2015年高考全国1卷理科数学精校版

合集下载

2015高考理科数学真题含答案(全国卷一)

2015高考理科数学真题含答案(全国卷一)

绝密★启封并使用完毕前试题类型:A 2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z满足1+z1z-=i,则|z|=(A)1 (B)2(C)3(D)2 (2)sin20°cos10°-con160°sin10°=(A)32-(B)32(C)12-(D)12(3)设命题P:∃n∈N,2n>2n,则⌝P为(A)∀n∈N, 2n>2n(B)∃ n∈N, 2n≤2n(C)∀n∈N, 2n≤2n(D)∃ n∈N, 2n=2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432 (C)0.36 (D)0.312(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为 ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+(B) 1433AD AB AC =-(C )4133AD AB AC =+ (D) 4133AD AB AC =-(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10(B )20(C )30(D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年普通高等学校招生全国统一考试理科数学全国卷1

2015年普通高等学校招生全国统一考试理科数学全国卷1

绝密★启用前2015年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数z 满足=i ,则|z |=【A 】 (A )1 (B(C(D )2(2)sin20°cos 10°-con 160°sin10°=【D 】 (A ) (B (C ) (D ) (3)设命题P :n N ,>,则P 为【C 】(A )n N , > (B ) n N , ≤ (C )n N , ≤ (D ) n N , =(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为【A 】 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :上的一点,F 1、F 2是C 上的两个焦点,若<0,则y 0的取值范围是【A 】1+z1z-12-12∃∈2n 2n⌝∀∈2n 2n ∃∈2n 2n∀∈2n 2n ∃∈2n 2n2212x y -=12MF MF ⋅(A )()(B )()(C )(,) (D )() (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有【B 】(A )14斛 (B )22斛 (C )36斛 (D )66斛(7)设D 为ABC 所在平面内一点,则【A 】(A ) (B )(C ) (D )(8)函数f (x )=的部分图像如图所示,则f (x )的单调递减区间为【D 】(A )(),k (b )(),k(C )(),k (D )(),k3-33BC CD =1433AD AB AC =-+1433AD AB AC=-4133AD AB AC =+4133AD AB AC =-(9)执行右面的程序框图,如果输入的t =0.01,则输出的n =【C 】 (A )5 (B )6 (C )7 (D )8(10)的展开式中,的系数为【C 】(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体, 该几何体三视图中的正视图和俯视图如图所示.若该几何体的 表面积为16 + 20,则r =【B 】 (A )1 (B )2 (C )4 (D )812.设函数f (x )=e x(2x -1)-ax +a ,其中a 1,若存在唯一的 整数x 0,使得f (x 0)0,则a 的取值范围是【D 】25()x x y ++52x y π2rr正视图俯视图r2rA .[,1)B . [)C . [)D . [,1)第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若函数f (x )=xln (x)为偶函数,则a = 1 .(14)一个圆经过椭圆的三个顶点,且圆心在x 轴上,则该圆的标准方程为.(15)若x ,y 满足约束条件,则的最大值为 3 .(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,(Ⅰ)求{a n }的通项公式: (Ⅱ)设,求数列}的前n 项和解:(I )由,可知可得即由于可得又,解得32e -33,24e -33,24e 32e 22325()24x y ±+=10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩yx 2243n n n a a S +=+211124 3.n n n a a S ++++=+221112()4n n n n a a a a a +++-+-=2211112()()()n n n n n n a a a a a a a a +++++=-=+-0n a >1 2.n n a a +-=2111243a a a +=+111()3a a =-=舍去,所以是首相为3,公差为2的等差数列,通项公式为(II )由设数列的前n 项和为,则(18)如图,四边形ABCD 为菱形,∠ABC =120°, E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD , DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值解:(I )连结BD ,设BDAC=G ,连结EG ,FG ,EF.在菱形ABCD 中不妨设GB=1.由ABC=120°,可得AG=GC=.由 BE 平面ABCD, AB=BC 可知AE=EC. 又AE EC ,所以EG=,且EG AC.在Rt EBG 中,可得BE=故DF=.在Rt FDG 中,可得FG=. 在直角梯形BDFE 中,由BD=2,BE=,DF=,{}n a 2 1.n a n =+21n a n =+111111().(21)(23)22123n n b a a n n n n +===-++++{}n b n T 12n nT b b b =+++1111111()()()()235572123.3(23)n n n n ⎡⎤=-+-++-⎢⎥++⎣⎦=+∠3⊥⊥3⊥∆222∆62222ABCFED可得FE=.从而又因为所以平面(I )如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴,y 轴正方向,为单位长,建立空间直角坐标系G-xyz.由(I )可得所以 故所以直线AE 与直线CF 所成直角的余弦值为.(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.2222,EG FG EF EG FG +=⊥所以,.ACFG G EG AFC =⊥可得平面EG AEC ⊂平面AEC AFC ⊥平面GB(0(10(10),(02A E F C --,,,(132),(1AE CF ==-,,cos ,3AE CF AE CF AE CF ⋅==-⋅3-)2-)2-)(y i))(y i -)46.6 56.3 6.8289.81469108.8表中w i =, ,=(Ⅰ)根据散点图判断,y =a +bx 与y =c +哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x =49时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =u 的斜率和截距的最小二乘估计分别为:解: (I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程类型。

2015年普通高等学校招生全国统一考试数学(理)全国1卷

2015年普通高等学校招生全国统一考试数学(理)全国1卷

2015年全国卷Ⅰ理一、选择题(共12小题;共60分)1. 设复数z满足1+z1−z=i,则 z = A. 1B. 2C. 3D. 22. sin20∘cos10∘−cos160∘sin10∘= A. −32B. 32C. −12D. 123. 设命题p:∃n∈N,n2>2n,则¬p为 A. ∀n∈N,n2>2nB. ∃n∈N,n2≤2nC. ∀n∈N,n2≤2nD. ∃n∈N,n2=2n4. 投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 A. 0.648B. 0.432C. 0.36D. 0.3125. 已知M x0,y0是双曲线C:x22−y2=1上的一点,F1,F2是C的两个焦点.若MF1⋅MF2<0,则y0的取值范围是 A. −33,33B. −36,36C. −223,223D. −233,2336. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有 A. 14斛B. 22斛C. 36斛D. 66斛7. 设D为△ABC所在平面内一点,BC=3CD,则 A. AD=−13AB+43AC B. AD=13AB−43ACC. AD=43AB+13AC D. AD=43AB−13AC8. 函数f x=cosωx+φ的部分图象如图所示,则f x的单调递减区间为 A. kπ−14,kπ+34,k∈Z B. 2kπ−14,2kπ+34,k∈ZC. k−14,k+34,k∈Z D. 2k−14,2k+34,k∈Z9. 执行右面的程序框图,如果输入的t=0.01,则输出的n= A. 5B. 6C. 7D. 810. x2+x+y5的展开式中,x5y2的系数为 A. 10B. 20C. 30D. 6011. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r= A. 1B. 2C. 4D. 812. 设函数f x=e x2x−1−ax+a,其中a<1,若存在唯一的整数x0使得f x0<0,则a的取值范围是 A. −32e ,1 B. −32e,34C. 32e,34D. 32e,1二、填空题(共4小题;共20分)13. 若函数f x=x ln x+ a+x2为偶函数,则a=.14. 一个圆经过椭圆x216+y24=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.15. 若x,y满足约束条件x−1≥0,x−y≤0,x+y−4≤0,则yx的最大值为.16. 在平面四边形ABCD中,∠A=∠B=∠C=75∘,BC=2,则AB的取值范围是.三、解答题(共8小题;共104分)17. S n为数列a n的前n项和,已知a n>0,a n2+2a n=4S n+3.(1)求a n的通项公式;(2)设b n=1a n a n+1,求数列b n的前n项和.18. 如图,四边形ABCD为菱形,∠ABC=120∘,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线 AE 与直线 CF 所成角的余弦值.19. 某公司为确定下一年度投入某产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 y(单位:t )和年利润 z (单位:千元)的影响.对近 8 年的年宣传费 x i 和年销售量 y i i =1,2,⋯,8 数据作了初步处理,得到下面的散点图及一些统计量的值.xy wx i −x 28i =1w i −w 28i =1x i −x 8i =1y i −y w i −w 8i =1y i −y 46.6563 6.8289.8 1.6 1.469108.8表中 w i = x i ,w =18 w i 8i =1.附:对于一组数据 u 1,v 1 , u 2,v 2 ,⋯, u n ,v n ,其回归直线 v =α+βu 的斜率和截距的最小二乘估计分别为 β =i −u ni =1i −vu −u2n ,α =v −β u . (1)根据散点图判断,y =a +bx 与 y =c +d x 哪一个适宜作为年销售量 y 关于年宣传费 x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立 y 关于 x 的回归方程;(3)已知这种产品的年利润 z 与 x ,y 的关系为 z =0.2y −x .根据(2)的结果回答下列问题: (i )年宣传费 x =49 时,年销售量及年利润的预报值是多少?(ii )年宣传费 x 为何值时,年利润的预报值最大?20. 在直角坐标系 xOy 中,曲线 C :y =x 24与直线 l :y =kx +a a >0 交于 M ,N 两点.(1)当 k =0 时,分别求 C 在点 M 和 N 处的切线方程; (2)y 轴上是否存在点 P ,使得当 k 变动时,总有 ∠OPM =∠OPN ?说明理由.21. 已知函数 f x =x 3+ax +14,g x =−ln x .(1)当 a 为何值时,x 轴为曲线 y =f x 的切线;(2)用 min m ,n 表示 m ,n 中的最小值,设函数 x =min f x ,g x x >0 ,讨论 x 零点的个数.22. 如图,AB 是 ⊙O 的直径,AC 是 ⊙O 的切线,BC 交 ⊙O 于点 E .(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若OA=3CE,求∠ACB的大小.23. 在直角坐标系xOy中,直线C1:x=−2,圆C2:x−12+y−22=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;ρ∈R,设C2与C3的交点为M,N,求△C2MN的面(2)若直线C3的极坐标方程为θ=π4积.24. 已知函数f x= x+1−2 x−a ,a>0.(1)当a=1时,求不等式f x>1的解集;(2)若f x的图象与x轴围成的三角形面积大于6,求a的取值范围.答案第一部分1. A2. D3. C4. A 【解析】至少投中2次,包括“投中2次”和“投中3次两种情况”,p=C320.62×0.4+0.63= 0.648.5. A【解析】如图,设MF1=m,MF2=n,则m−n=22,当MF1⊥MF2时,m2+n2=F1F22= 12,可求得mn=2.由S△MF1F2=12F1F2y0=12mn可得y0=±33.当MF1⋅MF2<0时,∠F1MF2是钝角或平角,此时y0的取值范围为 −33,33.6. B 【解析】这个米堆是四分之一圆锥,由题意可求得它的底面半径为8π=163,所以它的体积为3209,所以米堆的米有3209×1.62≈22(斛).7. A 【解析】BC=AC−AB,CD=AD−AC,因为BC=3CD,所以AC−AB=3 AD−AC,整理得AD=−13AB+43AC.8. D 【解析】由图可知f x最小正周期为254−14=2;又可推得图中f x的一个最低点为3 4,−1,一个最高点为 −14,1,所以f x的单调递减区间为 −14+2k,34+2k ,k∈Z.9. C 【解析】经过计算可发现规律S=12k 时,m=12k+1,n=k.所以当S=12时,n=7,此时刚好有S≤0.01,输出n=7.10. C【解析】x2+x+y5=x2+x+y5的通项公式为T r+1=C5r⋅x25−r⋅x+y r,又x+y r的通项公式为T k+1=C r k⋅x r−k⋅y k,所以x2+x+y5的通项公式为C5r⋅C r k⋅x10−r−k⋅y k(0≤k≤r≤5),令k=210−r−k=5得r=3,所以x 5y2的系数为C53⋅C32=30.11. B 【解析】提示:此组合体是过圆柱对称轴的平面截圆柱所得的半个圆柱和一个半球组成的组合体.12. D 【解析】法一:考虑函数g x=e x2x−1,以及函数 x=a x−1,则题意要求存在唯一的整数x0使得g x0< x0.注意到gʹx=e x2x+1,尤其注意到y=x−1为y=g x在0,−1处的切线,如图.于是可以确定符合题意的唯一整数x0=0,则f0<0f1≥0f−1≥0,解得32e≤a<1.法二:首先f0=−1+a<0,所以唯一的整数为0.而f−1=−3e +2a≥0,解得a≥32e.又a<1,对f x求导得fʹx=e x2x+1−a,当x<−12时,fʹx<0;当x>0时,fʹx>0.从而f x在 −∞,−12上单调递减,在0,+∞上单调递增.而当a≥32e时,有f−1≥0,f0<0,f1>0,故在−∞,−1∪1,+∞上f x≥0,f0<0,满足题意.所以满足条件的a的取值范围为32e,1.第二部分13. 1【解析】因为f x是偶函数,而y=x是奇函数,所以g x=ln x+2是奇函数,所以g0=0,解得a=1.14. x−322+y2=254【解析】提示:因为圆心在x轴正半轴上,所以圆经过点0,−2,0,2,4,0.15. 3【解析】y x 表示可行域中的点和原点连线的斜率,由图可知,取A1,3点时,yx最大,最大值为3.16. 6−2,6+2【解析】延长BA,CD,交于点A2,作CA1∥DA交AB于点A1,则BA1<BA<BA2.在△A1BC中BCsin∠BA1C =BA1sin∠BCA1,求得BA1=6−2;在△A2BC中,BA2sin∠BCD =BCsin∠A2,求得BA2=6+2.所以,AB的取值范围为6−6+.第三部分17. (1)由题意得a n2+2a n=4S n+3,所以a n−12+2a n−1=4S n−1+3n≥2.两式相减整理得a n+a n−1a n−a n−1−2=0.又a n>0,所以a n=a n−1+2.又由a12+2a1=4S1+3=4a1+3得a1=3(负值舍去).所以a n是首项为3,公差为2的等差数列,故a n=2n+1.(2)由(1)知b n=12n+12n+3=1212n+1−12n+3.于是数列b n的前n项和S n=1213−15+15−17+⋯+12n+1−12n+3=11−1=n6n+9.18. (1)∵四边形ABCD为菱形,∴AC⊥BD.连接AC,BD,交于点O.以O为原点,OB为x轴正方向,OC为y轴正方向,建立空间直角坐标系O−xyz,则z轴和BE平行.可设菱形 ABCD 边长为 2,DF = >0 .则 A 0,− 3,0 ,E 1,0,2 ,C 0, 3,0 ,F −1,0, . ∵AE ⊥EC , ∴AE ⋅EC=0. 而 AE = 1, 3,2 ,EC = −1, 3,−2 , ∴−1+3−4 2=0, ∴ =22, ∴F −1,0,22. AC = 0,2 3,0 ,AE = 1, 3, 2 ,AF = −1, 3, 22. 设面 AEC 法向量为 m = x 1,y 1,z 1 ,面 AFC 法向量为 n = x 2,y 2,z 2 , 则m ⋅AC =0,m ⋅AE =0, n ⋅AC =0,n ⋅AF=0, 求得 m = 2,0,−1 ,n = 2,0,2 . ∵m ⋅n =0, ∴面AEC ⊥面AFC .(2) AE = 1, 3, 2 ,CF = −1,− 3, 22, cos AE ,CF = AE ⋅CFAE CF= 33. 所以直线 AE 和 CF 所成角的余弦值为 33.19. (1) y =c +d x 适宜作为 y 关于 x 的回归方程类型.(2) d =i −w 8i =1i −y w −w 28=108.81.6=68. c =y −dw =563−68×6.8=100.6. 回归方程为 y =100.6+68 x .(3) (i )x =49 时,y =100.6+68× =576.6. z =0.2y −x =0.2×576.6−49=66.32.当宣传费为 49 千元时,年销售量及年利润预报值分别为 576.6 千元和 66.32 千元. (ii )z =0.2y −x=0.2 100.6+68 x −x =−x +13.6 x +20.12.当 x =6.8 即 x =46.24 时,年利润的预报值最大.20. (1)当k=0时,点M、N的坐标分别为M 2a,a ,N −2a,a ,yʹ=x2,进一步可得所求的切线方程为y=±ax−a.(2)存在,点P的坐标为0,−a,证明如下.假设存在点P使得∠OPM=∠OPN,则直线PM与直线PN关于y轴对称,即k MP+k NP=0,设M m,m 24,N n,n24,P0,y0.①当k≠0时,即m≠−n,联立直线l:y=kx+a与抛物线y=x 24得x2−4kx−4a=0,于是m+n=4k,mn=−4a.此时直线MP的斜率为m24−y0 m−0=m4−y0m.同理直线NP的斜率为n −y0 ,所以这两条直线的斜率之和为k MP+k NP=m+n4−y0m+nmn=0,即m+n14−y0mn=0,又因为mn=−4a,所以14m+n1+y0a=0,又因为m+n≠0,解得y0=−a,所以当点P取0,−a时∠OPM=∠OPN,与k的取值无关;②当k=0时,则m=−n,由(1)知M 2a,a ,N −2a,a ,当P取点0,−a时,k PN=−a,k PM=a,则k MP+k NP=0,所以∠OPM=∠OPN满足条件;综上所述,当点P的坐标为0,−a时,使得当k变动时,总有∠OPM=∠OPN.21. (1)根据已知,fʹx=3x2+a.若x轴为曲线y=f x的切线,设切点横坐标为t,则有f t=0,fʹt=0,即t3+at+1=0,3t2+a=0,解得t=1,a=−3.所以当a的值为−34时,x轴为曲线y=f x的切线.(2)情形一:当a≥0时,fʹx=3x2+a>0,于是f x单调递增.考虑到f0=14>0,于是y=f x与y=g x有唯一交点,且交点横坐标p∈0,1,如图.此时函数 x的零点个数为1.情形二:当−34<a<0时,f x在0,−a3上单调递减,在−a3,+∞ 上单调递增,在极小值点x=−a3处的极小值f −a3=−a33+a⋅−a3+14=218−−a33>0,此时y=f x与y=g x在0,1内有唯一交点,如图.此时函数 x的零点个数为1.情形三:当a=−34时,与情形二类似,但此时极小值为0,如图.此时函数 x的零点个数为2.情形四:当−54<a<−34时,与情形三类似,但此时极小值小于0,如图.此时函数 x的零点个数为3.情形五:当a=−54时,与情形四类似,但此时y=f x与y=g x图象交于点1,0,如图.此时函数 x的零点个数为2.情形六:当a<−54时,与情形五类似,但此时y=f x与y=g x图象交点横坐标大于1,如图.此时函数 x的零点个数为1.综上,函数 x的零点个数为当a<−54或a>−34时, x只有一个零点,当a=−54或a=−34时,x只有两个零点,当−54<a<−34时, x有三个零点.22. (1)连接AE,OD,知AE⊥BC.所以△AEC是直角三角形,且∠AEC=90∘.又D为AC中点,所以DA=DE.又A、E在⊙O上,所以OA=OE,又OD=OD,所以△AOD≌△EOD,所以∠OED=∠OAD=90∘,所以OE⊥DE,所以DE是⊙O的切线.(2)由OA=3CE,∴AB=23CE.由CB为圆的割线,CA为圆的切线,知CE⋅CB=CA2.在Rt△ABC中,CA2=CB2−AB2,∴23CB=CB2−AB2,整理得−2AB 2CB+AB =0,∴ABCB =32=sin∠ACB.又∠ACB为锐角,∴∠ACB=60∘.23. (1)C1:ρcosθ=−2,C2:ρ2−2ρcosθ−4ρsinθ+4=0.(2)C3:y=x,圆C2的圆心C2到y=x的距离d=2=22,∴ MN =2⋅12−222=2,∴S△C2MN =12⋅ MN ⋅d=12⋅2⋅22=12.24. (1)a=1时,f x= x+1−2 x−1=3−x,x≥1,3x−1,−1<x<1, x−3,x≤−1.∴f x>1的解集为 x23<x<2.(2)f x=2a+1−x,x≥a,3x−2a+1,−1<x<a, x−2a−1,x≤−1.当x=a时,f x=a+1>0;当x=−1时,f x=−2a−2<0;∴令2a+1−x=0,x=2a+1,令3x−2a+1=0,x=2a−13,∴f x的图象与x轴围成的三角形的面积为12⋅2a+1−2a−13⋅a+1,因为12⋅2a+1−2a−13⋅a+1>6,解得a>2.∴a的取值范围为2,+∞.。

【2015年】高考全国卷1理科数学试题及答案

【2015年】高考全国卷1理科数学试题及答案

2015年高考理科数学试卷全国卷11.设复数z 满足11zz+-=i ,则|z|=( ) (A )1 (B )2 (C )3 (D )2 2.o o o o sin 20cos10cos160sin10- =( ) (A )3-(B )3 (C )12- (D )123.设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2nn N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2nn N n ∀∈≤ (D )2,=2nn N n ∃∈4.投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<u u u u r u u u u r,则0y 的取值范围是( )(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(23-,23)6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛7.设D 为ABC ∆所在平面内一点3BC CD =u u u r u u u r,则( )(A )1433AD AB AC =-+u u u r u u ur u u u r (B )1433AD AB AC =-u u u r u u u r u u u r(C )4133AD AB AC =+u u u u u r u u u r u u u r (D )4133AD AB AC =-u u u u u u u ru u u r u u u r8.函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13 (,),44k k k Zππ-+∈(B)13(2,2),44k k k Zππ-+∈(C)13(,),44k k k Z-+∈(D)13(2,2),44k k k Z-+∈9.执行右面的程序框图,如果输入的t=0.01,则输出的n=()(A)5 (B)6 (C)7 (D)810.25()x x y++的展开式中,52x y的系数为()(A)10 (B)20 (C)30 (D)6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=()(A)1 (B)2 (C)4 (D)812.设函数()f x=(21)xe x ax a--+,其中a1,若存在唯一的整数x,使得()f x0,则a的取值范围是()(A)[-32e,1)(B)[-32e,34)(C)[32e,34)(D)[32e,1)13.若函数f(x)=2ln()x x a x+为偶函数,则a=14.一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为 .15.若,x y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则yx的最大值为 .16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 .17.(本小题满分12分)n S 为数列{n a }的前n 项和.已知n a >0,3422+=+n n n a a a .(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 18.如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x ry u rw u r821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()iii w w y y =--∑46.6 563 6.8289.8 1.6 1469 108.8表中i i w x =,w u r =1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与x y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min{},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是的直径,AC 是的切线,BC 交于E.(Ⅰ)若D 为AC 的中点,证明:DE 是的切线;(Ⅱ)若3OA CE =,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【答案解析】 1.【答案】A 【解析】由11z i z+=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点:本题主要考查复数的运算和复数的模等.2.【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 3.【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C.考点:本题主要考查特称命题的否定 4.【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式 5.【答案】A【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •u u u u r u u u u r = 0000(3,)(3,)x y x y --•- =2220003310x y y +-=-<,解得033y <<故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 6.【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式 7.【答案】A 【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r =1433AB AC -+u u ur u u u r ,故选A.考点:平面向量的线性运算8.【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质9.【答案】C【解析】执行第1次,t=0.01,S=1,n=0,m=12=0.5,S=S-m=0.5,2m m ==0.25,n=1,S=0.5>t=0.01,是,循环,执行第2次,S=S-m=0.25,2mm ==0.125,n=2,S=0.25>t=0.01,是,循环, 执行第3次,S=S-m=0.125,2mm ==0.0625,n=3,S=0.125>t=0.01,是,循环,执行第4次,S=S-m=0.0625,2mm ==0.03125,n=4,S=0.0625>t=0.01,是,循环,执行第5次,S=S-m=0.03125,2mm ==0.015625,n=5,S=0.03125>t=0.01,是,循环,执行第6次,S=S-m=0.015625,2mm ==0.0078125,n=6,S=0.015625>t=0.01,是,循环,执行第7次,S=S-m=0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C.考点:本题注意考查程序框图 10.【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式 12.【答案】D【解析】设()g x =(21)xe x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)xg x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题13.【答案】1【解析】由题知2ln()y x a x =+是奇函数,所以22ln()ln()x a x x a x ++-+ =22ln()ln 0a x x a +-==,解得a =1. 考点:函数的奇偶性 14.【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程 15.【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法16.【答案】(62-,6+2)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF=62-,所以AB 的取值范围为(62-,6+2).考点:正余弦定理;数形结合思想17.【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.试题解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4na ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{nb }前n 项和为12n b b b +++L =1111111[()()()]235572123n n -+-++-++L =11646n -+. 考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法18.【答案】【解析】 试题分析:(Ⅰ)连接BD ,设BD ∩AC=G ,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1易证EG ⊥AC ,通过计算可证EG ⊥FG ,根据线面垂直判定定理可知EG ⊥平面AFC ,由面面垂直判定定理知平面AFC ⊥平面AEC ;(Ⅱ)以G 为坐标原点,分别以,GB GC u u u r u u u r的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,利用向量法可求出异面直线AE 与CF 所成角的余弦值. 试题解析:(Ⅰ)连接BD ,设BD ∩AC=G ,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1,由∠ABC=120°,可得 由BE ⊥平面ABCD ,AB=BC 可知,AE=EC ,又∵AE ⊥EC ,∴EG ⊥AC ,在Rt △EBG 中,可得,故DF=2.在Rt △FDG 中,可得在直角梯形BDFE 中,由BD=2,DF=2可得EF=2,∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC.(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (030),E (2),F (-1,0,22),C (0,3,0),∴AE u u u r =(1,3,2),CF uuu r =(-1,3,22).…10分故3cos ,||||AE CF AE CF AE CF ⋅<>==u u u r u u u r u u u r u u u r u u u r u u u r .所以直线AE 与CF 3考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力19.【答案】(Ⅰ)y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型;(Ⅱ)$100.668y x =+46.24【解析】 试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x =先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.试题解析:(Ⅰ)由散点图可以判断,y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w x =,先建立y 关于w 的线性回归方程,由于$81821()()()ii i ii w w y y d w w ==--=-∑∑=108.8=6816, ∴$cy dw =-$=563-68×6.8=100.6. ∴y 关于w 的线性回归方程为$100.668y w =+,∴y 关于x 的回归方程为$100.6y =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值$100.6y =+,576.60.24966.32z=⨯-=$. (ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.620.12zx x =+-=-+$,=13.6=6.82,即46.24x =时,z $取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20.【答案】0y a --=0y a ++=(Ⅱ)存在【解析】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a . ∵12y x '=,故24x y =在x=,C在,)a 处的切线方程为y a x -=-0y a --=. 故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=.(Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力21..【答案】(Ⅰ)34a =;(Ⅱ)当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. 【解析】试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的a 值;(Ⅱ)根据对数函数的图像与性质将x 分为1,1,01x x x >=<<研究()h x 的零点个数,若零点不容易求解,则对a 再分类讨论.试题解析:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==. 因此,当34a =时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,+∞)无零点.当x =1时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===,故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.…10分 综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. 考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想22.【答案】(Ⅰ)见解析(Ⅱ)60°【解析】试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由OA =得,AB=AE=x ,由勾股定理得BE ,由直角三角形射影定理可得2AE CE BE =⋅,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB ,在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE ,连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE 是圆O 的切线.(Ⅱ)设CE=1,AE=x ,由已知得AB=BE =由射影定理可得,2AE CE BE =⋅,∴2x =,解得x ACB=60°.考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理23.【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】 试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN V的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=2,2ρ2,|MN|=1ρ-2ρ2,因为2C 的半径为1,则2C MN V 的面积o 121sin 452⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系24.【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞) 【解析】试题分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.试题解析:(Ⅰ)当a=1时,不等式f (x )>1化为|x+1|-2|x-1|>1, 等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<, 所以不等式f (x )>1的解集为2{|2}3x x <<.(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >. 所以a 的取值范围为(2,+∞).考点:含绝对值不等式解法;分段函数;一元二次不等式解法。

2015年全国卷1(理科数学)含答案

2015年全国卷1(理科数学)含答案

绝密★启用前2015年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数z 满足=i ,则|z |=【A 】 (A )1 (B(C(D )2(2)sin20°cos 10°-con 160°sin10°=【D 】 (A ) (B (C ) (D ) (3)设命题P :n N ,>,则P 为【C 】(A )n N , > (B ) n N , ≤ (C )n N , ≤ (D ) n N , =(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为【A 】 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :上的一点,F 1、F 2是C 上的两个焦点,若<0,则y 0的取值范围是【A 】1+z1z-12-12∃∈2n 2n⌝∀∈2n 2n ∃∈2n 2n∀∈2n 2n ∃∈2n 2n2212x y -=12MF MF ⋅(A )()(B )()(C )(,) (D )() (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有【B 】(A )14斛 (B )22斛 (C )36斛 (D )66斛(7)设D 为ABC 所在平面内一点,则【A 】(A ) (B )(C ) (D )(8)函数f (x )=的部分图像如图所示,则f (x )的单调递减区间为【D 】(A )(),k (b )(),k(C )(),k (D )(),k3-33BC CD =1433AD AB AC =-+1433AD AB AC=-4133AD AB AC =+4133AD AB AC =-(9)执行右面的程序框图,如果输入的t =0.01,则输出的n =【C 】 (A )5 (B )6 (C )7 (D )8(10)的展开式中,的系数为【C 】(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体, 该几何体三视图中的正视图和俯视图如图所示.若该几何体的 表面积为16 + 20,则r =【B 】 (A )1 (B )2 (C )4 (D )812.设函数f (x )=e x(2x -1)-ax +a ,其中a 1,若存在唯一的 整数x 0,使得f (x 0)0,则a 的取值范围是【D 】25()x x y ++52x y π2rr正视图俯视图r2rA .[,1)B . [)C . [)D . [,1)第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若函数f (x )=xln (x)为偶函数,则a = 1 .(14)一个圆经过椭圆的三个顶点,且圆心在x 轴上,则该圆的标准方程为.(15)若x ,y 满足约束条件,则的最大值为 3 .(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,(Ⅰ)求{a n }的通项公式: (Ⅱ)设,求数列}的前n 项和解:(I )由,可知可得即由于可得又,解得32e -33,24e -33,24e 32e 22325()24x y ±+=10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩yx 2243n n n a a S +=+211124 3.n n n a a S ++++=+221112()4n n n n a a a a a +++-+-=2211112()()()n n n n n n a a a a a a a a +++++=-=+-0n a >1 2.n n a a +-=2111243a a a +=+111()3a a =-=舍去,所以是首相为3,公差为2的等差数列,通项公式为(II )由设数列的前n 项和为,则(18)如图,四边形ABCD 为菱形,∠ABC =120°, E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD , DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值解:(I )连结BD ,设BDAC=G ,连结EG ,FG ,EF.在菱形ABCD 中不妨设GB=1.由ABC=120°,可得AG=GC=.由 BE 平面ABCD, AB=BC 可知AE=EC. 又AE EC ,所以EG=,且EG AC.在Rt EBG 中,可得BE=故DF=.在Rt FDG 中,可得FG=. 在直角梯形BDFE 中,由BD=2,BE=,DF=,{}n a 2 1.n a n =+21n a n =+111111().(21)(23)22123n n b a a n n n n +===-++++{}n b n T 12n nT b b b =+++1111111()()()()235572123.3(23)n n n n ⎡⎤=-+-++-⎢⎥++⎣⎦=+∠3⊥⊥3⊥∆222∆62222ABCFED可得FE=.从而又因为所以平面(I )如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴,y 轴正方向,为单位长,建立空间直角坐标系G-xyz.由(I )可得所以 故所以直线AE 与直线CF 所成直角的余弦值为.(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.2222,EG FG EF EG FG +=⊥所以,.ACFG G EG AFC =⊥可得平面EG AEC ⊂平面AEC AFC ⊥平面GB(0(10(10),(02A E F C --,,,(132),(1AE CF ==-,,cos ,3AE CF AE CF AE CF ⋅==-⋅3-)2-)2-)(y i))(y i -)46.6 56.3 6.8289.81469108.8表中w i =, ,=(Ⅰ)根据散点图判断,y =a +bx 与y =c +哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x =49时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =u 的斜率和截距的最小二乘估计分别为:解: (I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程类型。

2015年高考理科数学全国卷1-答案

2015年高考理科数学全国卷1-答案

所以21200000(3,)(3,)MF MF x y x y x =-----=【考点】双曲线.
【解析】由题知
1114
()
3
AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+
【提示】将向量AD利用向量的三角形法则首先表示为AC CD
+,然后结合已知表示为AC AC
,的形式.【考点】向量运算.
2e
x
y
sin151⎫︒=⎪⎪⎭
22m x +-
1
,BD AC G =连接3GC =.
,可知AE 为坐标原点,分别以,GB GC 的方向为||GB 为单位长度,,由(Ⅰ)可得0,3,0)A (-2⎪⎭
∴(1,AE =,1,CF ⎛=- cos ,||||
AE CF AE CF AE CF <>=
=-
3
BD AC G =,连接,再由面面垂直的判定定理,即可得到为坐标原点,分别以GB GC ,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.的线性回归方程,由于1
8
1
(=
(i
i i w d ==-∑∑∴56368==c y dw --y 关于w 的线性回归方程为=100.6+68y 的回归方程为=100.6+68y 49=时,年销量的预报值=100.6+6849576.6y =的预报值=576.60.2z ⨯)根据(Ⅱ)的结果知,年利润的预报值=0.2(100.6+68z ,z 取得最大值,故宣传费用为(Ⅰ)根据散点图,即可判断出.
∴60
∠=.
ACB
是O的切线.
,解方程可得x值,可得所求角度.
11 / 11。

2015年全国1卷高考理科数学试卷及答案(精校word详细解析版)

2015年全国1卷高考理科数学试卷及答案(精校word详细解析版)

2015年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设复数z 满足1+z1z-=i ,则|z |=(A )1 (B )2 (C )3 (D )2(2)sin 20°cos 10°-cos 160°sin 10°=(A )32-(B )32 (C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N , 2n >2n (B )∃ n ∈N , 2n ≤2n (C )∀n ∈N , 2n ≤2n (D )∃ n ∈N , 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312 (5)已知M (x 0,y 0)是双曲线C :=1 上的一点,F 1、F 2是C 的两个焦点,若12MF MF ⋅<0,则y 0的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 (7)设D 为ABC 所在平面内一点,3BC CD =,则(A ) 1433AD AB AC =-+ (B ) 1433AD AB AC =- (C ) 4133AD AB AC =+ (D ) 4133AD AB AC =-(8)函数f (x )=cos (ωx+ϕ)的部分图像如图所示, 则f (x )的单调递减区间为A .(k π﹣,k π+,),k ∈z B .(2k π﹣,2k π+),k ∈z C .(k ﹣,k+),k ∈zD . (,2k+),k ∈z(9)执行右面的程序框图,如果输入的t =0.01,则输出的n =(A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何 体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的 表面积为16 + 20π,则r =(A )1 (B )2 (C )4 (D )812.设函数f (x )=e x (2x -1)-ax +a ,其中a 1,若存在 唯一的整数x 0,使得f (x 0)0,则a 的取值范围是( )A .[32e -,1) B . [33,24e -) C . [33,24e ) D . [32e,1)二、填空题:本大题共4小题,每小题5分 (13)若函数f (x )=xln (x +2a x +)为偶函数,则a = . (14)一个圆经过椭圆=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 ______________________ .(15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 ______________________ .三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分) S n 为数列{a n }的前n 项和.已知a n >0,2243n n n a a S +=+ (Ⅰ)求{a n }的通项公式;(Ⅱ)设 11n n n b a a +=,求数列}的前n 项和.(18) (本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.(19) (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()i ii w w yy =--∑46.6 563 6.8289.8 1.6 1469 108.8表中i i w x =8118i i w w ==∑(Ⅰ)根据散点图判断,y =a +bx 与y =c +x y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:121()(),()niii nii u u v v v u u u βαβ==--==--∑∑A B C F E D(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.(21)(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=- .(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目计分. (22)(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA= CE ,求∠ACB 的大小.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C : x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积 .(24)(本小题满分10分)选修4—5:不等式选讲 已知函数=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标I )理科数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2015年高考数学全国卷1(理科)真题试卷

2015年高考数学全国卷1(理科)真题试卷
FunshineMaths 峰行数学 2015 年普通高等学校招生全国统一考试 数学试卷(理科)
一. 选择题(本大题满分 60 分,共 12 小题,每小题 5 分) 1. 设复数 z 满足 A. 1
1 z i ,则 | z | ( 1 z
B.
) C.
2 3 2
2 n
3
) C.
D. 2
A. (
x2 y 2 1 上的一点, F1 、 F2 是 C 上的两个焦点,若 2
) C. (
3 3 , ) 3 3
B. (
3 3 , ) 6 6
2 2 2 2 , ) 3 3
D. (
2 3 2 3 , ) 3 3
6. 《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题: “今有委米依垣内角,下周八尺,高五 尺,问积及米几何?”其意思为: “在屋内墙角处堆放 米(如图,米堆为一个圆锥的四分之一) ,米堆底部的 弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放 的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺, 圆周率约为 3,估算出堆放的米约有( A. 14 斛 B. 22 斛 ) D. 66 斛
x 的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立 y 关于 x 的回归方程; (3)已知这种产品的年利润 z 与 x 、 y 的关系为 z 0.2 y x ,根据(2)的结果回答下列 问题:① 年宣传费 x 49 时,年销售量及年利润的预报值是多少? ② 年宣传费 x 为何值时,年利润的预报值最大? 附:对于一组数据 (u1 , v1 ), (u2 , v2 ),..., (un , vn ) ,其回归直线 v u 的斜率和截距的最小

2015年高考理科数学试题及答案-全国卷1

2015年高考理科数学试题及答案-全国卷1

2015年普通高等学校招生全国统一考试(全国卷1)理 科 数 学一、选择题 1.设复数z 满足11zz+-=i ,则|z|=( ) (A )1 (B )2 (C )3 (D )2 2.o o o o sin 20cos10cos160sin10- =( ) (A )32-(B )32 (C )12- (D )123.设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2nn N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2nn N n ∀∈≤ (D )2,=2nn N n ∃∈4.投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-3,3) (B )(-3,3) (C )(223-,223) (D )(233-,233)6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛 7.设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+ (B )1433AD AB AC =- (C )4133AD AB AC =+ (D )4133AD AB AC =- 8.函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈9.执行右面的程序框图,如果输入的t=0.01,则输出的n=( )(A )5 (B )6 (C )7 (D )8 10.25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )(A )1 (B )2 (C )4 (D )812.设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( ) (A )[-32e ,1) (B )[-32e ,34) (C )[32e ,34) (D )[32e,1)二、填空题13.若函数f (x )=2ln()x xa x ++为偶函数,则a=14.一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 15.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为.16.在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是. 三、解答题17.(本小题满分12分)n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 18.如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()iii w w yy =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中i i w x =,w =1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与x y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=-.(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数. 22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是的直径,AC 是的切线,BC 交于E.(Ⅰ)若D 为AC 的中点,证明:DE 是的切线;(Ⅱ)若3OA CE =,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试答案及解析【答案解析】 1.【答案】A 【解析】由11z i z +=-得,11i z i-+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点:本题主要考查复数的运算和复数的模等.2.【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 3.【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C. 考点:本题主要考查特称命题的否定 4.【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式 5.【答案】A【解析】由题知12(F F ,220012x y -=,所以12MF MF •= 0000(,),)x y x y -•-=2220003310x y y +-=-<,解得0y <<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.6.【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式7.【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A. 考点:平面向量的线性运算 8.【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.考点:三角函数图像与性质9.【答案】C【解析】执行第1次,t=0.01,S=1,n=0,m=12=0.5,S=S-m=0.5,2mm ==0.25,n=1,S=0.5>t=0.01,是,循环, 执行第2次,S=S-m=0.25,2mm ==0.125,n=2,S=0.25>t=0.01,是,循环, 执行第3次,S=S-m=0.125,2mm ==0.0625,n=3,S=0.125>t=0.01,是,循环,执行第4次,S=S-m=0.0625,2mm ==0.03125,n=4,S=0.0625>t=0.01,是,循环,执行第5次,S=S-m=0.03125,2mm ==0.015625,n=5,S=0.03125>t=0.01,是,循环,执行第6次,S=S-m=0.015625,2mm ==0.0078125,n=6,S=0.015625>t=0.01,是,循环,执行第7次,S=S-m=0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C.考点:本题注意考查程序框图 10.【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式 12.【答案】D【解析】设()g x =(21)xe x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)xg x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题13.【答案】1【解析】由题知ln(y x =是奇函数,所以ln(ln(x x +- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 14.【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程 15.【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法16.【答案】【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE=,解得BE 平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得AB 的取值范围为.考点:正余弦定理;数形结合思想17.【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.试题解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++=1111111[()()()]235572123n n -+-++-++ =11646n -+. 考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法18.【答案】(Ⅰ)见解析(Ⅱ)3【解析】 试题分析:(Ⅰ)连接BD ,设BD∩AC=G,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1易证EG ⊥AC ,通过计算可证EG ⊥FG ,根据线面垂直判定定理可知EG ⊥平面AFC ,由面面垂直判定定理知平面AFC ⊥平面AEC ;(Ⅱ)以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G-xyz ,利用向量法可求出异面直线AE 与CF 所成角的余弦值. 试题解析:(Ⅰ)连接BD ,设BD∩AC=G,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1,由∠ABC=120°,可得由BE ⊥平面ABCD ,AB=BC 可知,AE=EC ,又∵AE ⊥EC ,∴EG ⊥AC ,在Rt △EBG 中,可得,故DF=2.在Rt △FDG 中,可得FG=2在直角梯形BDFE 中,由BD=2,,DF=2可得EF=2, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC∩FG=G,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC.(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,0),E (),F (-1,0),C (00),∴AE =(1),CF =(-1,,2).…10分故cos ,3||||AE CF AE CF AE CF ⋅<>==-. 所以直线AE 与CF所成的角的余弦值为3. 考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力19.【答案】(Ⅰ)y c =+y 关于年宣传费用x 的回归方程类型;(Ⅱ)100.6y =+(Ⅲ)46.24 【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w =y关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.试题解析:(Ⅰ)由散点图可以判断,y c =+适合作为年销售y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =y 关于w 的线性回归方程,由于81821()()()iii ii w w yy d w w ==--=-∑∑=108.8=6816,∴c y dw =-=563-68×6.8=100.6.∴y 关于w 的线性回归方程为100.668y w =+,∴y 关于x 的回归方程为100.6y =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.6y =+,576.60.24966.32z =⨯-=.(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.620.12z x x =+-=-+,13.6=6.82,即46.24x =时,z 取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20.【答案】0y a --=0y a ++=(Ⅱ)存在【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x =,C 在,)a 处的切线方程为y a x -=-0y a --=.故24x y =在x =-处的到数值为C 在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力21..【答案】(Ⅰ)34a =;(Ⅱ)当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.【解析】试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的a 值;(Ⅱ)根据对数函数的图像与性质将x 分为1,1,01x x x >=<<研究()h x 的零点个数,若零点不容易求解,则对a 再分类讨论.试题解析:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==. 因此,当34a =时,x 轴是曲线()y f x =的切线.(Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,+∞)无零点.当x =1时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===,故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h fg f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(0单调递减,在1)单调递增,故当x ()f x取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.…10分 综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. 考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想22.【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由OA =得,AB=AE=x ,由勾股定理得BE =,由直角三角形射影定理可得2AE CE BE =⋅,列出关于x 的方程,解出x ,即可求出∠ACB 的大小. 试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE , 连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 是圆O 的切线.(Ⅱ)设CE=1,AE=x ,由已知得AB=BE 由射影定理可得,2AE CE BE =⋅,∴2x ,解得x ,∴∠ACB=60°.考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理 23.【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积.试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系 24.【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞) 【解析】试题分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.试题解析:(Ⅰ)当a=1时,不等式f (x )>1化为|x+1|-2|x-1|>1,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,所以不等式f (x )>1的解集为2{|2}3x x <<.(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >. 所以a 的取值范围为(2,+∞).考点:含绝对值不等式解法;分段函数;一元二次不等式解法。

2015年普通高等学校招生全国统一考试 全国卷1 数学试卷含答案(理科)

2015年普通高等学校招生全国统一考试 全国卷1 数学试卷含答案(理科)

2015年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足=i,则|z|=( )-A.1B.C.D.22.sin20°cos10°-cos160°sin10°=()A.-B.C.-D.3.设命题p:∃n∈N,n2>2n,则¬p为( )A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36D.0.3125.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A.-,B.-,C.-,D.-,6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛7.设D为△ABC所在平面内一点,=3,则( )A.=-+B.=-C.=+D.=-8.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.-,,k∈ZB.-,,k∈ZC.-,,k∈ZD.-,,k∈Z9.执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A.5B.6C.7D.810.(x2+x+y)5的展开式中,x5y2的系数为( )A.10B.20C.30D.6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.812.设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是( )A.-,B.-,C.,D.,第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.若函数f(x)=xln(x+)为偶函数,则a= .14.一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.15.若x,y满足约束条件-,-,-,则的最大值为.16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,+2a n=4S n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和.18.(本小题满分12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2, (8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中,.(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为(-)(-),=-.=(-)20.(本小题满分12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.21.(本小题满分12分)已知函数f(x)=x3+ax+,g(x)=-lnx.(Ⅰ)当a为何值时,x轴为曲线y=f(x)的切线?(Ⅱ)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(Ⅰ)若D为AC的中点,证明:DE是☉O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A由已知-=i,可得z=-=--=--=i,∴|z|=|i|=1,故选A.2.D原式=sin 20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=,故选D.3.C根据特称命题的否定为全称命题,知¬p:∀n∈N,n2≤2n,故选C.4.A该同学通过测试的概率P=×0.62×0.4+0.63=0.432+0.216=0.648,故选A.5.A若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则-解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈-.故选A.6.B设圆锥底面的半径为R尺,由×2πR=8得R=,从而米堆的体积V=×πR2×5=(立方尺),因此堆放的米约有≈22(斛).故选B.7.A=+=++=+=+(-)=-+.故选A.8.D由题图可知=-=1,所以T=2.结合题图可知,在-(f(x)的一个周期)内,函数f(x)的单调递减区间为-.由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为-,k∈Z,故选D.9.C第一次循环:S=1-=,m=,n=1,S>t;第二次循环:S=-=,m=,n=2,S>t;第三次循环:S=-=,m=,n=3,S>t;第四次循环:S=-=,m=,n=4,S>t;第五次循环:S=-=,m=,n=5,S>t;第六次循环:S=-=,m=,n=6,S>t;第七次循环:S=-=,m=,n=7,此时不满足S>t,结束循环,输出n=7,故选C.10.C(x2+x+y)5=[(x2+x)+y]5的展开式中只有(x2+x)3y2中含x5y2,易知x5y2的系数为=30,故选C.11.B由已知可知,该几何体的直观图如图所示,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π,得r=2.故选B.12.D由f(x0)<0,即(2x0-1)-a(x0-1)<0得(2x0-1)<a(x0-1).当x0=1时,得e<0,显然不成立,所以x0≠1.若x0>1,则a>--.令g(x)=--,则g'(x)=--.当x∈时,g'(x)<0,g(x)为减函数,当x∈时,g'(x)>0,g(x)为增函数,要满足题意,则x0=2,此时需满足g(2)<a≤g(3),得3e2<a≤e3,与a<1矛盾,所以x0<1.因为x0<1,所以a<--.易知,当x∈(- ,0)时,g'(x)>0,g(x)为增函数,当x∈(0,1)时,g'(x)<0,g(x)为减函数,要满足题意,则x0=0,此时需满足g(-1)≤a<g(0),得≤a<1(满足a<1).故选D.评析本题主要考查导数的应用及分类讨论思想,分离参变量是解决本题的关键,本题综合性较强,属难题.二、填空题13.答案 1解析由已知得f(-x)=f(x),即-xln(-x)=xln(x+),则ln(x+)+ln(-x)=0,∴ln[()2-x2]=0,得ln a=0,∴a=1.14.答案-+y2=解析由已知得该圆经过椭圆的三个顶点A(4,0)、B(0,2)、C(0,-2).易知线段AB的垂直平分线的方程为2x-y-3=0.令y=0,得x=,所以圆心坐标为,则半径r=4-=.故该圆的标准方程为-+y2=.评析本题考查圆和椭圆的方程,求出圆心坐标是解题关键.15.答案 3解析由约束条件画出可行域,如图.的几何意义是可行域内的点(x,y)与原点O连线的斜率,所以的最大值即为直线OA的斜率,又由--得点A的坐标为(1,3),则=k OA=3.16.答案(-,+)解析 依题意作出四边形ABCD,连结BD.令BD=x,AB=y,∠CDB=α,∠CBD=β.在△BCD 中,由正弦定理得=°.由题意可知,∠ADC=135°,则∠ADB=135°-α.在△ABD 中,由正弦定理得°=°- .所以°- =,即y=°- = °- - ° = - ° =.因为0°<β<75°,α+β+75°=180°,所以30°<α<105°, 当α=90°时,易得y= ; 当α≠90°时,y==,又tan 30°=,tan 105°=tan(60°+45°)= ° °- ° °=-2- , 结合正切函数的性质知,∈( -2, ),且≠0,所以y=∈( - , )∪( , + ). 综上所述:y ∈( - , + ).评析 本题考查了三角函数和解三角形.利用函数的思想方法是求解关键,属偏难题. 三、解答题17.解析 (Ⅰ)由+2a n =4S n +3,可知 +2a n+1=4S n+1+3. 可得 - +2(a n+1-a n )=4a n+1,即 2(a n+1+a n )= - =(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又 +2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分) (Ⅱ)由a n =2n+1可知b n===-.设数列{b n}的前n项和为T n,则T n=b1+b2+…+b n=--…-=.(12分)18.解析(Ⅰ)连结BD.设BD∩AC=G,连结EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=,且EG⊥AC.在Rt△EBG中,可得BE=,故DF=.在Rt△FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(6分)(Ⅱ)如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,||为单位长,建立空间直角坐标系G-xyz.由(Ⅰ)可得A(0,-,0),E(1,0,),F-,C(0,,0),所以=(1,,),=--.(10分)故cos<,>=·=-.所以直线AE与直线CF所成角的余弦值为.(12分)评析本题考查了线面垂直的判定和性质、面面垂直的判定、异面直线所成的角.建立适当的空间直角坐标系,利用空间向量的有关公式是求解的关键.证明“EG⊥平面AFC”是解题的难点.本题属中等难度题.19.解析(Ⅰ)由散点图可以判断,y=c+d 适宜作为年销售量y关于年宣传费x的回归方程类型.(2分)(Ⅱ)令w=,先建立y关于w的线性回归方程.由于=---==68,=-=563-68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68.(6分)(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2-49=66.32.(9分)(ii)根据(Ⅱ)的结果知,年利润z的预报值=0.2(100.6+68)-x=-x+13.6+20.12.所以当==6.8,即x=46.24时,取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.(12分)20.解析(Ⅰ)由题设可得M(2,a),N(-2,a)或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(5分)(Ⅱ)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=-+-=-=.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.(12分)21.解析(Ⅰ)设曲线y=f(x)与x轴相切于点(x 0,0),则f(x0)=0,f '(x0)=0,即解得x0=,a=-.因此,当a=-时,x轴为曲线y=f(x)的切线.(5分)(Ⅱ)当x∈(1,+ )时,g(x)=-ln x<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,故h(x)在(1,+ )无零点.当x=1时,若a≥-,则f(1)=a+≥0,h(1)=min{f(1),g(1)}=g(1)=0,故x=1是h(x)的零点;若a<-,则f(1)<0,h(1)=min{f(1),g(1)}=f(1)<0,故x=1不是h(x)的零点.当x∈(0,1)时,g(x)=-ln x>0,所以只需考虑f(x)在(0,1)的零点个数.(i)若a≤-3或a≥0,则f '(x)=3x2+a在(0,1)无零点,故f(x)在(0,1)单调.而f(0)=,f(1)=a+,所以当a≤-3时, f(x)在(0,1)有一个零点;当a≥0时,f(x)在(0,1)没有零点.(ii)若-3<a<0,则f(x)在-单调递减,在-单调递增,故在(0,1)中,当x=-时,f(x)取得最小值,最小值为f -=-+.①若f ->0,即-<a<0,f(x)在(0,1)无零点;②若f -=0,即a=-,则f(x)在(0,1)有唯一零点;③若f -<0,即-3<a<-,由于f(0)=,f(1)=a+,所以当-<a<-时,f(x)在(0,1)有两个零点;当-3<a≤-时,f(x)在(0,1)有一个零点.(10分)综上,当a>-或a<-时,h(x)有一个零点;当a=-或a=-时,h(x)有两个零点;当-<a<-时,h(x)有三个零点.(12分)22.解析(Ⅰ)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.(5分) (Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=-.由射影定理可得,AE2=CE·BE,所以x2=-,即x4+x2-12=0.可得x=,所以∠ACB=60°.(10分)23.解析(Ⅰ)因为x=ρcosθ,y=ρsinθ,所以C 1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(5分)(Ⅱ)将θ=代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=,故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为.(10分)24.解析(Ⅰ)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0. 当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为.(5分)(Ⅱ)由题设可得,f(x)=------所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A-,B(2a+1,0),C(a,a+1),△ABC的面积为(a+1)2.由题设得(a+1)2>6,故a>2.所以a的取值范围为(2,+ ).(10分)。

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

4 1 AB AC 3 3
4 1 AB AC 3 3
1 1 1 4 试题分析:由题知 AD AC CD AC BC AC ( AC AB) = AB AC ,故选 A. 3 3 3 3
考点:平面向量运算
(8) 函数 f ( x) = cos( x ) 的部分图像如图所示,则 f ( x) 的单调递减区间为 (A)( ),k (b)( ),k
考点:函数的奇偶性
(14)一个圆经过椭圆
x2 y 2 1 的三个顶点,且圆心在 x 轴上,则该圆的标准方程为 16 4

3 25 【答案】 ( x )2 y 2 2 4
【解析】
3 试题分析:设圆心为( a ,0) ,则半径为 4 | a | ,则 (4 | a |) 2 | a | 2 2 2 ,解得 a ,故圆的 2 3 25 方程为 ( x )2 y 2 .学科网 2 4
【解析】 试题分析: (Ⅰ)先用数列第 n 项与前 n 项和的关系求出数列{ an }的递推公式,可以判断数列{ an }是等差
数列,利用等差数列的通项公式即可写出数列{ an }的通项公式; (Ⅱ)根据(Ⅰ)数列{ bn }的通项公式, 再用拆项消去法求其前 n 项和. 学科网
试题解析: (Ⅰ)当 n 1 时, a12 2a1 4S1 3 4a1 +3 ,因为 an 0 ,所以 a1 =3,
考点:数列前 n 项和与第 n 项的关系;等差数列定义与通项公式;拆项消去法
(18)如图, ,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平 面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC。 (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案

理科数学注意事项:1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3。

全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数z 满足1+z1z-=i ,则|z|=(A )1 (B (D )2(2)sin20°cos10°-con160°sin10°=(A)2-(B )2(C)12- (D)12(3)设命题P:∃n ∈N ,2n >2n,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N , 2n ≤2n(C)∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0。

6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B )0。

432 (C )0.36 (D )0。

312(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是(A )(-33,33) (B )(—36,36) (C )(223-,223) (D)(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1。

62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C)4133AD AB AC =+ (D ) 4133AD AB AC =-(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A )13(,),44k k k Z ππ-+∈ (B ) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0。

2015年高考理科数学试卷全国卷1(解析版)

2015年高考理科数学试卷全国卷1(解析版)

2015年高考理科数学试卷全国卷1(解析版)2015年高考理科数学试卷全国卷1(解析版)1.设复数z满足11zz+-=i,则|z|=()(A)1 (B2(C3(D)2【答案】A【解析】由11ziz+=-得,11izi-+=+=(1)(1)(1)(1)i ii i-+-+-=i,故|z|=1,故选A.考点:本题主要考查复数的运算和复数的模等.2.o o o osin20cos10cos160sin10- =()(A)32-(B)32(C)12-(D)12【答案】D【解析】原式=o o o osin20cos10cos20sin10+ =osin30=12,故选D.考点:本题主要考查诱导公式与两角和与差的正余弦公式.3.设命题p:2,2nn N n∃∈>,则p⌝为()(A)2,2nn N n∀∈>(B)2,2nn N n∃∈≤(C)2,2nn N n∀∈≤(D)2,=2nn N n∃∈【答案】C【解析】p⌝:2,2nn N n∀∈≤,故选C.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式 7.设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+ (B )1433AD AB AC =-(C )4133AD AB AC =+ (D)4133AD AB AC =- 【答案】A 【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A.考点:平面向量的线性运算8.函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.考点:三角函数图像与性质9.执行右面的程序框图,如果输入的t=0.01,则输出的n=( )(A )5 (B )6 (C )7 (D )8【答案】C 【解析】执行第1次,t=0.01,S=1,n=0,m=12=0.5,S=S-m=0.5,2m m ==0.25,n=1,S=0.5>t=0.01,是,循环, 执行第2次,S=S-m=0.25,2mm ==0.125,n=2,S=0.25>t=0.01,是,循环, 执行第3次,S=S-m=0.125,2m m ==0.0625,n=3,S=0.125>t=0.01,是,循环, 执行第4次,S=S-m=0.0625,2m m ==0.03125,n=4,S=0.0625>t=0.01,是,循环, 执行第5次,S=S-m=0.03125,2m m ==0.015625,n=5,S=0.03125>t=0.01,是,循环, 执行第6次,S=S-m=0.015625,2m m ==0.0078125,n=6,S=0.015625>t=0.01,是,循环, 执行第7次,S=S-m=0.0078125,2m m ==0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C. 考点:本题注意考查程序框图 10.25()xx y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C 【解析】在25()xx y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )(A )1 (B )2 (C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254rr π+=16 + 20π,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式12.设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( )(A )[-32e ,1) (B )[-32e ,34) (C )[32e ,34) (D )[32e ,1)【答案】D【解析】设()g x =(21)xe x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)xg x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max[()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a--=-≥--,解得32e ≤a <1,故选D.考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题13.若函数f (x )=2ln(x x a x +为偶函数,则a=【答案】1【解析】由题知2ln()y x a x =+是奇函数,所以22ln()ln()x a x x a x ++-+ =22ln()ln 0a xx a +-==,解得a =1.考点:函数的奇偶性14.一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.考点:椭圆的几何性质;圆的标准方程 15.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则yx 的最大值为 . 【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx 是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx 的最大值为3.考点:线性规划解法16.在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 【答案】(62-,6+2)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BE E C =∠∠,即oo2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BCFCB BFC=∠∠,即oo2sin30sin 75BF=,解得BF=62-,所以AB 的取值范围为(62-,6+2).考点:正余弦定理;数形结合思想17.(本小题满分12分)nS 为数列{na }的前n 项和.已知na >0,2nnaa +=43nS+.(Ⅰ)求{na }的通项公式; (Ⅱ)设11nn n ba a +=,求数列{nb }的前n 项和.【答案】(Ⅰ)21n +(Ⅱ)11646n -+【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{na }的递推公式,可以判断数列{na }是等差数列,利用等差数列的通项公式即可写出数列{na }的通项公式;(Ⅱ)根据(Ⅰ)数列{nb }的通项公式,再用拆项消去法求其前n项和.试题解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0na >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4na ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0na>,所以1nn aa --=2,所以数列{na }是首项为3,公差为2的等差数列, 所以na =21n +;(Ⅱ)由(Ⅰ)知,nb =1111()(21)(23)22123n n n n =-++++, 所以数列{nb }前n 项和为12nb b b +++=1111111[()()()]235572123n n -+-++-++ =11646n -+. 考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法18.如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值. 【答案】(Ⅰ)见解析(Ⅱ)33【解析】试题分析:(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1易证EG⊥AC,通过计算可证EG⊥FG,根据线面垂直判定定理可知EG⊥平面AFC,由面面垂直判定定理知平面AFC⊥平面AEC;(Ⅱ)以G为坐标原点,分别以,GB GC的方向为x轴,y轴正方向,||GB为单位长度,建立空间直角坐标系G-xyz,利用向量法可求出异面直线AE与CF 所成角的余弦值.试题解析:(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由∠ABC=120°,可得3由BE⊥平面ABCD,AB=BC可知,AE=EC,又∵AE⊥EC,∴3,EG⊥AC,在Rt △EBG 中,可得BE=2,故DF=22.在Rt △FDG 中,可得FG=6.在直角梯形BDFE 中,由BD=2,BE=2,DF=2可得EF=322, ∴222EGFG EF +=,∴EG ⊥FG ,∵AC∩FG=G,∴EG ⊥平面AFC , ∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC.(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,-30),E (2),F (-1,0,22),C(030),∴AE =(132),CF =(-1,322).…10分故3cos ,3||||AE CF AE CF AE CF ⋅<>==-.所以直线AE 与CF 3考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力 19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费ix 和年销售量iy(i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw821()ii x x =-∑ 821()ii w w =-∑ 81()()iii x x y y =--∑ 81()()iii w w y y =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中iiw x =,w =1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)nnu v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:【答案】(Ⅰ)y c x =+y 关于年宣传费用x 的回归方程类型;(Ⅱ)100.668y x=+(Ⅲ)46.24 【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x=,先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,列出关于x的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.试题解析:(Ⅰ)由散点图可以判断,y c x=+销售y关于年宣传费用x的回归方程类型.(Ⅱ)令w x=先建立y关于w的线性回归方程,由于81821()()()i iiiiw w y ydw w==--=-∑∑=108.8=6816,∴c y dw=-=563-68×6.8=100.6.∴y关于w的线性回归方程为100.668y w=+,∴y关于x的回归方程为100.668y x=+(Ⅲ)(ⅰ)由(Ⅱ)知,当x=49时,年销售量y的预报值100.66849y=+,576.60.24966.32z=⨯-=.(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值0.2(100.668)13.620.12z x x x x=+-=-+,x=13.6=6.82,即46.24x=时,z取得最大值.故宣传费用为46.24千元时,年利润的预报值最大.……12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】(Ⅰ)0ax y a --=或ax y a ++=(Ⅱ)存在 【解析】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,(2,)N a a .∵12y x'=,故24x y =在x =22a处的到数值为a,C在(22,)a a 处的切线方程为()y a a x a -=-0ax y a --=.故24x y =在x =-22a处的到数值为a ,C 在(22,)a a -处的切线方程为()y a a x a -=-+0ax y a ++=. 0ax y a --=0ax y a ++=.(Ⅱ)存在符合题意的点,证明如下: 设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x xk x x a+==-. ∴121212y b y bk kx x --+=+=1212122()()kx xa b x x x x +-+=()k a b a +.当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM=∠OPN ,所以(0,)P a -符合题意. 考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力21.(本小题满分12分)已知函数f (x )=31,()ln 4xax g x x++=-.(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.【答案】(Ⅰ)34a =;(Ⅱ)当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. 【解析】试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的a 值;(Ⅱ)根据对数函数的图像与性质将x 分为1,1,01x x x >=<<研究()h x 的零点个数,若零点不容易求解,则对a 再分类讨论.试题解析:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==.因此,当34a =时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<,∴()h x 在(1,+∞)无零点. 当x=1时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h fg f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a ≤-或0a ≥,则2()3f x xa'=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(0,3a-单调递减,3a -1)单调递增,故当x 3a -()f x 取的最小值,最小值为3a f -21334aa -.①若)3a f ->0,即34-<a <0,()f x 在(0,1)无零点. ②若)3a f -=0,即34a =-,则()f x 在(0,1)有唯一零点; ③若)3af -<0,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.…10分综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想 22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是的直径,AC 是的切线,BC 交于E.(Ⅰ)若D 为AC 的中点,证明:DE 是的切线; (Ⅱ)若3OA CE=,求∠ACB 的大小.【答案】(Ⅰ)见解析(Ⅱ)60°【解析】试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由3OA CE=得,AB=23设AE=x ,由勾股定理得212BE x =-,由直角三角形射影定理可得2AECE BE=⋅,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB ,在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE ,连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 是圆O 的切线. (Ⅱ)设CE=1,AE=x ,由已知得AB=23,212BE x =-,由射影定理可得,2AE CE BE=⋅,∴2212xx =-,解得x =3,∴∠ACB=60°.考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x=-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C与3C 的交点为M ,N ,求2C MN ∆的面积.【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN的面积.试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=222ρ2,|MN|=1ρ-2ρ2,因为2C 的半径为1,则2C MN的面积o 121sin 452⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系24.(本小题满分10分)选修4—5:不等式选讲已知函数=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f (x )>1的解集; (Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞) 【解析】试题分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.试题解析:(Ⅰ)当a=1时,不等式f (x )>1化为|x+1|-2|x-1|>1,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<, 所以不等式f (x )>1的解集为2{|2}3x x <<. (Ⅱ)由题设可得,12,1()312,112,x a x f x x a x ax a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >. 所以a 的取值范围为(2,+∞).考点:含绝对值不等式解法;分段函数;一元二次不等式解法。

2015全国新课标1高考数学卷(理科)

2015全国新课标1高考数学卷(理科)

2015年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).本试卷共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域 书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使 用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-i =,则|=z A.1 B.2 C.3 D.22.=-000010sin 160cos 10cos 20sin A.23- B.23 C.21- D.213.设命题P :n n N n 2,2>∈∃,则p ⌝为A.n n N n 2,2>∈∀B.n n N n 2,2≤∈∃C.n n N n 2,2≤∈∀D.n n N n 2,2=∈∃4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A.0.648B.0.432C.0.36D.0.3125.已知()00,y x M 是双曲线C :1222=-y x 上的一点,21,F F 是C 上的两个焦点,若12MF MF ⋅ <0,则0y 的取值范围是 保密★启用前A.⎪⎪⎭⎫ ⎝⎛-33,33 B.⎪⎪⎭⎫ ⎝⎛-63,63 C.⎪⎪⎭⎫ ⎝⎛-322,322 D.⎪⎪⎭⎫ ⎝⎛-332,332 a6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛7.设D 为ABC ∆所在平面内一点CD BC 3=,则A.1433AD AB AC =-+B.1433AD AB AC =-C.4133AD AB AC =+D.4133AD AB AC =-8.函数()()ϕω+=x x f cos 的部分图像如图所示,则()x f 的单调递减区间为 A.Z k k k ∈+-),43,41(ππ B.Z k k k ∈+-),432,412(ππ C.Z k k k ∈+-),43,41( D.Z k k k ∈+-),432,412(9.执行右面的程序框图,如果输入的01.0=t ,则输出的=n A.5 B.6 C.7 D.810.25()x x y ++的展开式中,52x y 的系数为A.10B.20C.30D.6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体, 该几何体三视图中的正视图和俯视图如图所示.若该几何体的 表面积为π2016+,则=r A.1B.2xy4143开始t输入n输出结束tS >21,0,1===m n S1,2+==n n mm mS S -=否是C.4D.812.设函数()()a ax x e x f x +--=12,其中1<a ,若存在唯一的整数x 0,使得()00<x f ,则a 的取值范围是( ) A.⎥⎦⎤⎢⎣⎡-1,23e B.⎥⎦⎤⎢⎣⎡-43,23e C.⎥⎦⎤⎢⎣⎡43,23e D.⎥⎦⎤⎢⎣⎡1,23e第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数()⎪⎭⎫ ⎝⎛++=2ln x a x x x f 为偶函数,则=a14.一个圆经过椭圆错误!未找到引用源。

2015年新课标全国卷Ⅰ高考数学(理科)试题及答案(完整版)

2015年新课标全国卷Ⅰ高考数学(理科)试题及答案(完整版)

2015 年新课标全国卷Ⅰ高考数学 (理科) 试 题及答案(完整版)第Ⅰ卷 一.选择题:共 12 小题,每小题 5 分,共 60 分。

在每个小题给出的四个选项中,只有一项 是符合题目要求的一项。

5.4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公 益活动的概率7.执行下图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的 M=9.不等式组的解集记为 D.有下面四个命题:其中真命题是第Ⅱ卷 本卷包括必考题和选考题两个部分。

第(13)题-第(21)题为必考题,每个考生都必须作 答。

第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题 5 分。

14.甲、乙、丙三位同学被问到是否去过 A,B,C 三个城市时, 甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .2015 年大学生就业的形势越来越严峻,大学生就业不如自己创业,没资金,没 经验, 没背景, 我们如何才能实现创业的梦想呢! 给你推荐一位非常优秀的老师, 网上老火了,还帮助了很多普通人实现了梦想,百度---振远老师 QQ 2909079022 希望能帮到你!15.三.解答题:解答应写出文字说明,证明过程或演算步骤。

18. (本小题满分 12 分)从某企业的某种产品中抽取 500 件, 测量这些产品的一项质量指标值, 由测量结果得如下频率分布直方图:(i)利用该正态分布,求 P(187.8<Z<212.2); (ii)某用户从该企业购买了 100 件这种产品,记 X 表示这 100 件产品中质量指标值为于区 间(187.8,212.2)的产品件数,利用(i)的结果,求 EX.(Ⅰ) 求 a3+b3 的最小值; (Ⅱ)是否存在 a,b,使得 2a+3b=6?并说明理由2015 年最新普通高等学校招生全国统一考试(课标 I 文科卷) 数学(文科) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有 一项是符合题目要求的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015 年普通高等学校招生全国统一考试 理科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.
程为
. .
x 1 0 y (15)若 x,y 满足约束条件 x y 0 ,则 的最大值为 x x y 4 0
(16)在平面四边形 ABCD 中,∠A=∠B=∠C=75°,BC=2,则 AB 的取值范 围是 . 三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分 12 分) Sn 为数列{an}的前 n 项和.已知 an>0, (Ⅰ)求{an}的通项公式: (Ⅱ)设 ,求数列 }的前 n 项和

1 w = 8
w1
xy=a+bx 与 y=c+d x 哪一个适宜作为年销售量 y 关于年宣传
费 x 的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程; (Ⅲ)以知这种产品的年利率 z 与 x、y 的关系为 z=0.2y-x.根据(Ⅱ)的结果回答 下列问题: (i) 年宣传费 x=49 时,年销售量及年利润的预报值是多少? (ii) 年宣传费 x 为何值时,年利率的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)„„.. (un 的斜率和截距的最小二乘估计分别为:
1 已知函数 f(x)= x 3 ax , g ( x) ln x 4
(Ⅰ)当 a 为何值时,x 轴为曲线 y f ( x) 的切线; ( Ⅱ ) 用 min
m, n (x 0)
表 示
m , n
中 的 最 小 值 , 设 函 数
h( x) min f ( x), g( x)
(A)14 斛
(B)22 斛
(C)36 斛
(D)66 斛
(7)设 D 为 ABC 所在平面内一点 BC 3CD ,则
4 1 AB AC 3 3 4 1 (C) AD AB AC 3 3
(A) AD

E F
(18)如图,四边形 ABCD 为菱形,∠ABC=120°, E,F 是平面 ABCD 同一侧的两点,BE⊥平面 ABCD, A DF⊥平面 ABCD,BE=2DF,AE⊥EC. (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值
D B C
(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x(单位: 千元)对年销售量 y(单位:t)和年利润 z(单位:千元)的影响,对近 8 年的年宣 传费 xi 和年销售量 yi(i=1,2, · · · ,8)数据作了初步处理,得到下面的散点图及 一些统计量的值.
,讨论 h(x)零点的个数
请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果 多做,则按所做第一个题目计分,做答时,请用 2B 铅笔在答题卡上将所选题号 后的方框涂黑. C (22)(本题满分 10 分)选修 4-1:几何证明选讲 E 如图,AB 是☉O 的直径,AC 是☉O 的切线,BC 交☉O 于点 E
第Ⅰ卷
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只 有一项是符合题目要求的. 1+z (1) 设复数 z 满足 =i,则|z|= 1 z (A)1 (B) 2 (C) 3 (D)2
(2)sin20°cos10°-con160°sin10°= (A)
3 2
(B)

4
N 设 C2 与 C3 的交点为 M , R ,

(24)(本小题满分 10 分)选修 4—5:不等式选讲 已知函数 =|x+1|-2|x-a|,a>0.
(Ⅰ)当 a=1 时,求不等式 f(x)>1 的解集; (Ⅱ)若 f(x)的图像与 x 轴围成的三角形面积大于 6,求 a 的取值范围
3 ,1) 2e
) D. [
3 ,1) 2e
B. [
3 3 , ) 2e 4
C. [
3 3 , ) 2e 4
第 II 卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题, 每个试题考生都 必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共 3 小题,每小题 5 分 (13)若函数 f(x)=xln(x+ a x2 )为偶函数,则 a= (14)一个圆经过椭圆 的三个顶点,且圆心在 x 轴上,则该圆的标准方

vn),其回归线 v= u

(u u )(v v)
i 1 i i
n
(u u )
i 1 i
n
, v u
2
(20)(本小题满分 12 分) 在直角坐标系 xoy 中,曲线 C:y=
x2 与直线 y=kx+a(a>0)交于 M,N 两点, 4
(Ⅰ)当 k=0 时,分别求 C 在点 M 和 N 处的切线方程; (Ⅱ)y 轴上是否存在点 P,使得当 k 变动时,总有∠OPM=∠OPN?说明理由. (21)(本小题满分 12 分)
1 3 1 3
(b)(2kπ − 4 , 2kπ + 4),k∈ ������ (D)(2k − 4 , 2k + 4),k∈ ������
1 3
1
3
(9)执行右面的程序框图,如果输入的 t=0.01,则输出的 n= (A)5 (B)6 (C)7 (D)8
(10) ( x2 x y)5 的展开式中, x5 y 2 的系数为 (A)10 (B)20 (C)30 (D)60
2 r
(11)圆柱被一个平面截去一部分后与半球(半径为 r)组成一个几何体, (12)该几何体三视图中的正视图和俯视图如图所示.若该几何体的 (13)表面积为 16 + 20 ,则 r= (A)1 (B)2 (C)4 (D)8 r
r 正视图
2 r 俯视图
12.设函数 f(x)=ex(2x-1)-ax+a,其中 a 1,若存在唯一的 整数 x0,使得 f(x0) 0,则 a 的取值范围是( A.[
D A
(I) (II)
若 D 为 AC 的中点,证明:DE 是☉O 的切线; 若 OA= 3 CE,求∠ACB 的大小.
O B
(23)(本小题满分 10 分)选修 4-4:坐标系与参数方程 在直角坐标系 xOy 中.直线 C1 :x=-2,圆 C2 :(x-1)2+(y-2)2=1,以坐标原点 为极点, x 轴的正半轴为极轴建立极坐标系. (I) (II) 求 C1 , C2 的极坐标方程; 若直线 C3 的极坐标方程为 求△C2MN 的面积
3 2
(C)
1 2
(D)
1 2
(3)设命题 P: n N, n2 > 2n ,则 P 为 (A) n N, n2 > 2n (C) n N, n2 ≤ 2n (B) n N, n2 ≤ 2n (D) n N, n2 = 2n
(4)投篮测试中,每人投 3 次,至少投中 2 次才能通过测试.已知某同学每次 投篮投中的概率为 0.6,且各次投篮是否投中相互独立,则该同学通过测试的概 率为 (A)0.648 (B)0.432 (C)0.36 (D)0.312 x2 (5)已知 M(x0,y0)是双曲线 C: y 2 1 上的一点,F1、F2 是 C 上的两个 2 焦点,若 MF1 MF2 <0,则 y0 的取值范围是
(A)(-
3 3 , ) 3 3
2 2 2 2 , ) 3 3
(B)(-
3 3 , ) 6 6
2 3 2 3 , ) 3 3
(C)(
(D)(
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有 委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角 处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为 8 尺,米堆的 高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立 方尺,圆周率约为 3,估算出堆放斛的米约有
(B) AD
4 1 AB AC 3 3 4 1 (D) AD AB AC 3 3

(8)函数 f(x)=cos (ωx + φ)的部分图像如图所示,则 f(x)的单调递减区间为 (A)(kπ − 4 , kπ + 4,),k∈ ������ (C)(k − 4 , k + 4),k∈ ������
年 销 售 量 /t 年宣传费(千元)
x
y
w

x 1
1
(x1- x )2

x 1
1
(w1- w )2

x 1
1
(x1- x )(y-


x 1
1
(w1-
y)
1.6 1469
w )(y- y )
108.8
46.6
56.3
6.8
289.8
表中 w1 = x 1,
相关文档
最新文档