高二数学导数知识点总结
(完整版)高中数学导数知识点归纳总结
§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
高二导数的知识点总结大全
高二导数的知识点总结大全一、导数的定义和基本概念导数是微分学中的重要概念,用于描述函数在某一点上的变化率。
导数的定义如下:若函数f(x)在点x处的导数存在,则导数定义为:f'(x) = lim(h→0) [(f(x+h)-f(x))/h]其中,f'(x)表示函数f(x)在点x处的导数。
二、导数的性质1. 可导函数的性质:- 可导函数f(x)在其定义域上连续。
- 当函数f(x)在某一点x处可导时,f(x)在该点连续。
2. 常见函数的导数公式:- 常数函数的导数为零:(c)' = 0。
- 幂函数的导数公式:(x^n)' = nx^(n-1)。
- 指数函数的导数公式:(e^x)' = e^x。
- 对数函数的导数公式:(lnx)' = 1/x。
- 三角函数的导数公式:(sinx)' = cosx,(cosx)' = -sinx。
3. 导数的四则运算规则:- 和的导数等于导数的和:(f(x) + g(x))' = f'(x) + g'(x)。
- 差的导数等于导数的差:(f(x) - g(x))' = f'(x) - g'(x)。
- 积的导数等于导数的积加上原函数乘以导数:(f(x) * g(x))' =f'(x) * g(x) + f(x) * g'(x)。
- 商的导数等于导数的商减去原函数乘以导数的商的导数:(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2。
三、导数的应用1. 切线与法线:- 函数图像上一点处的切线斜率等于该点处的导数值。
- 函数图像上一点处的法线斜率等于切线斜率的负倒数。
2. 极值点与拐点:- 极值点对应函数的导数在该点处为零或不存在。
- 函数图像的拐点对应函数的导数在该点处发生变号。
数学高考知识点导数总结
数学高考知识点导数总结一、导数的定义1. 导数的定义:设函数y=f(x),若极限lim┬(Δx→0)(f(x+Δx)-f(x))/Δx存在,则称这一极限为函数y=f(x)在点x处的导数,记作f'(x),即f'(x)=lim┬(Δx→0)(f(x+Δx)-f(x))/Δx2. 几何意义:函数y=f(x)在点x处的导数f'(x)表示函数曲线在点(x,f(x))处的切线的斜率。
3. 物理意义:导数也可以表示物理上的速度、加速度等概念,即导数表示函数在某一点的瞬时变化率。
4. 导数的存在性:函数在某一点处存在导数的充分必要条件是函数在该点处的左、右导数存在且相等。
二、导数的计算1. 基本函数的导数:(1)常数函数:(k)'=0(2)幂函数:(xⁿ)'=nxⁿ⁻¹(3)指数函数:(aˣ)'=aˣlna(4)对数函数:(logₐx)'=1/(xlna)(5)三角函数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x(6)反三角函数:(arcsinx)'=1/√(1-x²),(arccosx)'=-1/√(1-x²),(arctanx)'=1/(1+x²)2. 基本导数公式:(1)和差法则:(u±v)'=u'±v'(2)积法则:(uv)'=u'v+uv'(3)商法则:(u/v)'=(u'v-uv')/v²(4)复合函数求导:若y=u(v(x)),则y'=(du/dv)·v'(x)3. 隐函数求导:当函数关系式中含有自变量的隐函数,利用导数的基本运算法则以及求导公式进行求导。
4. 参数方程求导:设x=x(t),y=y(t),则dy/dx=(dy/dt)/(dx/dt)5. 高阶导数的计算:若函数f(x)的导数存在,则f'(x)也是一个函数,可以继续求导,得到f''(x)、f'''(x)等高阶导数。
导数知识点总结大全高中
导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
高中数学导数知识总结+导数七大题型答题技巧
高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。
二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
导数知识点归纳总结
导数知识点归纳总结一、导数的定义1. 导数的几何意义导数描述了函数在某一点的切线斜率,即函数曲线在该点的瞬时变化率。
在几何上,导数可以理解为函数曲线在某一点的切线斜率,它表示了函数在该点的瞬时变化情况。
2. 导数的代数定义设函数y=f(x),在x=a处可导的充分必要条件是改点的柯西收敛序列极限为相同的值。
这个值就是在点a处的导数。
它是一个数值,常常用f'(a)表示。
3. 导数的表示导数通常用f'(x)、dy/dx或y'表示。
4. 导数的图形意义导数的图形意义是函数在某点处的导数等于该点处的切线的斜率,即在该点函数的线性增长率。
二、导数的性质1. 导数存在性函数在某点可导的充分必要条件是函数在该点连续,连续函数一定可以导。
2. 导数的基本性质导数满足加法性、乘法性、常数法则、幂法则、反函数法则、复合函数法则、分段函数法则等性质。
三、求导法则1. 基本函数的导数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数。
2. 导数的四则运算导数的四则运算包括两个导数相加、导数与常数相乘、导数的乘积法则、导数的商法则。
3. 高阶导数函数的二阶导数为对其一阶导数进行求导,即f''(x)=(f'(x))',依次类推,得到高阶导数。
四、导数的应用1. 导数在最值问题中的应用y=f(x)在[a,b]上可导,且在[a,b]的端点不可导,则y=f(x)在[a,b]上有最大值和最小值,它们一般在驻点或者在区间的端点。
2. 导数在凹凸性与拐点判别中的应用y=f(x)的凹凸性和拐点以及弯曲率的研究,主要利用f''(x)的正负性和零点。
3. 导数在函数图形的创作中的应用利用导数的计算公式,可以绘制函数的图形,描绘函数的特点,掌握图形的整体特征。
4. 导数在微分中的应用微分可以看作函数的变化量,它与导数之间有着密切的联系。
微分和导数的关系可以帮助我们求解函数的变化率、近似值、极限值等问题。
高二数学导数知识点
高二数学导数知识点导数是数学中非常重要的概念,被广泛应用于各个领域。
在高二数学学习中,导数是一个重要的知识点。
本文将介绍一些高二数学导数的知识点,帮助大家更好地理解和掌握这一内容。
一、导数的定义导数可以理解为函数在某一点上的变化率。
设函数y=f(x),在点x处的导数记为f'(x),其计算公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h二、导数的几何意义导数的几何意义是函数图像上某一点处的切线斜率。
可以通过计算导数来确定函数曲线上某点的切线方程。
三、导数的运算法则1. 常数法则:常数的导数为0。
2. 基本初等函数导数法则:a. 幂函数:(x^n)' = n*x^(n-1)b. 指数函数:(a^x)' = ln(a) * a^xc. 对数函数:(log_a(x))' = 1 / (x * ln(a))d. 三角函数:(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x)3. 乘积法则:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)4. 商积法则:[f(x) / g(x)]' = [f'(x) * g(x) - f(x) * g'(x)] / [g(x)]^25. 复合函数求导法则:(f(g(x)))' = f'(g(x)) * g'(x)四、导数的应用导数广泛应用于微积分、物理学、经济学等领域。
以下是几个常见的应用:1. 极值问题:对于一个函数,极大值和极小值出现在导数为0或不存在的点。
2. 斜率问题:导数可以计算函数图像上某一点处的斜率,用于解决相关的问题。
3. 函数图像的变化:通过分析导数的正负变化来判断函数的递增和递减区间,从而得到函数图像的特征。
导数知识点总结大全
导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
重点高中数学导数知识点归纳总结
重点高中数学导数知识点归纳总结高中数学中的导数是一个重要的知识点,它是微积分的基础,也是日后学习数学和理工科学科的必备知识。
下面将对高中数学中的导数相关知识进行归纳总结。
一、导数的定义与基本性质1. 导数的定义:设函数y=f(x),在x=a处可导,那么函数f(x)在x=a处的导数定义为:f'(a)=lim┬(△x→0)(f(a+△x)-f(a))/(△x)。
2.函数连续与可导的关系:如果函数f(x)在x=a处可导,则函数f(x)在x=a处连续。
3.导数的几何意义:函数y=f(x)在x=a处的导数f'(a)表示了函数在该点处切线的斜率。
4.导数的性质:(1)常数函数的导数为0,即(f(x)=c,c为常数时,f'(x)=0)。
(2) 任意一次幂函数的导数为对应的幂次函数的导函数,即(f(x)=x^n,n为常数时,f'(x)=nx^(n-1))。
(3)任意两个函数的和(差)的导数等于这两个函数的导数之和(差)。
(f(x)±g(x))'=f'(x)±g'(x)。
(4)任意两个函数的积的导数等于这两个函数的导数之积加上这两个函数之积的导数。
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
(5) 任意一个函数的常数倍的导数等于它的导数的常数倍,即(cf(x))' = cf'(x),c为常数。
二、常见函数的导数1.常数函数f(x)=c的导数为f'(x)=0。
2. 幂函数f(x)=x^n,n为常数时,导数为f'(x)=nx^(n-1)。
3. 指数函数f(x)=a^x,a>0且a≠1时,导数为f'(x)=a^xlna。
4. 对数函数f(x)=logₐx,a>0且a≠1时,导数为f'(x)=1/(xlna)。
5. 正弦函数f(x)=sinx的导数为f'(x)=cosx。
高中数学导数知识点总结
高中数学导数知识点总结一、导数的基础1. 导数的定义- 导数表示函数在某一点的切线斜率。
- 符号表示:$f'(x)$ 或 $\frac{df}{dx}$。
2. 极限表达- 导数可以用极限表达:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。
3. 几何意义- 导数的几何意义是曲线在某一点的切线斜率。
二、导数的计算1. 基本导数公式- 常数函数:$(C)' = 0$。
- 幂函数:$(x^n)' = nx^{n-1}$(其中n为实数)。
- 指数函数:$(a^x)' = a^x \ln(a)$(其中a > 0且a ≠ 1)。
- 对数函数:$(\ln(x))' = \frac{1}{x}$。
- 三角函数:- $(\sin(x))' = \cos(x)$- $(\cos(x))' = -\sin(x)$- $(\tan(x))' = \sec^2(x)$2. 导数的运算法则- 和/差的导数:$(u \pm v)' = u' + v'$。
- 乘积的导数:$(uv)' = u'v + uv'$。
- 商的导数:$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$。
3. 链式法则- 如果有一个复合函数$g(f(x))$,则其导数为:$(g(f(x)))' = g'(f(x)) \cdot f'(x)$。
三、高阶导数1. 高阶导数的定义- 第二导数:函数的导数的导数,表示为$f''(x)$。
- 更高阶导数:同理,可以计算第三导数、第四导数等。
2. 高阶导数的计算- 通过重复应用导数的基本运算法则来计算。
四、导数的应用1. 切线问题- 利用导数求曲线在某一点的切线方程。
高二数学导数有关的知识点
高二数学导数有关的知识点在高二数学学习中,导数是一个非常重要的概念,它是微积分的基础。
导数的概念最初由英国数学家牛顿和莱布尼茨独立提出,并且成功地解决了许多与变率和曲线有关的问题。
导数的概念和应用在现代科学和工程领域也有着广泛的应用。
本文将介绍高二数学中与导数有关的一些重要知识点。
一、导数的定义1. 一元函数的导数定义对于一元函数$f(x)$,在点$x=a$处的导数表示函数在该点处的变化率。
导数的定义如下:$$f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,$h$是自变量$x$的增量。
2. 导数的几何意义导数也可以理解为函数在某一点处的切线斜率。
对于函数$y=f(x)$,在点$(a, f(a))$处的切线的斜率等于该点的导数:$$k = f'(a)$$二、导数的基本性质1. 常数函数的导数对于常数$c$,常数函数的导数等于0:$$\frac{d}{dx}(c) = 0$$2. 幂函数的导数对于幂函数$y=x^n$,其中$n$为常数,它的导数为:$$\frac{d}{dx}(x^n) = n \cdot x^{n-1}$$3. 指数函数的导数对于指数函数$y=a^x$,其中$a$为常数且$a>0, a≠1$,它的导数为:$$\frac{d}{dx}(a^x) = a^x \cdot \ln{a}$$4. 对数函数的导数对于对数函数$y=\log_a{x}$,其中$a$为常数且$a>0, a≠1$,它的导数为:$$\frac{d}{dx}(\log_a{x}) = \frac{1}{x \cdot \ln{a}}$$三、导数的运算法则1. 和差法则对于两个函数$u(x)$和$v(x)$,它们的导数的和(差)等于它们的导数的和(差):$$\frac{d}{dx}(u(x) \pm v(x)) = \frac{du(x)}{dx} \pm\frac{dv(x)}{dx}$$2. 乘法法则对于两个函数$u(x)$和$v(x)$,它们的导数的乘积等于第一个函数的导数乘以第二个函数本身再加上第一个函数本身乘以第二个函数的导数:$$\frac{d}{dx}(u(x) \cdot v(x)) = \frac{du(x)}{dx} \cdot v(x) + u(x) \cdot \frac{dv(x)}{dx}$$3. 除法法则对于两个函数$u(x)$和$v(x)$,它们的导数的商等于第一个函数的导数乘以第二个函数的倒数再减去第一个函数本身乘以第二个函数的导数再除以第二个函数的平方:$$\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right) =\frac{\frac{du(x)}{dx} \cdot v(x) - u(x) \cdot\frac{dv(x)}{dx}}{v(x)^2}$$四、高阶导数1. 高阶导数的定义高阶导数是指多次对函数进行求导得到的导函数。
高二数学导数重点知识点
高二数学导数重点知识点导数是高中数学中的一个重要概念,它在很多数学问题的解答中扮演着重要角色。
通过求解导数,我们能够计算函数在不同点上的斜率,进而研究函数的变化规律。
本文将介绍高二数学中的导数重点知识点,帮助大家更好地理解和应用这一概念。
一、导数的定义和性质导数的定义是:对于函数y=f(x),在x点处的导数定义为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示一个无穷小的增量。
导数表示函数变化率的大小,可以用来研究函数的增减性、极值等性质。
导数的性质包括:1. 基本导数公式:对于幂函数、指数函数、对数函数、三角函数等常见函数,有相应的导数公式可以直接使用。
2. 运算法则:导数具有线性性质,即求导数的和(或差)等于函数对应的和(或差)的导数;求导数的常数倍等于函数对应的常数倍的导数。
3. 导数的乘积法则:两个函数相乘的导数等于其中一个函数的导数乘以另一个函数再加上另一个函数的导数乘以第一个函数。
4. 导数的商法则:两个函数相除的导数等于分子的导数乘以分母再减去分母的导数乘以分子,最后再除以分母的平方。
5. 高阶导数:导数的导数称为高阶导数,可以通过多次求导获得。
二、导数的应用导数在数学中有广泛的应用,下面介绍几个常见的应用场景。
1. 切线和法线:导数可以用来求解曲线在某一点的切线和法线。
切线的斜率等于该点的导数值,而法线的斜率等于切线的相反数。
2. 函数的极值:导数可以帮助我们找到函数的极大值和极小值。
在导数为零或不存在的点处,函数可能有极值。
3. 函数的凹凸性:通过导数的变化可以研究函数的凹凸性。
如果导数的值递增,则函数的曲线凸向上;如果导数的值递减,则函数的曲线凹向上。
4. 函数的图像:导数可以揭示函数的图像特征。
通过分析导数的正负变化可以确定函数的增减性,通过分析导数的零点可以确定函数的极值点。
5. 近似计算:导数可以用来进行数值的近似计算。
高二数学导数模块知识点总结(3篇)
高二数学导数模块知识点总结(3篇)高二数学导数模块知识点总结(精选3篇)高二数学导数模块知识点总结篇1导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作:2、导数的几何物理意义:曲线在点处切线的斜率①=f/(_0)表示过曲线=f(_)上P(_0,f(_0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数=f(_)的自变量_在一点_0上产生一个增量Δ_时,函数输出值的增量Δ与自变量增量Δ_的比值在Δ_趋于0时的极限a如果存在,a即为在_0处的导数,记作f(_0)或df(_0)/d_。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
高中数学导数知识点归纳总结(可编辑)
高中数学导数知识点归纳总结高中导数知识点归纳一、基本概念1. 导数的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数。
在点处的导数记作 2 导数的几何意义:(求函数在某点处的切线方程)函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为 3.基本常见函数的导数: ①(C为常数)②③; ④; ⑤⑥; ⑦; ⑧. 二、导数的运算 1.导数的四则运算:法则1:两个函数的和或差的导数,等于这两个函数的导数的和或差,即:法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:常数与函数的积的导数等于常数乘以函数的导数为常数法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:。
2.复合函数的导数形如的函数称为复合函数。
法则: . 三、导数的应用 1.函数的单调性与导数(1)设函数在某个区间可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数。
(2)如果在某区间内恒有,则为常函数。
2.函数的极点与极值:当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值;②如果在附近的左侧<0,右侧>0,那么是极小值. 3.函数的最值:一般地,在区间上连续的函数在上必有最大值与最小值。
函数求函数的一般步骤:①求函数的导数,令导数解出方程的跟②在区间列出的表格,求出极值及的值;③比较端点及极值点处的函数值的大小,从而得出函数的最值 4.相关结论总结:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 四、例题插播例1:函数已知时取得极值,则 A.2 B.3 C.4 D.5 [解析]:∵,又时取得极值∴则 5 例2. 已知函数的图像过点P(0,2),且在点M处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间. 答案:(Ⅰ)解析式是(Ⅱ)在内是减函数,在内是增函数.。
导数高端知识点总结高中
导数高端知识点总结高中一、导数的概念1. 导数的定义在数学中,导数是函数变化率的量度,它表示函数在某一点的变化速率。
设函数y=f(x),若极限f'(x)=lim[(f(x+Δx)-f(x))/Δx](Δx→0)存在,则称f(x)在点x处可导,并称这个极限为函数f(x)在点x处的导数,记为f'(x)。
导数的几何意义是函数在某一点处的切线斜率。
2. 导数的几何意义导数的几何意义可以从图像的角度来理解。
在函数图像的某一点A处,函数的导数f'(x)表示了曲线在A点的切线斜率,也就是函数在这一点处的变化速率。
如果导数为正,表示函数在该点处是递增的;如果导数为负,表示函数在该点处是递减的;如果导数为零,表示函数在该点处的变化率为零,即函数在该点处有极值。
3. 导数的物理意义导数在物理学中也有着重要的应用。
例如,物体的位移与时间的关系可以用函数来描述,而物体的速度就是位移对时间的导数,加速度就是速度对时间的导数。
因此,导数可以用来描述物体在某一时刻的速度和加速度,这对于研究物体的运动特性具有重要的意义。
二、导数的性质1. 导数存在的条件函数f(x)在点x处可导的条件是函数在该点处的左导数和右导数存在且相等。
这个条件可以用极限的形式来描述,即lim[Δx→0-(f(x+Δx)-f(x))/Δx]=lim[Δx→0+(f(x+Δx)-f(x))/Δx]。
2. 导数的四则运算性质导数具有四则运算的性质,即对于两个可导函数f(x)和g(x),它们的和、差、积和商的导数可以通过原函数的导数来求得。
具体的性质如下:(1)和函数的导数:(f+g)'=f'+g'(2)差函数的导数:(f-g)'=f'-g'(3)积函数的导数:(fg)'=f'g+fg'(4)商函数的导数:(f/g)'=(f'g-fg')/g^23. 复合函数的导数如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也是可导的,它的导数可以通过链式法则来求得。
高中数学导数知识点归纳总结
高中数学导数知识点归纳总结1.导数的定义-函数f在a点可导的充分必要条件是:存在一个常数k,使得当自变量趋于a时,函数值与f(a)之差与自变量与a之差的比值的极限等于k。
这个常数k就是函数f在a点的导数。
- 导数的定义公式为:f'(x) = lim (f(x + △x) - f(x))/△x(△x→0)2.导数的基本运算法则- 常数法则:如果c是常数,那么dc/dx = 0-乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-除法法则:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g(x)^2- 链式法则:如果y = f(u)且u = g(x),那么dy/dx = dy/du *du/dx3.导数与函数的关系-函数f在点x=a处可导,则函数f在点x=a处连续。
-可导函数必定在其可导区间内连续,但是连续函数未必可导。
-导数存在的充分必要条件是函数在该点连续且有极限。
4.常见函数的导数- 幂函数:y = x^n,则y' = nx^(n-1)- 指数函数:y = a^x,则y' = a^x * ln(a)- 对数函数:y = ln(x),则y' = 1/x- 三角函数:sin x的导数是cos x,cos x的导数是-sin x,tan x 的导数是sec^2x5.导数的几何意义-导数表示函数在其中一点上的切线的斜率。
-导数的绝对值表示函数在该点的变化速率,正表示增加,负表示减小。
6.导数的应用-求函数的极值点:对导数函数进行分析,找到其零点。
-求函数的单调区间:根据导数的正负性,确定函数在哪些区间上是增函数或减函数。
-求函数的最大值最小值:结合极值点和边界点来进行判断。
-求曲线的切线和法线:根据导数和函数在其中一点上的数值来确定切线和法线的斜率。
7.高阶导数和导数的计算-高阶导数表示对函数的导数进行多次求导的结果。
(完整版)高中数学导数知识点归纳总结
§14.导数知识要点1.导数(导函数的简称)的定义:设X 。
是函数y f(x)定义域的一点,如果自变量X 在X 。
处 有增量 x ,则函数值y 也引起相应的增量 y f (x 0 x) f(x 0);比值 丄 止__x) f(xo)称为函数y 仁刈在点%。
到X 。
x 之间的平均变化率;如果极限 x X lim - lim f(X0 -------------- X)_f (Xo)存在,则称函数y f (x)在点x 。
处可导,并把这个极限叫做x 0 x x 0 x y f (x)在 x 0处的导数,记作 f (x 0)或 y |xX Q,即 f (x 。
)= lim y limf -(X° --- X)_.X 。
x x 。
x注:① X 是增量,我们也称为改变量”,因为X 可正,可负,但不为零.②以知函数y f(x)定义域为A , y f '(x)的定义域为B ,则A 与B 关系为A B.注:①可导的奇函数函数其导函数为偶函数 ②可导的偶函数函数其导函数为奇函数2.函数y⑴函数y 可以证明,如果 事实上,令x f (X)在点X o 处连续与点X o 处可导的关系:X o 处连续是y f (x)在点X o 处可导的必要不充分条件 y f (x)点x 0处连续. o.f (x)在点 y xof(x)在点X o 处可导,那么 X ,则XX o 相当于 是 lim f (x)X X 。
lim X 。
f(x 。
x) lim [ f(xX 。
X 。
) f(x 。
) f(x 。
)] 叫⑵如果y f (X 。
X ) f(x 。
) X f(x)点X o 处连续,f(x 。
)] 那么y例: f(x) |x|在点X o 。
处连续,f(X oX) f(X o ) lim lim f(X o )xx o x of(x)在点X o 处可导,是不成立的.y ,当X X0。
f (X 。
)o f(x 。
高中数学导数知识点总结3篇
高中数学导数知识点总结第一篇:导数定义、基本求导公式及其应用关于导数的定义导数是微积分学中的一项重要知识,是描述函数变化率的概念。
对于函数f(x)而言,若它在点x0处可导,则导数f'(x0)表示函数f(x)在该点的变化率,即当x在x0附近微小偏移时,f(x)的改变量与x偏移量的比值。
导数的求法1. 使用导数定义根据导数的定义,导数f'(x)可以表示为:f'(x) = limΔx→0 [f(x+Δx)-f(x)]/Δx这个方法比较麻烦,但在某些特殊情况下比较有用。
2. 使用基本求导公式基本求导公式有以下几种形式:1)常数函数的导数为零。
2)幂函数的导数为:(xn)'=nxⁿ⁻¹。
3)指数函数的导数为:(ex)'=ex。
4)对数函数的导数为:(lnx)'=1/x。
5)三角函数的导数为:(sinx)'= cosx,(cosx)'= -sinx,(tanx)'= sec²x,(cotx)'= -csc²x。
3. 使用导数定理导数定理包括和法、差法、积法、商法和复合函数求导法。
它们的公式分别为:1)和法:[u(x)+v(x)]' = u'(x) + v'(x)。
2)差法:[u(x)-v(x)]' = u'(x) - v'(x)。
3)积法:[u(x)·v(x)]' = u'(x)·v(x) + u(x)·v'(x)。
4)商法:[u(x)/v(x)]' = [u'(x)·v(x) -u(x)·v'(x)]/v²(x)。
5)复合函数求导法:[f(g(x))]′=f′(g(x))·g′(x)。
导数的应用1. 判断函数在某点的单调性和极值若函数在某点的导数f'(x0)符号发生改变,则该点是函数f(x)的极值点。
关于导数的知识点总结
关于导数的知识点总结一、导数的基本概念导数是描述函数变化率的概念。
对于函数y=f(x),在点x处的导数表示函数f(x)在这一点的变化率。
导数可以用极限的方式定义:如果函数f(x)在某一点x处可导,那么它的导数f'(x)可以表示为极限的形式:\[ f'(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]这个极限表示了在点x处沿着x轴的变化率,也就是对x的微小变化所引起的y的变化率。
如果这个极限存在,那么我们称函数在点x处可导,也就是有导数。
导数刻画了函数在某一点的斜率,它告诉我们函数在这一点的变化情况。
如果导数为正,说明函数在此处递增;如果导数为负,说明函数在此处递减;如果导数是零,说明函数在此处取得了极值。
导数还可以表示函数的瞬时变化率。
在物理学中,导数可以表示速度、加速度等物理量的变化率。
它可以告诉我们在某一时刻物体的速度、加速度等是如何变化的。
因此,导数不仅仅是在数学中有着重要的意义,在物理学中也有着广泛的应用。
二、导数的计算导数的计算是微积分中的关键内容。
对于简单的函数,可以通过极限的定义直接计算导数;而对于复杂的函数,可以利用导数的性质和一些常见的导数公式来进行计算。
下面将介绍一些常用的导数计算方法。
1. 导数的极限定义我们可以利用导数的极限定义来计算函数的导数。
例如,对于函数y=x^2,我们可以利用极限的形式计算它的导数:\[ \lim_{\Delta x\to0}\frac{(x+\Delta x)^2-x^2}{\Delta x}=\lim_{\Deltax\to0}\frac{x^2+2x\Delta x+(\Delta x)^2-x^2}{\Delta x}=\lim_{\Delta x\to0}2x+\Deltax=2x \]因此,函数y=x^2的导数为2x。
这就是通过极限的方式计算导数的基本方法。
完整版)高中数学导数知识点归纳总结
完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。
函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。
但是,反过来并不成立,即函数在某点处连续并不一定可导。
导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。
因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。
导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。
函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。
函数的最值可以通过求导数来确定。
注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。
对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学《导数》知识点总结
一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。
二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。
1823年
柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。
一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。
其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。
微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f-f,发现
的因子E就是我们所说的导数f'。
二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。
1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对
微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。
一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。
其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。
微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。
在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。
二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分
理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。
1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。
一个是实无限理论即无限是一个具体的东西一种真
实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。
其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。
微积分无论是用现代极限论还是150年前的理论都不是最好的手段。