小学奥数专题16-时钟问题
小学奥数讲义5年级-16-时钟问题 -难版
时钟问题是研究钟面上时针和分针关系的问题。
钟面的一周分为60格。
当分针走60格时,时针正好走5格,所以时针的速度是分针的5÷60=1/12,分针每走60÷(1-5/60)=65+5/11(分),与时针重合一次,时钟问题变化多端,也存在着不少学问。
这里列出一个基本的公式:在初始时刻需追赶的格数÷(1-1/12)=追及时间(分钟),其中,1-1/12为每分钟分针比时针多走的格数。
一分钟分针可以走6度,时针可以走0.5度。
常见的时钟问题:求某一时刻时针与分针的夹角,两针重合,两针垂直,两针成直线等类型,此外还有快慢钟问题。
【例1】★有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l ”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显典型例题知识梳理然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次.我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”.【小试牛刀】钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。
【例2】★钟表的时针与分针在8点多少分第一次垂直?【解析】32711,此题属于追及问题,但是追及路程是4401525-=格(由原来的40格变为15格),速度差是11111212-=,所以追及时间是:11325271211÷=(分)。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
五年级时钟问题奥数题及答案【三篇】
【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。
以下是⽆忧考为⼤家整理的《五年级时钟问题奥数题及答案【三篇】》供您查阅。
【第⼀篇】
现在是3点,什么时候时针与分针第⼀次重合?
【第⼆篇】
时钟的表盘上按标准的⽅式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每⼀个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟⾯的全部12个数,求n的最⼩值.
解答:(1)当时,有可能不能覆盖12个数,⽐如每块扇形错开1个数摆放,盖住的数分别是:(12,1,2,3);(1,2,3,4);(2,3,4,5);(3,4,5,6);(4,5,6,7);(5,6,7,8);(6,7,8,9);
(7,8,9,10),都没盖住11,其中的3个扇形当然也不可能盖住全部12个数.
(2)每个扇形覆盖4个数的情况可能是:
(1,2,3,4)(5,6,7,8)(9,10,11,12)覆盖全部12个数
(2,3,4,5)(6,7,8,9)(10,11,12,1)覆盖全部12个数
(3,4,5,6)(7,8,9,10)(11,12,1,2)覆盖全部12个数
(4,5,6,7)(8,9,10,11)(12,1,2,3)覆盖全部12个数
当时,⾄少有3个扇形在上⾯4个组中的⼀组⾥,恰好覆盖整个钟⾯的全部12个数.
所以n的最⼩值是9.
【第三篇】。
(完整版)小学六年级奥数★时钟问题
时钟问题“时间就是生命”。
自从人类发明了计时工具——钟表,人们的生活就离不开它了。
什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。
学习时钟问题前先来分析下时钟里分针与时针各自有什么特点:分针特点:时针特点:下面开始练一练重合问题例1现在是2点,什么时候时针与分针第一次重合?例2 从中午12点开始,什么时候时针与分针第一次重合?垂直问题例1在7点与8点之间,时针与分针在什么时刻相互垂直?例2在1点2点之间,时针与分针在什么时刻相互垂直?同一直线问题例1在3点与4点之间,时针和分针在什么时刻位于一条直线上?例2在9点到10点之间,时针和分针在什么时刻位于一条直线上?生活实际问题例1 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。
这部动画片播出了多长时间?前面几个例题都是利用追及问题的解法,先找出时针与分针所行的路程差是多少格,再除以它们的速度差求出准确时间。
但是,有些时钟问题不太容易求出路程差,因此不能用追及问题的方法求解。
如果将追及问题变为相遇问题,那么有时反而更容易。
其他问题例1 3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边?例2小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。
小明做作业用了多少时间?课后练习1.时针与分针在9点多少分时第一次重合?2.王师傅2点多钟开始工作时,时针与分针正好重合在一起。
5点多钟完工时,时针与分针正好又重合在一起。
王师傅工作了多长时间?3.8点50分以后,经过多长时间,时针与分针第一次在一条直线上?4.小红8点钟开始画一幅画,正好在时针与分针第三次垂直时完成,此时是几点几分?5.3点36分时,时针与分针形成的夹角是多少度?6.3点过多少分时,时针和分针离“2”的距离相等,并且在“2”的两边?7.早晨小亮从镜子中看到表的指针指在6点20分,他赶快起床出去跑步,可跑步回来妈妈告诉他刚到6点20分。
(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学奥数趣味学习《时钟问题》典型例题及解答
小学奥数趣味学习《时钟问题》典型例题及解答时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等,这类问题可转化为行程问题中的追及问题。
时钟的数量关系:分针的速度是时针的12倍,二者的速度差为5.5度/分。
通常按追及问题来对待,也可以按差倍问题来计算。
解题思路和方法:将两针重合,两针垂直,两针成一线,两针夹角60°等为“追及问题”后可以直接利用公式。
例题1:钟面上从时针指向8开始,再经过多少分钟,时针正好与分针第一次重合?(精确到1分)解:1、此类题型可以把钟面看成一个环形跑道,那么本题就相当于行程问题中的追及问题,即分针与时针之间的路程差是240°。
2、分针每分钟比时针多转6°-0.5°=5.5°,所以需要240÷5.5≈44(分钟)。
也就是从8时开始,再经过44分钟,时针正好与分针第一次重合。
例题2:从早晨6点到傍晚6点,钟面上时针和分针一共重合了多少次?解:我们可以把钟面看成一个环形跑道,这样分针和时针的转动就可以转化成追及问题。
从早晨6点到傍晚6点,一共经过了12小时,12个小时分针要跑12圈,时针只能跑1圈,分针比时针多跑12-1=11(圈)。
而分针每比时针多跑1圈,就会追上时针一次,也就是和时针重合1次,所以12小时内两针一共重合了11次。
例题3:一部记录中国军队时代变迁的纪录片时长有两个多小时,小明发现,纪录片播放结束时,手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下,这部纪录片时长多少分钟?(精确到1分)解:1、解决本题的关键是认识到时针与分针合走的路程是1080°,进而转化成相遇问题来解决。
2、两个多小时,分针与时针位置正好交换,所以分针与时针所走的路程和正好是三圈,也就是分针和时针合走了360°×3=1080°,而分针和时针每分钟的合走6°+0.5°=6.5°,所以合走1080°需要1080÷6.5≈166(分钟),即这部纪录片时长166分钟。
小学六年级奥数时钟问题
小学六年级奥数时钟问题教学目标:1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题.知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30) /3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30) /3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600* (3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小升初奥数专项——时钟问题
课程六时钟问题学习目标时钟问题是研究钟面上时针和分针关系的问题,而各针转动的速度是确定的。
以格/分为单位,分针的速度是1格/分,而时针的速度是5分/小时=112格/分。
以度/分为单位,因为1格相当于360°60=6°,所以分针的速度是6°/分,而时针的速度是112×6=0.5度/分。
例1、分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?例2、小明有一块手表,每分钟比标准时间快2秒钟,小明早晨8点整将手表对准,问当小明这块手表第一次指示12点时,标准时间此时是几点几分?、例3、小华家有两个旧手表,一个每天快20分针,一个每天慢30分针,现在将两个手表同时调到标准时间,它们要经过多少天才能再次同时显示标准时间?例4、小明去看一部记录影片,他在影片刚放映时看了一下手表,影片结束时他又看了下手表,他发现时针和分针刚好交换了一下位置,已知这场电影时间不足1小时。
问这部纪录片片场多少分钟?例5、现在是3时,再过多长时间,时针和分针恰在“3”字两边,并且与“3”字距离相等?练习1、在7点与8点之间(包括7点和8点)的什么时刻,两针之间的夹角为120度?2、某人下午6点多外出时,看了看手表两针夹角为110°,下午7点前回家时发现两指针夹角仍为110°,问:他外出多长时间?3、小张下午要到工厂上3点的班,他估计快到上班时间了,到屋里看钟,可是钟早在12点10分就停了,他上足发条后忘了拨针,匆匆离家,到工厂一看离上班时间还有10分钟,8小时工作后夜里11点下班,小张回到家里,一看钟才9点整,假定他上班和下班在路上用的时间相同,那么他家的钟停了多长时间?4、小华与妈妈8点多种外出,临出门时他一看钟,时针和分针是重合的,下午2点多钟回到家,一进门看到时针与分针方向相反,正巧成一条直线,他们外出了多少时间?5、某手表每小时比标准时间慢3分,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是几点几分?。
2023年小学奥数时钟问题题库学生版
时钟问题时钟问题知识点阐明时钟问题可以看做是一种特殊旳圆形轨道上2人追及或相遇问题,不过这里旳两个“人”分别是时钟旳分针和时针。
我们一般把研究时钟上时针和分针旳问题称为时钟问题,其中包括时钟旳快慢,时钟旳周期,时钟上时针与分针所成旳角度等等。
时钟问题有别于其他行程问题是由于它旳速度和总旅程旳度量方式不再是常规旳米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常旳时钟,详细为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:不过在许多时钟问题中,往往我们会碰到多种“怪钟”,或者是“坏了旳钟”,它们旳时针和分针每分钟走旳度数会与常规旳时钟不一样,这就需要我们要学会对不一样旳问题进行独立旳分析。
要把时钟问题当做行程问题来看,分针快,时针慢,因此分针与时针旳问题,就是他们之间旳追及问题。
此外,在解时钟旳快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住原则旳钟,时针与分针从一次重叠到下一次重叠,所需时间为56511模块一、时针与分针旳追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里旳闹钟每小时快30 秒.而闹钟却比原则时间每小时慢30 秒,那么王叔叔旳手表一昼夜比原则时间差多少秒?【巩固】小强家有一种闹钟,每时比原则时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天上午6∶00起床,他应当将闹钟旳铃定在几点几分?【巩固】小翔家有一种闹钟,每时比原则时间慢3分。
有一天晚上9点整,小翔对准了闹钟,他想第二天上午6∶30起床,于是他就将闹钟旳铃定在了6∶30。
这个闹钟响铃旳时间是原则时间旳几点几分?【巩固】当时钟表达1点45分时,时针和分针所成旳钝角是多少度?【例 2】有一座时钟目前显示10时整.那么,通过多少分钟,分针与时针第一次重叠;再通过多少分钟,分针与时针第二次重叠?【巩固】钟表旳时针与分针在4点多少分第一次重叠?【巩固】目前是3点,什么时候时针与分针第一次重叠?【例 3】钟表旳时针与分针在8点多少分第一次垂直?【例 4】2点钟后来,什么时刻分针与时针第一次成直角?【例 5】8时到9时之间时针和分针在“8”旳两边,并且两针所形成旳射线到“8”旳距离相等.问这时是8时多少分?【例 6】目前是10点,再过多长时间,时针与分针将第一次在一条直线上?【巩固】在9点与10点之间旳什么时刻,分针与时针在一条直线上?【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针恰好成一条直线。
小学奥数专题之时钟问题
小学奥数专题之时钟问题
小学奥数专题之时钟问题
1、某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒.问:这块手表一昼夜比标准时间差多少秒?
2、一节课40分,从8点30分上课应当到几点几分下课?
3、王老师上午7:30到校上班,11:30下班,上午在校的时间是多少?
4、贝贝做家庭作业用了50分,正好在晚上8:00做完,贝贝是晚上几时几分开始做作业的?
5、做一个零件从上午7:40分开始做,上午9:20分完成,做这个零件用了多长时间?
6、小玲家的钟停了,之声广播2点时,奶奶跟之声对时,由于年老眼花,把时针与分针颠倒了,小玲放学回家时见钟才2点整,大吃一惊,,请你帮助想一想,现在应该是几点钟?
7、小王骑自行车去A地,上午8时出发,在途中因有事停留了15分钟,到中午12时才到达A地,小王骑自行车行了多少时间?
8、钟面上有12个数,你能画两条线将钟面分成三部分,使每部分的数相加的.和相等吗?
9、小奇从家到学校跑步去和回要8分钟,如果去时步行,回来时跑步一共需要10分,那么小奇来回都是步行要几分钟?
10、冬冬做作业,写语文作业用去规定时间的一半,写数学作业用去剩下时间的一半,最后5分钟读书,冬冬完成全部作业作去了多长时间?
11、一只蜗牛从20厘米深的沟底往上爬,每爬4厘米要2分钟,然后停1分,问蜗牛从沟底爬到沟沿上要用多长时间?
12.明明家的台钟,一点钟响铃一下,两点钟响铃两下,三点钟响铃三下,八点钟响铃八下,有一次明明听见台钟响铃一下,没多久又响响了一下,后来又响了一下,你知道最后一响是几点钟吗?。
奥数时钟问题
时钟问题
例1、下面的图是9点整,经过一段时间看到图上的时针走了半格,分针应走到什么位置?这时指的是几点几分?
例2、看看表算一算。
例3、王老师上午7:30到校上班,11:30下班,下午1:00上班,5:00下班,王老师上午在校是多少时间?下午在校是多少时间?一共在校小时?
例4、找出钟面上时刻的规律,填空。
举一反三
1、下图是3点整,经过一段时间看到图上的时针走了半格,分针应走到什么位置?这时指的是几点几分?
2、下图是1点整,经过一段时间看到图上的分针走了半圈(从12走到6),时针走过了多少?这时指的是几点几分?
3、下面是反射在镜子中的钟面时针和分针的位置,原来钟面的时刻是几点几分?
4、在括号里写出从上一个钟面到下一个钟面所经过的时间。
5、在下面括号里写出从上一个钟面到下一个钟面所经过的时间。
6、小明每天练毛笔字,今天他是6点40分开始的,7点结束的,他练写毛笔字用了多长时间?
7、做一个零件,从上午7点40分开始做,上午9点20分完成,做这个零件用了多少时间?
8、同学们看电影《一个也不能少》,看完这部电影需要1小时50分,如果9点10分开映,放映结束时应该是什么时间?
9、按规律填出下面空白钟面所应表示的时间。
10、按规律填出空白钟面所应表示的时间。
小学奥数-时钟问题(教师版)
时钟问题【例1】★有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【小试牛刀】钟表的时针与分针在4点多少分第一次重合? 【解析】此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。
【例2】★钟表的时针与分针在8点多少分第一次垂直?【解析】32711,此题属于追及问题,但是追及路程是4401525-=格(由原来的40格变为15格),速度差是11111212-=,所以追及时间是:11325271211÷=(分)。
【小试牛刀】2点钟以后,什么时刻分针与时针第一次成直角?【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),3150(60.5)2711÷-=(分) 【例3】★现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【解析】时针的速度是 360÷12÷60=0.5(度/分),分针的速度是 360÷60=6(度/分),即 分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度, ,第一次在一条直线时,分针与时针的夹角是180度,,即 分针与时针从60度到180度经过的时间为所求。
小学奥数——钟表问题
钟表问题1.某钟面的指针指在2点整,再过多少分钟,时针和分针第一次重合?过多少分钟时针和分针首次成直角?2.钟面上3点过几分时,时针和分针与“3”的距离相等,并且在“3”的两旁?3.小明晚上7点与8点之间开始做作业,当时钟面上时针与分针恰好成一直线,当她完成作业时,发现时针与分针刚好重合,小明花了几分钟做作业?4.小红发现自己的手表比家里的闹钟每小时快3分,而闹钟却又比标准时间每小时慢3分,早上8时,将手表和闹钟都对准了标准时间,到第二天凌晨4时,手表上的时针指示的是什么时刻?5.小明去看一场内部资料影片,他在影片刚放映是看了一下手表,影片结束时他又看了下手表,他发现时针和分针刚好交换了一下位置,已知这场影片时间不足1小时,问:这部影片片长多少分钟?6.在4点到5点之间,时针与分针何时成直角?7.现在是下午5时整,6时以前时针与分针正好重合的时刻是几时几分?8.2点整以后,时针与分针第二次重合时几时几分?9.5点到6点之间,分针与时针在什么时候成直角?10.小明有一块手表,每分钟比标准时间快2秒钟,小明早上8点整将手表对准,问当小明这块手表第一次指示12点时,标准时间此时应是几时几分?11.现在是上午9点整,再过多少分钟,分针、时针在一条直线上,而且指向相反?12.钟面上6时与7时之间,时针和分针重合是几点几分?13.钟面上6时45分,时针在分针后面多少度?14.小明每天6点回家吃饭,一天她妈妈从6点开始等,一直等到时针与分针第二次成直角时,小明才回家,问小明几点钟回家的?15.爷爷的老式时钟的时针与分针,每隔66分钟辆两针重合一次,这只时钟每昼夜慢多少分钟?16.当时钟指示的时刻是14时整时,开始计算分针旋转的周数,分针旋转了1919周,时针指示的时刻是几时?17.小明5时起床,一看钟,6字恰好在时针和分针的正中间,这时是5时几分?18.张奶奶家的闹钟每小时快2分钟,昨晚9时,她把闹钟与北京时间对准了,同时把闹钟拨到今天早晨6时闹铃,张奶奶听到闹铃响是比北京时间今天早晨6点提前了多少小时?19.小明家的挂钟比标准时间每小时慢2分钟,小明早上7点上学把时钟对准,回家时挂钟正好指着12点,问:此时标准时间是多少?20.从3点钟开始,分针与时针第二次形成30度角的时间是三点几分?21.小明家的钟比走时准确的钟每小时快12分钟,如果小明家的钟走了2小时,那么准确的钟走了多少小时?22.一辆汽车的速度为每小时50千米,现有一块每5小时慢2分钟的表,若用该表计时,测量这辆汽车的速度是多少?(保留1位小数)。
应用题板块-行程问题之时钟问题(小学奥数四年级)
应用题板块-行程问题之时钟问题(小学奥数四年级)行程问题中有一类问题比较特殊,他是研究时间运行而产生的。
一个钟面上通常都有时针和分针,分针每时每刻都在追赶时针,追上后又开启下一次追赶,周而复始。
今天分享的时钟问题,梳理了典型的题目类型和相关知识点,助力同学掌握答题技巧。
【一、题型要领】常见的时钟问题有两类,一类是计算时针和分针在特定时刻形成的角度,另一类是某个时钟和标准时钟存在误差。
1. 时分角度问题【基本概念】钟面上,时针和分针都沿顺时针方向转动,但因速度不同总是分针追赶时针,两者会形成一定角度,包括重合,成一直线,成直角或成特定的角度。
如下图,3点整,时针和分针成90度;3点15分到3点20分之间的某一时刻,时针和分针重合;3点45分到3点50分之间的某一时刻,时针和分针成直线。
【基本公式】特定角度问题需求出当前的精确时间,这类问题可以转化为分针追及时针来解决,运用基本公式“时针和分针的距离差= (分针的速度 - 时针的速度)* 追赶时间”就可以。
这里有几个基本数据需要牢记在心(1)钟面1圈是360度,分为12个大格,60个小格(2)时针12个小时走1圈,1小时走1个大格或者5个小格(30度),1分钟走1/12个小格(0.5度)(3)分针1个小时走1圈,1小时走12个大格或者60个小格(360度),1分钟走1个小格(6度)2. 时钟误差问题【基本概念】一个特定的时钟和标准时钟存在误差,表现为每小时快/慢了几分钟,在某一时刻该时钟和标准时钟完成对时后,要求出当这个特定的时钟走了一段时间后,对应的标准时间是多少【基本公式】可以利用特定时钟和标准时钟行走速度的比例关系来计算。
特定时钟运行距离:标准时钟运行距离 = 特定时钟的运行速度:标准时钟的运行速度【二、重点例题】例题1【题目】小强家有一个闹钟,每时比标准时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【分析】小强家的闹钟比标准时间走的快,因此需要定闹钟时需要多设置一些。
(完整版)小学奥数钟表问题
小学奥数钟表问题
(类似行程问题)
时钟问题主要有3大类题型:
第一类是追及问题(注意时针分针关系的时候往往有两种情况);
第二类是相遇问题(时针分针永远不会是相遇的关系,但是
当时针分针与某一刻度夹角相等时,可以求出路程和);
第三种就是走不准问题,这一类问题中最关键的一点:找到
表与现实时间的比例关系。
注:
1、指针速度单位:分针每分钟走6度,时针每分钟走0.5度,秒针每分钟走360度;
【例1】四点到五点之间,时钟的时针与分针在什么时刻成直角?
1、爷爷在晚上7点多出去散步,出去的时候时针与分针正好在一条直线上,
2、一只钟表的时针与分针均指在4和6
与分针的正中央,问这是什么时刻?
3、小亮晚上9点整将手表对准,他在早晨8点到校时,却迟到了10分钟,那么小明的手表每小时慢几分钟?
4、科技馆有一只奇妙的钟,一圈共有20格。
每过7分钟,指针跳一次就要跳过9个格,今天早上8点整的时候,指针恰好从0跳到9,问:昨晚8点整的时候时针指着几?
解:
昨晚8点整到今天早上8点整,12x60=720分钟
720/7=102 (6)
今天早上8点整,指针恰好从0跳到9,昨晚8点整到今天早上8点整,指针跳动103次
103x9=927
927/20=46 (7)
9-7=2
昨晚8点整的时候时针指着2。
小学奥数——时钟问题
解时钟问题的方法研究时钟的长针(分针)与短针(时针)成直线、成直角与重合的问题,叫做时钟问题。
钟表的分针每小时走60个小格,而时针每小时只走5个小格;分针每分钟走1个小格,而时针每分钟只走605个小格,既121个小格,每分钟分针比时针多走)(121-1=1211个小格,时钟问题的每一个公式都与1211有关,1211个小格是两针在1分钟内所走的路程差,根据两针不同的间隔要求,用除法就可以求出题中所要求的时间。
解题规律:(1)求两针成直线所需要的时间,有:两针成直线所需要的分钟数=(原来两针间隔的格数±30)÷)(121-1 (2)求两针成直角所需要的时间,有:两针成直角所需要的分钟数=(原来两针间隔的格数±15)÷)(121-1 两针成直角所需要的分钟数=(原来两针间隔的格数±45)÷)(121-1 (3)求两针重合所需要的时间,有:两针重合所需要的分钟数=原来两针间隔的格数÷)(121-1 求出所需要的时间后,再加上原来的时刻,就得出两针形成各种不同位置的时刻。
(一)求两针成直线所需要的时间1、在7点钟到8点钟之间,分针与时针什么时候成直线?解:在7点钟的时候,分针在时针后面(图1):5×7=35(格)当分针与时针成直线时,两针的间隔是30格。
因此,只需要分针追上时针:35-30=5(格) 因为每分钟分针比时针多走)(121-1格,所以看5个格之中包含多少个)(121-1格,既可得到两针成直线所需要的时间。
(5×7-30)÷)(121-1=5÷1211=1155(分) 答:在7点1155(分),分钟与时针成直线。
2、在4点与5点之间,分针与时针什么时候成直线?解:4点钟时,分针在时针的后面(图2):5×4=20(格)当分针与时针成直线时,分针不仅要追上已落后的20格,还要超过时针30格,所以一共要追上: 20+30=50(格) 因为分针每分钟比时针多走)(121-1格,所以,看50格之中包含多少个)(121-1格,就可以得到需要多长时间两针成直线。
小学奥数题及答案:时钟问题
这篇关于⼩学奥数题及答案:时钟问题,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助![专题介绍]钟⾯上有时针与分针,每针转动的速度是确定的。
分针每分钟旋转的速度: 360°÷60=6° 时针每分钟旋转的速度: 360°÷(12×60)=0.5° 在钟⾯上总是分针追赶时针的局⾯,或是分针超越时针的局⾯。
这⾥的转动⾓度⽤度数来表⽰,相当于⾏⾛的路程。
因此钟⾯上两针的运动是⼀类典型的追及⾏程问题。
[经典例题]例1 钟⾯上3时多少分时,分针与时针恰好重合?分析正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。
当两针第⼀次重合,就是3时过多少分。
在正3时到两针重合的这段时间内,分针要⽐时针多⾏⾛90°。
⽽可知每分钟分针⽐时针多⾏⾛6-0.5=5.5(度)。
相应的所⽤的时间就很容易计算出来了。
解 360÷12×3= 90(度) 90÷(6-0.5)= 90÷5.5≈16.36(分)答两针重合时约为3时16.36分。
例2 在钟⾯上5时多少分时,分针与时针在⼀条直线上,⽽指向相反?分析在正5时时,时针与分针相隔150°。
然后随时间的消逝,分针先是追上时针,在此时间内,分针需⽐时针多⾏⾛150°,然后超越时针180°就成⼀条直线且指向相反了。
解 360÷12×5=150(度) (150+ 180)÷(6— 0.5)= 60(分) 5时60分即6时正。
答分针与时针在同⼀条直线上且指向相反时应是5时60分,即6时正。
例3 钟⾯上12时30分时,时针在分针后⾯多少度?分析要避免粗⼼的考虑:时针在分针后⾯180°。
正12时时,分针与时针重合,相当于在同⼀起跑线上。
当到12时30分钟时,分针⾛了180°到达6时的位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时钟问题◇专 题 知 识 简 述◇时钟问题是研究钟面上时针和分针关系的问题。
研究时钟的长针(分针)与短针(时针)成直线、成直角与重合的问题,叫做时钟问题。
钟表的分针每小时走60个小格,而时针每小时只走5个小格;分针每分钟走1个小格,而时针每分钟只走605个小格,即121个小格。
每分钟分针比时针多走1211个小格。
时钟问题的每一个公式都与1211有关,1211个小格是两针在1分钟内所走的路程差。
根据两针不同的间隔要求,用除法就可以求出题中所要求的时间。
解题规律:(1)求两针成直线所需要的时间,有:两针成直线所需要的分钟数=(原来两针间隔的格数±30)÷(1-121) (2)求两针成直角所需要的时间,有:两针成直角所需要的分钟数=(原来两针间隔的格数±15)÷(1-121),两针成直角所需要的分钟数=(原来两针间隔的格数±45)÷(1-121) (3)求两针重合所需要的时间,有:两针重合所需要的时间=原来两针间隔的格数刻,就得出两÷(1-121)求出所需要的时间后,再加上原来的时针形成各种不同位置的时刻。
◇例 题 解 析◇(一)求两针成直线所需要的时间例1 在7点钟到8点钟之间,分针与时针什么时候成直线?解:在7点钟的时候,分针在时针后面:5×7=35(格),当分针与时针成直线时,两针的间隔是30格。
因此,只需要分针追上时针:35-30=5(格)。
因为每分钟比时针多走(1-121)格,所以,我们看5个格之中包含多少个(1-121)格,即可得到两针成直线所需要的时间。
5÷(1-121)=5÷1211=5115(分) 综合算式:(5×7-30)÷(1-121)=5÷1211=5115(分) 答:在7点5115分,分针与时针成直线。
例2 在4点与5点之间,分针与时针什么时候成直线?解:4点钟时,分针在时针的后面: 5×4=20(格)当分针与时针成直线时,分针不仅要追上已落后的20格,还要超过时针30格,所以一共要追上:20+30=50(格)。
因为分针每分钟比时针多走(1-121)格,所以看50格之中包含多少个(1-121)格,就可得到需要多长时间两针成直线。
50÷(1-121)=50÷1211=54116(分) 综合算式:(5×4+30)÷(1-121)=50÷1211=54116(分) 答:两针在 4点54116分成直线。
(二)求两针成直角所需要的时间例1 在6点到7点之间,时针与分针什么时候成直角?解:分针与时针成直角时,分针在时针前面15格或时针后面15格,因此,本题有两个答案。
(1)6点钟时,分针在时针后面:5×6=30(格)因为两针成直角时,分针在时针后面15格,所以分针追上时针的格数是:30-15=15(格)因为分针比时针每分钟多走(1-121)格,所以看15个格之中含有多少个(1-121)格,即可得到两针成直角所需要的时间。
15÷(1-121)=15÷1211=16114 综合算式:(5×6-15)÷(1-121)=15÷1211=16114(分) (2)以上是两针第一次成直角的时刻。
当两针第二次成直角时,分针在时针前面15格,所以分针不仅追上时针,而且要超过时针:5×6+15=45(格)。
45格含有多少个1211格,两针就需要多长时间成直角。
45÷1211=49111(分) 综合算式:(5×6+15)÷1211=45÷1211=49111分 答:时针与分针分别在6点49111分和6点分成直角。
例2 在1点到2点之间,时针与分针在什么时候成直角?解:1点钟时,分针在时针后面:5×1=5(格)当分针与时针成直角时,两针间隔是15格,因此,分针不仅要追上时针5格,而且要超过时针15格,分针实际追上时针的格数是:5+15=20(格)。
因为分针每分钟比时针多走1211格,也就是每分钟能追上1211格,所以20格之中包含多少个1211,分针与时针就经过多少分钟成直角。
20÷1211=21119(分) 综合算式:(5×1+15)÷1211=20÷1211=21119分 当分针走到时针前面45格(也就是走到时针后面15格)时,两针也成直角。
因此,所需时间是:(5×1+45)÷1211=50÷1211=54116分 答:1点21119分和1点54116分,两针都成直角。
例3 在11点与12点之间,时针与分针在什么时候成直角?解:在11点钟时,分针在时针后面:5×11=55(格)第一次两针成直角时,分针是在时针后面45格,因此,分针需要追上时针的格数是:55-45=10(格)因为每分钟分针能追上时针1211格,所以10个格中包含多少个1211,两针就需要多长时间成直角。
10÷1211=101110(分) 综合算式:(5×11-45)÷1211=10÷1211=111110(分) 第二次成直角时,分针在时针后面15格。
根据公式两针成直角所需时间数=(原来两针间隔的格数±15)÷1211,得:(5×11-15)÷1211=40÷1211=43117(分) 答:时针与分针在111110(分)和11点43117(分)成直角。
(三)求两针重合所需要的时间在11点到1点之间,两针除在12点整重合外,其他每一点钟之间都有一次重合。
例1 3点钟到4点钟之间,分针与时针在什么时候重合?解:在3点钟时,分针在时针后面:5×3=15(格);分针只要追上这15格,两针就重合了。
每分钟分针比时针可多走1211格,因此15格之中包含有多少个1211,分针有时针就需要多长时间重合。
5×3÷1211=16114(分) 答:在3点16114分钟重合。
例2在4点与5点之间,两针什么时候重合?解:在4点钟时,分针在时针后面5×4格,分针只要追上时针4×5格,两针就重合。
5×4÷1211=20÷1211=21119(分) 答:两针在4点21119分重合。
◇练习巩固◇1.在6点和7点之间,两针什么时刻重合?2.现在是2点15分,再过几分钟,时针和分针第一次重合?3.2点钟以后,什么时刻分针与时针第一次成直角?4.在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?5.在10点与11点之间,两针在什么时刻成一条直线?6.一旧钟钟面上的两针每66分钟重合一次,这只旧钟在标准时间的一天中快或慢几分钟?7.李叔叔下午要到工厂上3点的班.他估计快到上班时间了,到屋里看钟,可是钟早在12点10分就停了.他上足发条后忘了拨针,匆匆离家,到工厂一看离上班时间还有10分钟.8小时工作后夜里11点下班,李叔叔回到家里,一看钟才9点整.假定他上班和下班在路上用的时间相同,那么他家的钟停了多长时间?◇练习答案◇1.解:在6点整时,分针落后时针5×6=30(个)格,到分针与时针重合时,分钟要比时针多走30个格,而每分钟分针比时针多走1211个格,所以到达这一时刻所用的时间:30÷1211=32118(分钟)。
因此,所求的时刻为6点32118分钟。
2.解:在2点整时,分针落后时针5×2=10(个)格,到分针与时针重合时,分针要比时针多走10个格,所以到达这一时刻所用的时间为:15÷1211=16114(分钟),所以在3点16114分钟两针第一次重合。
所用的时间为3点16114分钟=2点15分=61114(分钟)。
答:再过61114分钟,分针与时针第一次重合。
3.解:在2点整时,分针落后时针5×2=10(个)格,当分针与时针第一次成直角时,分针超过时针60×(90÷360)=15(个)格,因此在这段时间内分针要比时针多走10+15=25(个)格,所以到达这一时刻所用的时间为:25÷1211=27113(分钟),所求的时刻为2点27113分。
答:在2点27113分时,分针与时针第一次成直角。
4.解:①当分针落后时针而与时针成120°角时:当分针落后时针而与时针成120°角时,分针落后时针60×(120÷360)=20(个)格,而7点整时分针落后时针5×7=35(个)格,因此在这段时间内分针要比时针多走35—20=15(个)格,所以到达这一时刻所用的时间为:15÷1211=16114分时,两针之间的夹角为120°。
②当分针超过时针而与时针成120°角时:当分针超过时针而与时针成120°角时,分针超过时针20格,而7点整时分针落后时针35格,因此在这段时间内分针要比时针多走35+20=55(个)格,因此在这段时间内整时,两针之间的夹角为120°。
5.解:①当分针与时针的夹角为180°角时:当分针与时针的夹角为180°角时,分针落后时针60×(180÷360)=30(个)格,而10点整时分针落后时针5×10=50(个)格,因此在这段时间内分针要比时针多走50-30=20(个)格,所以到达这一时间为:20÷1211=21119(分钟)。
因此在10点21119分时分针与时针在一条直线上。
②当分针与时针的夹角为0°即分针与时针重合时:10点整时分针落后时针50个格,因此当分针与时针重合时分针要比时针多走50个格,所以到达这一时刻所用的时间为:50÷1211=54116(分钟)。
因此在10点54116分时分针有时针在一条直线上。
答:在10点21119分与10点54116分时分针与时针在一条直线上。
6.解:设旧钟在分针用标准时间1分钟走x 格,则旧钟的时针速度为121x 格/标准分。
根据旧钟的时针与分针每重合一次耗用66标准分钟,列方程得:60÷(x-121x )=66, 解出x=121120 标准时间一天有60×24标准分,标准时间一天内旧钟走的格数为:121120×60×24格。
则这只旧钟标准时间一天慢:60×24-121120×60×24=11121109(旧钟格) 答:这只旧钟在标准时间一天内慢1111121109分钟(按旧钟上的时间)。