.解得t1= , t2=0(舍去), 此时t = .(8分)解图3②当2<t ≤6时, 线段PQ 的中垂线经过点A(如解图2).可得方程(33)2+(t -3)2=[3(t -2)]2.解得t1= , ∵t2= (舍去), 此时t = .③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25- t, 解得t = .(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2.解得t1= , t2= (舍去).此时t=38+2027.(11分)综上所述, t的值为, , , .(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论, 在不同阶段列方程求解.2.【答案】[分析] (1)将点A, D的坐标分别代入直线表达式、抛物线的表达式, 即可求解;(2)设出P点坐标, 用参数表示PE, PF的长, 利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况, 分别求解即可.解:(1)将点A, D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A, D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0, -1), 则直线l与x轴的夹角为45°, 即∠OAC=45°,∵PE∥x轴, ∴∠PEF=∠OAC=45°.又∵PF∥y轴, ∴∠EPF=90°, ∴∠EFP=45°.则PE=PF.设点P坐标为(x, -x2+3x+4),则点F(x, -x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0, ∴当x=2时, PE+PF有最大值, 其最大值为18.(3)由题意知N(0, 4), C(0, -1), ∴NC=5,①当NC是平行四边形的一条边时, 有NC∥PM, NC=PM.设点P坐标为(x, -x2+3x+4), 则点M的坐标为(x, -x-1),∴|yM-yP|=5, 即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+ , -3- )或(2- , -3+ )或(4, -5);②当NC是平行四边形的对角线时, 线段NC与PM互相平分.由题意, NC的中点坐标为0, ,设点P坐标为(m, -m2+3m+4),则点M(n', -n'-1),∴0= = ,解得:n'=0或-4(舍去n'=0), 故点M(-4, 3).综上所述, 存在点M, 使得以N, C, M, P为顶点的四边形为平行四边形, 点M的坐标分别为:(2+ , -3- ), (2- , -3+ ), (4, -5), (-4, 3).3.【答案】(1)。

2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简单答案)
10.如图,在平面直角坐标系中,点O为坐标原点,二次函数 的图象与x轴交于A、B(点A在点B左侧)两点,与y轴交于点C,已知点 ,P点为抛物线的顶点,连接PC,作直线 .
(1)点A的坐标为;
(2)若射线 平分 ,求二次函数的表达式;
(3)在(2)的条件下,如果点 是线段 (含A、B)上一个动点,过点D作x轴的垂线,分别交直线 和抛物线于E、F两点,当m为何值时, 为直角三角形?
②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标.
14.如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).
(1)求抛物线的解析式及tan∠OBC的值;
(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P的坐标;
(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.
15.如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,已知抛物线的对称轴是直线 , . 为抛物线上的一个动点,过点 作 轴于点 ,交直线 于点 .
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求直线 的解析式.
6.已知抛物线 经过 、 两点,O为坐标原点,抛物线交正方形 的边 于点E,点M为射线 上一动点,连接 ,交 于点F.
(1)求b和c的值及点C的坐标;
(2)求证∶
(3)是否存在点M,使 为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
(1)求 , 的长(结果均用含 的代数式表示).

初三数学压轴测试题及答案

初三数学压轴测试题及答案

初三数学压轴测试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 0.33333(无限循环)B. πC. √2D. 0.52. 已知一个直角三角形的两条直角边分别为3和4,求斜边长度。

A. 5B. 6C. 7D. 83. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -35. 下列哪个表达式是二次根式?A. √xB. x√yC. √xyD. √x + y二、填空题(每题2分,共10分)6. 一个数的平方根是它本身的数是______。

7. 将一个圆分成4个扇形,每个扇形的圆心角为______度。

8. 一个长方体的长、宽、高分别为2、3、4,其体积是______。

9. 一个多项式f(x) = ax^2 + bx + c,如果a + b + c = 14,且当x = -1时,f(x) = 18,求a + c的值。

10. 一个等差数列的前三项和为12,第二项是5,求这个等差数列的首项和公差。

三、解答题(每题10分,共30分)11. 某工厂原计划在10天内完成一批产品的生产,由于技术改进,实际每天的生产量比原计划多20%,结果在8天内完成了任务。

求原计划每天的生产量。

12. 已知一个二次函数y = ax^2 + bx + c,其图像与x轴交于点(-1,0)和(5,0),且当x = 2时,y的值达到最大,求a、b、c的值。

13. 某班级有30名学生,其中15名男生和15名女生。

如果随机选择一名学生,求下列概率:a) 选中的学生是男生;b) 选中的学生是女生;c) 选中的学生是女生,给定选中的学生是班级学习委员。

四、综合题(每题15分,共40分)14. 某市为了改善交通状况,决定在一条直线上修建一条地铁线路。

已知地铁线路的两端点A和B之间的距离是20公里,现在需要在这条线路上选择一个点C,使得从A到C和从C到B的总距离最短。

中考数学压轴题专项训练十套(含答案)

中考数学压轴题专项训练十套(含答案)

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线的解析式及点D 的坐标.(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标.(3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,已知直线112y x=-+与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;(2个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.(1)求抛物线的解析式;(2)点K为线段AB上一动点,过点K作x轴的垂线,交直线CD于点H,交抛物线于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.②连接PA ,以PA 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为(1,0),直线AB 交抛物线C 1于另一点C .(1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.图1 图2做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图1,在平面直角坐标系中,已知点A(0,,点B在x轴正半轴上,且∠ABO=30°.动点P在线段AB上,从点A向点B个单位长度的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边三角形PMN.(1)求直线AB的解析式;(2)求等边三角形PMN的边长(用含有t的代数式表示),并求出当等边三角形PMN的顶点M运动到与原点O重合时t的值;(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边三角形PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2时S与t的函数关系式,并求出S的最大值.图2图1做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,平面直角坐标系xOy中,点A的坐标为( 2,2),点B的坐标为(6,6),抛物线经过A,O,B三点.连接OA,OB,AB,线段AB交y 轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O,B重合),直线EF与抛物线交于M,N两点(点N在y轴右侧),连接ON,BN,当点F在线段OB 上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN 相似(点B,O,P分别与点O,A,N对应)的点P的坐标.做题时间:_______至_______ 家长签字:_____________共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,已知点A,B,C的坐标分别为( 1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式.(2)点P从点A出发,沿x轴正方向以每秒1个单位长度的速度向点B移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.设点P运动的时间为t(0≤t≤6)秒,△PBF的面积为S.①求S与t的函数关系式;②当t为何值时,△PBF的面积最大?最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC ⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值.(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值.(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.23.(1)21433y x x =-+; (2)22102412311143422tt S t t t t t ⎧<⎪⎪=-<⎨⎪⎪-+-<<⎩≤≤()()(); (3)存在,t =1或2.中考数学压轴题专项训练(二)参考答案23.(1)213222y x x =-++,(3 2),D ; (2)123(0 2) 2) 2),,,P P P --; (3)存在,点P的坐标为 (或.中考数学压轴题专项训练(三)参考答案中考数学压轴题专项训练(四)参考答案中考数学压轴题专项训练(六)参考答案中考数学压轴题专项训练(七)参考答案中考数学压轴题专项训练(八)参考答案中考数学压轴题专项训练(十)参考答案。

初中数学九年级压轴题(含答案)

初中数学九年级压轴题(含答案)

解析:因为P为F中点,此时F到PE的距离最大,然后过P点做PG⊥于PE,G是垂足,连接EF,E点是确定的是(-2,0)F点也是确定的(0,6),说明FE的长度是确定的是二倍根号
十,(根据勾股定理算出)因为ABCD是个动的菱形,他可以压扁或者拉伸,就是它是不确定的菱形,所以G点也就是动的,G点可能和E重合,如果它不和E重合的时候,它在三角形FGE中是个直角边,满足直角边小于斜边也就是FG小于EF,因为它可能和E重合,当它和E重合时它就等于EF,所以可以推出FG≤EF,当G和E重合时FG最大,此时最大的是等于二倍根号十的,如果当和E重合时,如红色图所示G这点它既是E点也是G点它俩重合,我们设菱形的边长BC=2a那么BE=EC=a,因为E是BC中点,而且P也是中点,,所以根据俩个都是中点可得PE平行与AC,BJ等于JH我们设PE交于BD与G,AC和BD交于点H,因为四边形ABCD为菱形就可以推导对角线垂直,AC垂直BD,然后BH=DH=二分之一BD =三分之根号十,然后BJ,JH相等所以BJ=二分之一BH=六分之根号十,同时可以知道PE⊥BD,因为PE和AC平行,AC垂直于BD所以PE垂直于BD,然后∠BJE是90℃,所以∠EOF也=90℃,∠PF也是90℃(因为过F做FG垂直PE,此时G和E点重合,所以它也是90℃),所以可得∠BGE=∠EDF=90℃=∠PEF,因为∠EBG+∠JEB=90℃,∠JEB+∠FEO也等于90℃,所以∠FEO和∠EBJ是相等的,可得∠EFO=∠EBJ ,因为有俩个角相等,就可以证明出△BJE和△EOF相似,可得△BJE∽△EOF,相似就有对应边向乘比例,所以对应边就是BE和EF对应,BJ和EO对应,,他们相比相等,把这几个边分别代人,BE是等于A的EF 是二倍根号十,BJ是六分之根号十,EO是2,解的a=三分之五,所以BC=俩倍的a=三分之十。

数学初三九年级上册 压轴解答题测试卷(含答案解析)

数学初三九年级上册 压轴解答题测试卷(含答案解析)

数学初三九年级上册 压轴解答题测试卷(含答案解析)一、压轴题 1.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.2.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 3.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).4.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值; 问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值. 5.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)6.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.7.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.8.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.9.如图,已知抛物线234y x bx c=++与坐标轴交于A、B、C三点,A点的坐标为(1,0)-,过点C的直线334y xt=-与x轴交于点Q,点P是线段BC上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.10.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E ( -3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.11.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.12.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)12;(2)53;(3)202.【解析】【分析】(1)如图1中,过点B作BD CA⊥,交CA延长线于点D,通过构造直角三角形,求出BD利用三角形面积公式求解即可.(2)如图示,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM CO⊥,交CO延长线于点M,确定点P的位置,利用勾股定理与矩形的性质求出CQ的长度即为答案.(3)解图3所示,在AB上这一点作点P关于OA的对称点S,作点P关于OB的对称点N,连接SN,交OA于点E,交OB于点F,连接OS ON OP EP FP、、、、,通过轴对称性质的转化,最终确定最小值转化为SN的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=,10AB =,1110522OD AB ∴==⨯=,在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==,222255352OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点 PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.2.(1)4;(2)t 为4s ,203s ,283s 时,⊙P 与⊙Q 外切. 【解析】试题分析:(1)四边形APQD 为矩形,也就是AP=DQ ,分别用含t 的代数式表示,解即可;(2)主要考虑有四种情况,一种是P 在AB 上,一种是P 在BC 上时.一种是P 在CD 上时,又分为两种情况,一种是P 在Q 右侧,一种是P 在Q 左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ 时,四边形APQD 为矩形.此时,4t=20-t ,解得t=4(s ).答:t 为4时,四边形APQD 为矩形 (2)当PQ=4时,⊙P 与⊙Q 外切.①如果点P 在AB 上运动.只有当四边形APQD 为矩形时,PQ=4.由(1),得t=4(s );②如果点P 在BC 上运动.此时t ≥5,则CQ ≥5,PQ ≥CQ ≥5>4,∴⊙P 与⊙Q 外离; ③如果点P 在CD 上运动,且点P 在点Q 的右侧.可得CQ=t ,CP=4t-24.当CQ-CP=4时,⊙P 与⊙Q 外切.此时,t-(4t-24)=4,解得t=203(s ); ④如果点P 在CD 上运动,且点P 在点Q 的左侧.当CP-CQ=4时,⊙P 与⊙Q 外切.此时,4t-24-t=4, 解得t=283(s ), ∵点P 从A 开始沿折线A-B-C-D 移动到D 需要11s ,点Q 从C 开始沿CD 边移动到D 需要20s ,而283<11, ∴当t 为4s ,203s ,283s 时,⊙P 与⊙Q 外切. 考点:1.矩形的性质;2.圆与圆的位置关系.3.(1)证明见解析;(2)213;(3) 2330a 【解析】 【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明; (2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BGEF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BGEF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积. 【详解】(1)证明:∵△ABC 是等边三角形, ∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°, ∴∠DEB=∠D , ∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6,∴BG=113 22BC AC==,∴在Rt△ABG中,333AG BG==,∵BF⊥EC,∴BF∥AG,∴AF BGEF EB=,∵AF:EF=3:2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,()2222335213AE AG EG=+=+= (3)解:如图所示,过点O作OM⊥BC于点M,由题(2)知AF BGEF EB=,CG=BG=1122AC a=,∴3=2AF BGEF EB=,∴22113323EB BG a a==⨯=,∴EC=CG+BG+BE=11142233a a a a++=,∴EM=12EC=23a,∴BM=EM-BE=211333a a a-=,∵BF∥AG,∴△EBF∽△EGA,∴123=11532aBF BEAG EG a a==+,∵332AG BG a ==, ∴2335BF a a =⨯=, ∴△OFB 的面积=21313223BF BM a a a ⋅=⨯⨯=. 【点睛】 本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.4.(1)4;(2)52;(3)600(2+1).【解析】【分析】(1)如图①中,证明△EOB ≌△FOC 即可解决问题;(2)如图②中,连接BD ,取AC 的中点O ,连接OB ,OD .利用四点共圆,证明∠DBQ =∠DAC =45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA ,首先证明AB +BC +BD =(2+1)BD ,当BD 最大时,AB +BC +BD 的值最大.【详解】解:(1)如图①中,∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°,∵∠EOF =90°,∴∠EOF =∠BOC ,∴∠EOB =∠FOC ,∴△EOB ≌△FOC (SAS ),∴S △EOB =S △OFC ,∴S 四边形OEBF =S △OBC =14•S 正方形ABCD =4, 故答案为:4;(2)如图②中,连接BD ,取AC 的中点O ,连接OB ,OD .∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=52.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE2BD,∴AB+BC=AB+AE=BE2BD,∴BC+BC+BD2+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC是直径,∴BD =AC 时,AB +BC +BD 的值最大,最大值=600+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.5.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q .如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.6.(1)(C 8,43;(2)t=18s ;(3)t 1513=【解析】【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,OH即可.(2)如图1﹣1中,设⊙M与直线BC相切于点N,作MH⊥AB于H.求出OH的长即可解决问题.(3)设M(﹣5+t,33),EF12=AB=8,由∠EMF=90°,可得EM2+MF2=EF2,由此构建方程即可解决问题.【详解】(1)如图1中,作CH⊥AB于H.∵A(20,0),AB=16,∴OA=20,OB=4.在Rt△ABC中,∵∠ACB=90°,AB=16,∠CAB=30°,∴BC12=AB=8,CH=BC•sin60°=43,BH=BC•cos60°=4,∴OH=8,∴C(8,43).(2)如图1﹣1中,设⊙M与直线BC相切于点N,作MH⊥AB于H.∵MN=MH3MN⊥BC,MH⊥BA,∴∠MBH=∠MBN=30°,∴BH3==9,∴点M的运动路径的长为5+4+9=18,∴当点M在∠ABC的内部且⊙M与直线BC相切时,t的值为18s.(3)∵C(8,3B(4,0),A(20,0).∵CE=EB,CF=FA,∴E(6,3),F(14,3),设M(﹣5+t,3),EF12=AB=8.∵∠EMF=90°,∴EM2+MF2=EF2,∴(6+5﹣t)2+32+(14+5﹣t)2+32=82,整理得:t2﹣30t+212=0,解得:t=1513【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.7.(1)sin2α=429;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得MQ=22QN MN-=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴22AB BC-22(3)x x-2x,∵12•AC•BC=12•AB•CD,∴CD=22x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC=29.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35 MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴22QN MN-=4k,∵1122NMQS MN MQ NQ MR∆==,∴3k•4k=5k•MR∴MR=12k 5,在Rt△MRO中,sin2β=sin∠MON=122455252kMRkOM==.考点:圆的综合题.8.(1)y=﹣14x2+x+3,顶点B的坐标为(2,4);(2)(i)点E的坐标为(85,3)或(125,3);(ii)存在;当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=43,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型. 9.(1)()90,3,4--;(2)48QH t =- ;(3)存在,21-或732或2532 【解析】【分析】(1)由于直线y =34t x -3过C 点,因此C 点的坐标为(0,-3),那么抛物线的解析式中c=-3,然后将A 点的坐标代入抛物线的解析式中即可求出b 的值;(2)求QH 的长,需知道OQ ,OH 的长.根据CQ 所在直线的解析式即可求出Q 的坐标,也就得出了OQ 的长,然后求OH 的长.在(1)中可得出抛物线的解析式,那么可求出B 的坐标.在直角三角形BPH 中,可根据BP=5t 以及∠CBO 的正弦值(可在直角三角形COB 中求出),得出BH 的长,根据OB 的长即可求出OH 的长.然后OH ,OQ 的差的绝对值就是QH 的长;(3)本题要分①当H 在Q 、B 之间.②在H 在O ,Q 之间两种情况进行讨论;根据不同的对应角得出的不同的对应成比例线段来求出t 的值.【详解】(1)由于直线y =34tx -3过C 点,C 点在y 轴上,则C 点的坐标为(0,-3), 将A 点坐标代入解析式中,得0=34-b -3,解得b =-94; 故答案为 ()0,3-,94-; (2)由(1),得y =34x 2-94x -3,它与x 轴交于A ,B 两点,得B (4,0).∴OB =4,又∵OC =3,∴BC =5.由题意,得△BHP ∽△BOC ,∵OC ∶OB ∶BC =3∶4∶5,∴HP ∶HB ∶BP =3∶4∶5,∵PB =5t ,∴HB =4t ,HP =3t .∴OH =OB -HB =4-4t .由y =34tx -3与x 轴交于点Q ,得Q (4t ,0). ∴OQ =4t .①当H 在Q 、B 之间时,QH =OH -OQ=(4-4t )-4t =4-8t .②当H 在O 、Q 之间时,QH =OQ -OH=4t -(4-4t )=8t -4.综合①,②得QH =|4-8t |;(3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似.t 11,t 2=732,t 3=2532解析:①当H 在Q 、B 之间时,QH =4-8t , 若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得48334t t t -=, ∴t =732. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得34834t t t -=, 即t 2+2t -1=0.∴t 11,t 2=1-(舍去).②当H 在O 、Q 之间时,QH =8t -4.若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得84334t t t -=, ∴t =2532. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得38434t t t -=, 即t 2-2t +1=0.∴t 1=t 2=1(舍去).综上所述,存在t 的值,t 11,t 2=732,t 3=2532.故答案为(1)()90,3,4--;(2)48QH t =- ;(31或732或2532. 【点睛】 本题是二次函数的综合题,此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.10.(1)点D 的坐标为(32,12),抛物线的解析式为24 3?1?3y x x =-++;(2)①31n m =+;②2334S m m =-+,S 的最大值为93 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m =时,2n FB ==,23m =时,3n FD ==,代入n km b =+,即可求解;②求得NA 33m =-,过N 作NQ ⊥EA ,得到NQ=12NA=332m -,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB 213-=-=,∠ABO=60︒,∴点A 的坐标为(3,0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,3CH=CD+DH=32,∴点D 的坐标为(2,12),点C 的坐标为(2,32), 将A0) , C 的坐标为32)代入抛物线的解析式y = ax 2 + bx + 1,得:310331422a a ⎧+=⎪⎨++=⎪⎩,解得:43a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为24 ?1?3y x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133226124S m m m m ⎛⎫=-=-+ ⎪ ⎪⎝⎭,∵012-<,当32m==⎝⎭时,在0m≤≤范围内,∴132226216S⎛⎫=⨯-⨯=⎪⎪⎝⎭最大.【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.11.(1)证明见解析;(2)①21(3)21029y x=【解析】【分析】()1由圆内接四边形性质知ABC CDE∠∠=,由AB AC=知ABC ACB∠∠=,从而得ADB ACB ABC CDE∠∠∠∠===;()2①由BAD DCE∠∠=,ADB CDE∠∠=可证ADB∽CDE.从而得AD DBCD DE=;②连接AO并延长交BD于点M,连接CM,证MAF≌DAF得MF DF=,据此知BM CM CD3===,MF DF2==,求得CF==定义可得答案;()3证ABD∽AEB得2AB AD AE.=⋅证ABD∽CED得BD CD AD DE.⋅=⋅从而得2 ABC BCD111S S AB AC sin BAC BD CD sin BDC x sin BAC222∠∠∠-=⋅⋅-⋅⋅=,再由5tan ABC tanCDE2∠∠==,可设BM2a=,知AM5a=,AB =,由面积法可得BN=,即20sin BAC29∠=,据此得出答案.【详解】解:()1四边形ABCD是圆O的内接四边形,ABC180ADC CDE∠∠∠∴=-=.AB AC=,ABC ACB∠∠∴=.ADB ACB ABC CDE ∠∠∠∠∴===;()2①四边形ABCD 内接于圆,BAD 180BCD DCE ∠∠∠∴=-=.又ADB CDE ∠∠=,ADB ∴∽CDE .AD DB CD DE∴=, AD DE BD CD 7321∴⋅=⋅=⨯=;②连接AO 并延长交BD 于点M ,连接CM ,AM 平分BAC ∠,AM BC ∴⊥,CAD CBD 90ACB MAF ∠∠∠∠∴==-=.MAF ∴≌()DAF ASA .MF DF ∴=,即AC 是线段MD 的中垂线.BM CM CD 3∴===,MF DF 2∴==, 在Rt CDF 中,2222CF CD DF 325=--=,BF tan ACB 5CF 5∠∴=== ()3BAD EAB ∠∠=,ADB ACB ABE ∠∠∠==, ABD ∴∽AEB ,AB AD AE AB∴=,即2AB AD AE =⋅. CDE ADB ∠∠=,DCE BAD ∠∠=ABD ∴∽CED ,BD AD DE CD∴=,即BD CD AD DE ⋅=⋅. ABC BCD 11S S AB AC sin BAC BD CD sin BDC 22∠∠-=⋅⋅-⋅⋅, ()1sin BAC AD AE AD DE 2∠=⋅-⋅.21x sin BAC 2∠=,又5tan ABC tan CDE 2∠∠==, 如图2,设BM 2a =,则AM 5a =,AB 29a =, 由面积法可得BN 29=,即20sin BAC 29∠=, 22ABC BCD 12010S S x x 22929y ∴-==⨯=. 【点睛】本题是圆的综合问题,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形和全等三角形的判定与性质、等腰三角形的性质及三角函数的应用等知识点.12.(1)见解析;(2)EF =32或512;(3)存在 【解析】【分析】(1)先判断出∠ECB =∠EBC ,再判断出∠OCB =∠OBC ,即可得出结论;(2)先求出EF ,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论; (3)先利用面积关系得出53CO FO =,进而利用△OAF ∽△EFC 得出比例式,即可得出结论.【详解】解:(1)如图1,连接BC ,∵AC BD = ,∴∠ECB =∠EBC ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠OCD =∠ECF =∠ECB ﹣∠OCB =∠EBC ﹣∠OBC =∠OBA ;(2)∵OA =OB ,∴∠OAF =∠OBA ,∴∠OAF =∠ECF ,①当∠AFO =90°时,∵OAtan ∠OBA =12, ∴OC =OAOF =1,AB =4, ∴EF =CF •tan ∠ECF =CF•tan ∠OBA②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12, ∵OA∴OF =OA •tan ∠OAF, ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC , ∴△OFA ∽△EFC ,∴EF CF OC OF OF AF AF +=== ∴EFOF =32, 即:EF =32; (3)存在,如图2,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴53CEO EFO S S ∆∆=, ∴53CO FO =,∴FO=35CO=355,∵△OFA∽△EFC,∴53CE AD COEF FO FO===,∴BF=BE﹣EF=CE﹣EF=23EF,∴AF=AB﹣BF=4﹣23EF,∵△OAF∽△EFC,∴CF EFFA FO=,∴85523543EF=-,∴EF=3﹣35.【点睛】圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD COEF FO FO===是解本题的关键.。

数学初三九年级上册 压轴解答题测试卷(含答案解析)

数学初三九年级上册 压轴解答题测试卷(含答案解析)

数学初三九年级上册压轴解答题测试卷(含答案解析)一、压轴题1.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数23y x b=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE=,M是线段DE上的一个动点(1)求b的值;(2)连接OM,若ODM△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.2.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B3为半径画⊙B,若直线3与⊙B的“最美三3B的横坐标Bx的取值范围.3.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.4.在长方形ABCD中,AB=5cm,BC=6cm,点P从点A开始沿边AB向终点B以1/cm s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2/cm s的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:______=______,______=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.5.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.6.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.7.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 8.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.9.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由. 10.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)11.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】 【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值; (2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标. 【详解】(1)在23y x b =-+中,令x=0,解得y=b , 则D 的坐标是(0,b),OD=b , ∵OD=BE ,∴BE=b ,则点E 坐标为(3,4-b ),将点E 代入23y x b =-+中,得:4-b=2+b, 解得:b=3; (2)如图,∵OAED S 四边形=11()(31)3622OD AE OA +=⨯+⨯=, ∵三角形ODM 的面积与四边形OAEM 的面积之比为1:3, ∴13=42ODM OAED S S ∆=四边形设M 的横坐标是a ,则13322a ⨯=, 解得:1a =, 将1x a ==代入233y x =-+中,得: 27333y =-⨯+=则点M 坐标为7(1,)3;(3)依题意,有两种情况:①当四边形OMDN 是菱形时,如图(1),M 的纵坐标是32, 把32y =代入233y x =-+中,得: 23332x -+=,解得:94x =, ∴点M 坐标为93(,)42, 点N 坐标为93(,)42-;②当四边形OMND 是菱形时,如图(2),OM =OD =3, 设M 的坐标2(,3)3m m -+, 由OM=OD 得:222(3)93m m +-+=,解得:3613m=或m=0(舍去),则点M坐标为3615 (,) 1313,又MN∥OD,MN=OD=3,∴点N的坐标为3654 (,) 1313,综上,满足条件的点N坐标为93(,)42-或3654(,)1313.【点睛】本题考查一次函数与几何图形的综合,涉及待定系数法、图形的面积计算、菱形的性质、方程等知识,解答的关键是认真审题,找出相关知识的联系点,运用待定系数法、数形结合法、分类讨论法等解题方法确定解题思路,进而推理、探究、发现和计算.2.(1)②;(2)±1;(3)23<B x<33或733-<B x<23-【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线, ∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-, ∵1=2PMOSPM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF . 则由已知可得:111=1222AEFSAE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==∵A(0,2),即OA=2,∴在直角△AFO 中,22=2OF OA AF AF -==, ∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1), 将F 点代入y=kx 可得:1k =-. ②当k >0时,同理可得k=1. 故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D ,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OCODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形, ∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°, 在直角△BDN 中,sin BNBDN BD∠=, 故23=sin sin 60?BN BN BD BN BDN =∠.∵⊙B 3, ∴3BM =.当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=3222BMNSMN BM MN MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD <33,OB BD OD =- <333-33, 则23<B x <33. ②当⊙B 在直线CD 左侧时,同理可得:73B x<23- 故综上:23<B x 3733-<B x <23- 【点睛】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.3.(1)CD 2+BD 2=2AD 2,见解析;(2)BD 2=CD 2+2AD 2,见解析;(3)①2,②最大值为4414,半径为4【解析】【分析】(1)先判断出∠BAD =CAE ,进而得出△ABD ≌△ACE ,得出BD =CE ,∠B =∠ACE ,再根据勾股定理得出DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,即可得出结论;(2)同(1)的方法得,ABD ≌△ACE (SAS ),得出BD =CE ,再用勾股定理的出DE 2=2AD 2,CE 2=CD 2+DE 2=CD 2+2AD 2,即可得出结论;(3)先根据勾股定理的出DE 2=CD 2+CE 2=2CD 2,再判断出△ACE ≌△BCD (SAS ),得出AE =BD ,①将AD =6,BD =8代入DE 2=2CD 2中,即可得出结论;②先求出CD =,再将AD+BD =14,CD =代入AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭,化简得出﹣(AD ﹣212)2+4414,进而求出AD ,最后用勾股定理求出AB 即可得出结论. 【详解】 解:(1)CD 2+BD 2=2AD 2,理由:由旋转知,AD =AE ,∠DAE =90°=∠BAC ,∴∠BAD =∠CAE ,∵AB =AC ,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠B =∠ACE ,在Rt △ABC 中,AB =AC ,∴∠B =∠ACB =45°,∴∠ACE =45°,∴∠DCE =∠ACB+∠ACE =90°,根据勾股定理得,DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,∴CD 2+BD 2=2AD 2;(2)BD 2=CD 2+2AD 2,理由:如图2,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE ,同(1)的方法得,ABD ≌△ACE (SAS ),∴BD =CE ,在Rt △ADE 中,AD =AE ,∴∠ADE =45°,∴DE 2=2AD 2,∵∠ADC =45°,∴∠CDE =∠ADC+∠ADE =90°,根据勾股定理得,CE 2=CD 2+DE 2=CD 2+2AD 2,即:BD 2=CD 2+2AD 2;(3)如图3,过点C 作CE ⊥CD 交DA 的延长线于E ,∴∠DCE =90°,∵∠ADC =45°,∴∠E =90°﹣∠ADC =45°=∠ADC ,∴CD =CE ,根据勾股定理得,DE 2=CD 2+CE 2=2CD 2,连接AC ,BC ,∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°,∵∠ADC =45°,∴∠BDC =45°=∠ADC ,∴AC =BC ,∵∠DCE =∠ACB =90°,∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD ,①AD =6,BD =8,∴DE =AD+AE =AD+BD =14,∴2CD 2=142,∴CD =故答案为;②∵AD+BD =14,∴CD =∴2AD BD ⎛⎫⋅+ ⎪ ⎪⎝⎭=AD•(BD+2)=AD•(BD+7) =AD•BD+7AD =AD (14﹣AD )+7AD =﹣AD 2+21AD =﹣(AD ﹣212)2+4414,∴当AD =212时,AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭的最大值为4414, ∵AD+BD =14,∴BD =14﹣212=72,在Rt △ABD 中,根据勾股定理得,AB =∴⊙O 的半径为OA =12AB .【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.4.(1)BQ ,2tcm ,PB ,()5t cm -;(2)当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由见解析.【解析】【分析】(1)根据点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,可以求得BQ ,PB .(2)用含t 的代数式分别表示PB 和BQ 的值,运用勾股定理求得PQ 为22(5)(2)t t -+=25据此求出t 值.(3)根据题干信息使得五边形APQCD 的面积等于226cm 的t 值存在,利用长方形ABCD 的面积减去PBQ △的面积即可,有PBQ △的面积为4,由此求得t 值.【详解】解:(1)点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,故BQ 为2tcm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,AB =5cm ,故PB 为()5t cm -.(2)由题意得:22(5)(2)t t -+=25,解得:1t =0,2t =2;当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由如下:长方形ABCD 的面积是:56⨯=()230cm ,使得五边形APQCD 的面积等于226cm ,则PBQ △的面积为3026-=()24cm , ()15242t t -⨯⨯=, 解得:1t =4(不合题意舍去),2t =1.即当t =1秒时,使得五边形APQCD 的面积等于226cm .【点睛】本题结合长方形考查动点问题,其本质运用代数式求值,利用含t 的代数式表示各自线段的直接,根据题干数量关系即可确立等量关系式,从而求出t 值.5.(1)7-t (2)()()()22904;25{1674725t t S t t ππ<≤=-<<(3)516,23t t == 【解析】【分析】(1)先判断出点P 在BC 上,即可得出结论;(2)分点P 在边AC 和BC 上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论.【详解】(1)∵AC =4,BC =3,∴AC +BC =7.∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t .故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB .∵∠A =∠A ,∴△APH ∽△ACB ,∴PH AP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<);(3)分两种情况讨论:①当点P在边AC上时,即:0<t≤4,由(2)知,⊙P的半径PH35=t.∵⊙P与△ABC的另一边相切,即:⊙P和边BC相切,∴PC=PH.∵PC=4﹣t,∴4﹣t35=t,∴t52=秒;②当点P在边BC上时,即:4<t<7,由(2)知,⊙P的半径PG45=(7﹣t).∵⊙P与△ABC的另一边相切,即:⊙P和边AC相切,∴PC=PG.∵PC=t﹣4,∴t﹣445=(7﹣t),∴t163=秒.综上所述:在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,t的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.6.(1)OD=4,(2)证明过程见详解(3)504 3π-【解析】【分析】(1)根据AB与圆O相切,在Rt△OBD中运用tan∠BOD=34,即可求出OD的长,(2)作辅助线证明四边形ADOG是矩形,得DO∥AC,sin∠OCG=35,在Rt△OCG中,求出OG的长等于半径即可解题,(3)利用S阴影=S Rt△BAC-S正方形ADOG-14S圆O,求出AC长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.7.(1)30°;(2)EF=;(3)CO的长为或时,△PEB为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO≌△COD(AAS),进而利用△COD∽△CBF,得出比例式求出EF的长;(3)分别利用①当PB=PE,不合题意舍去;②当BE=EP,③当BE=BP,求出即可.试题解析:(1)如图1,连接EO,∵∴∠BOE=∠EOD,∵DO∥BF,∴∠DOE=∠BEO,∵BO=EO,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.8.(1)PA13O的半径为393;(2)见解析;(3)⊙O的半径为2或477【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE ,AE 的长,再利用勾股定理求出直径BE 的长,即可得到半径的值.【详解】(1)如图1,过点A 作BP 的垂线,垂足为H ,作直径AM ,连接MP , 在Rt △ABH 中,∠ABH =60°,∴∠BAH =30°,∴BH =12AB =2,AH =AB •sin60°= ∴HP =BP ﹣BH =1,∴在Rt △AHP 中,AP∵AB 是直径,∴∠APM =90°,在Rt △AMP 中,∠M =∠ABP =60°,∴AM =APsin 60︒=3,∴⊙O ,即PA ⊙O (2)当∠APB =2∠PBE 时,∵∠PBE =∠PAE ,∴∠APB =2∠PAE ,在平行四边形ABCD 中,AD ∥BC ,∴∠APB =∠PAD ,∴∠PAD =2∠PAE ,∴∠PAE =∠DAE ,∴AE 平分∠PAD ;(3)①如图3﹣1,当AE ⊥BD 时,∠AEB =90°,∴AB 是⊙O 的直径,∴r =12AB =2; ②如图3﹣2,当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,∵AD ∥BC ,∴AF ⊥BC ,△BFE ∽△DAE , ∴BF AD =EF AE, 在Rt △ABF 中,∠ABF =60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF,在Rt△BFE中,BE,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴BP10,∴BP=10x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10x)2+(x)2,解得,x1=(舍),x2,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或475或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)y=x2+2x﹣3,m=﹣3,n=5;(2)317或41;(3)存在;Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5),理由见解析【解析】【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【详解】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式,解得:a=1,b=2,∴抛物线解析式为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:317或41;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点睛】 主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 10.(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】【分析】(1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式;(2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案.【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩, 解得:132b c =⎧⎪⎨=⎪⎩,∴抛物线的解析式为21322y x x =-++; (2)∵22131(1)2222y x x x =-++=--+, ∴点M 的坐标为(1,2) 令213022x x -++=, 解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =, ∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =,∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =,∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32,∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.11.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++ 【解析】【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标; ②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解.【详解】 解:(1)因为直线交抛物线于B 、C 两点,∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2); 当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上,∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴,∴点P 的纵坐标为﹣2,将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去),∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°,∴∠OBC=∠OCD ,又∵∠BOC=∠COD=90°,∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4, ∴OD=1,又∵D 点在X 的负半轴∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数),将C(0,−2),D(-1,0)代入直线PC 的解析式,得: 20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2,联立直线PC 和抛物线方程,得:22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10,点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等.12.(1)12;(2)tan EAD ∠=13;(3)51DE CD -=. 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=25x ,求出PF=35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到5151CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =, ADE ∴≌()CDO ASA , OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =, AF OD ∴=,AD DC =,90FAD ODC ∠=∠=︒, FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 55OP a ∴=,255PD a =, 5DF a =,355PF a ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠, ∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=,∴ DE y CD x y ===+. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学中考专题--压轴题精炼卷1.如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A.C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q 沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.(1)求y1与x的函数关系,并在图2中画出y1的图象;(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;(3)在图2中,点G是x轴正半轴上一点(0<OG<6)过G作EF垂直于x轴,分别交y1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.2.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(0.5,2.5)和B(4,m),点P是线段AB上异于A.B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.4.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P (a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.5.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.6.如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣0.5x2+3.5x+4经过A.B两点.(1)写出点A.点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA.CA和抛物线于点E、M和点P,连接PA.PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S (面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.8.如图,已知在平面直角坐标系中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.9.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.10.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A.B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD 的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.11.如图,在平面直角坐标系中,O为坐标系原点,抛物线y=ax2+2ax+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(I)求抛物线的解析式;(II)点P是第二象限抛物线上的一个动点,连接EP,过点E做EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F做FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(III)在(II)的条件下,过点E做EH⊥ED交MF 的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.12.已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x 轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.13.如图,抛物线 y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF 长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A.N为顶点的三角形与△MAO 相似?若存在,求点P的坐标;若不存在,请说明理由.om14.如图,抛物线y=x2+bx+c经过A.B两点,A.B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.15.已知抛物线y=ax2+bx+c(a≠0),与x轴交于A(x1,0),B(x2,0),与y轴交于C点.(1)当b=0,c=4时,ABC为等腰直角三角形,求a的值;(2)若抛物线与x轴、y轴的交点围成的三角形是直角三角形,证明:ac=-1;(3)设抛物线y=ax2+bx+c的顶点为D,将抛物线关于x轴对称,得到新的抛物线,新抛物线顶点为E,连接A.D、B、E四点,构成一个四边形,若构成的四边形为正方形,求b2-4ac的值.参考答案1.解:(1)∵,CD=3,CQ=x,∴.图象如图所示.(2)观察图象知,当x=4时,△PCQ面积为12.此时PC=AC-AP=8k-4k=4k,CQ=4.∴由,得.解得.则点P的速度每秒厘米,AC=12厘米.(3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).②由⑵得.∵EF=y2-y1,∴EF=,∵二次项系数小于0,∴在范围,当时,最大.2.3.解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(0.5,2.5)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣2.25)2+,∵PC>0,∴当n=2.25时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如答图3﹣1,过点A(0.5,2.5)作AN⊥x轴于点N,则ON=0.5,AN=2.5.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=2.5,∴OM=ON+MN=0.5+2.5=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=0.5(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(0.5,2.5)关于对称轴x=2的对称点C,则点C在抛物线上,且C(3.5,2.5).当x=3.5时,y=x+2=5.5.∴P2(3.5,5.5).∵点P1(3,5)、P2(3.5,5.5)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(3.5,5.5).4.解:(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根;(2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣k-1,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣3.则,解得或.所以该抛物线恒过定点(0,2)、(﹣2,0).5.解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∵EF∥x轴,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∵EG∥x轴,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.6.7.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣0.2x+4.2,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2)∵点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E为E(0,1)、(,)或(,);(4):过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1设Q(x,x+1),则P(x,﹣x2+2x+3)∴PQ=(﹣x2+2x+3)﹣(x﹣1)=﹣x2+x+2又∵S△APC=S△APQ+S△CPQ=0.5PQ•AG=0.5(﹣x2+x+2)×3=﹣1.5(x﹣0.5)2+∴面积的最大值为.8.9.解:(1)∵点A(﹣1,0)在抛物线y=﹣(x﹣1)2+c上,∴0=﹣(﹣1﹣1)2+c,得c=4,∴抛物线解析式为:y=﹣(x﹣1)2+4,令x=0,得y=3,∴C(0,3);令y=0,得x=﹣1或x=3,∴B(3,0).(2)△CDB为直角三角形.理由如下:由抛物线解析式,得顶点D的坐标为(1,4).如答图1所示,过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB﹣OM=2.过点C作CN⊥DM于点N,则CN=1,DN=DM﹣MN=DM﹣OC=1.在Rt△OBC中,由勾股定理得:BC=;在Rt△CND中,由勾股定理得:CD=;在Rt△BMD中,由勾股定理得:BD=.∵BC2+CD2=BD2,∴△CDB为直角三角形(勾股定理的逆定理).(3)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),∴,解得k=﹣1,b=3,∴y=﹣x+3,直线QE是直线BC向右平移t个单位得到,∴直线QE的解析式为:y=﹣(x﹣t)+3=﹣x+3+t;设直线BD的解析式为y=mx+m,∵B(3,0),D(1,4),∴,解得:m=﹣2,n=6,∴y=﹣2x+6.连接CQ并延长,射线CQ交BD于点G,则G(1.5,3).在△COB向右平移的过程中:(I)当0<t≤1.5时,如答图2所示:设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.设QE与BD的交点为F,则:,解得,∴F(3﹣t,2t).2t=-1.5t2+3t;(II)当1.5<t<3时,如答图3所示:设PQ分别与BC、BD交于点K、点J.∵CQ=t,∴KQ=t,PK=PB=3﹣t.直线BD解析式为y=﹣2x+6,令x=t,得y=6﹣2t,∴J(t,6﹣2t).S=S△PBJ﹣S△PBK=0.5PB•PJ﹣0.5PB•PK=0.5(3﹣t)(6﹣2t)﹣0.5(3﹣t)2=0.5t2﹣3t+4.5.综上所述,S与t的函数关系式为:S=.10.11.解:14.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴1-b+c=0,c=-3,解得b=-2,c=-3,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);15.解:(1)a=-0.25;(2)利用射影定理和根与系数两个基本公式推导;(3)b2-4ac=4.。

相关文档
最新文档