第8章模拟集成电路中常用的单元电路
《模拟电路》课程教学大纲
《模拟电路》课程教学大纲一、课程说明(一)课程名称: 模拟电路;所属专业: 微电子科学与工程专业;课程性质: 专业基础课;学分: 4学分。
(二)课程简介、目标与任务;《模拟电路》是微电子专业本科生在电子技术方面入门性质的基础课, 具有自身的体系和很强的实践性。
本课程通过对常用半导体器件、模拟电路的学习, 使学生获得模拟电子技术方面的基本知识、基本理论和基本技能, 为深入学习电子技术及其在专业中的应用打下基础。
(三)先修课程要求, 与先修课与后续相关课程之间的逻辑关系和内容衔接;本课程应开设在高等数学、电路分析(未开设)课程之后, 是微电子专业本科生系统学习电子技术知识的基础课程之一。
也是后续数字电路、模拟电路实验、集成电路分析与设计等课程的先修课程。
(四)教材: 《模拟电子技术基础》童诗白华成英主编(第四版)高等教育出版社参考书目: 《模拟电子技术基础简明教程》清华大学电子学教研室编高等教育出版社《电于技术基础》(模拟部分) 康华光主编高等教育出版社《电子线路线性部分》谢嘉奎主编高等教育出版社二、课程内容与安排第一章常用半导体元器件(要求列出章节名)第一节半导体基础知识第二节半导体二极管第三节双极型晶体管第四节场效应管第五节晶闸管(一)教学方法与学时分配课堂教学, 8学时(二)内容及基本要求主要内容: 半导体基础知识;二极管的结构、伏安特性及主要参数;双极型晶体管的结构、伏安特性及主要参数;场效应管的结构、伏安特性及主要参数;晶闸管的结构、伏安特性及主要参数。
【重点掌握】: PN结特性及PN结方程;二极管、晶体管、场效应管、晶闸管的伏安特性。
【了解】: 二极管、晶体管、场效应管、晶闸管的结构及主要参数。
【难点】: 二极管、晶体管、场效应管、晶闸管的伏安特性。
第二章基本放大电路第一节放大电路的组成及工作原理第二节放大电路的分析方法第三节放大电路静态工作点的稳定第四节共集电极放大电路和共基极放大电路第五节场效应管放大电路(一)教学方法与学时分配课堂教学, 12学时(二)内容及基本要求主要内容: 放大的概念;放大电路的组成及工作原理;放大电路的性能指标;放大电路的分析方法:直流通路与甲流通路, 图解法, 微变等效电路法;放大电路静态工作点的稳定;晶体管共集电极放大电路和共基极放大电路;场效应管放大电路。
集成电路版图设计 ppt课件
(b)
图8.3 交叠的定义
表8.5 TSMC_0.35μm CMOS工艺版图各层图形之间最小交叠
表 16.5 T SM C _0.35μ m C M O S 工 艺 版 图 各 层 图 形 之 间 最 小 交 迭
N _ w e ll A c tiv e P o ly P _ l\p lu s_ se le c t/N _ p lu s_ se l ect C o n ta c t M e ta l1 V ia 1 M e ta l2 E le c tro d e V ia 2 M e ta l3
MOS管的可变参数为:栅长(gate_length)、栅宽(gate_width) 和栅指数(gates)。
栅长(gate_length)指栅极下源区和漏区之间的沟道长度,最 小值为2lambda=0.4μm。
栅宽(gate_width)指栅极下有源区(沟道)的宽度,最小栅宽为 3 lambda=0.6μm。
201010233636cmos差动放大器单元电路设计版图的过程vinvinqr1r2vddmn1mn2mps2mcs2mgcsmcf1mcf2msf1msf2outout图716画l型金属线作地线图717画出两只mcs3并将它们的栅漏和源极互连201010233737vinvinqr1r2vddmn1mn2mps2mcs2mgcsmcf1mcf2msf1msf2outout图718画出两只mn1并将它们的栅漏和源极互连cmos差动放大器单元电路设计版图的过程201010233838图719依次画出r1并联的两只msf1和并联的两只mcf1以及偏压等半边电路版图vinvinqr1r2vddmn1mn2mps2mcs2mgcsmcf1mcf2msf1msf2outoutcmos差动放大器单元电路设计版图的过程201010233939cmos差动放大器单元电路设计版图的过程vinvinqr1r2vddmn1mn2mps2mcs2mgcsmcf1mcf2msf1msf2outout图720通过对图819中半边版图对x轴作镜像复制形成的完整版图201010234040在正式用cadence画版图之前一定要先构思也就是要仔细想一想每个管子打算怎样安排管子之间怎样连接最后的电源线地线怎样走
第八章 大规模集成电路
9
图8-2
RAM存储矩阵的示意图
2564(256个字,每个字4位)RAM存储矩阵的 ( 示意图。 如果X0=Y0=1,则选中第一个信息单元的4个 存储单元,可以对这4个存储单元进行读出或写入。
10
(2)RAM 的读写原理 (以图8-1为例) 以图8 为例) 当CS =0时,RAM被选中工作。 0 若 A11A10A9A8A7A6A5A4A3A2A1A0=000000000000 表示选中列地址为A11A10A9A8=0000 A =0000、行地址为 A7A6A5A4A3A2A1A0=00000000的存储单元。 此时只有X0和Y0为有效,则选中第一个信息单 元的k个存储单元,可以对这k个存储单元进行读出 或写入。
20
由1024×8的 RAM扩展为4096×8的RAM ×图8-11 RAM字扩展 ×
21
字位扩展 例:将1024×4的RAM扩展为2048×8 RAM。 × × 位扩展需2片芯片,字扩展需2片芯片,共需4片 芯片。 字扩展只增加一条地址输入线A10,可用一反相 器便能实现对两片RAM片选端的控制。 字扩展是对存储器输入端口的扩展, 位扩展是对存储器输出端口的扩展。
大规模集成电路从制造工艺的角度,也可以分为两大类 大规模集成电路从制造工艺的角度,也可以分为两大类: 一类为双极型,另一类是MOS型大规模集成电路 一类为双极型,另一类是 型大规模集成电路 应用大规模集成电路后,可以有效地提高电子设备的性能, 应用大规模集成电路后,可以有效地提高电子设备的性能, 可以大大减少设备的体积和重量, 可以大大减少设备的体积和重量,降低功耗
3
一、动态MOS反相器 动态 反相器
1.动态有比 动态有比MOS反相器 动态有比 反相器 2.动态无比 动态无比MOS反相器 动态无比 反相器
第八章 数字集成电路基本单元及版图(续)
漏极开路输出单元
如果希望系统支持多个集成电路的正常逻辑 输出同时到总线以实现某种操作,就必须对集成 电路的输出单元进行特殊的设计以支持“线逻 辑”。同时,总线也将做适当的改变。 漏极开路输出单元结构就是其中的一种。下 图给出了两种漏极开路结构的输出单元,其中 (a)图的内部控制信号是通过反相器反相控制 NMOS管工作的方式,(b)图是同相控制的方 式。
动态存储器DRAM (Dynamic RAM)
主要指标:存储容量、存取速度。
存储容量: 用字数×位数表示,也可只用位数表 示。如,某动态存储器的容量为109位/片。 存取速度:用完成一次存取所需的时间表示。 高速存储器的存取时间仅有10ns左右。
存储单元的等效电路(1)
字线 字线
VP 位线 (a) DRAM 位线 (b) SRAM 位线
漏极开路输出单元
(a)反相器反相控制方式
(b)同相控制的方式
漏极开路结构实现的线逻辑
Vcc bi
A1
A2
目的:减少电 AN
表达式为
路结构和成本
bi A1 A 2 A N A1 A 2 A Nห้องสมุดไป่ตู้
输入、输出双向三态单元(I/O PAD)
在许多应用场合,需要某些数据端同时具有输入、输 出的功能,或者还要求单元具有高阻状态。在总线结构的 电子系统中使用的集成电路常常要求这种I/O PAD。下 图是一个输入、输出双向三态的I/O PAD单元电路。
存储单元的等效电路(2)
字线 Cut 位线 (c) 熔丝型ROM 位线 (d) EROM(EEPROM) 位线 (e) FRAM 字线 浮栅 字线
DRAM
随着高密度存储器的不断发展,存 储单元尺寸逐渐减小,这种趋势使得结 构简单的动态RAM成为首选。 DRAM单元发展过程中出现几个阶 段,这些阶段的发展使得DRAM的单元 面积越来越小。
全国大学生电子设计竞赛培训系列教程
全国大学生电子设计竞赛培训系列教程《全国大学生电子设计竞赛培训系列教程——基本技能训练与单元电路设计》内容简介本书是全国大学生电子设计竞赛培训系列教程之一——《基本技能训练与单元电路设计》分册。
全书共7章,主要介绍了“全国大学生电子设计竞赛”的基本情况、设计竞赛命题原则及要求、历届考题的类型、考题所涉及的知识面和知识点、竞赛培训流程,以及赛前、竞赛期间的注意事项等内容;并较详细地讲解了电子竞赛制作的基础训练、单片机最小系统和可编程逻辑器件系统设计制作;最后介绍了单元电路的工作原理、设计与制作。
本书内容丰富实用,叙述简洁清晰,工程性强,可作为高等学校电子信息科学与工程类专业、电气工程及自动控制类专业的大学生参加“全国大学生电子设计制作竞赛”的培训教材,也可作为各类电子制作、详程设计、毕业设计的教学参考书,以及电子工程技术工程师的参考书。
前言全国大学生电子设计竞赛是由教育部高等教育司、信息产业部人事司共同主办的面向大学生、大专生的群众性科技活动,目的在于推动普通高等学校的信息电子类学科面向21世纪的课程体系和课程内容改革,引导高等学校在教学中培养大学生的创新意识、协作精神和理论联系实际的学风,加强学生工程实践能力的训练和培养,鼓励广大学生踊跃参加课外活动,把主要精力吸引到学习和能力培养上来,促进高等学校形成良好的学习风气,同时也为优秀人才脱颖而出创造条件。
全国大学生电子设计竞赛自1994年至今已成功举办了七届。
深受全国大学生的欢迎和喜爱,参赛学校、队和学生逐年递增。
全国大学生电子设计竞赛组委会为了组织好这项竞赛事,编写了电子设计竞赛获奖作品选编,深受参赛队员的喜爱。
有许多参赛队员和辅导教师反映,若能编写一部从基本技能训练、单元电路设计直至综合设计系列教程,那将是锦上添花。
2006年北京理工大学罗伟雄教授在湖南指导工作时也曾提出这个设想。
当时就得到了国防科技大学的领导和教员响应。
立即组建了“全国大学生电子设计竞赛培训系列教程编写委员会”。
模拟集成电路设计教学大纲
模拟集成电路设计教学大纲目录一、课程开设目的和要求2二、教学中应注意的问题2三、课程内容及学时分配2第一章模拟电路设计绪论2第二章MOS器件物理基础2第三章单级放大器3第四章差动放大器3第五章无源与有源电流镜3第六章放大器的频率特性3第八章反馈3第九章运算放大器3高级专题3四、授课学时分配4五、实践环节安排4六、教材及参考书目5课程名称:模拟集成电路设计课程编号:055515英文名称:Analog IC design课程性质:独立设课课程属性:专业限选课应开学期:第5学期学时学分:课程总学时___48,其中实验学时一-一8。
课程总学分--3学生类别:本科生适用专业:电子科学与技术专业的学生。
先修课程:电路、模拟电子技术、半导体物理、固体物理、集成电路版图设计等课程。
一、教学目的和要求CMOS模拟集成电路设计课程是电子科学与技术专业(微电子方向)的主干课程,在教学过程中可以培养学生对在先修课程中所学到的有关知识和技能的综合运用能力和CMOS模拟集成电路分析、设计能力,掌握微电子技术人员所需的基本理论和技能,为学生进一步学习硕士有关专业课程和日后从事集成电路设计工作打下基础。
二、教学中应注意的问题1、教学过程中应强调基本概念的理解,着重注意引导和培养学生的电路分析能力和设计能力2、注重使用集成电路设计工具对电路进行分析仿真设计的训练。
3、重视学生的计算能力培养。
三、教学内容第一章模拟电路设计绪论本课程讨论模拟CMOS集成电路的分析与设计,既着重基本原理,也着重于学生需要掌握的现代工业中新的范例。
掌握研究模拟电路的重要性、研究模拟集成电路以及CMOS模拟集成电路的重要性,掌握电路设计的一般概念。
第二章MOS器件物理基础重点与难点:重点在于MOS的I/V特性以及二级效应。
难点在于小信号模型和SPICE模型。
掌握MOSFET的符号和结构,MOS的I/V特性以及二级效应,掌握MOS 器件的版图、电容、小信号模型和SPICE模型,会用这些模型分析MOS电路。
电工电子技术第八章集成运算放大电路
8.1 集成运算放大器的简单介绍
• 运算放大器开环放大倍数大,并且具有深 度反馈,是一种高级的直接耦合放大电路。 它通常是作为独立单元存在电路中的。最 初是应用在模拟电子计算机上,可以独立 地完成加减、积分和微分等数学运算。早 期的运算放大器由电子管组成,自从20世 纪60年代初第一个集成运算放大器问世以 来,运算放大器才应用在模拟计算机的范 畴外,如在偏导运算、信号处理、信号测 量及波形产生等方面都获得了广泛的应用。
• 4.在集成电路中,比较合适的电阻阻值范 围大约为100 ~300 Ω。制作高阻值的电阻 成本高、占用面积大并且阻值偏差也较大 (10~20%)。因此,在集成运算放大器中 往往用晶体管恒流源代替高电阻,必须用 直流高阻值时,也常采用外接的方式。
8.1.2 集成运算放大器的简单说明
• 集成运算放大器的的电路常可分为输入级、 中间级、输出级和偏置电路四个基本组成 部分,如图8-1所示。
• 2.信号的输入 • 当有信号输入时,差动放大电路(见图8-5)的工作情况可以分为以下几种情
况。
• (1)共模输入。 • 若两管的基极加上一对大小相等、极性相同的共模信号(即vi1 = vi2),这种
输入方式称为共模输入。这将引起两管的基极电流沿着相同的方向发生变化, 集电极电流也沿相同方向变化,所以集电极电压变化的方向与大小也相同, 因此,输出电压vo = ΔvC1-ΔvC2 = 0,可见差动放大电路能够抑制共模信号。 而上述差动放大电路抑制零点漂移则是该电路抑制共模信号的一个特例。因 为输出的零点漂移电压折合到输入端,就相当于一对共模信号。
u
u
u0 Au 0
0
u+≈u-
(8-2)
• 当反向输入端有信号,而同向端接地时,u+=0,由上式 可见,u-≈u+=0。此时反向输入端的电位近似等于地电位, 因此,它是一个不接地的“地”电位端,通常称为虚地端。
电路知识点总结8篇
电路知识点总结8篇第1篇示例:电路知识点总结电路是指由电子元件(如电阻、电容、电感等)连接而成的一种具有特定功能的电子装置。
在现代科技领域中,电路扮演着至关重要的角色,无论是通信设备、计算机、家用电器还是工业生产设备,都离不开电路的应用。
掌握电路知识对于我们理解现代科技发展趋势、提高工程技能都至关重要。
下面将对电路知识点进行总结,帮助大家更好地理解电路的基本原理和应用。
一、电路基本概念1. 电路的定义:电路是由电子元件通过导线相互连接而成的电气系统,用于实现电流、电压等电学量的控制和变换。
2. 电路的分类:电路按功能可分为模拟电路和数字电路;按连接方式可分为串联电路和并联电路;按组成元件可分为被动电路和主动电路等。
3. 电路的符号:在电路图中,电子元件用具体的图形符号表示,如电阻用Ω表示,电容用F表示,电感用H表示等。
二、电路的基本元件1. 电阻:电路中的电子元件,用于限制电流的流动,单位是欧姆(Ω)。
4. 电源:电路中的电子元件,提供电流和电压,是电路正常运行的必要条件。
5. 开关:电路中的电子元件,用于实现电路的开关控制。
6. 源波纹:电路中由于电源频率或者负载不稳定引起的波动电压或电流。
7. 电路板:电子元件连接的载体,通常是一块绝缘基板,也称为PCB。
1. 欧姆定律:描述电阻、电流、电压之间的关系,即电流等于电压与电阻的比值。
2. 基尔霍夫定律:描述电路中各个节点的电流平衡关系,即电路中的节点电流代数和为零。
4. 电流分流定律:描述电路中分流电路的原理,即电流与电阻成反比。
5. 超前相位:电压超过电流的现象,通常出现在电容、电感等元件中。
四、电路的搭建与调试1. 搭建电路:根据电路图纸和电子元件的连接符号,按照一定的连接方式将电子元件连接到电路板上。
2. 调试电路:通过万用表、示波器等仪器检测电路中的电流、电压等参数,找到问题并解决。
3. 仿真电路:利用电路仿真软件模拟电路的工作状态,帮助分析电路的性能和稳定性。
《半导体集成电路》考试题目及参考答案(DOC)
《半导体集成电路》考试题目及参考答案(DOC)1.双极性集成电路中最常用的电阻器和MOS集成电路中常用的电阻都有哪些?2.集成电路中常用的电容有哪些。
3. 为什么基区薄层电阻需要修正。
4. 为什么新的工艺中要用铜布线取代铝布线。
5. 运用基区扩散电阻,设计一个方块电阻200欧,阻值为1K的电阻,已知耗散功率为20W/c㎡,该电阻上的压降为5V,设计此电阻。
第4章TTL电路1.名词解释电压传输特性开门/关门电平逻辑摆幅过渡区宽度输入短路电流输入漏电流静态功耗瞬态延迟时间瞬态存储时间瞬态上升时间瞬态下降时间瞬时导通时间2. 分析四管标准TTL与非门(稳态时)各管的工作状态?3. 在四管标准与非门中,那个管子会对瞬态特性影响最大,并分析原因以及带来那些困难。
4. 两管与非门有哪些缺点,四管及五管与非门的结构相对于两管与非门在那些地方做了改善,并分析改善部分是如何工作的。
四管和五管与非门对静态和动态有那些方面的改进。
5. 相对于五管与非门六管与非门的结构在那些部分作了改善,分析改进部分是如何工作的。
6. 画出四管和六管单元与非门传输特性曲线。
并说明为什么有源泄放回路改善了传输特性的矩形性。
7. 四管与非门中,如果高电平过低,低电平过高,分析其原因,如与改善方法,请说出你的想法。
8. 为什么TTL与非门不能直接并联?9. OC门在结构上作了什么改进,它为什么不会出现TTL与非门并联的问题。
第5章MOS反相器1. 请给出NMOS晶体管的阈值电压公式,并解释各项的物理含义及其对阈值大小的影响(即各项在不同情况下是提高阈值还是降低阈值)。
2. 什么是器件的亚阈值特性,对器件有什么影响?3. MOS晶体管的短沟道效应是指什么,其对晶体管有什么影响?4. 请以PMOS晶体管为例解释什么是衬偏效应,并解释其对PMOS晶体管阈值电压和漏源电流的影响。
5. 什么是沟道长度调制效应,对器件有什么影响?6. 为什么MOS晶体管会存在饱和区和非饱和区之分(不考虑沟道调制效应)?7.请画出晶体管的D DS特性曲线,指出饱和区和I V非饱和区的工作条件及各自的电流方程(忽略沟道长度调制效应和短沟道效应)。
模电知识点复习总结
3.4.2 二极管电路的简化模型分析方法பைடு நூலகம்
1.二极管V-I 特性的建模
将指数模型 iD=IS(e分vD段VT线性1)化,得到二极管特性的 等效模型。 (1)理想模型
(a)V-I特性 (b)代表符号 (c)正向偏置时的电路模型 (d)反向偏置时的电路模型
(2)恒压降模型
(3)折线模型
(a)V-I特性 (b)电路模型
漂移运动: 由电场作用引起的载流子的运动称为漂移运动.
扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动.
3.2.2 PN结形成
在一块本征半导体两侧通过扩散不同的杂质,分 别形成N型半导体和P型半导体.此时将在N型半导 体和P型半导体的结合面上形成如下物理过程:
因浓度差
多子的扩散运动 由杂质离子形成空间电荷区
特别注意: ▪ 小信号模型中的微变电阻rd与静态工作点Q有关。 ▪ 该模型用于二极管处于正向偏置条件下,且vD>>VT 。
3.5 特殊二极管
(一)稳压二极管
I/mA
1 结构:面接触型硅二极管
2 主要特点: (a) 正向特性同普通二极管 (b) 反向特性
• 较大的 I 较小的 U •工作在反向击穿状态. 在一定范围内,反向击穿 具有可逆性。
则 = ICICEO
IB
当IC
IC
时
EO
, IC
IB
是另一个电流放大系数。同样,它也只与管
子的结构尺寸和掺杂浓度有关,与外加电压无关。
一般 >> 1 。
3. 三极管的三种组态
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示; 共集电极接法,集电极作为公共电极,用CC表示.
跨导线性原理
∑V
T
ln
I cj I sj
=0
因为在环内, 顺时针方向( CW) 的正偏结数必定等于反时针方向( CCW) 因为在环内 , 顺时针方向 ( CW ) 的正偏结数必定等于反时针方向 ( CCW ) I cj I cj 的正偏结数, 的正偏结数 , 则有 ∑ VT ln I = ∑ VT ln I cw ccw sj sj
VBE
I sj
(7-1-1)
个晶体管正偏发射结的电压表达式, 这是环中第 j 个晶体管正偏发射结的电压表达式 , 那么沿环一周各正偏结 的电压之和应为零, 的电压之和应为零 , 既有
n
∑V
j=1
BEj
=0
n j =1
7-1-2) ( 7-1-2 )
将式(7-1-1)代入(7-1-2) ,可有 将式(7-1-1)代入(7-1-2) 可有 ,
(∏ 1 1 I cj )cw = ( ∏ ∏ I cj )ccw ∏ Aj Aj
∴
∏
cw
cw
I cj = λ
∏
ccw
I cj
式中λ为发射区面积比例系数: 式中λ为发射区面积比例系数: λ = ∏ A j /∏ A j ;称为发射结面积因子
ccw
环路的设计和制造工艺中,发射结面积因子λ 另外在 TL 环路的设计和制造工艺中,发射结面积因子λ应尽可能接近 1, 但这并不要求所有发射结面积都相等。 但这并不要求所有发射结面积都相等。实际上各管的发射结面积可以为不同 数值, 数值,但 λ = ∏ A j / ∏ A j 的值必须尽可能保证为 1
本章将对电流模电路的特点, 常用的电流模单元电路分别进行讨论。 本章将对电流模电路的特点 , 常用的电流模单元电路分别进行讨论 。
常用模拟集成电路
将许多调整电压的元器件集成在体积很小的半导体芯片上即成为集成稳压器,使用时只要外接很少的元件即可构成高性能的稳压电路。由于集成稳压器具有体积小、重量轻、可靠性高、使用灵活、价格低廉等优点,在实际工程中得到了广泛应用。集成稳压器的种类很多,以三端式集成稳压器的应用最为普遍。
常用的三端固定输出式集成稳压器有输出为正电压的W7800系列和输出为负电压的W7900系列。
知识2常用模拟集成电路
1.模拟集成电路的分类
模拟集成电路按用途可分为运算放大器、直流稳压器、功率放大器、电压比较器等。模拟集成电路与数字集成电路的差别不但在信号的处理方式上,而且在电源电压上的差别更大。模拟集成电路的电源电压根据型号的不同可以不相同而且数值较高,视具体用途而定。
2.集成运算放大器
自从1964年美国仙童公司制造出第一个单片集成运算放大器A702以来,集成运算放大器得到了广泛的应用,目前它已
图7.2(c)所示为三端集成稳压器使用时的基本电路接法。外接电容器C1用以抵消因输入端线路较长而产生的电感效应,可防止电路自激振荡。外接电容器C0可消除因负载电流跃变而引起输出电压的较大波动。图中ūl为整流滤波后的直流电压,ūo为稳压后的输出电压。
图7.3(a)所示为用W7815和W7915组成的双极性稳压电源输出电路,可同时向负载提供+15 V和-15 V的直流电压。图7.3(b)所示为三端稳压器外接一个集成运算放大器所组成的反相器,可将单极性电压变为双极性输出电压。
【总结】
集成电路的类型和封装常用模拟集成电路
【作业】
1.集成电路按功能可分为哪两大类?
2.三端集成直流稳压器有哪些系列?
课
后
记
事
W7800系列三端稳压块的输出电压有5 V、6 V、9 V、12 V、15 V、18 V和24 V共7个档次。型号(也记为W78××)的后两位数字表示其输出电压的稳压值,如型号为W7805和W7812的集成块,其输出电压分别为5 V和12 V。
模拟电路复习范围解读
模拟电路复习范围第一章1、四种放大电路模型各用于什么场合?四种放电电路分别为:电压放大电路,电流放大电路,互导放大电路,互阻放大电路。
电压放大电路适合:信号源内阻小,负载电阻大的场合。
电流放大电路适合:信号源内阻大,负载电阻小的场合。
互导放大电路适合:(理想状态下)Ri=无穷,Ro=无穷。
//信号源内阻与输入电阻串联,输出电阻与负载电阻并联。
互阻放大电路适合:(理想状态下)Ri=0,Ro=0。
//信号源内阻与输入电阻并联,输出电阻与负载电阻串联。
2、放大电路输出电阻的大小决定它带什么的能力?放大电路的输出电阻的大小决定了它带负载的能力。
3、频率失真是由于什么引起的?频率失真又称线性失真,是由于线性电抗元件所引起的4、下限频率为零的放大电路是什么耦合放大电路?直接耦合电路。
5、周期信号的频谱有什么特点?是离散的,谐波,收敛的6、习题1.5.3第二章1、同相放大电路和反相放大电路的重要特征是什么?在同相放大电路中,加到两输入端的电压大小接近相等,相位相同是它在闭环工作状态下的重要特征。
在反相放大电路中,虚地的存在是反相放大电路的在闭环工作状态下的重要特征。
2、集成运算放大器是一种高增益什么耦合放大器?集成运算放大器是一种高增益直接耦合放大电路。
3、由理想运放组成的线性应用电路输出与输入的关系只取决于什么电路的元件值?由理想运放组成的线性应用电路输出与输入的关系只取决于运放外部电路的元件值,而与运放内部的特性没有关系。
4、运放电路工作在线性区的条件是什么?需要引入深度负反馈,运放工作在线性区,结果导致两输入之间的电压差(Vp-Vn->0),由此才可以导出虚断和虚短两个重要的概念。
5、理想运放线性应用电路输出与输入的关系与什么有关,与什么无关?由理想运放组成的线性应用电路输出与输入的关系只取决于运放外部电路的元件值,而与运放内部的特性没有关系。
6、例题2.3.3第三章1、理想、恒压降、折线和小信号二极管模型分别用于什么场合?当电源电压远比二极管的管压降大时,利用理想模型近似分析还是比较可行的。
集成电路设计ppt
第四章 半导体集成电路基本加工工艺与设计规则 4.1 引言 4.2 集成电路基本加工工艺 4.3 CMOS工艺流程 4.4 设计规则 4.5 CMOS反相器的闩锁效应 4.6 版图设计
第五章 MOS管数字集成电路基本逻辑单元设计 5.1 NMOS管逻辑电路 5.2 静态CMOS逻辑电路 5.3 MOS管改进型逻辑电路 5.4 MOS管传输逻辑电路 5.5 触发器 5.6 移位寄存器 5.7 输入输出(I/O)单元
[3] 陈中建主译. CMOS电路设计、布局与仿真.北京:机械工 业出版社,2006.
[4](美)Wayne Wolf. Modern VLSI Design System on Silicon. 北京:科学出版社,2002.
[5] 朱正涌. 半导体集成电路. 北京:清华大学出版社,2001. [6] 王志功,沈永朝.《集成电路设计基础》电子工业出版
第六章 MOS管数字集成电路子系统设计 6.1 引言 6.2 加法器 6.3 乘法器 6.4 存储器
6.5 PLA 第七章 MOS管模拟集成电路设计基础
7.1 引言 7.2 MOS管模拟集成电路中的基本元器件 7.3 MOS模拟集成电路基本单元电路 7.4 MOS管集成运算放大器和比较器 7. 5 MOS管模拟集成电路版图设计 第八章 集成电路的测试与可测性设计
1.2 集成电路的发展
1、描述集成电路工艺技术水平的五个技术指标 (1)集成度(Integration Level)
集成度是以一个IC芯片所包含的元件(晶体管或门/数)来 衡量(包括有源和无源元件)。随着集成度的提高,使IC及使用 IC的电子设备的功能增强、速度和可靠性提高、功耗降低、体积 和重量减小、产品成本下降,从而提高了性能/价格比,不断扩 大其应用领域,因此集成度是IC技术进步的标志。为了提高集成 度采取了增大芯片面积、缩小器件特征尺寸、改进电路及结构设 计等措施。为节省芯片面积普遍采用了多层布线结构。硅晶片集 成(Wafer Scale Integration -WSI)和三维集成技术也正在研 究开发。从电子系统的角度来看,集成度的提高使IC进入系统集 成或片上系统(SoC)的时代。
半导体集成电路课程教学大纲
《半导体集成电路》课程教学大纲(包括《集成电路制造基础》和《集成电路原理及设计》两门课程)集成电路制造基础课程教学大纲课程名称:集成电路制造基础英文名称:The Foundation of Intergrate Circuit Fabrication课程类别:专业必修课总学时:32 学分:2适应对象:电子科学与技术本科学生一、课程性质、目的与任务:本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。
半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。
本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。
并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。
二、教学基本要求:1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。
2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。
3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。
4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。
集成电路常用器件版图
(1)反相输出 I/O PAD
5.7 电源和地线版图
图7.33:电源和地线布局。 内部电路完全设计完毕后,最后开始布焊盘
的电源和地线。 VDD和VSS处于对角线位置,最外一圈是
VSS线,较里一圈是VDD线,输入输出PAD 位于它们之间。
容是最后设计的。 图7.22,“比例电容版图”:两个电容进行
匹配。将较小的电容放置中心位置,以保证 周围环境一致性。
5.4 二极管版图
集成电路中普遍存在二极管。 psub-nwell二极管:P型衬底和N阱之间存在
二极管。为了保证所有的二极管反偏,需要 将衬底接低电位,N阱接高电位。 Sp-nwell二极管:N阱和N阱中的P+扩散区形 成的二极管。
图7.35
5.9 静电保护
多数CMOS集成电路的输入端是直接接到栅上。而 悬浮的输入端很容易受到较高感应电位的影响。人 体的静电模型可以简化成对地的100 PF电容串联一 个1.5 kΩ的电阻,在干燥气氛下 可能在100 PF上 感应出较高的静电电位, 由于存储的能量与电位的 平方成正比,所以存储在人体等效电容中的能量很 大,约0.2毫焦耳。较高的静电电位和较高的能量会 引起CMOS电路的静电失效。
5.2 电阻常见版图画法
(1)离子注入电阻 采用离子注入方式对半导体掺杂而得到的电
阻。 可以精确控制掺杂浓度和深度,阻值容易控
制且精度很高。分为P+型和N+型电阻。 (2)多晶硅薄膜电阻 掺杂多晶硅薄膜电阻的放开电阻较大,是集
成电路中最常用到的一种电阻。
5.2 电阻常见版图画法
电子技术基础重要知识点总结
第一章绪论1.在时间上和数值上均是连续的信号称为模拟信号;(只有高低电平的矩形脉冲信号为数字信号)在时间上和数值上均是离散的信号称为数字信号;处理模拟信号的电路称为模拟电路,处理数字信号的电路称为数字电路。
2.信号通过放大电路放大后,输出信号中增加的能量来自工作电源。
3.电子电路中正、负电压的参考电位点称为电路中的“地”,用符号“⊥”表示,它也是电路输入与输出信号的共同端点。
4.根据输入信号的不同形式和对输出信号形式的不同要求,通常将放大电路分为电压放大电路、电流放大电路、互阻放大电路和互导放大电路四种类型。
5.放大的特征是功率的放大,表现为输出电压大于输入电压,或者输出电流大于输入电流,或者二者兼而有之。
6.输入电阻、输出电阻、增益、频率响应和非线性失真等几项主要的性能指标是衡量放大电路品质优劣的标准,也是设计放大电路的依据。
7.放大倍数A:输出变化量幅值与输入变化量幅值之比,用以衡量电路的放大能力。
8.输入电阻R i:从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大小。
9.输出电阻R o:从输出端看进去的等效输出信号源的内阻,说明放大电路的带负载能力。
第二章运算放大器1.运算放大器有两个输入端,即同相输入端和反相输入端,一个输出端。
2.运算放大器有线性和非线性两个工作区域。
要使运放稳定地工作在线性区,必须引入深度负反馈。
3.理想运放两输入端间电压V P-V N≈0,如同两输入端近似短路,这种现象称为“虚短”。
4.理想运放流入同相端和流出反相端的电流基本为零,即“虚断”。
5.理想运放的输入电阻趋近于无穷,输出电阻趋近于零。
6.同相放大电路的闭环电压增益为正,且大于等于1。
7.若反相放大电路的反相输入端输入信号,同相输入端接地,则反相输入端呈现虚地。
第三章二极管及其基本电路1.本征半导体:纯净的不带任何杂质的半导体,它的自由电子和空穴的数目相等,对外不显电性。
2.P型半导体:是指在本征半导体中掺入三价元素如硼,形成的主要靠空穴导电的半导体。
第8章电子线路综合设计1
第八章 模拟电子系统的综合设计 (1)8.1 设计流程 .......................................................................................................... 1 8.2 总体方案 . (2)8.2.1 总体框图 ............................................................................................... 2 8.2.2 总体方案的论证 ..................................................................................... 2 8.3 单元电路的设计 .. (3)8.3.1 确定电路 (3)8.3.2 电路元件参数的估算 .............................................................................. 3 8.3.3 性能指标的验证及元件参数的确定 ......................................................... 3 8.3.4 设计举例 ............................................................................................... 4 小结........................................................................................................................ 20 习题 (20)第八章 模拟电子系统的综合设计在前面几章我们学了各种电子元件的特性及各种单元电路,在实际电子系统电路中,往往是各种单元电路的组合,本章着重讨论模拟电子系统的综合设计,并举了几个实例,使读者学完本课程能初步掌握电子线路工程设计的程序和方法,以提高模拟电子技术综合应用能力。
模拟电路文档
模拟电路介绍模拟电路是电子工程学中的一个重要分支,用来描述和分析电子设备中的电压和电流。
它们是由被称为电子元件的器件构成的,例如电阻、电容和电感等。
模拟电路主要用于信号处理、信号放大、滤波、振荡器等应用。
模拟电路基础知识在开始讨论模拟电路之前,我们需要了解一些基本概念和术语。
电压电压是指电荷在电路中的电势差,通常用字母V表示,单位为伏特(V)。
在模拟电路中,电压常用来表示信号的大小或电子元件之间的电势差。
电流电流是指电子在电路中的流动,通常用字母I表示,单位为安培(A)。
电流的大小取决于电荷的数量和速度。
电阻电阻是指阻碍电流流动的物理量,通常用字母R表示,单位为欧姆(Ω)。
在模拟电路中,电阻常用来控制电流的流动。
电容电容是指存储电荷的能力,通常用字母C表示,单位为法拉(F)。
电容可以储存电荷,并在电路中释放或吸收能量。
电感电感是指电流的磁场效应产生的电势差,通常用字母L表示,单位为亨利(H)。
电感用于储存磁场能量和控制电流的变化。
常见的模拟电路放大器电路放大器电路是模拟电路中最常见的类型之一,用于放大电压或电流信号。
放大器电路可以增加信号的大小,以便在电子设备中进行后续处理或驱动负载。
滤波器电路滤波器电路用于过滤特定频率范围内的信号。
根据需要,滤波器可以将低频、高频或特定频率范围的信号传递或抑制。
振荡器电路振荡器电路能够产生稳定的周期性信号。
这些信号可以用于时钟信号、音频信号、无线通信等应用中。
比较器电路比较器电路用于比较两个信号的大小。
它们常用于模拟信号和数字信号之间的转换。
模拟电路设计的基本步骤要设计一个满足特定需求的模拟电路,通常需要遵循以下基本步骤:1.确定电路的规格和需求:首先需要明确电路所需的输入和输出信号特性,例如频率范围、增益要求等。
根据这些要求,确定电路的基本拓扑。
2.选择元件和器件:根据电路的规格要求和设计目标,选择合适的电子元件和器件。
例如,根据增益要求选择合适的放大器,根据滤波需求选择合适的电容和电感等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.03.2021
14
集成电路设计原理
国际微电子中心
8.1.2 pnp恒流源电路
2. 单元电路图举例
VDD
VDD
T1
VDD
VDD
T2 Io1
T1 Ir Rr
T1 T2
T3 Ir Rr Io1
T2 T3 Ir Rr Io1 Io2
VDD
VDD
T1 Ir Rr
T2 T3 Io1 Io2
10.03.2021
10.03.2021
7
集成电路设计原理
国际微电子中心
8.1.1 npn恒流源电路
4. 多支路恒流源 设晶体管均相同,则:
V Ir Rr
T1
Ir = Ic1+(1+N)Ib
= Io + (1+N)Io/
Io1 Io2 IoN 即:Io / Ir = /[ + (1+N)]
T2 T3 TN+1
可见,支路数增加,
会使Io 与 Ir的差值增大。
10.03.2021
8
集成电路设计原理
国际微电子中心
8.1.1 npn恒流源电路 5. 带有缓冲级的恒流源
V V’
Ir Rr
T0 Io
T1
T2
设晶体管均相同,则:
Ir = Ic1+Ib0 = Io + IE0/(+1)
而: IE0 = Ib1+Ib2 =2Ib2 =2Io/
Ic1
2IbI3bTI3e3
Ib Ib Ic2
T1
T2
I I I I I
r
c1
b3
c2
b3
I I 2I I (1 2 )
e3
c2
b2
c2
I
I e3
1
(1 )I 1 I
c2 (1 2 ) (1 2 )
c3 2 c3
I I I 1I 1I
r
c2
2 b 3
c3
c3
V
Ir Rr Io
T1
T2
Ib1 Ib2
R2
VBE1 = IE2R2 + VBE2 则: IE2R2 = VBE1 – VBE2
= VTln(IE1/IE2) 其中: VT =KT/q (热电压) 因此近似有:
Io= (VT /R2 ) ln (Ir/Io) 根据已知的Ir 和需要的Io , 就可以求出要设计的R2。
国际微电子中心
V
该电路具有温度补偿作用:
Ir Rr
Io 温度
T1
T2
Ib1 Ib2
Io Io Ic1 Ir VR (IrRr) Vb Ib
10.03.2021
5
集成电路设计原理
8.1.1 npn恒流源电路 2. 面积比恒流源
国际微电子中心
V
设T1和T2发射结面积为AE1和AE2
Ir Rr
则: Ib1/Ib2 = Ic1 / Io = AE1/AE2 Io 而: Ir= Ic1+ Ib1+Ib2
GND
Ir
Ir
Io
GND
GND
10.03.2021
13
集成电路设计原理
8.1.2 pnp恒流源电路 1. 概述
国际微电子中心
在双极型模拟集成电路中,经常是npn管 和pnp管互补应用,因此pnp恒流源同样得到 广泛的应用。
pnp恒流源电路形式与npn恒流源相同, 只是改变电源的接法和电流方向。
值得注意的是PNP恒流源一般是由横向 PNP管组成,而横向PNP管的增益()远远 小于NPN管的增益() ,因此,PNP恒流源 中Io 与 Ir的近似程度较大。
VDD
T1
T2
T3
Ir Rr
Io1
I
2I c2
I
I (1 1 )
c2
e3
o
I
I o
I
c 1
r
I I (1 2 )
则:Ir = Io+2Io /(+1)
= Io [1+ 2/ (+1)]
可见,Io 与 Ir的差值明显减小。
10.03.2021
9
集成电路设计原理
国际微电子中心
8.1.1 npn恒流源电路 5. 带有缓冲级的恒流源
V V’
Ir Rr
T0
T1
Io1 Io2 T2 T3
设晶体管均相同,则:
Ir = Ic1+Ib0
偿特性,更有利于工作点的稳定。
Ib Ib T1
Ic2 T2
补偿过程: 当由于某种原因使Io增 大,则Ie3 Ic2 Ic1 。而Ir= Ic1+Ib3
不变,则Ic1 Ib3 Io 。
10.03.2021
12
集成电路设计原理
8.1.1 npn恒流源电路
7. 版图举例
Ir
国际微电子中心
Io
Ir
Io
Io
I
2 2
o
I 2 2 2
r
10.03.2021
11
集成电路设计原理
国际微电子中心
8.1.1 npn恒流源电路 6. 具有补偿作用的恒流源(Wilson电流源)
V
Ir Rr
Io
Ic1
2IbI3bTI3e3
Io Ir
=
2+ 2 2+2+2
这种电流源不仅使Io 与 Ir的差 值非常小,而且还具有负反馈补
= Io + IE0/(+1) IoN 而: IE0 =(1+N)Io/
TN+1
则:
Io Ir
2+ =2++N+1
可见,Io 与 Ir的 差值明显减小。
10.03.2021
10
集成电路设计原理
国际微电子中心
8.1.1 npn恒流源电路
6. 具有补偿作用的恒流源(Wilson电流源)
V
Ir Rr
Io
集成电路设计原理
国际微电子中心
集成电路设计原理
国际微电子中心
思考题
1. 恒流源单元电路有哪些种类?各自的特 点有哪些? 2. 恒流源作为有源负载有哪些特点? 3. 设计恒流源时应注意哪些问题?
10.03.2021
3
集成电路设计原理
8.1.1 npn恒流源电路 1. 基本型电流镜恒流源
国际微电子中心
T1
T2 则:Ir =Io (AE1/AE2+AE1/AE2+1)/
Ib1 Ib2
因为: >>1, AE1/AE2值较小
所以:Ir IoAE1/AE2
即: Io / Ir = AE2/AE1
10.03.2021
6
集成电路设计原理
国际微电子中心
8.1.1 npn恒流源电路 3. 小电流恒流源(Widlar电流源)
15
集成电路设计原理
8.1.2 pnp恒流源电路 2. 单元电路图举例
VDD
T1 Ir Rr
T2 Io1
I I 2I
r
c1
b
I 2I
c2
b
I
2I c2
c2
I (1 2 )
o
国际微电子中心
10.03.2021
16
集成电路设计原理
8.1.2 pnp恒流源电路 2. 单元电路图ห้องสมุดไป่ตู้例
国际微电子中心
V Ir Rr
设T1和T2完全相同 则: Ib1/Ib2 = Ic1 / Ic2 Io 因此:Ir=Ic1+Ib1+Ib2 =Io+ 2Ib2
T1
T2
Ib1 Ib2
= Io (+2)/ 因为: >>1 所以:Ir Io
Ir= (V-VBE)/Rr
10.03.2021
4
集成电路设计原理
8.1.1 npn恒流源电路 1. 基本型电流镜恒流源