初中几何证明题ppt课件

合集下载

初中数学专题讲解课件专题十三几何图形的相关证明及计算(构造直角三角形)PPT模板

初中数学专题讲解课件专题十三几何图形的相关证明及计算(构造直角三角形)PPT模板

专题十三 几何图形的相关证明及计算
(构造直角三角形) 初中数学专题讲解课件
汇报人:XXX
2. 如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点, ∠CDE的平分线交AM延长线于点F. (1)如图①,若点E为线段AM的中点,BM∶CM=1∶2,BE=,求AB的长; (2)如图②,若DA=DE,求证:BF+DF=AF.
3. (2019重庆实验外国语学校一模)如图,在菱形ABCD中,∠A=60°,点E、F分 别在边AB、BC上. (1)如图①,若△DEF是等边三角形,且AD=6,AE=4,求△BEF的面积; (2)如图②,若△DEF是等腰直角三角形,∠EDF=90°,且DB⊥EF于点Q,过点D 作DH⊥AB交AB于点H,交EF于点G,求证:AB=DH+12CF.
专题十三 几何图形的相关证明及计算
(构造直角三角形) 初中数学专题讲解课件
汇报人:XXX
ห้องสมุดไป่ตู้ 目 录
01 考 情 聚 焦 02 考 点 突 破 03 考 向 课 堂 04 其 它 补 充
01
考情聚焦
1. (2019重庆八中一模)如图,在平行四边形ABCD中,AE⊥BD于点E. (1)如图①,若BC=BD,tan∠ABE=3,DE=16,求平行四边形ABCD的周长; (2)如图②,若∠DBC=45°,对角线AC、BD交于点O,F为AE上一点,且AF=2EO ,求证:CF= 2CD.

最新青岛版初二数学八年级上册第五章 几何证明初步 ppt课件

最新青岛版初二数学八年级上册第五章 几何证明初步 ppt课件

笑不笑由你
电视里正在播放精彩的乒乓球比赛,奶奶边 看比赛边说:打得好!打得好!可惜播音员不识 数……
孙子听了不解地问:人家咋不识数? 奶奶说:明明是两个人在打球,他却说单打; 明明是四个人在打球,他却说双打,你说他识数 不识数?
合作解疑
一般地,用来说明一个概念含义的语句叫做 这个概念的定义。
例如: 1、“具有中华人民共和国国籍的人,叫做中华人 民共和国公民” 是“ 中华人民共和国公民 ”的定义; 2、 “两点之间 线段的长度,叫做这两点之间的距离” 是两点之间的距离 “ ”的定义;
两个角所对的边也相等。
(4)对顶角相等。 条件是: 两个角是对顶角 结论是: 这两个角相等 改写成: 如果两个角是对顶角,那么这两个角相等。
做一做
指出下列命题的条件和结论,并改写 “如果……那么……”的形式: ⑴两条边和它们的夹角对应相等的两 个三角形全等; 如果两个三角形有两条边和它们的夹角对 应相等,那么这两个三角形全等。 ⑵直角三角形两个锐角互余。
“直观”可靠吗?
直观是重要的,但它有时也会骗人.观察下列图形,回 答问题: a a b b 线段a,b相等吗?
线段a,b相等吗?
a bc
d
线段d与哪条线段在同 一条直线上?
红色线围成的图形是 正方形吗?
精讲点拨 1.
解: 小亮的结论错误. 当n=6时 n2+3n+1 =36+18+1 =55 ∵55为合数 ∴当n为正整数时, n2+3n+1的值一定是质数错误.
如何给名词下定义
去除与众不同的一个选项
(A)
(B)
(C)
(D) 共同点:三角形
特点:A、B、D有一个角是直角

人教版八年级上册 13.1 命题、定理与证明(共33张PPT)

人教版八年级上册  13.1  命题、定理与证明(共33张PPT)

动手试一试:
证明:直角三角形的两个锐角互余.
已知:如图,在△ABC中,∠C=90°.
求证:∠A+∠B=90°.
A
B
C
证明:∵∠A+∠B+∠C=180°,
又∵∠C=90°,
∴ ∠A+∠B=180°-∠C=90°.
随堂练习
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
(1)条件:如果两个三角形是全等三 角形,结论:那么它们的对应边相等;
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
( 2)条件:如果在同一平面内两条直 线都垂直于同一条直线,结论:那么这两 条直线平行.
练习
指出下列命题中的真命题和假命题:
(1)同位角相等,两直线平行; (2)多边形的内角和等于180°; (3)三角形的外角和等于360°; (4)平行于同一条直线的两条直线相互 平行.
(2)是假命题; (1)(3)(4)是真命题.
练习
把下列定理改成“如果……,那么……” 的形式 ,指出它们的条件和结论,并用演绎 推理证明(1)所示的定理.
CD分别相交于E、F,PQ与 A
E
B
AB、CD分别相交于E、G,
C
∠PEM=27°,∠DGQ=63°.
求证:MN⊥CD.
F GD
Q N
作业
PM
A
E
B
CF
证明: AB//CD( ),

《初中几何证明题》课件

《初中几何证明题》课件

提高练习题
总结词:能力提升
详细描述:提高练习题是在基础练习题的基础上,进一步加深对几何证明题的理解和应用。这些题目 通常涉及多个知识点,需要学生综合运用所学知识进行解答,有助于提高学生的思维能力和解题技巧 。
竞赛练习题
总结词
挑战与突破
VS
详细描述
竞赛练习题是针对初中数学竞赛的几何证 明题,难度较大,对学生的思维能力和解 题技巧提出了更高的要求。这些题目通常 需要学生突破常规思维,寻找独特的解题 方法,有助于培养学生的创新思维和解决 问题的能力。
反证法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立 。
详细描述
反证法是一种常用的证明方法。首先假设结论不成立,然后 在此基础上进行推理和计算,如果推导出矛盾,则说明假设 不成立,从而证明结论成立。
综合法与分析法
总结词
综合法是从已知条件出发,逐步推导到结论;分析法是从结论出发,逐步推导到已知条 件。
05
几何证明题总结与反思
总结几何证明题的解题思路
明确已知条件和求证目标
在解题前,应仔细阅读题目,明确已 知的条件和需要证明的目标,以便确 定解题方向。
分析图形结构
根据题目的描述,分析图形的结构, 包括角度、线段、平行、垂直等关系 ,为解题提供依据。
选择合适的证明方法
根据图形的结构和已知条件,选择合 适的证明方法,如利用全等三角形、 相似三角形、勾股定理等。
逐步推导
根据选择的证明方法,逐步推导所需 证明的结论,每一步推导都要有明确 的逻辑依据。
反思几何证明题的常见错误与注意事项
常见错误
在解题过程中,容易出现一些常 见的错误,如混淆已知条件和求 证目标、忽略图形的结构、选择 错误的证明方法等。

青岛版八年级数学上册几何证明举例第二课时教学课件

青岛版八年级数学上册几何证明举例第二课时教学课件

通过添加辅助线把三角形ABC分成两个全等的三角形,
只要证得被分成的两个三角形全等即可得∠B=∠C.
已知:如图,在△ABC中,AB=AC.
A
求证:∠B=∠C.
证明:作底边BC上的高AD交BC于点D.
∴∠ADB=∠ADC=90°(垂线的定义)
在Rt△ABD和Rt△ACD中, ∵AB=AC(已知),AD=AD(公共边),
BD=CD, ∴AD⊥BC
∠1=∠2.
B ∥D ∥C
⑶∵AB=AC, AD⊥BC
∴BD=CD, ∠1=∠2.
发现与证明
对于“等腰三角形的两个底角等”,有逆命 题吗?逆命题是什么,怎样证明呢?
逆命题:
有两个底角相等的三角形是等腰三角形. A
1.作辅助线AD⊥BC.
B DC
2.根据∠ADB= ∠ADC=90°, AD=AD,可推出AB=AC.
3.如图,△ABC是等边三角形,BD是AC边上的 高,延长BC至E,使CE=CD.连接DE.
(1)∠E等于多少度? (2)△DBE是什么三角形?为什么?
1.等腰三角形的性质定理和判定定理: 2.等边三角形的性质定理和判定定理:
2)找等腰或等边三角形;
3)对顶角相等;
还有什么其他的方法?
4)等角的余角(或补角)相等;
1.已知,如图D是⊿ABC内的一点,且DB=DC,BD 平分∠ABC,CD平分∠ACB.
求证:AB=AC. A
D
B
C
2.在△ABC中,∠ABC、∠ACB的平分线相交于 点O,过点O作DE∥BC,分别交AB、AC于点D、E.请 证明DE=BD+EC.
∴△ABC是等边三角形。
2)若∠B=60°,AB=AC.也可证得△ABC是等AC,D是AB上的一 点,DE⊥BC,交BC于点E,交CA的延长线于点F。

几何证明题如何书写才算规范 ppt课件

几何证明题如何书写才算规范 ppt课件
同样在上面证明中,也有同学将角的符号表示错误 或者漏写. 证明: (2)∵△ABC≌△BAD, ∴AC=BD. 又∵OA=OB, ∴ OC=OD. ∴∠C=ODC.
几何证明题如何书写才算规范
2.格式规范 “∵∴” 的书写和推出符号的使用应统一. ∵△ABC≌△BAD =〉 AC=BD. 又∵OA=OB, =〉 OC=OD =〉 ∠OCD=∠ODC.
几何证明题如何书写才算规范
●典型的几种证明书写的规范形式 (全等的证明)
我们在初中阶段有一些典型的规范证明格 式,如:全等证明的书写,我们发现在教材 中经常有这样的格式作为规范可以参考.
几何证明题如何书写才算规范
●添加辅助线的规范
• 添加辅助线经常出现在几何证明题中,我 们如何使用正确规范的语言添加辅助线显 得尤为重要.经常使用的辅助线词语,如 “连接”,“延长…到…使得…”, “作…与…平行”“ 作…与…垂直,垂 足为…”.
几何证明题如何书写才算规范
2.是评价知识水平的重要载体 规范的书写是考核评价反馈知识水平
的前提,书不规范就难以做到真实水平 的展现.
几何证明题如何书写才算规范
●怎样才算规范
1.语言规范 常见的数学语言使用要规范.如: (1)表示逻辑关系的因为、所以的简化符 号不能乱写, 因为用“∵”,所以用 “∴” ;
• 但也有同学会出现如“连接A,B两点,使 得——”,或者“延长——使得…与…平 行”这样的不规范或错误.
几何证明题如何书写才算规范
几何证明题如何书写才算规范
(2)三角形的表示形式要规范
例(2010南京市第21题) 如图,四边形ABCD的对
角线AC、BD相交于点O,△ABC≌△BAD.
求证:(1)OA=OB;(2)AB∥CD. 证明: (1)∵ABC≌BAD, ∴∠CAB=∠DBA. ∴OA=OB.

北师大版初中九年级上册数学课件 《角平分线》证明PPT课件

北师大版初中九年级上册数学课件 《角平分线》证明PPT课件

1
2
B
E' D C
得解;(2)有线
E
''
段的和差关系时, 常用截长补短法作
1
2
3
辅助线化和差关系 为相等关系。
角的平分线
线段的垂直平分线
A
D
C
P
M P
O
E
B
A
B
N
定理1:在角的平分线上的点到这个角 定理:线段垂直平分线上的点和这条线段两
的两边的距离相等。
个端点的距离相等。
定理2:到一个角的两边的距离相等的 逆定理:和一条线段两个端点距离相等的
点,在这个角的平分线上。
点,在这条线段的垂直平分线上。
线段的垂直平分线可以看作是和线段两上端 角的平分线是到角的两边距离相等的所点距离相等的所有点的集合 有点的集合
点的集合是一条射线
点的集合是一条直线
作业(必做题):课本:习题,配套练习
问题探讨: 1、如图,如图所示∆ABC中, AD⊥BC于D,∠B=2∠C。求 证:AB+BD=CD。 若在ΔABC中,AD⊥BC于D, AB+BD=DC试问:∠B与∠C是 什2、么在关V型系公?路(∠AOB)内部,
认知结构中去.
问题引入
如图,浑南新区一个工厂,在公路西侧,到公 路的距离与到河岸的距离相等,并且与河上公 路桥较近桥头的距离为300米。你能尝试确定工 厂的位置吗?并说明理由。

比例尺1:20000
例1、如图,某开发区有一个工厂在公路西侧, 到公路的距离与到河岸的距离相等,并且与河 上公路桥较近桥头的距离为300米。你能尝试确 定工厂的位置吗?并说明理由。
DA
分析:要证明PD=PE,

几何证明举例(HL)ppt

几何证明举例(HL)ppt

情境问题2:
如果工作人员只带了一条尺, 能完成这项任务吗? 工作人员是这样做的,他测量了每个三角 形没有被遮住的直角边和斜边, 发现它们分 对于两个直角三角形,若满足 别对应相等,于是他就肯定“两个直角三角 一条直角边和一条斜边对应相等时, 形是全等的”。你相信他的结论吗? 这两个直角三角形全等吗? A
3. 如图, AB⊥BC,AD⊥DC,且 AD=AB , 求证:BC=DC
A
B
D C
4. 如图:AC⊥BC,BD⊥AD,AC=BD. D 求证:OA=OB. C
O A B
如图, ∠ACB =∠ADB=90,要证明 △ABC≌ △BAD,还需一个什么条件? 把这些条件都写出来,并在相应的括号内 填写出判定它们全等的理由。 (1) AD=BC ( HL ) (2) BD=AC ( HL ) (3)∠ DAB= ∠ CBA ( AAS ) (4)∠ DBA= ∠ CAB ( AAS ) D A
C B
判断两个直角三角形全等的方法有: (1):SSS ; (2):SAS ; (3):ASA ; (4):AAS ; (5):HL ;
D
B
C
E
F
想一想
对于一般的三角形“S.S.A”可不可以 证明三角形全等? A
不可以.
B
D
C
但直角三角形作为特殊的三角形, 会不会有自身独特的判定方法呢 ?
请你动手画一画
任意画出一个Rt△ABC,∠C=90°。 再画一个Rt△A´B´C´,使得∠C´= 90°, B´C´=BC,A´B´= AB。
按照下面的步骤画Rt△A´B´C´ ⑴ 作∠MC´N=90°;
A

B
C N
⑵ 在射线C´M上取段B´C´=BC; ⑶ 以B´为圆心,AB为半径画弧,交 射线C´N于点A´; ⑷ 连接A´B´. M B´

沪教版(上海)八年级数学第一学期-第十九章 几何证明 复习课件-

沪教版(上海)八年级数学第一学期-第十九章 几何证明 复习课件-
第十九章 几何证明 复习课件
知识梳理: 定义
概念
几 何 证 明
命题 真命题 假命题 基本事实 定理 互逆命题
几何证明
证明步骤
平行线 三角形内角和 全等三角形 等腰三角形 等边三角形 角平分线 垂直平分线 直角三角形
知识回顾
定义:用来说明一个名词含义的语句叫做定义。 命题:判断一件事情的句子,叫做命题。
轴对称图形,有三条对称轴
知识梳理: 等边三角形的判定:
名称
图形
判定


三条边都相等的三角形


A
三个角都等于60°的三角形

B
C 有一个角等于60°的等腰
三角形
知识梳理: 角平分线
定理:角平分线上的点到这个角的两边距离相等。 逆定理:在一个角的内部,且到角的两边距离相等
的点,在这个角的平分线上。 定理:三角形的三条角平分线相交于一点,并且这
精讲点拨
例 已知:如图,在△ABC中,∠1是它的一个外角,E为边
AC上一点,延长BC到D,连接DE。
D 2
求证:∠1>∠2。 C
证明:∵∠1是△ABC的一个外角(已知),
∴∠1>∠3(
)。
E5
3
∵∠3是△CDE的一个外角,
4
∴∠3>∠2(
)。 A
1 BF
∴∠1>∠2(
)。
把你所悟到的证明真命题的方法,步骤,书写格
)。
),
), )。
谢谢
一点到三边的距离相等(这个交点叫做三角形的内 心)。 三角形一个内角和与它不相邻的两个外角的平分线 交于一点,这个的点到三边所在直线的距离相等。 这样点有三个。

人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)

人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)

归纳总结
判断某一种事情的句子叫做命题,理清命题的 定义必须搞清楚两点: (1)命题必须是一个“完整的句子”; (2)命题必须作出判断,如“两条直线相交交 点唯一吗?”没有对事情作出判断,故不是命题。 定理和公理都是真命题,都可以作为证明其他 命题的依据,不同的是:公理是人们从长期实践 中总结出来的真命题,不用证明也不能证明;定 理是用推理证实为正确的命题。
命题1 在同一平面内,如果一条直线垂直 于两条平行线中的一条,那么它也垂直于 另一条. 已知:如图,b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知) ∴∠1=90º (垂直的定义) 又∵ b∥c(已知) ∴∠1=∠2(两直线平行,同位角相等) ∴∠2=∠1=90º(等量代换) ∴ a⊥c(垂直的定义)
题设是: a=b,b=c
结论是: a=c
③ 同位角相等.
如果两个角是同位角,那么这两个角相等.
条件是:两个角是同位角
结论是:这两个角相等 ④ 同角的补角相等. 如果两个角是同一个角的补角,那么这两个角相 等. 条件是:两个角是同一个角的补角 结论是:这两个角相等
讨论与归纳 思考:请问如何判断①是假命题?如何判断②是
真命题?
① 如果两个角相等,那么它们是对顶角. ② 如果两条平行线被第三条直线所截,那么同旁 内角互补. 注意:要判断一个命题是真命题要经过严格
的推理;是假命题只要举一个反例。
1.下列句子哪些是命题?是命题的,指出是真 命题还是假命题? 是 真命题 (1)兔子有四条腿; 是 假命题 (2)内错角相等; 否 (3)画一条直线; 是 假命题 (4)四边形是正方形; 否 (5)你的作业做完了吗? 是 真命题 (6)同位角相等,两直线平行; 是 真命题 (7)对顶角相等; 是 假命题 (8)垂直于同一直线的两直线平行; 否 (9)过点P画线段MN的垂线;

青岛版八年级上册数学《三角形内角和定理》PPT课件

青岛版八年级上册数学《三角形内角和定理》PPT课件

1.(1)如图(甲),在五角星图形中,求∠A+∠B +∠C +∠D +
∠E 的度数.
(2)把图(乙)、(丙)叫蜕化的五角星,问它们的五角之和
与五A角星图形的A五角之和仍相等D 吗?为什么A? E
B
E
D
C
B
C
C
D
(甲)
(乙)
B
E
(丙)
相等,也可凑到一个三角形中.
当堂检测
1△ABC 中,若∠A +∠B =∠C ,则△ABC 是( B )
的数据。 按从小到大排列为_______________,圈出正中间位置的数 据。你发现了什么? (3)若又加入一名男生身高173cm,新数据中有___个数据。 按从大到小排列为_______________________,圈出中间的 两个数,并求出平均数为_______。 按从 小到大排列为______________________,圈出中间的 两个数,并求出平均数为_____。
请你帮小明把想法化为实际行动. 证明:过点A作PQ∥BC,则 ∠1=∠B(两直线平行,内错角相等), ∠2=∠C(两直线平行,内错角相等), 又∵∠1+∠2+∠3=1800 (平角的定义), ∴ ∠BAC+∠B+∠C=1800 (等量代换).
P AQ 132
B
C
小明的想法已经变为现实,由此你受到什么启发? 你有新的证法吗?
201
人数/名 4
6
5
4
2
则该校篮球队21名同学身高的中位是 ———
小结
求中位数的一般步骤:
1.将这一组数据从小到大(或从大到小)排列;
2.若该数据含有奇数个数,位于中间位 置的数是中位数;

全等三角形ppt课件

全等三角形ppt课件

其他领域的应用在工程领源自中,全等三角形可用于解 决一些复杂的几何问题,例如机构设 计、零件配合等。
在物理学中,全等三角形可用于分析 光的反射、折射等现象,以及解决一 些与角度、长度相关的物理问题。
2024/1/25
在地理学和地质学中,全等三角形可 用于测量地形高度、计算地层厚度等 。
18
05
全等三角形拓展知识
误区二
忽视三角形的边长和角度的对应关系。
2024/1/25
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
6
02
全等三角形证明方法
2024/1/25
12
求解角度大小问题
利用全等三角形对应角相等的 性质,通过构造全等三角形来 求解角度大小。
2024/1/25
在复杂图形中,通过寻找或构 造全等三角形,将问题转化为 简单的角度计算。
利用全等三角形的性质进行角 度的平移、旋转等操作,以简 化问题并求解角度大小。
13
判定图形形状问题
利用全等三角形的性质来判断图 形的形状,例如通过证明两个三 角形全等来证明四边形是平行四
7
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
用于证明两个三角形全等。
2024/1/25
示例:在△ABC和△DEF中,如果AB=DE ,BC=EF,∠B=∠E,则△ABC≌△DEF。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宽AB.
提示:
连接MN,过点M作MD⊥NB
M
D
N
于点D, △MCN为等边三角
75° 45°
AC B
形,证明△MND≌ △MCA, MD=MA=AB=a.
精品课件
14
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
15
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
B AE
F 提示: C 过点B作BF⊥DC交DC的延长
线于点F.证明△BAE≌△BCF, D 四边形BEDF是正方形,BE=3.
精品课件
13
例3 如图,在一个房间内,有一个梯子斜靠在墙
上,梯子顶端距地面的垂直距离MA为a米,此时
梯子的倾斜角为75°.若梯子底端距离地面的垂
直距离NB为b米,梯子的倾斜角为45°.求房子的
A
在△ABD和△EBD中,
D ∵BA=BE, ∠ABD=∠EBD,BD=BD,
∴△ABD≌△EBD.
∴∠A=∠DEB ,AD=DE .
B
E
C
∵AD=DC,∴ DE=DC. ∴∠DEC=∠DCE.
∵∠DEC+∠DEB=180°.
∴ ∠A+∠C=180°.
精品课件
12
例2 如图,在四边形ABCD中,AB=BC, ∠ABC=∠CDA=90°,BE⊥AD,垂足为E. S四边形ABCD =9,求BE的长.
• 但也有同学会出现如“连接A,B两点,使 得——”,或者“延长——使得…与…平 行”这样的不规范或错误.
精品课件
10
(2009南京中考模拟题)写出下列命题的已知、
求证,并完成证明过程.
命题:如果一个三角形的两个角相等,那么这两
个角所对的边也相等(简称:“等角对等
边”).
A
已知:如图,在△ABC中,∠B=∠C. 求证:AB=AC.
证明:过点A作AD⊥BC,垂足为D. 在△ABD和△ACD中, ∵∠B=∠C,∠ADB=∠ADC,AD=AD, ∴△ABD≌△ACD. B D C ∴AB=AC.
精品课件
11
已知:如图,在四边形ABCD中,BC >AB,
AD=CD,BD平分∠ABC.
求证: ∠A+∠C=180°.
证明:在BC上取的E,使BE=BA,连接DE.
精品课件
6
4.逻辑规范 (1)思路不清晰,书写时常颠三倒四; (2)依据不符或简化, 如: ∵∠CAB=∠ACD. ∴AB∥CD.(内错角相等)
Байду номын сангаас
精品课件
7
●典型的几种证明书写的规范形式 (全等的证明)
我们在初中阶段有一些典型的规范证明格 式,如:全等证明的书写,我们发现在教材 中经常有这样的格式作为规范可以参考.
几何证明题如何书写才算规范
精品课件
1
●怎样才算规范
1.语言规范 常见的数学语言使用要规范.如: (1)表示逻辑关系的因为、所以的简化符 号不能乱写, 因为用“∵”,所以用 “∴” ;
精品课件
2
(2)三角形的表示形式要规范
例(2010南京市第21题) 如图,四边形ABCD的对
角线AC、BD相交于点O,△ABC≌△BAD.
精品课件
8
思考题 已知:如图,△ABC中, ∠ C=90°,
AD是∠BAC的平分线,DE⊥AB,垂足 为E,F在AC上,BD=DF. 求证:CF=EB. C
D
F
A
E
B
精品课件
9
●添加辅助线的规范
• 添加辅助线经常出现在几何证明题中,我 们如何使用正确规范的语言添加辅助线显 得尤为重要.经常使用的辅助线词语,如 “连接”,“延长…到…使得…”, “作…与…平行”“ 作…与…垂直,垂 足为…”.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
求证:(1)OA=OB;(2)AB∥CD. 证明:
(1)∵ABC≌BAD, ∴∠CAB=∠DBA. ∴OA=OB.
精品课件
3
(3)角的正确表示
同样在上面证明中,也有同学将角的符号表示错误 或者漏写. 证明: (2)∵△ABC≌△BAD, ∴AC=BD. 又∵OA=OB, ∴ OC=OD.
∴∠C=ODC.
精品课件
4
2.格式规范 “∵∴” 的书写和推出符号的使用应统一. ∵△ABC≌△BAD =〉 AC=BD. 又∵OA=OB, =〉 OC=OD =〉 ∠OCD=∠ODC.
精品课件
5
3.步骤规范
这里主要是我们许多同学会疏忽的共性 问题,由于证明的书写要体现严谨的思 路,但基于数学语言的不熟练和思路的 不清晰以及不少同学的粗枝大叶的性格, 经常会出现跳跃步骤的现象.
相关文档
最新文档