最新2020九年级数学下册期末试卷及答案人教版

合集下载

2020年新版人教版九年级数学下册期末试卷及答案【推荐】

2020年新版人教版九年级数学下册期末试卷及答案【推荐】

九年级数学下册期末测试卷(B卷)(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知513ba=,则a ba b-+的值是()A.23B.32C.94D.492.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B. C. D.3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且12AEEB=,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.184.在Rt△ABC中,∠C=90°,若sinA=35,则cosB的值是()A.45B.35C.34D.435.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=32,则t的值是()A .1B .1.5C .2D .3 6.反比例函数y=-x3的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A. x 1>x 2B. x 1=x 2C. x 1<x 2D. 不确定7.已知长方形的面积为20cm 2,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为( )。

A .5. 3米 B. 4.8米 C. 4.0米 D.2.7米9.如图,在矩形ABCD 中,E 、F 分别是DC 、BC 边上的点,且∠AEF=90°则下列结论正确的是( )。

A 、△ABF ∽△AEFB 、△ABF ∽△CEFC 、△CEF ∽△DAED 、△DAE ∽△BAF10.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ).A .1组B .2组C .3组D .4组二、填空题(每小题3分,共30分)11.若与成反比例,且图象经过点,则________.(用含的代数式表示)12.在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A= .13.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是______________.14.若,则=________.15.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y (元)与人数x(人)之间的函数关系式.16.已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)17.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A到控制点B的距离约为_________________。

2020年九年级数学下期末试题(带答案)

2020年九年级数学下期末试题(带答案)

2020年九年级数学下期末试题(带答案)一、选择题1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)2.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+93.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50minmD.林茂从文具店回家的平均速度是60minm4.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°6.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D .7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC =2,则sin∠ACD的值为()A.5B.25C .5D.238.不等式组213 312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B.C.D.9.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°10.如果,则a的取值范围是()A. B. C. D.11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.12.如图,在矩形ABCD中,2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二、填空题13.分解因式:x3﹣4xy2=_____.14.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3,那么tan∠DCF的值是____.15.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.16.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.17.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.18.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.19.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.20.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70624.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,25.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.26.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13 , ∴13AD BG =, ∵BG =12, ∴AD =BC =4,∵AD ∥BG ,∴△OAD ∽△OBG ,∴13OA OB = ∴0A 14OA 3=+ 解得:OA =2,∴OB =6,∴C 点坐标为:(6,4),故选A .【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键.2.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D 、x 2﹣6x+9=(x ﹣3)2,故选项正确.故选D .3.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,所用时间是()453015-=分钟,∴体育场出发到文具店的平均速度1000200min 153m ==/【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.4.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.5.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.7.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB 222252AC BC =+=+=()3. ∵∠B +∠BCD =90°,∠ACD +∠BCD=90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 5AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.8.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 9.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.10.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.11.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质二、填空题13.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x (x 2-4y 2)=x (x+2y )(x-2y ),故答案为x (x+2y )(x-2y )点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点解析:2. 【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF CD =.故答案为:2. 【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.15.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM⊥BDDN⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD ,AB=CD ,可得BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到AM=6.详解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.16.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.17.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a 则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.18.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.19.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)600(2)见解析(3)3200(4) 【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)23.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.24.(1)证明见解析;(3)DG=.23【解析】【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD , ∴501013513AG AF DG OD ===,即DG=1323AD ,∴==,则DG=1323=【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.25.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC22+=22FC FB+,34∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.26.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

2020年九年级数学下期末试题(及答案)

2020年九年级数学下期末试题(及答案)

2020年九年级数学下期末试题(及答案)一、选择题1.下列四个实数中,比1-小的数是( ) A .2-B .0C .1D .22.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯4.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <05.定义一种新运算:1a n n nbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mxdx --=-⎰,则m =( )A .-2B .25-C .2D .256.如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C .53D .537.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94B .95分C .95.5分D .96分8.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A 14B .4cmC 15D .3cm10.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解11.cos45°的值等于( ) A .2B .1C .32D .2212.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .15.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.16.若一个数的平方等于5,则这个数等于_____.17.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .18.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.若式子3x +在实数范围内有意义,则x 的取值范围是_____.三、解答题21.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?22.如图,在四边形ABCD 中,AB DC P ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.23.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM∥AC,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.24.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:极差平均数中位数众数男生55178b c女生43181184186(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,26.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.2.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y轴交于正半轴,对称轴是x=1>0,所以a<0,c>0,b>0,所以abc<0,所以A错误;因为抛物线与x轴有两个交点,所以24b ac->0,所以B错误;又抛物线与x轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12bx a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D.考点:二次函数的图象及性质.5.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.6.D解析:D 【解析】 【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可. 【详解】 连接OC 、OA ,∵∠ABC=30°, ∴∠AOC=60°,∵AB 为弦,点C 为»AB 的中点, ∴OC ⊥AB , 在Rt △OAE 中,53∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.7.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.9.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222+++=,14x(65)(5)10=(负值已舍),故选Ax cm10.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.11.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A.考点:由实际问题抽象出分式方程.二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:, ∴252512BODOAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭,∴OB OA=∴tan OB BAO OA ∠==,【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.16.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5故答案为:5【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.17.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣3【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,3∴∠AOE=45°,ED=1,∴33﹣1,∴S正方形DNMF=231)×231)×12=8﹣3,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.18.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x人,则甲公司有(1+20%)x人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x人,则甲公司就有(1+20%)x人,即1.2x人,根据题意,可列方程:60000x600001.2x-=20解之得:x=500经检验:x=500是该方程的实数根.22.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB∥CD,∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠,∴CAD ACD∠=∠∴AD CD=又∵AD AB=∴AB CD=又∵AB∥CD,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD Y 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB V 中,90AOB ∠=︒.∴222OA AB OB =-=.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC V 中,90AEC ∠=︒.O 为AC 中点.∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.23.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN 面积最大时,N 点坐标为(3,0).【解析】【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB 2+AC 2=BC 2即可得出△ABC 为直角三角形;(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S △AMN 关于n 的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax 2+x+c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 24.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.25.(1)证明见解析;(3)DG=23. 【解析】【分析】 (1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·181313AB AF=⨯=,则DG=133033013 231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.26.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。

2020春人教版数学九年级下册期末复习综合测试及答案

2020春人教版数学九年级下册期末复习综合测试及答案

期末复习综合测试(时间:120分钟 满分:120分)班级: 姓名: 得分:一、选择题(共8小题,每小题4分,满分32分)1.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是( )ABCD2.在△ABC 中,∠C=90°,tan A=13,那么sin A 的值是( ) A.12B.√1010C.√33D.√323.关于反比例函数y=2的图象,下列说法正确的是( ) A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.当x<0时,y 随x 的增大而减小4.已知将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB ′C ′,若AC=1,则图中阴影部分面积为( ) A.√3B.3√3C.√33 D.√36第4题图 第5题图5.在△ABC 中,AD 是高,E 是AD 的中点,连接CE,并延长交AB 于点P,过点A 作AQ ∥BC,交CP 的延长线于点Q,BD∶CD=1∶2.那么AP 等于( ) A.53 B.43 C.32 D.236.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(-4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D,DB∶DC=3∶1.若函数y=kx (k>0,x>0)的图象经过点C,则k 的值为( )A.√33 B.√32 C.2√33D.√37.如图,△ABC 中,D 、E 是BC 边上的点,BD∶DE∶EC=3∶2∶1,M 在AC 边上,CM∶MA=1∶2,BM 交AD,AE 于H,G,则BH∶HG∶GM 等于( ) A.3∶2∶1 B.5∶3∶1 C.25∶12∶5 D.51∶24∶10第7题图 第8题图8.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC,垂足为点F,分析下列三个结论:①△AEF ∽△CAB;②CF=2AF;③tan∠CAD=√2.正确的有( ) A.3个 B.2个 C.1个 D.0个二、填空题(共6小题,每小题3分,满分18分)9.计算:2cos 30°+tan 45°-tan 60°+(√2-1)0= .10.如图所示,第四象限的角平分线OM 与某反比例函数的图象交于点A,已知OA=3√2,则该反比例函数的解析式为 .第10题图 第11题图11.如图,在△ABC 中,点D,E 分别在AB,AC 上,DE ∥BC,若S △ADE =2,S △CDE =3,则S △ADE ∶S △ABC = . 12.如图,已知直线y=x+m 与双曲线y=3x交于点P(1,n),与x 轴、y 轴交于B 、A 两点,则AB PB= .第12题图 第13题图13.一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为8√3,则 a 的值为 .14.如图,在A处看建筑物CD的顶端D的仰角为α,且tan α=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为米.三、解答题(共9小题,满分70分)15.(6分)如图,在锐角三角形ABC中,AB=10,AC=2√13,sin B=3.求tan C.16.(7分)如图,已知AP2=AQ·AB,且∠ABP=∠C,试证明△QPB∽△PBC.17.(7分)如图,直线y=mx+1(m≠0)与双曲线y=k(k≠0)交于A,B两点,与x轴,y轴交于点D,E,tan∠ADO=1,过x点A作AC⊥x轴于点C,若点O是CD的中点,连接OA.(1)求该双曲线的解析式.(2)求cos∠OAC的值.(k≠0)的图象交于点B(a,4).18.(6分)一次函数y=-2x-2与反比例函数y=kx(1)求反比例函数的解析式.(2)将一次函数y=-2x-2的图象向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),直线l与反比例函数y2=6x 的图象相交,求使y1<y2成立的x的取值范围.19.(7分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据:√2≈1.414,√3≈1.732)20.(8分)如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD,BC于点G,E.(1)求证:BE2=EG·EA.(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.21.(8分)如图,小明和他的父亲晚饭后到广场去散步,休息时小明站在广场中路灯杆MZ的左侧点B处,小明的父亲站在灯杆MZ的右侧点F处,小明在路灯下的影子为线段BC,(1)作出路灯Q的位置及小明的父亲在路灯下的影子FG.(2)已知小明到路灯杆的距离为3米,影长为1米,小明的父亲到路灯杆的距离为4.3米.若小明的身高为1.5米,小明父亲身高为1.7米,则此时小明父亲的影长为多少米?22.(9分)如图,一艘船上午9时在A处望见灯塔E在北偏东60°方向上,此船沿正东方向以每小时30海里的速度航行,11时到达B处,在B处测得灯塔E在北偏东15°方向上.(1)求∠AEB的度数.(2)已知灯塔E周围40海里内有暗礁,问:此船继续向正东方向航行,有无触礁危险?(参考数据:√2≈1.414,√3≈1.732)的图象交于A(1,4),B(4,n)两点. 23.(12分)如图,一次函数y=kx+b与反比例函数y=mx(1)求反比例函数和一次函数的解析式.(2)直接写出当x>0时,kx+b<m x的解集.(3)点P 是x 轴上的一动点,试确定点P 并求出它的坐标,使PA+PB 最小.期末复习综合测试1.A2.B3.D4.D5.D6.D7.D8.B9.2 10.y=-9x11.4∶25 12.2313.2√3314.715.解:如图,过点A 作AD ⊥BC 于D, 在Rt △ABD 中,AB=10, sin B=AD AB =35,∴AD 10=35,∴AD=6.在Rt △ACD 中,由勾股定理得, CD 2=AC 2-AD 2=(2√13)2-62=16, ∴CD=4,∴tan C=AD CD =64=32. 16.证明:∵AP 2=AQ ·AB,∴AP AQ =ABAP.∵∠A=∠A,∴△APQ ∽△ABP. ∴∠APB=∠AQP.∴∠CPB=∠BQP. ∵∠ABP=∠C,∴△QPB ∽△PBC.17.解:(1)在y=mx+1中令x=0,解得y=1, 则E 的坐标是(0,1),则OE=1. ∵tan∠ADO=OEOD =1,∴OD=OE=1. ∵O 是CD 的中点,∴OC=OD=1,CD=2. ∵tan∠ADC=AC CD =1,∴AC=2,∴点A 的坐标是(1,2). 把(1,2)代入y=kx 得k=2,则双曲线的解析式是y=2x .(2)在Rt △AOC 中,OA=√AC 2+OC 2=√22+12=√5, 则cos ∠OAC=ACOA =√5=2√55.18.解:(1)∵一次函数y=-2x-2的图象过点B(a,4), ∴4=-2a-2,解得:a=-3, ∴点B 的坐标为(-3,4).将B 代入反比例函数y=kx 中,可得k=-12,∴反比例函数的解析式为y=-12x .(2)一次函数y=-2x-2的图象向上平移10个单位后得到直线l:y 1=-2x+8,联立直线l 和反比例函数解析式成方程组:{y =-2x +8y =6x,解得:{x 1=1y 1=6,{x 2=3y 2=2,∴直线l 与反比例函数y 2=6x 的图象的交点坐标为(1,6)和(3,2). 画出函数图象,如图所示:观察函数图象可知:当0<x<1或x>3时,反比例函数图象在直线l 的上方,∴使y 1<y 2成立的x 的取值范围为0<x<1或x>3.19.解:如图,过点D 作DF ⊥AB 于F,过点C 作CH ⊥DF 于H. 则DE=BF=CH=10 m, 在Rt △ADF 中, ∵AF=80-10=70(m), ∠ADF=45°, ∴DF=AF=70 m. 在Rt △CDE 中,∵DE=10 m,∠DCE=30°, ∴CE=DE tan30°=√33=10√3(m),∴BC=BE -CE=70-10√3≈70-17.32≈52.7(m), 答:障碍物B,C 两点间的距离约为52.7 m. 20.证明:(1)∵四边形ABCD 是矩形,∴∠ABC=90°. ∵AE⊥BD,∴∠ABC=∠BGE=90°. ∵∠BEG=∠AEB, ∴△ABE ∽△BGE. ∴AE BE =BEEG .∴BE 2=EG ·EA. (2)由(1)证得BE 2=EG ·EA, ∵BE=CE,∴CE 2=EG ·EA.∴CE EG =AECE.∵∠CEG=∠AEC, ∴△CEG ∽△AEC. ∴∠ECG=∠EAC.21.解:(1) 路灯Q 的位置及小明的父亲在路灯下的影子FG 如图所示. (2)如图,根据已知得出: AB ∥QZ ∥EF, ∴△ABC ∽△QZC,11△EFG ∽△QZG;∴CB CZ =AB QZ ,FG ZG =EF QZ . 由已知得,CB=1,BZ=3,ZF=4.3,AB=1.5,EF=1.7,设QZ=x,FG=y,则有{14=1.5x ,y y+4.3=1.7x ,解得,{x =6,y =1.7. 所以此时小明父亲的影长为1.7 m.22.解:(1)∠AEB=180°-30°-90°-15°=45°.(2)作BM ⊥AE,EH ⊥AB,垂足分别为M,H,∵AB=2×30=60,∠MAB=30°,∴BM=30,AM=AB·cos ∠MAB=60×cos 30°=30√3.∵∠MBE=90°-∠AEB=90°-45°=45°=∠AEB,∴EM=BM=30,∴AE=30√3+30,∴EH=12AE=15√3+15≈40.98>40,∴此船继续向正东方向航行,无触礁危险.23.解:(1)把A(1,4)代入y=m x ,得m=4,∴反比例函数的解析式为y=4x ; 把B(4,n)代入y=4x ,得n=1,∴B(4,1),把A(1,4),(4,1)代入y=kx+b,得{k +b =44k +b =1,解得{k =-1b =5, ∴一次函数的解析式为y=-x+5.(2)根据图象得当0<x<1或x>4,一次函数y=-x+5的图象在反比例函数y=4x 的下方; ∴当x>0时,kx+b<m x 的解集为0<x<1或x>4.12 (3)如图,作B 关于x 轴的对称点B′,连接AB′,交x 轴于P, 此时PA+PB=AB′最小,∵B(4,1),∴B′(4,-1),设直线AB′的解析式为y=px+q,∴{p +q =44p +q =-1,解得{p =-53q =173,∴直线AB′的解析式为y=-53x+173,令y=0,得-53x+173=0,解得x=175,∴点P 的坐标为175,0.。

人教版九年级数学下册期末测试卷及答案【完整】

人教版九年级数学下册期末测试卷及答案【完整】

人教版九年级数学下册期末测试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(a+4)cmD .(a+8)cm9.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .610.把一副三角板如图放置,其中90ABC DEB ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边10AC BD ==,若将三角板DEB 绕点B 按逆时针方向旋转45︒得到''D E B △,则点A 在''D E B △的( )A .内部B .外部C .边上D .以上都有可能二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.分解因式:x 2-9=______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 23.如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元,超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.(1)试求出每周的销售量y(件)与每件售价x元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T恤衫销售中获利850元,又想尽量给客户实惠,该如何给这款T恤衫定价?(3)超市管理部门要求这款T恤衫售价不得高于110元,则当每件T恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、D6、D7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、(x +3)(x -3)3、0x ≥且1x ≠.415、136、49三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、11m m +-,原式=.3、(1)略;(2)略.4、(1)略;(2)4.95、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)101500y x =-+;(2)销售单价为95元;(3)当销售单价为110元时,该超市每月获得利润最大,最大利润是12000元.。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

2020年初三数学下期末试卷带答案

2020年初三数学下期末试卷带答案

2020年初三数学下期末试卷带答案一、选择题1.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.154B.14C .1515D.417172.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B .15 C.12或15 D.183.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A.B.C.D.4.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.5.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=06.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若7,CD=1,则BE的长是()A.5B.6C.7D.87.下列二次根式中的最简二次根式是()A.30B.12C.8D.0.58.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,159.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.10.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③11.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .12.下列各式化简后的结果为32的是()A.6B.12C.18D.36二、填空题13.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)15.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.16.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.17.使分式的值为0,这时x=_____.18.正六边形的边长为8cm,则它的面积为____cm2.19.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.20.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 . 三、解答题 21.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 23.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .(1)求证:BC 是半圆O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.24.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s ) 频数(人数) A90<s≤100 4 B80<s≤90 x C70<s≤80 16 D s≤70 6根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.25.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________26.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=706【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB15,故选A2.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.3.C解析:C【解析】从上面看,看到两个圆形,故选C .4.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 5.C解析:C【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C .点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.6.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=127 在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)27 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键7.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC ,不是最简二次根式;D 2,不是最简二次根式;故选:A .【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.8.D解析:D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选D .9.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.10.D解析:D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.11.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.12.C解析:C【解析】A6不能化简;B123C182,故正确;D36,故错误;点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.15.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.20.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.三、解答题21.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 22.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.23.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.24.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1a2b1b2a1a2,a1b1,a1b2,a1a2a1,a2b1,a2b2,a2b1a1,b1a2,b1b2,b1b2a1,b2a2,b2b1,b2a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.25.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.26.(1)4,4,1,1;(2)x=2或x=﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.。

2020年度人教版九年级下册数学期末试题

2020年度人教版九年级下册数学期末试题

19. 为了解甲,乙两种车的刹车距离,经实验发现,甲车的刹车距离
S甲 是车速 v 的 1 ,乙车的刹车距 5
离 S乙 等于反应距离与制动距离之和,反应距离与车速
v 成正比,制动距离与车速 v 2 成正比,具体关
系如下表:
车速 v ( km/h)
40
50
12
17.5
刹车距离 S乙 (m)
(1) 分别求出 S甲 , S乙 与车速 v 的函数关系式;
A. 16 ,14 0· B. 12, 120· C. 10,100· D. 8, 13 5·
10.已知二次函数 y x2 (m 1) x 1 ,当 x > 1 时, y 随 x 的增大而增大, 则 m 的取值范围是 ( )
A. m 1 B. m 3 C. m 1 D. m 1
1 二.填空题
11. 在数轴上点 A,B,C,D 分别对应数 3 , 7, 13,21;把数轴两次弯折后使点 D与 A 重合,围成三角
水平地面的夹角为 . 当
60 时,测得楼房在地面上的影长 AE=10 米,现有一只小猫睡在台
阶的 MN 这层上晒太阳 . ( 3 取 1. 73 )
( 1)求楼房的高度约为多少米? ( 2)过了一会儿, 当 45 时,问小猫能否还晒到太阳?请说明理由 .
答案第 4 页,总 4 页


13.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园)
,一
只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为
_______.
13.如图,把直角三角形 ABC的斜边 AB 放在定直线 l 上,按顺时针方向在 l 上转动两次,使它转到 △A″B″C″的位置.设 BC=2, AC=2 ,则顶点 A 运动到点 A″的位置时,点 A 经过的路线与直线 l 所围成的面积是 _________ . 三、解答下列各题 1.解方程: 14. 李老师布置了两道解方程的作业题:

2020年九年级数学下期末试卷(带答案)

2020年九年级数学下期末试卷(带答案)

2020年九年级数学下期末试卷(带答案)一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.3.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)4.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A .B .C .D .5.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 6.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108° B .90° C .72° D .60° 7.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)8.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣59.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac < 10.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)11.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个12.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 14.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.15.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________16.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.17.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.18.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).20.10a b b --=,则1a +=__.三、解答题21.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.22.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他几点钟遇见小慧?23.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .(1)证明:ADP CDP △≌△; (2)判断CEP △的形状,并说明理由.(3)如图2,把菱形ABCD 改为正方形ABCD ,其他条件不变,直接..写出线段AP 与线段CE 的数量关系.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70626.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】230000000=2.3×108 ,故选C.2.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.3.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.4.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x, 纵观各选项,只有B 选项图形符合, 故选B .5.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .6.C解析:C 【解析】 【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案. 【详解】解:设此多边形为n 边形, 根据题意得:180(n-2)=540, 解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°. 故选C . 【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.7.D解析:D 【解析】 【分析】根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标. 【详解】解:因为点 P (m + 3,m + 1)在x 轴上, 所以m +1=0,解得:m =-1, 所以m+3=2,所以P 点坐标为(2,0).故选D. 【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.8.A解析:A 【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.9.A解析:A 【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A . 【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.10.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.11.A解析:A【解析】【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【详解】试题分析:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BOE=1:2,又∵FM:BM=1:3,∴S△BCM =34S△BCF=34S△BOE∴S△AOE:S△BCM=2:3故④正确;所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质12.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】是解题关键.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.16.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC 的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:417.2000【解析】【分析】设这种商品的进价是x 元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x 元由题意得(1+40)x×08=2240解得:x =2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x 元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x 元,由题意得,(1+40%)x×0.8=2240, 解得:x =2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.18.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN ∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】【详解】试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC ⊥BD ,四边形DNMF 是正方形,∠AOC=90°,BD=2,∴∠AOE=45°,ED=1,∴﹣1,∴S 正方形DNMF =21)×21)×12=8﹣, S △ADF =12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 20.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】a b-b﹣1|=0,b-≥,-≥,|1|0a b∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.三、解答题21.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.22.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧.23.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)CE =. 【解析】【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明;(2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答;【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠,在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴()ADP CDP SAS ∆≅∆.(2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =,∵PA PE =,∴DAP DEP ∠=∠,∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠,即60CPF EDF ∠=∠=︒,又∵PA PE =,AP CP =;∴PE PC =,∴CEP ∆是等边三角形.(3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,,∴△PDA ≌△PDC ,∴PA=PC ,∠3=∠1,∵PA=PE ,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC ,∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形.∴2PC 2AP .【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.25.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.26.(1)甲组抽到A小区的概率是14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A小区的概率是14,故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.。

2020年初三数学下期末试卷(及答案)

2020年初三数学下期末试卷(及答案)

2020年初三数学下期末试卷(及答案)一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( ) A .4B .5C .6D .72.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .3.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .24.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 5.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=6.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)7.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D 5 8.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cyx++=在同一坐标系内的图象大致为( )A.B.C.D.9.下列几何体中,其侧面展开图为扇形的是( )A.B.C.D.10.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1或﹣1D.2或0 11.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题13.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).16.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.17.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.18.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧BC的长为 cm.19.若ab=2,则222a ba ab--的值为________.20.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.三、解答题21.解分式方程:232 11xx x+= +-22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.24.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 25.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.26.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.C解析:C【解析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB=22.故选C.4.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.5.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.6.D解析:D【分析】由2a a =可确定a 的范围,排除掉在范围内的选项即可. 【详解】解:当a ≥0时,2a a =, 当a <0时,2a a =-,∵a =1>0,故选项A 不符合题意, ∵a =0,故选项B 不符合题意,∵a =﹣1﹣k ,当k <﹣1时,a >0,故选项C 不符合题意, ∵a =﹣1﹣k 2(k 为实数)<0,故选项D 符合题意, 故选:D . 【点睛】本题考查了二次根式的性质,200a a a a a a ≥⎧==⎨-≤⎩,正确理解该性质是解题的关键.7.C解析:C 【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得PG=2,从而得出答案. 详解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1, ∴AD ∥GF , ∴∠GFH=∠PAH , 又∵H 是AF 的中点, ∴AH=FH ,在△APH 和△FGH 中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ), ∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1, ∵CG=2、CD=1, ∴DG=1,则GH=12PG=122, 故选:C .点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.8.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.9.C解析:C 【解析】 【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.10.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.12.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.14.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.16.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.18.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).19.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.20.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换三、解答题21.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x-1)+3(x+1)=2(x+1)( x-1)整理化简,得x=-5经检验,x=-5是原方程的根∴原方程的解为:x=-5.22.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)23.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144; (3)列表如下: a 1 a 2 b 1 b 2a 1 a 2,a 1b 1,a 1 b 2,a 1a 2 a 1,a 2b 1,a 2 b 2,a 2b 1 a 1,b 1 a 2,b 1b 2,b 1 b 2 a 1,b 2 a 2,b 2 b 1,b 2a 1和b 1的有2种结果,∴恰好选取的是a 1和b 1的概率为21126=. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.24.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a2b(2a b)-+--=2222a2ab ab2b4a4ab b+---+-223a5ab3b=-+-;(2)221m4m4 1m1m m-+⎛⎫-÷⎪--⎝⎭=()2m m1 m2m1(m2)--⋅--mm2=-.【点睛】本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.25.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.26.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。

2020年初三数学下期末试卷带答案(1)

2020年初三数学下期末试卷带答案(1)

2020年初三数学下期末试卷带答案(1)一、选择题1.如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C .53D .532.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分 4.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm 6.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 7.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C .1x =- D .无解8.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°9.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D 5 10.13O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A.26B.210C.211D.43 11.下列二次根式中,与3是同类二次根式的是()A.18B.13C.24D.0.312.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.154C.5D.152二、填空题13.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.14.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.15.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.16.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.17.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____. 18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?22.解方程:x21 x1x-= -.23.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC 于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.24.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.25.解不等式组341 5122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来26.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为»AB的中点,∴OC⊥AB,在Rt△OAE中,AE=53,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.2.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.3.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.5.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222(65)(5)10x+++=,x=(负值已舍),故选A6.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.7.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.8.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.9.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1, 则GH=12PG=122, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10.C解析:C【解析】【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出2OG ==,证出EOG ∆是等腰直角三角形,得出45,OEG OE ∠=︒==30OEF ∠=︒,由直角三角形的性质得出12OF OE ==DF = 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,2OG ==,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,OE ==∵75DEB ∠=︒,∴30OEF ∠=︒,∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=, ∴2211CD DF ==; 故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.11.B解析:B【解析】 【分析】【详解】A 18323B 1333C 24=63D 0.3310=30103 故选B . 12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE ,设ED=x ,则AE=8﹣x ,在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x=5,即ED=5故选C .【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.14.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且 解析:n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.15.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.16.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1 解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.17.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题21.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x人,则甲公司有(1+20%)x人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x人,则甲公司就有(1+20%)x人,即1.2x人,根据题意,可列方程:60000x600001.2x-=20解之得:x=500经检验:x=500是该方程的实数根.22.2x=.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣33.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE⊥BE,DF⊥AB,∴DE=DF=3,=6, ∵sin∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°,∴sin60°=3DF DO DO ==则1322π-= 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.24.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1a2b1b2a1a2,a1b1,a1b2,a1a2a1,a2b1,a2b2,a2b1a1,b1a2,b1b2,b1b2a1,b2a2,b2b1,b2a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.25.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341{5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.26.(1)见解析3【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB , ∴四边形BFDE 是平行四边形, ∵BD 是△ABC 的角平分线, ∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形; (2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°, ∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。

2020年九年级数学下期末试卷带答案

2020年九年级数学下期末试卷带答案

A.
B.
C.
D.
8.均匀的向一个容器内注水,在注水过程中,水面高度 h 与时间 t 的函数关系如图所示,
则该容器是下列中的( )
A.
B.
C.
D.
9.若一元二次方程 x2﹣2kx+k2=0 的一根为 x=﹣1,则 k 的值为( )
A.﹣1
B.0
C.1 或﹣1
D.2 或 0
10.下列各式化简后的结果为 3 2 的是( )
一月全月普通椅子的销售量多了 10 a%:实木椅子的销售量比第一月全月实木椅子的销售 3
量多了 a%,这一周两种椅子的总销售金额达到了 251000 元,求 a 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】
由科学记数法知 0.000000007 7 109 ;
2020 年九年级数学下期末试卷带答案
一、选择题 1.华为 Mate20 手机搭载了全球首款 7 纳米制程芯片,7 纳米就是 0.000000007 米.数据
0.000000007 用科学记数法表示为( ).
A. 7 10﹣7
B. 0.7 10﹣8
C. 7 10﹣8
D. 7 10﹣9
2.如图是由 5 个相同大小的正方体搭成的几何体,则它的俯视图是( )
在第 n 个图形中有______个三角形(用含 n 的式子表示)
17.如图是两块完全一样的含 30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块 三角尺重叠在一起,设较长直角边的中点为 M,绕中点 M 转动上面的三角尺 ABC,使其 直角顶点 C 恰好落在三角尺 A′B′C′的斜边 A′B′上.当∠A=30°,AC=10 时,两直角顶点 C,C′间的距离是_____.

2020年九年级数学下期末试卷(含答案)

2020年九年级数学下期末试卷(含答案)
25.计算: ; .
26.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.
(1)求证:BC是⊙O的切线;
(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;
(3)若BE=8,sinB= ,求DG的长,
4.D
解析:D
【解析】
【分析】
【详解】
解:A、a+a2不能再进行计算,故错误;
B、(3a)2=9a2,故错误;
C、a6÷a2=a4,故错误;
D、a·a3=a4,正确;
故选:D.
【点睛】
本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.
5.B
解析:B
【解析】
【分析】
根据相反数的性质可得结果.
解析:
【解析】
【分析】
分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n各图形中有多少三角形.
【详解】
分别数出图①、图②、图③中的三角形的个数,
图①中三角形的个数为1=4×1-3;
图②中三角形的个数为5=4×2-3;
A. B. C. D.
10.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()
A. B. C. D.
11.下面的几何体中,主视图为圆的是()
A. B. C. D.
12.下列分解因式正确的是()
A. B.
C. D.
二、填空题
13.如图,直线 轴于点 ,且与反比例函数 ( )及 ( )的图象分别交于 、 两点,连接 、 ,已知 的面积为4,则 ________.

2020人教版九年级数学下册期末测试题及答案

2020人教版九年级数学下册期末测试题及答案

2020人教版九年级数学下册期末测试题及答案第二学期期末测试卷时间:120分钟总分:120分一、选择题(每题3分,共30分)1.已知反比例函数$y=\frac{k}{x}$ 的图象经过点P(-1,2),则这个函数的图象位于()A。

第二、三象限B。

第一、三象限C。

第三、四象限D。

第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A。

B。

C。

D。

3.若 $\triangle ABC$ 中,$\angle C=90°$,$\sinA=\frac{3}{5}$,则 $\tan A$ 的值为()A。

$\frac{3}{4}$B。

$\frac{4}{3}$C。

$\frac{3}{2}$D。

$\frac{2}{3}$4.在双曲线$y=\frac{5}{1-3mx}$ 上有两点$A(x_1,y_1)$,$B(x_2,y_2)$,$x_1<x_2$,$y_1<y_2$,则 $m$ 的取值范围是()A。

$m>\frac{1}{3}$B。

$m<\frac{1}{3}$C。

$m\geq \frac{1}{3}$D。

$m\leq \frac{1}{3}$5.如图,在等边三角形 ABC 中,点 D,E 分别在 AB,AC 边上,如果 $\triangle ADE \sim \triangle ABC$,$ cm,那么 $\triangle ADE$ 的周长等于()A。

2 cmB。

3 cmC。

6 cmD。

12 cm6.___和爸爸在阳光下散步,爸爸身高1.8 m,他在地面上的影长为2.1 m.___比爸爸矮0.3 m,她的影长为()A。

1.3 mB。

1.65 mC。

1.75 mD。

1.8 m7.一次函数 $y_1=k_1x+b$ 和反比例函数$y_2=\frac{k_2}{x}$ ($k_1k_2\neq 0$)的图象如图所示,若$y_1>y_2$,则 $x$ 的取值范围是()A。

2020九年级数学下册 期末检测卷 (新版)新人教版

2020九年级数学下册 期末检测卷 (新版)新人教版

期末检测卷时间:120分钟 满分:120分 题号 一 二 三 总分 得分一、选择题(每小题3分,共30分)1.下列立体图形中,主视图是三角形的是( )2.已知反比例函数y =k x(k >0)的图象经过点A (1,a )、B (3,b ),则a 与b 的关系正确的是( ) A .a =b B .a =-b C .a <b D .a >b3.如图,AD ∥BE ∥CF ,直线l 1、l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B .5C .6D .8第3题图 第4题图4.△ABC 在正方形网格中的位置如图所示,则cos B 的值为( ) A.55 B.255 C.12D .2 5.如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为( )A .6cmB .12cmC .18cmD .24cm第5题图 第6题图6.如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点.若k 1x>k 2x ,则x 的取值范围是( )A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.已知两点A (5,6)、B (7,2),先将线段AB 向左平移一个单位,再以原点O 为位似中心,在第一象限内将其缩小为原来的12得到线段CD ,则点A 的对应点C 的坐标为( )A .(2,3)B .(3,1)C .(2,1)D .(3,3)8.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为6,则k 的值为( )A .6B .-6C .3D .-3第8题图 第9题图 第10题图9.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°.若DE =3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1∶0.75,坡长BC =10米,则此时AB 的长约为(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)( )A .5.1米B .6.3米C .7.1米D .9.2米10.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD ,其中一定正确的是( )A .①②③④ B.①④ C .②③④ D.①②③ 二、填空题(每小题3分,共24分)11.若反比例函数y =k x的图象经过点(1,-6),则k 的值为________. 12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是_______.13.如图,△ABC 的两条中线AD 和BE 相交于点G ,过点E 作EF ∥BC 交AD 于点F ,那么FG GD=________.第13题图 第14题图 第15题图14.如图,直线y =x +2与反比例函数y =k x的图象在第一象限交于点P .若OP =10,则k 的值为________. 15.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多有________个.16.如图所示,为了测量垂直于水平地面的某建筑物AB 的高度,测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角为45°,随后沿直线BC 向前走了100米后到达D 处,在D 处测得A 处的仰角为30°,则建筑物AB 的高度约为________米(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:2≈1.41,3≈1.73).第16题图 第17题图 第18题图17.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=k 1x (x >0)的图象上,顶点B 在函数y 2=k 2x (x >0)的图象上,∠ABO =30°,则k 1k 2=________.18.如图,在▱ABCD 中,∠B =30°,AB =AC ,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD ,BC 于点E ,F ,点M 是边AB 的一个三等分点.连接MF ,则△AOE 与△BMF 的面积比为________.三、解答题(共66分)19.(6分)计算:sin45°+cos30°3-2cos60°-sin60°(1-sin30°).20.(8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.21.(10分)如图,已知反比例函数y =k x(k ≠0)的图象经过点B (3,2),点B 与点C 关于原点O 对称,BA ⊥x 轴于点A ,CD ⊥x 轴于点D .(1)求这个反比函数的解析式; (2)求△ACD 的面积.22.(10分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC =45°,∠DBC =65°.若AB =132米,求观景亭D 到南滨河路AC 的距离(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).23.(10分)如图,已知四边形ABCD 内接于⊙O ,A 是BDC ︵的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F 、E ,且BF ︵=AD ︵.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan∠CAD 的值.24.(10分)如图,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x(x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0). (1)求双曲线的解析式;(2)若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴于H ,当以点Q 、C 、H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.25.(12分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E . (1)如图①,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB ;(2)如图②,若∠ABC =120°,cos∠ADC =35,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积;(3)如图③,另一组对边AB 、DC 的延长线相交于点F .若cos∠ABC =cos∠ADC =35,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示).参考答案与解析1.A 2.D 3.C 4.A 5.C 6.C 7.A 8.B 9.A10.D 解析:在▱ABCD 中,AO =12AC .∵点E 是OA 的中点,∴AE =13CE .∵AD ∥BC ,∴△AFE ∽△CBE ,∴AF BC =AECE =13.∵AD =BC ,∴AF =13AD ,∴AF FD =12,故①正确;∵S △AEF =4,S △AEF S △BCE =⎝ ⎛⎭⎪⎫AF BC 2=19,∴S △BCE =36,故②正确;∵EF BE =AECE =13,∴S △AEF S △ABE =13,∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D.11.-6 12.75° 13.1214.3 解析:设点P 的坐标为(m ,m +2).∵OP =10,∴m 2+(m +2)2=10,解得m 1=1,m 2=-3(不合题意,舍去),∴点P 的坐标为(1,3),∴3=k1,解得k =3.15.7 解析:根据题意得,则搭成该几何体的小正方体最多有1+1+1+2+2=7(个).16.13717.-13 解析:设AB 交x 轴于点C .∵∠ABO =30°,∴∠OAC =60°.∵AB ⊥OC ,∴∠ACO =90°,∴∠AOC=30°.设AC =a ,则OA =2a ,OC =3a ,∴A (3a ,a ).∵A 在函数y 1=k 1x(x >0)的图象上,∴k 1=3a ·a =3a 2.在Rt△BOC 中,OB =2OC =23a ,∴BC =OB 2-OC 2=3a ,∴B (3a ,-3a ).∵B 在函数y 2=k 2x (x >0)的图象上,∴k 2=-3a ·3a =-33a 2,∴k 1k 2=-13.18.3∶4解析:设AB=AC=m,则BM=13m.∵O是两条对角线的交点,∴OA=OC=12AC=12m.∵∠B=30°,AB=AC,∴∠ACB=∠B=30°.∵EF⊥AC,∴cos∠ACB=OCFC,即cos30°=12mFC,∴FC=33m.∵AE∥FC,∴∠EAC=∠FCA,又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF,∴AE=FC=33m,∴OE=12AE=36m,∴S△AOE=12OA·OE=12×12m×36m=324m2.作AN⊥BC于N.∵AB=AC,∴BN=CN=12BC.∵BN=32AB=32m,∴BC=3m,∴BF=BC-FC =3m-33m=233m.作MH⊥BC于H.∵∠B=30°,∴MH=12BM=16m,∴S△BMF=12BF·MH=12×233m×16m=318m2,∴S△AOES△BMF=324m2318m2=34.故答案为3∶4.19.解:原式=22+323-2×12-32×⎝⎛⎭⎪⎫1-12=24+34-32+34=24.(6分)20.解:根据三视图可知立体图形下面的长方体的长、宽、高分别为8mm,6mm,2mm,上面的长方体的长、宽、高分别为4mm,2mm,4mm.(3分)则这个立体图形的表面积为2(8×6+6×2+8×2)+2(4×2+2×4+4×4)-2×4×2=200(mm2).(7分)答:这个立体图形的表面积为200mm2.(8分)21.解:(1)将B点坐标代入y=kx中,得k3=2,解得k=6,∴反比例函数的解析式为y=6x.(4分)(2)∵点B与点C关于原点O对称,∴C点坐标为(-3,-2).∵BA⊥x轴,CD⊥x轴,∴A点坐标为(3,0),D点坐标为(-3,0).(7分)∴S△ACD=12AD·CD=12×[3-(-3)]×|-2|=6.(10分)22.解:过点D作DE⊥AC,垂足为E.设BE=x米,在Rt△DEB中,tan∠DBE=DEBE.∵∠DBC=65°,∴DE=x t an65°米.(3分)又∵∠DAC=45°,∴AE=DE.∴132+x=x tan65°,(6分)∴x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.(10分)23.(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA+∠ABC=180°.又∵∠ABE+∠ABC=180°,∴∠CDA=∠ABE.(2分)∵BF︵=AD︵,∴∠DCA=∠BAE.∴△ADC∽△EBA.(4分)(2)解:∵A是BDC︵的中点,∴AB︵=AC︵,∴AB=AC=8.(6分)∵△ADC∽△EBA,∴∠CAD=∠AEC,DCAB=ACAE,∴tan∠CAD=tan∠AEC=ACAE=DCAB=58.(10分)24.解:(1)把A(-2,0)代入y=ax+1中求得a=12,所以y=12x+1,求得P点坐标为(2,2).(2分)把P(2,2)代入y=kx求得k=4,所以双曲线的解析式为y=4x.(4分)(2)设Q 点坐标为(a ,b ).因为Q (a ,b )在y =4x 上,所以b =4a .由y =12x +1,可得B 点坐标为(0,1),则BO=1.由A 点坐标为(-2,0),得AO =2.当△QCH ∽△BAO 时,CH AO =QHBO,即a -22=b1,所以a -2=2b ,a -2=2×4a,解得a =4或a =-2(舍去),所以Q 点坐标为(4,1).(7分)当△QCH ∽△ABO 时,CH BO =QH AO ,即a -21=b2,所以2a -4=4a,解得a =1+3或a =1-3(舍去),所以Q 点坐标为(1+3,23-2).综上所述,Q 点坐标为(4,1)或(1+3,23-2).(10分)25.(1)证明:∵∠ADC =90°,∴∠EDC =90°,∴∠ABE =∠CDE .又∵∠AEB =∠CED ,∴△EAB ∽△ECD ,(2分)∴EB ED =EA EC,∴ED ·EA =EC ·EB .(4分)(2)解:过点C 作CG ⊥AD 于点D ,过点A 作AH ⊥BC 于点H .∵CD =5,cos∠ADC =35,∴DG =3,CG =4.∵S △CED=6,∴ED =3,∴EG =6.∵AB =12,∠ABC =120°,则∠BAH =30°,∴BH =6,AH =6 3.(6分)由(1)得△ECG ∽△EAH ,∴EG EH =CG AH ,∴EH =93,∴S 四边形ABCD =S △AEH -S △ECD -S △ABH =12×63×93-6-12×63×6=75-18 3.(9分)(3)5n +25n +6(12分) 解析:作CH ⊥AD 于H ,则CH =4,DH =3.∴tan E =4n +3.作AG ⊥DF 于点G .设AD =5a ,则DG =3a ,AG =4a ,∴FG =DF -DG =5+n -3a .∵CH ⊥AD ,AG ⊥DF ,∠E =∠F ,∴△AFG ∽△CEH ,∴AG FG =CH EH ,∴4a5+n -3a=4n +3,∴a =n +5n +6,∴AD =5a =5n +25n +6.。

新人教版九年级数学下册期末测试卷加答案

新人教版九年级数学下册期末测试卷加答案

新人教版九年级数学下册期末测试卷加答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是()A.3 B.33C.6D.6310.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.6 二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:34x x-=________.3.若a、b为实数,且b=22117a aa-+-++4,则a+b=__________.4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE.(1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE是等腰三角形,求此时BD的长.5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、C6、A7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x(x+2)(x﹣2).3、5或34、5、x=26、5三、解答题(本大题共6小题,共72分)1、x=12、-11x+,-14.3、(1)略;(2)略.4、(1)理由见详解;(2)2BD=或1,理由见详解.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

九年级数学下册期末试卷(2020年最新)

九年级数学下册期末试卷(2020年最新)

2020年最新九年级数学(下册)期末试卷(总分100分时间120分钟)班级___________ 姓名 _____得分_______ 题号 一 二 三 总分 得分一、填空题:(每空2分,共22分)1、如图,把一张平行四边形纸片ABCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,若∠DBC=15°,则∠BOD=.2、如图,AD ∥EG ∥BC ,AC ∥EF ,则图中与∠EFB 相等的角(不含∠EFB )有 个;若∠EFB=50°,则∠AHG=.3、现有一张长为40㎝,宽为20㎝的长方形纸片(如图所示),要从中剪出长为18㎝,宽为12㎝的长方形纸片,则最多能剪出张.4、如图,正方形ABCD 的边长为6㎝,M 、N 分别是AD 、BC 的中点,将点C 折至MN 上,落在点P 处,折痕BQ 交MN 于点E ,则BE 的长等于㎝.5、梯形上、下两底(上底小于下底)的差为6,中位线的长为5,那么下底长为 .6、下面是五届奥运会中国获得金牌的一览表.ABCDEO(第1题)ABCDEF GH(第2题)40cm20cm(第3ABC DPQ M NE (第4题)第23届 洛杉矶奥运会第24届 汉城奥运会第25届 巴塞罗那奥运会第26届 亚特兰大奥运会第27届 悉尼奥运会 15块5块16块16块28块在15、5、16、16、28这组数据中,众数是_____,中位数是_____.7、边长为2的等边三角形ABC 内接于⊙O ,则圆心O 到△ABC 一边的距离为 .8、已知:如图,抛物线过点A (-1,0),且经c bx ax y ++=2过直线与坐标轴的两个交点B 、C.3-=x y (1)抛物线的解析式为 ;(2)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,则点M 的坐标为 .二、选择题:(每题3分,共18分)9、如图,DE 是△ABC 的中位线,若AD=4,AE=5,BC=12,则△ADE 的周长是() A 、7.5B 、30C 、15D 、2410、已知:如图,在矩形ABCD 中,BC=2,AE ⊥BD ,垂足为E ,∠BAE=30°,那么△ECD 的面积是()A 、B 、C 、D 、3232333(第8题)ABCDE(第10题)AB CDE(第9题)(第14题)11、抛物线的顶点坐标是()342-=x y A 、(0,-3)B 、(-3,0)C 、(0,3)D 、(3,0)12、在共有15人参加的演讲比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A 、平均数B 、众数C 、中位数D 、方差13、直线y =x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )个 A 、4B 、5C 、7D 、814、已知二次函数的图象如图所示,则直线与双曲线()02≠++=a c bx ax y b ax y +=在同一坐标系中的位置大致是( ) xaby =三、解答题15、(本题8分)如图,二次函数的图象经过A 、B 、C 三点.c bx ax y ++=2(1)观察图象写出A 、B 、C 三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴.CD16、(本题8分)某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班. 现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表(以分为单位,每项满分为10分).班级行为规范学习成绩校运动会艺术获奖劳动卫生初三(1)10 10 6 10 7班初三(4)10 8 8 9 8班初三(8)9 10 9 6 9班(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班级作为市级先进班集体的候选班.17、(本题10分)用剪刀将形状如图1所示的矩形纸片ABCD剪成两部分,其中M为AD 的中点,用这两部分可以拼成一些新图形,如图2中的Rt△BCE就是拼成的一个图形。

2020—2021年人教版九年级数学下册期末测试卷及答案解析(基础提分试卷).docx

2020—2021年人教版九年级数学下册期末测试卷及答案解析(基础提分试卷).docx

九年级下册期末测试卷[时间:90分钟分值:120分]一、选择题(每小题3分,共30分)1.如图1,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是( D )图12. [点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=-3x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( A ) A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y33.如图2,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A,B两点.当一次函数的值大于反比例函数的值时,自变量x的取值范围是( C )图2A .-2<x <1B .0<x <1C .x <-2或0<x <1D .-2<x <1或x >1【解析】把A (-2,1)代入y =m x得:m =-2, 即反比例函数的解析式是y =-2x,把B (n ,-2)代入y =-2x 得:-2=-2n,n =1,即B 的坐标是(1,-2),所以当一次函数的值大于反比例函数的值时,自变量x 的取值范围是x <-2或0<x <1,故选C.4. 如图3,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y =-6x 和y =4x的图象交于A ,B 两点.若点C 是y 轴上任意一点,连接AC ,BC ,则△ABC 的面积为( C )图3A.3 B.4 C.5 D.105.如图4,在▱ABCD中,EF∥AB,DE∶EA=3∶5,EF=6,则CD的长为( C )图4A.10 B.12 C.16 D.18【解析】∵EF∥AB,∴△DEF∽△DAB.∵DEAE=35,∴DEAD=38,∴EFAB=38,∴AB=16,∴CD=16,故选C.6.如图5,CD是Rt△ABC斜边AB上的高,AD=4 cm,BD=9 cm,则CD=( A )A.6 cm B.36 cm C.213 cm D.5 cm【解析】由△ACD∽△CBD,得CDAD=BDCD,∴CD2=AD·BD,CD=6 cm,选A.图5图67.如图6,在△ABC中,D是AC边上一点,∠DBC=∠A,BC=6,AC=3,则CD的长为( C )A.1 B.32C.2 D.52【解析】 ∵∠C =∠C ,∠DBC =∠A ,∴△CBD ∽△CAB ,∴BC CD =ACBC ,∴CD =BC 2AC =(6)23=2,选C.8.在△ABC 中,∠C =90°,tan A =32,则sin A 的值为( C )A.35 5B.58 5C.31313 D.13 【解析】 ∵tan A =a b =32,∴设a =3x ,b =2x ,则c =a 2+b 2=(3x )2+(2x )2=13x ,∴sin A =a c =3x 13x =31313.选C.9.[2012·毕节]一次函数y =x +m (m ≠0)与反比例函数y =mx 的图象在同一平面直角坐标系中是( C )10.如图7,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 上,若P 到BD 的距离为32,则点P 的个数为( B )图7A.1 B.2 C.3 D.4二、填空题(每小题3分,共27分)11.已知tan α·tan 60°=1,且α为锐角,则α=__30°__.【解析】∵tan α·3=1,∴tan α=33,∴α=30°.12.如图8,在港口M的南偏西60°方向有一座小岛P,一船以每小时20千米的速度从港口M出发,沿正西方向行驶,半个小时后,这艘船在A处测得小岛在船的正南方向,那么小岛P与港口M相距3千米.图8【解析】在直角△APM 中,AM =20×12=10千米,∠P =60°.∴PM =AM sin 60°=1032=2033(千米).13.如图9,四边形ABCD 与四边形EFGH 是位似图形,且相似比是3∶2,若AB =2 cm ,则EF =__43__cm.【解析】 ∵四边形ABCD ∽四边形EFGH ,∴AB EF =32,∴EF =23×2=43(cm).图9图1014.如图10,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为__2__.【解析】由折叠性质得∠A=∠EBD=30°,∠ADE=∠BDE=90°,又∠ABC=60°,∴∠CBE=∠DBE=30°,∴CE=DE.设DE=x,则CE=x,AE=6-x,sin A=DE AE,∴x6-x=12,∴2x=6-x,x=2,故DE=2.15.已知矩形ABCD中,AB=2,BC=3,F是CD的中点,一束光线从点A出发,通过BC边反射,恰好经过点F(如图11),那么反射点E与点C的距离为__1__.图11 【解析】设CE=x,则BE=3-x.∵∠B=∠C=90°,∠AEB=∠FEC,∴△ABE∽△FCE,∴ABBE=CFEC,∴23-x=1x,∴x=1.16 .如图12,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=kx(k≠0)的图象交于A(1,4),B(4,1)两点,若y1>y2,则x的取值范围是__1<x<4,或x<0__.图1217.如图13,四边形ABCD 中,∠A =60°,∠B =∠D =90°,BC =2 cm ,CD =3 cm ,则AB =3【解析】 延长BC 与AD 交于点E .∵∠B =∠ADC =90°,∠A =60°,∴∠E =30°. 在Rt △CDE 中,CE =2CD =2×3=6(cm), ∴BE =CE +BC =6+2=8(cm).在Rt △ABE 中,tan E =ABBE,∴AB =BE ·tan E =8×tan 30°=833 cm.图13图1418.已知反比例函数y =mx 2m 2+3m -6的图象在第二、四象限,则m =__-52__.19.如图14所示,△ABC 中,DE ∥BC ,AH ⊥BC 于H ,AH 交DE 于G ,已知DE =10,BC =15,AG =12,则GH =__6__.【解析】 ∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AG AH ,∴1015=1212+GH ,解得GH =6. 三、解答题(共63分)20.(12分)计算:(1)3tan 30°-2tan 45°+2sin 60°+4cos 60°;(2)cos 30°-tan 60°1+sin 30°.解:(1)原式=3×33-2×1+2×32+4×12=3-2+3+2=2 3.(2)原式=32-31+12=-3232=-33.21.(8分)如图15,是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°,为了方便行人安全过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°.若新坡脚前需留2.5米的人行道,问离原坡脚10米的建筑物是否需要拆除?请说明理由.(参考数据:2≈1.414,3≈1.732)图15解:在Rt△ABC中,∠ACB=45°,tan∠ACB=AB AC,∴AC=ABtan∠ACB=10tan 45°=10(米),在Rt△ABD中,∠ADB=30°,tan∠ADB=ABAD,∴AD=ABtan∠ADB =10tan 30°=103(米),∴新坡脚离建筑物的距离为10-CD=10-(AD-AC)=10-(103-10)≈2.68(米)>2.5(米),∴建筑物不需要拆除.22.(9分)如图16,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=mx的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1. (1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b-mx>0的解集.图16解:(1)∵OB =2,△AOB 的面积为1 ∴B (-2,0),OA =1, ∴A (0,-1)∴⎩⎨⎧b =-1-2k +b =0, ∴⎩⎨⎧k =-12b =-1. ∴y =-12x -1.又∵OD =4,OD ⊥x 轴, ∴C (-4,y ),将x =-4代入y =-12x -1得y =1,∴C (-4,1), ∴1=m -4,∴m =-4, ∴y =-4x(2)当x <0时,kx +b -m x>0的解集是x <-4.23.(10分)如图17,一艘轮船向正东方向航行,在A处测得灯塔P在A的北偏东60°方向,航行40海里到达B处,此时测得灯塔P在B的北偏东15°方向上.(1)求灯塔P到轮船航线的距离PD是多少海里.(结果保留根号)(2)当轮船从B处继续向东航行时,一艘快艇从灯塔P处同时前往D处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分钟到达D处,求轮船每小时航行多少海里.(结果保留到个位,参考数据:3≈1.73)图17解:(1)过点B作BC⊥AP于点C.在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴BC=12AB=20海里,AC=AB·cos 30°=203海里.∵∠PBD=90°-15°=75°,∠ABC=90°-30°=60°,∴∠CBP=180°-75°-60°=45°,∴PC=BC·tan 45°=20海里,∴AP=AC+PC=(20+203)海里.∵PD⊥AD,∠PAD=30°,∴PD=12AP=(10+103)海里,∴灯塔P到轮船航线的距离PD是(10+103)海里.(2)设轮船每小时航行x海里,在Rt△ADP中,AD =AP ·cos 30°=(20+203)×32=(30+103)海里, ∴BD =AD -AB =30+103-40=(103-10)海里. 由题意得103-10x +1560=103+102x ,解得x =60-203,经检验,x =60-203是原方程的解,∴x =60-203≈60-20×1.73=25.4≈25(海里),∴轮船每小时航行约25海里. 24.(12分)如图18,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,过点D 的切线交BC 于E . (1)求证:DE =12BC ;(2)若tan C =52,DE =2,求AD 的长.图18解:(1)连接BD ,∵AB 为直径,∠ABC =90°, ∴BE 切⊙O 于点B .∵DE 切⊙O 于点D , ∴DE =BE ,∴∠EBD =∠EDB .∵∠ADB =90°,∴∠EBD +∠C =90°,∠BDE +∠CDE =90°,∴∠C=∠EDC,∴DE=CE,∴DE=12 BC.(2)∵DE=2,DE=12BC,∴BC=4.在Rt△ABC中,tan C=AB BC,∴AB=BC·tan C=2 5.在Rt△ABC中,AC=AB2+BC2=(25)2+42=6,又∵△ABD∽△ACB,∴ADAB=ABAC,即AD25=256,∴AD=10 3 .25.(12分据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图19所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?图19解:(1)药物燃烧后,设y与x的函数关系式为y=k1 x.把B(25,6)代入得6=k125,得k1=150.∴药物燃烧后,y与x的函数关系式为y=150 x.令y=150x=10,解得x=15.∴A(15,10).药物燃烧时,设y与x的函数关系式为y=k2x. 把A(15,10)代入得10=15k2.解得k2=2 3 .∴药物燃烧时y与x的函数关系式为y=23x(0≤x<15),药物燃烧后y与x的函数关系式为y=150x(x≥15).(2)把y=2代入y=150x,得150x=2,解得:x=75,∴从消毒开始,至少在75分钟内,师生不能进入教室.答:从消毒开始,至少在75分钟内,师生不能进入教室.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.5. 3 米
B. 4.8 米
C. 4.0 米
D.2.7 米
9.如图,在矩形 ABCD 中,E、F 分别是 DC、BC 边上的点,且∠AEF=90°则下列结论正
确的是( )。
A、△ABF∽△AEF
B、△ABF∽△CEF
C、△CEF∽△DAE
D、△DAE∽△BAF
10.为了测量被池塘隔开的 A,B 两点之间的距离,根据实际情况,作出如图图形,其 中 AB⊥BE,EF⊥BE,AF 交 BE 于 D,C 在 BD 上.有四位同学分别测量出以下四组数据: ①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数 据,求出 A,B 间距离的有( ).
5 (1)如图 1,连接 DQ 平分∠BDC 时,t 的值为 ; (2)如图 2,连接 CM,若△CMQ 是以 CQ 为底的等腰三角形,求 t 的值; (3)请你继续进行探究,并解答下列问题: ①证明:在运动过程中,点 O 始终在 QM 所在直线的左侧; ②如图 3,在运动过程中,当 QM 与⊙O 相切时,求 t 的值;并判断此时 PM 与⊙O 是否 也相切?说明理由.
5.如图,点 A(t,3)在第一象限,OA 与 x 轴所夹的锐角为 α,tanα= 3 ,则 t 的值 2
是( )
A.1
B.1.5
【答案】C
C.2
D.3
[
6.反比例函数
y=-
3 x
的图象上有
P1(x1,-2),P2(x2,-3)两点,则
x1

x2
的大小关
系是( )
A. x1>x2 【答案】A
B. x1=x2

【答案】 3 5
【解析】∵∠C=90°,AB=5,BC=3,∴sinA= BC = 3 ,故答案为: 3 .
AB 5
5
13.如图,点 在 的边 上,请你添加一个条件,使得 ∽ ,这个条件可以
是 ______________.
【答案】∠C=∠ABP(答案不唯一) 【解析】 因为有公共角∠A,所以当∠C=∠ABP 时,△APB∽△ABC(答案不唯一). 故答案为∠C=∠ABP(答案不唯一).
(测试时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1.已知 b 5 ,则 a b 的值是( )
a 13
ab
A. 2 3
【答案】D
B. 3 2
C. 9 4
D. 4 9
2.如图是由 4 个大小相同的正方体搭成的几何体,其俯视图是( )
A.
B.
C.
D.
【答案】C
【解析】
限内画出△A2B2C2,并求出
S :S △A1B1C1
△A2B2C2
的值.
24.(7 分)如图,一次函数 y=mx+n(m≠0)与反比例函数 y= k (k≠0)的图象相交 x
于 A(﹣1,2),B(2,b)两点,与 y 轴相交于点 C (1)求一次函数与反比例函数的解析式; (2)若点 D 与点 C 关于 x 轴对称,求△ABD 的面积.
28.(本题 12 分)如图,在矩形 ABCD 中,AB=6cm,AD=8cm,点 P 从点 B 出发,沿对角 线 BD 向点 D 匀速运动,速度为 4cm/s,过点 P 作 PQ⊥BD 交 BC 于点 Q,以 PQ 为一边作 正方形 PQMN,使得点 N 落在射线 PD 上,点 O 从点 D 出发,沿 DC 向点 C 匀速运动,速 度为 3m/s,以 O 为圆心,0.8cm 为半径作⊙O,点 P 与点 O 同时出发,设它们的运动时 间为 t(单位:s)(0<t< 8 ).
A.1 组
B.2 组
【答案】C.
C.3 组
D.4 组
二、填空题(每小题 3 分,共 30 分) 11.若 与 成反比例,且图象经过点
,则 ________.(用含 的代数式表示)
【答案】 【解析】 ∵与 成反比例,
∴可设 ,
又∵图象经过点

∴k=-1×1=-1

.
12.在 Rt△ABC 中,∠C=90°,AB=5,BC=3,则 sinA=
18.如图,P 是∠α 的边 OA 上一点,且点 P 的坐标为(3,4),则 sin =____________.
19.三棱柱的三种视图如图,在△EFG 中,EF=8 cm,EG=12 cm,∠EGF=30°,则 AB 的长为_____ cm.
20.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建
交 BF 于 E,求证:AE=BE.
F A
M E
BD
O
C
23.(6 分)如图,△ABC 三个定点坐标分别为 A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)请画出△ABC 关于 y 轴对称的△A1B1C1;
(2)以原点 O 为位似中心,将△A1B1C1 放大为原来的 2 倍,得到△A2B2C2,请在第三象
A.1 组
B.2 组
C.3 组
D.4 组
二、填空题(每小题 3 分,共 30 分)
11.若 与 成反比例,且图象经过点
,则 ________.(用含 的代数式表示)
12.在 Rt△ABC 中,∠C=90°,AB=5,BC=3,则 sinA=

13.如图,点 在 的边 上,请你添加一个条件,使得 ∽ ,这个条件可以
25.(7 分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有 这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图,小明边移动边观察,发现站到点 E 处时,可以使自己落在墙上的影子与这 栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度 CD=1.
C.
D.
3.如图,在△ABC 中,E、F 分别是 AB、AC 上的点,EF∥BC,且 AE 1 ,若△AEF 的 EB 2
面积为 2,则四边形 EBCF 的面积为( )
A.4
B.6
C.16
D.18
4.在 Rt△ABC 中,∠C=90°,若 sinA= 3 ,则 cosB 的值是( ) 5
A. 4 5
B. x1=x2
C. x1<x2
D. 不确定
7.已知长方形的面积为 20cm2,设该长方形一边长为 ycm,另一边的长为 xcm,则 y 与
x 之间的函数图象大致是( )
8.某同学的身高为 1.6 米,某一时刻他在阳光下的影长为 1.2 米,与他相邻的一棵树
的影长为 3.6 米,则这棵树的高度为(
)。
九年级数学下册期末测试卷(B 卷)
(测试时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1.已知 b 5 ,则 a b 的值是( )
a 13
ab
A. 2 3
B. 3 2
C. 9 4
D. 4 9
2.如图是由 4 个大小相同的正方体搭成的几何体,其俯视图是( )
A.
B.
B. 3 5
C. 3 4
D. 4 3
5.如图,点 A(t,3)在第一象限,OA 与 x 轴所夹的锐角为 α,tanα= 3 ,则 t 的值 2
是( )
A.1
B.1.5
C.2
D.3
6.反比例函数
y=-
3 x
的图象上有
P1(x1,-2),P2(x2,-3)两点,则
x1

x2
的大小关
系是( )
A. x1>x2
14.若
,则
=________.
【答案】
15.完成某项任务可获得 500 元报酬,考虑由 x 人完成这项任务,试写出人均报酬 y
(元)与人数 x(人)之间的函数关系式

【答案】y= 500 x
【解析】∵由 x 人完成报酬共为 500 元的某项任务,
∴xy=500,
即:y= 500 . x
故答案为:y= 500 . x
从上面看可得到一行正方形的个数为 3.
3.如图,在△ABC 中,E、F 分别是 AB、AC 上的点,EF∥BC,且 AE 1 ,若△AEF 的 EB 2
面积为 2,则四边形 EBCF 的面积为( )
A.4
B.6
【答案】C
C.16
D.18
∴S△ABC=18, 则 S 四边形 EBCF=S△ABC-S△AEF=18-2=16. 故选 C.
2m,CE=0. 8m,CA=30m(点 A、E、C 在同一直线上).已知小明的身高 EF 是 1.7m,请 你帮小明求出楼高 AB.(结果精确到 0.1m)
26.(8 分)已知关于 x 的一元二次方程 x2-(m+6)x+3m+9=0 的两个实数根分别为 x1, x2. (1)求证:该一元二次方程总有两个实数根; (2)若 n=4(x1+x2)-x1x2,判断动点 P(m,n)所形成的函数图象是否经过点 A(1, 16),并说明理由.
4.在 Rt△ABC 中,∠C=90°,若 sinA= 3 ,则 cosB 的值是( ) 5
A. 4 5
B. 3 5
C. 3 4
D. 4 3Biblioteka 【答案】 3 5【解析】
在 Rt△ABC 中,∵∠C=90°,
∴∠A+∠B=90°,
∴cosB=sinA,
∵sinA= 3 , 5
∴cosB= 3 . 5
故选 B.
是 ______________.
14.若
,则
=________.
15.完成某项任务可获得 500 元报酬,考虑由 x 人完成这项任务,试写出人均报酬 y
相关文档
最新文档