塔吊附墙计算方案及附墙拉杆图纸
塔吊附墙计算方案设计及附墙拉杆图纸

实用标准文案精彩文档XX区安置小区工程2#塔吊QTZ80( TCT5512):案编制单位:广西建工集团建筑机械制造有限责任公司实用标准文案14精彩文档-、工程概况: ........................... 0 1、 工程项目情况: .......................... 2、 参建单位概况: ......................... 3、 塔吊情况: ............................. 二、 编制依据: ......................... 1 三、 塔吊附墙杆结构图....................... 2 1、 拉杆1结构图: .......................... 2、 拉杆2结构图: .......................... 3、 拉杆3结构图: .......................... 四、 附墙杆内力计算 ........................ 5 1、 支座力计算 ............................. 2、 附墙杆内力力计算 ........................ 五、 附墙杆强度及稳定性验算 ..................... 8 1、 附墙杆1验算 ........................... 2、 附墙杆2验算 ........................... 3、 附墙杆3验算 ........................... 4、 附墙杆对接焊缝强度验算 ...................... 5、 附墙杆连接耳板焊缝强度验算 .................... 六、 塔吊附墙杆连接强度计算 .....................2 3 45 5 8 9 10 11 11 12实用标准文案七、附着设计与施工的注意事项...................—、工程概况:1、工程项目情况:XX安置小区工程总建筑面积约为378890.1川(其中地上建筑面积为305876川,地下建筑面积为73014卅);地下1层,地上共有23个单体,16F-23F;建筑高度为52.8m-77.6m。
塔吊扶墙附着计算书

塔机附着验算计算书一、塔机附着杆参数二、风荷载及附着参数附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.695×1.206×1.95×0.2×0.35×1.06=0.237kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.237×572-1/2×0.237×12.92=365.287kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(270+365.287)=571.758kN·m3、附着支座反力计算计算简图剪力图得:R E=77.975kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座4处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
4、附墙杆内力计算支座4处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座4处的附墙杆承担),水平内力N w=20.5R E=110.273kN。
计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=53.241°α2=arctan(b2/a2)=46.353°α3=arctan(b3/a3)=46.353°α4=arctan(b4/a4)=53.241°β1=arctan((b1-c/2)/(a1+c/2))=46.185°β2=arctan((b2+c/2)/(a2+c/2))=46.185°β3=arctan((b3+c/2)/(a3+c/2))=46.185°β4=arctan((b4-c/2)/(a4+c/2))=46.185°四杆附着属于一次超静定结构,用力法计算,切断T4杆并代以相应多余未知力X1=1。
塔吊附墙计算

8#(B3)塔吊附墙杆设计1、第三道附墙1.1支座反力计算附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载标准值应按照以下公式计算:ωk=ω0×μz×μs×βz= 0.400×1.170×1.790×0.700 =0.586 kN/m2;其中ω0──基本风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:ω0 = 0.400 kN/m2;μz──风压高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:μz = 1.790 ;μs──风荷载体型系数:μs = 1.170;βz──高度Z处的风振系数,βz = 0.700;风荷载的水平作用力:q = W k×B×K s = 0.586×1.700×0.200 = 0.199 kN/m;其中 W k──风荷载水平压力,W k= 0.586 kN/m2;B──塔吊作用宽度,B= 1.700 m;K s──迎风面积折减系数,K s= 0.200;实际取风荷载的水平作用力 q = 0.199 kN/m;塔吊的最大倾覆力矩:M = 1743.000 kN·m;弯矩图变形图剪力图计算结果: N w = 121.6407kN ;1.2 附着杆内力计算计算简图:计算单元的平衡方程:ΣF x=0T1cosα1+T2cosα2-T3cosα3=-N w cosθΣF y=0T1sinα1+T2sinα2+T3sinα3=-N w sinθΣM0=0T1[(b1+c/2)cosα1-(α1+c/2)sinα1]+T2[(b1+c/2)c osα2-(α1+c/2)sinα2]+T3[-(b1+c/2) cosα3+(α2-α1-c/2)sinα3]=M w其中:α1=arctan[b1/a1] α2=arctan[b1/(a1+c)] α3=arctan[b1/(a2- a1-c)]第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
塔吊附着方案(计算书参考版本,不同塔吊是不同的)

一、计算书塔机附着验算(32层)计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数二、风荷载及附着参数第2次附着40 15 0.832 1.95 1.95 1.763 1.801 0.308 0.471 第3次附着55 15 0.922 1.95 1.95 1.755 1.792 0.339 0.52 第4次附着70 15 1.008 1.95 1.95 1.733 1.766 0.366 0.56 第5次附着85 15 1.087 1.95 1.95 1.708 1.746 0.389 0.597 第6次附着100 15 1.16 1.95 1.95 1.699 1.734 0.413 0.633 悬臂端121 21 1.254 1.95 1.95 1.686 1.728 0.443 0.681 附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.686×1.254×1.95×0.2×0.35×1.06=0.245kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.245×562-1/2×0.245×12.92=363.775kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(269.3+363.775)=569.768kN·m3、附着支座反力计算计算简图剪力图得:R E=146.645kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座7处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
QTZ5513塔吊附墙计算方案另附有附墙拉杆图纸

QTZ5513塔吊附着计算一、塔吊情况:塔吊采用广西建工集团建筑机械制造有限公司生产的QTZ80(QTZ5513)型塔吊。
该塔吊标准节中心与建筑物附着点的距离为6.76米,根据建筑物的实际结构现初步确定附墙的附着方案,该方案采用3根拉杆对塔吊进行附着,附着杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度hf=10,焊缝长度320,联接钢板通过8根Φ22钢筋固定在建筑物上,其附着位置参见下图。
二、编制依据:《QTZ80塔式起重机说明书》广西建工集团建筑机械制造有限责任公司;《塔式起重机设计规范》(GB/T13752-1992);《建筑结构荷载规范》(GB50009-2001);《建筑安全检查标准》(JGJ59-99);《建筑施工手册》;《钢结构设计规范》(GB50017-2003)等编制。
三、塔吊附墙杆结构图1、拉杆1结构图:2、拉杆2结构图:3、拉杆3结构图:四、附墙杆内力计算1、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其支座反力计算结果如下:①、工作状态:水平力 Nw=190.276 kN,扭矩 Mw=129 kN∙m②、非工作状态:水平力 Nw=205.526 kN2、附墙杆内力力计算①、计算简图:②、计算单元的平衡方程为:T1[(b1 +c/2)cosα1-(a1+c/2)sinα1]+ T2[(b2 +c/2)cosα2- (a2+c/2)sinα2]+ T3[- (b3 +c/2)cosα3+ (a3 -a1 -c/2)sinα3]=M w其中:α1=60°,α2=52°,α3=60°③、工作状态计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着杆最大的轴压力和轴拉力:杆1的最大轴向压力为:262 kN杆2的最大轴向压力为:189.6 kN杆3的最大轴向压力为:216.2 kN杆1的最大轴向拉力为:262 kN杆2的最大轴向拉力为:189.6 kN杆3的最大轴向拉力为:216.2 kN④、非工作状态计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。
塔吊附墙方案

目录一、工程概况 (2)二、编制依据 (2)三、附墙布置及尺寸 (2)四、支座力计算 (5)五、附着杆力计算 (7)六、附着杆强度验算 (9)七、附着支座与建筑物构件连接的计算 (10)八、附着设计与施工的注意事项 (11)九、塔吊的附着的安装 (11)一、工程概况仁恒滨海半岛花园(D3地块)住宅工程坐落于市唐家湾新城东部,情侣北路南段,总建筑面积约20.7万平方米(整体地下室、11栋高层及配套),A组团负责19、20、26、27、28、29号楼,B组团负责21、22、23、24、25号楼;建筑楼层地下1层,地上21-37层;建筑物高度67.675-112.675米。
工程桩采用直径为500mm预应力高强度混凝土管桩及800~1200mm冲孔灌注桩;基础为承台基础。
各栋号±0.000相对于绝对标高5.800m。
根据工程需要,安装的QTZ80塔式起重机必须安装附墙才能满足施工高度的要求。
二、编制依据本计算书主要依据施工图纸及以下规及参考文献编制:《塔式起重机设计规》(GB/T13752-1992)《建筑结构荷载规》(GB50009-2012)《建筑施工手册》、《钢结构设计规》(GB50017-2003)《QTZ80塔式起重机说明书》三、附墙布置及尺寸根据工程需要,安装五道附墙装置。
第一道在距塔吊基础平面25米处安装;第二道在距塔吊基础平面40米处安装;第三道在距塔吊基础平面55米处安装,第四道在距塔吊基础平面70米处安装,第五道在距塔吊基础平面85米处安装,第五道以上塔吊自由高度12米,塔吊附墙杆由厂家按现场情况设计制造,厂家提供的塔吊附墙杆采用二根18号槽钢拼成箱型结构,截面积为250*180,中间肋板采用-10*100*200钢板与槽钢焊接,为安全起见,进行需要对附着支座、附着杆等验算。
塔吊附墙平面图19#、20#、21#、22#、23#、26#楼QTZ80塔吊附墙立面图25#、28#楼QTZ80塔吊附墙立面图四、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
塔吊附墙方案

塔吊附墙方案塔吊是一种用于吊装和运输重型物件的机械设备,广泛应用于建筑工地、港口码头等场所。
在进行建筑工程时,塔吊通常需要附墙安装,以提高其稳定性和吊装效果。
以下是塔吊附墙的一个方案,供参考:首先,需要进行塔吊附墙的设计。
根据建筑工地的具体情况和塔吊的参数,确定塔吊与墙壁之间的距离、高度和角度等参数。
同时,还需要计算墙体的承重能力,以确保塔吊的安全性。
接下来,选择适当的附墙材料。
常见的附墙材料有钢梁、钢板和混凝土等。
根据具体情况选择合适的材料,并进行加固处理,以保证塔吊的稳定性和承重能力。
然后,进行墙体的施工和安装。
根据设计方案,首先需要进行墙体的基础施工,以确保墙体的稳定性和承重能力。
然后,进行墙体的搭设和固定。
根据附墙材料的种类,采用不同的施工方法,如焊接、铆接和浇筑混凝土等。
在墙体的施工过程中,要严格按照设计方案和相关安全规范进行操作,确保施工质量和安全。
最后,进行塔吊的安装和调试。
根据设计方案,将塔吊的基础和附墙部件进行固定和连接。
然后,根据塔吊的使用需求,进行相应的调试和调整,以确保其正常运行和吊装效果。
除了以上的基本方案,还需要注意以下几点:1. 根据具体情况和需要,选择合适的附墙方案。
不同的建筑工地和塔吊参数可能需要不同的附墙方案,要根据实际情况进行调整和选择。
2. 进行严格的安全措施。
在进行塔吊的附墙工作时,要注意安全。
在施工过程中,必须进行安全防护措施,如设置护栏、安装安全网等,确保工人的安全。
3. 进行定期检查和维护。
塔吊附墙后,要进行定期的检查和维护工作,确保附墙的稳定性和塔吊的正常运行。
如发现问题,及时进行修复和处理。
总之,塔吊附墙方案是塔吊在建筑工地中必不可少的一项工作。
选择合适的附墙方案,根据实际情况进行施工和安装,确保塔吊的安全运行和吊装效果。
同时,还需要注意安全措施和定期检查维护,以确保塔吊附墙的稳定性和可靠性。
塔吊扶墙附着计算书

塔机附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数二、风荷载及附着参数附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.695×1.206×1.95×0.2×0.35×1.06=0.237kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.237×572-1/2×0.237×12.92=365.287kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(270+365.287)=571.758kN·m3、附着支座反力计算计算简图剪力图得:R E=77.975kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座4处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
4、附墙杆内力计算支座4处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座4处的附墙杆承担),水平内力N w=20.5R E=110.273kN。
计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=57.291°α2=arctan(b2/a2)=52.431°α3=arctan(b3/a3)=50.505°α4=arctan(b4/a4)=55.469°β1=arctan((b1-c/2)/(a1+c/2))=51.691°β2=arctan((b2+c/2)/(a2+c/2))=51.691°β3=arctan((b3+c/2)/(a3+c/2))=49.97°β4=arctan((b4-c/2)/(a4+c/2))=49.97°四杆附着属于一次超静定结构,用力法计算,切断T4杆并代以相应多余未知力X1=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔吊附墙计算方案及附墙拉杆图纸X X区安置小区工程2#塔吊Q T Z80(T C T5512)塔吊附着方案编制单位:广西建工集团建筑机械制造有限责任公司目录一、工程概况: 01、工程项目情况: 02、参建单位概况: 03、塔吊情况: 0二、编制依据: (1)三、塔吊附墙杆结构图 (2)1、拉杆1结构图: (2)2、拉杆2结构图: (3)3、拉杆3结构图: (5)四、附墙杆内力计算 (7)1、支座力计算 (7)2、附墙杆内力力计算 (7)五、附墙杆强度及稳定性验算 (10)1、附墙杆1验算 (10)2、附墙杆2验算 (11)3、附墙杆3验算 (12)4、附墙杆对接焊缝强度验算 (13)5、附墙杆连接耳板焊缝强度验算 (14)六、塔吊附墙杆连接强度计算 (14)七、附着设计与施工的注意事项 (16)1一、工程概况:1、工程项目情况:XX安置小区工程总建筑面积约为378890.1㎡(其中地上建筑面积为305876㎡,地下建筑面积为73014㎡);地下1层,地上共有23个单体,16F-23F;建筑高度为52.8m-77.6m。
本工程11#、13#为民用二类建筑,其它为民用二类建筑,钢筋混凝土框剪结构。
质量标准为合格,且不少于3幢创泉州市优质工程。
本工程共使用10台塔吊,选用安装的塔吊为广西建工集团建筑机械制造有限责任公司生产出厂的QTZ80型(8部)和QTZ6015型(2部)塔吊塔式起重机。
2#塔吊QTZ80塔身中心到建筑物距离约5.22米。
2、参建单位概况:工地名称:XX安置小区工程建设单位:XX房地产开发有限公司勘查单位:XX市水电工程勘察院设计单位:XX市城市规划设计研究院监理单位:XX监理有限公司施工单位: XX集团总公司工地地址:XX交汇处3、塔吊情况:2#塔吊采用广西建工集团建筑机械制造有限公司生产的QTZ80(TCT5512)型塔吊。
该塔吊标准节中心与建筑物附着点的距离为5220,根据建筑物的实际结构现初步确定附墙的附着方案,该方案采用3根拉杆对塔吊进行附着,附着杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度350,联接钢板通过8根Φ22钢筋固定在建筑物上,其附着位置参见下图。
二、编制依据:《QTZ80(外套)塔式起重机说明书》广西建工集团建筑机械制造有限责任公司;《塔式起重机设计规范》(GB/T13752-1992);《建筑结构荷载规范》(GB50009-2001);1《建筑安全检查标准》(JGJ59-99);《建筑施工手册》;《钢结构设计规范》(GB50017-2003)等编制。
三、塔吊附墙杆结构图1、拉杆1结构图:43、拉杆3结构图:6四、附墙杆内力计算1、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其支座反力计算结果如下:①、工作状态:水平力 Nw=190.276 kN,扭矩 Mw=129 kN∙m②、非工作状态:水平力 Nw=205.526 kN2、附墙杆内力力计算①、计算简图:②、计算单元的平衡方程为:T1[(b1 +c/2)cosα1-(a1+c/2)sinα1]+ T2[(b2 +c/2)cosα2- (a2+c/2)sinα2]+ T3[- (b3 +c/2)cosα3+ (a3 -a1 -c/2)sinα3]=M w其中:α1=59°,α2=51°,α3=60°③、工作状态计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着杆最大的轴压力和轴拉力:杆1的最大轴向压力为:262 kN杆2的最大轴向压力为:189.6 kN杆3的最大轴向压力为:216.2 kN杆1的最大轴向拉力为:262 kN杆2的最大轴向拉力为:189.6 kN杆3的最大轴向拉力为:216.2 kN④、非工作状态计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。
将上面的方程组求解,其中=45,135,225,315, Mw=0,分别求得各附着杆最大的轴压力和轴拉力:杆1的最大轴向压力为:163.5 kN杆2的最大轴向压力为:65.9 kN杆3的最大轴向压力为:219.9 kN杆1的最大轴向拉力为:163.5 kN杆2的最大轴向拉力为:65.9 kN杆3的最大轴向拉力为:219.9 kN由以上两种工况的计算结果可知,验算3根附墙杆强度及稳定性时,应取下列载荷值进行计算。
杆1的最大轴向压力为:262 kN杆2的最大轴向压力为:189.6 kN杆3的最大轴向压力为:219.9 kN杆1的最大轴向拉力为:262 kN杆2的最大轴向拉力为:189.6 kN杆3的最大轴向拉力为:219.9 kN五、附墙杆强度及稳定性验算1、附墙杆1验算杆1受力:F=262KN;杆1长:l=4.8m;现对其进行验算:①、附墙杆1强度验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的最大轴向压力,取 N=262kN;An──为格构杆件的的截面面积,查表得An=5032.4mm2;f──为杆件的许用压应力,查表得f=215N/mm2。
经计算,杆件的最大压应力=262×1000/5032.4=50.06N/mm2。
最大截面应力不大于拉杆的允许应力215N/mm2,满足要求!②、附墙杆1轴心受压稳定性验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的轴向压力,取N=262kN;An──为杆件的的截面面积, 查表得An=5032.4mm2;──为杆件的受压稳定系数,是根据查表计算得,取 =0.595;──杆件长细比,取 =94。
经计算,杆件的最大受压应力=262×1000/5032.4/0.595=84.13N/mm2。
最大压应力不大于拉杆的允许压应力215N/mm2,满足要求!2、附墙杆2验算杆2受力:F=189.6KN;杆2长:l=5.6m;现对其进行验算:①、附墙杆2强度验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的最大轴向压力,取 N=189.6kN;An──为格构杆件的的截面面积,查表得An=5032.4mm2;f──为杆件的许用压应力,查表得f=215N/mm2。
经计算,杆件的最大压应力=189.6×1000/5032.4=37.68N/mm2。
最大截面应力不大于拉杆的允许应力215N/mm2,满足要求!②、附墙杆2轴心受压稳定性验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的轴向压力,取N=189.6kN;An──为杆件的的截面面积, 查表得An=5032.4mm2;──为杆件的受压稳定系数,是根据查表计算得,取 =0.493;──杆件长细比,取 =110。
经计算,杆件的最大受压应力=189.6×1000/5032.4/0.493=76.43N/mm2。
最大压应力不大于拉杆的允许压应力215N/mm2,满足要求!3、附墙杆3验算杆3受力:F=219.9KN;杆3长:l=5.06m;现对其进行验算:①、附墙杆3强度验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的最大轴向压力,取 N=219.9kN;An──为格构杆件的的截面面积,查表得An=5032.4mm2;f──为杆件的许用压应力,查表得f=215N/mm2。
经计算,杆件的最大压应力=219.9×1000/5032.4=43.70N/mm2。
最大截面应力不大于拉杆的允许应力215N/mm2,满足要求!②、附墙杆3轴心受压稳定性验算验算公式:=N/An≤f其中──为杆件的受压应力;N──为杆件的轴向压力,取N=219.9kN;An──为杆件的的截面面积, 查表得An=5032.4mm2;──为杆件的受压稳定系数,是根据查表计算得,取 =0.555;──杆件长细比,取 =99。
经计算,杆件的最大受压应力=219.9×1000/5032.4/0.555=78.74N/mm2。
最大压应力不大于拉杆的允许压应力215N/mm2,满足要求!从以上计算可知3根附墙杆的值均小于150,所以刚度满足要求。
综上所述,3根附墙杆的强度及稳定性满足要求。
4、附墙杆对接焊缝强度验算附着杆如果采用焊接方式加长,对接焊缝强度计算公式如下:其中,N为附着杆最大拉力或压力,取 N=262 kN;Lw——为附着杆的周长,取580mm;T——为焊缝有效厚度,t=7mm;ft或fc——为对接焊缝的抗拉或抗压强度,取 185 N/mm2;经计算,焊缝应力 = 262×1000/(580×7) = 64.53 N/mm2;计算应力均小于许用应力,对接焊缝的抗拉或抗压强度计算满足要求。
5、附墙杆连接耳板焊缝强度验算附墙杆与附着框采用双耳板销轴连接,耳板与附墙板采用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度160。
验算时取3根附墙杆中受力最大的杆1的轴力N=262KN。
耳板处角焊缝应力为:σf=N/(0.7h f lw)/4=262000/[0.7×12×(160-24)]/4=57.34 Mpa小于许用抗拉、抗压和抗剪许用应力160Mpa,满足要求。
六、塔吊附墙杆连接强度计算附墙杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度350。
联接钢板通过8根Φ22钢筋固定在建筑物楼板上。
验算时取3根附墙杆中受力最大的杆1的轴力N=262KN;偏心弯矩为M=Nh/2=262×0.16/2=20.96 KN·m①焊缝验算附着杆与建筑物预埋板用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度350,现计算焊缝的剪切应力为:τf=F/(0.7h f lw)/2=262000/[0.7×12×(350-24)]/2=47.84 Mpaσf=M/(0.7h f lw2/6)/2=20960/[0.7×12×(350-24)2×10-3/6]/2=70.44 Mpa计算组合应力:(τf2+σf2) 1/2=(47.482+70.442) 1/2=84.95 Mpa小于许用抗拉、抗压和抗剪许用应力160Mpa,满足要求。
②钢筋验算联接钢板通过8根Φ22钢筋固定在建筑物楼板上,前后排间距Z=200mm f y=215MPa ,f c=14.3MpaV=F=262KNαr=1(两层)αv=(4-0.08d)(f c/ f y)1/21/2=(4-0.08×22)(14.3/ 215)=0.58αb=0.6+0.25t/d=0.6+0.25×20/22=0.8A s=V/(αrαv f y)+ M/(1.3αrαb f y Z)= 262000/(1×0.58×215)+ 20960/(1.3×1×0.8×215×0.2)=2101+469=2570mm2A s= M/(0.4αrαb f y Z)= 20960/(0.4×1×0.8×215×0.2)=1523 mm28根Φ22螺栓A= nπd2/4=8×π×222/4=3041 mm2> A s=2570mm2满足要求。